
HAL Id: hal-04266002
https://hal.science/hal-04266002

Submitted on 11 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Susceptibility of QDI Circuits to Transient
Faults

Raghda El Shehaby, Matthias Függer, Andreas Steininger

To cite this version:
Raghda El Shehaby, Matthias Függer, Andreas Steininger. On the Susceptibility of QDI Circuits
to Transient Faults. FORMATS 2023 - International Conference on Formal Modeling and Analysis
of Timed Systems, Sep 2023, Antwerp, Belgium. pp.69-85, �10.1007/978-3-031-42626-1_5�. �hal-
04266002�

https://hal.science/hal-04266002
https://hal.archives-ouvertes.fr

On the Susceptibility of QDI Circuits to
Transient Faults⋆

Raghda El Shehaby1[0009−0000−6653−9074], Matthias
Függer2[0000−0001−5765−0301], and Andreas Steininger1[0000−0002−3847−1647]

1 TU Wien, Institute of Computer Engineering
2 CNRS & LMF, ENS Paris-Saclay, Université Paris-Saclay & Inria

Abstract. By design, quasi delay-insensitive (QDI) circuits exhibit hi-
gher resilience against timing variations as compared to their synchronous
counterparts. Since computation in QDI circuits is event-based rather
than clock-triggered, spurious events due to transient faults such as
radiation-induced glitches, a priori are of higher concern in QDI circuits.
In this work we propose a formal framework with the goal to gain a
deeper understanding on how susceptible QDI circuits are to transient
faults. We introduce a worst-case model for transients in circuits. We then
prove an equivalence of faults within this framework and use this result
to provably exhaustively check a widely used QDI circuit, a linear Muller
pipeline, for its susceptibility to produce non-stable output signals.

Keywords: transient faults, QDI circuits, automatic evaluation

1 Introduction

A transient fault in a circuit is a temporarily incorrect value at a circuit’s sig-
nal, e.g., induced by radiation. It is well known that synchronous (i.e., clocked)
circuits exhibit a natural resilience against transient faults through masking.
Specifically, the relevant effects are electrical masking (short fault pulses are fil-
tered by low-pass behavior of subsequent gates and interconnect), logical mask-
ing (depending on other input levels, the logic level of the faulty input may be
irrelevant for the gate output) and temporal masking (the flip-flop samples its
data input at the active clock edges while ignoring faults that happen between
these). However, synchronous circuits have little resilience against (fault) effects
that impact the timing. By contrast, asynchronous (i.e., self-timed, handshake-
based) and in particular quasi delay-insensitive (QDI) [1] circuits exhibit large,
ideally unlimited, tolerance against timing variations by construction. This is
due to their event-driven operation principle. Unfortunately, this very event
driven operation makes them prone to transient faults. While electrical masking

⋆ This research was partially supported by the project ENROL (grant I 3485-N31) of
the Austrian Science Fund (FWF), the Doctoral College on Resilient Embedded Sys-
tems (DC-RES), the ANR project DREAMY (ANR-21-CE48-0003), and the French
government’s excellence scholarships for research visits.

2 El Shehaby et al.

and logical masking mitigate fault effects like in the synchronous case, it is not
obvious whether considerable temporal masking occurs. Previous works have
shown that asynchronous pipelines, e.g., have data accepting windows during
which they are susceptible to fault pulses. The size of these windows depends
on several parameters, most notably the mode of pipeline operation (bubble-
limited/balanced/token-limited). For unbalanced operation these windows may
reach considerable size, making the circuit clearly more susceptible to faults
than in the synchronous case with its instantaneous sampling. That is why sev-
eral mitigation methods [2] aim at minimizing the data accepting windows. In
any case there is some effect equivalent to temporal masking, and most often it
is constituted by Muller C-elements (MCEs): During the combinational mode
of operation (matching inputs), the MCE ignores fault pulses on any input and
not even a pulse at the output can flip its state. In storage mode (non-matching
inputs), however, the MCE’s state can be easily flipped by a fault pulse at one
of the inputs or at the output (directly at the keeper). So apparently, the share
of time during which an MCE is in combinational mode determines the masking
provided by it. In a reasonably complex practical setting, however, this insight
is hard to map to a general prediction of the whole circuit.

Given an asynchronous circuit, a natural question thus is at which signals
and at which times the circuit is susceptible to a transient fault. In this paper
we present an approach to efficiently and provably exhaustively answer this
question.

Organization. We discuss related work in Section 2 and introduce our circuit
model in Section 3. In Section 4 we start with basic consistency results of the
model, followed by our main technical result: the definition of value regions in
executions along with a proof of the equivalence of glitches within those regions
(Theorem 2). Based on this result we then present our tool for sensitivity-window
exploration (Section 4.4) and apply it to a widely used QDI circuit for illustra-
tion. We conclude in Section 5.

2 Related Work

Transient faults in asynchronous circuits. Several studies have explored
the effects of transient faults on asynchronous circuits. Detection and mitigation
techniques with some form of redundancy have been proposed alongside.

The authors in [3] perform a thorough analysis of single-event transient (SET)
effects, among other types of faults, in QDI circuits. The fault’s impact is first
presented at the gate level, then on communication channels, translating the
fault to a deadlock. They also discuss other possible errors (synchronization
failure, token generation, and token consumption). An efficient failure detection
method for QDI circuits is presented in [4]. The method brings the circuit to a
fail-safe state in the presence of hard and soft errors. The authors investigate
the probability for a glitch to propagate through a state-holding element in
asynchronous circuits. In [5], the authors propose a formal method to model the

On the Susceptibility of QDI Circuits to Transient Faults 3

behavior of QDI circuits in the presence of transient faults. They use symbolic
simulation to provide an exhaustive list of possible effects and analyze which of
these cases are theoretically reachable. Their model, however, does not support
delay parameters, which potentially reduces the set of reachable states, further
improving the resistance of a design against single-event upsets (SEUs). They
also discuss in [6] the Muller C-element fault sensitivity and specify a global
sensitivity criterion to SETs for asynchronous circuits. The work provides a
behavioral analysis of QDI circuits in the presence of faults. With the help of
signal transition graphs (STGs), the authors in [2] informally analyze SEUs
due to glitches on QDI network-on-chip links. Several mitigation techniques are
proposed with a focus on reducing the latch’s sensitive window to a glitch. Some
of these techniques are tested and compared against other proposed variations
in [7], [8], and [9]. The assessment there is based on extensive fault injection
simulations into different QDI buffer styles, in order to identify the main culprits
of the circuit. The authors provide a quantitative analysis to determine the
windows of vulnerability to SETs and the impact of certain parameter choices
on the resilience of the circuit. However, the analysis is done based on a regular
timing grid, which causes linear complexity in time and in resolution, and cannot
exclude the potential of overlooking relevant windows between the grid points.

Hazards in PRSs. QDI circuits can be modeled on different levels. The Pro-
duction Rule Set (PRS), introduced by Martin [1], is a widely-used low-level
representation that can be directly translated to a CMOS transistor implemen-
tation. PRSs do not normally support hazards, and by guaranteeing stability and
non-interference characteristics [10], a PRS execution is assumed to be hazard-
free. The authors consider an SEU as flipping of a variable’s value and model
it in so called transition graphs to identify deadlock or abnormal behavior. [11]
extends the semantics of PRSs in order to be able to address hazards as circuit
failures, but it is limited to checking the hazard-freedom property of a circuit.

These papers are focused on the possibility of failure and are restricted to
precedence of events, without explicitly considering timing. Our work enables
further propagation of what we define as a glitch in order to check whether it
has reached the final outputs of a circuit and, based on actual timing information,
quantify this proportion of failure.

3 Model

Following the work by Martin [1], we model a circuit as a set of production rules.
We extend the model by delays and propagation of non-Boolean values. We start
with definitions of signal values and production rules in our context.

Signal and signal values. Signals are from a finite alphabet S. Signals have
values that may change over time. We extend the values a signal may attain from
the classical Boolean values B = {0, 1} to the three-valued set BX = {0,X, 1},
where X is a potentially non-binary value. Examples for non-binary values are
glitches, oscillations, and metastable values. A signal that has value X may,
however, be 0 or 1.

4 El Shehaby et al.

We will make use of logical operations like ∧ and ¬ on the extended do-
main BX. If not stated otherwise, we resort to the semantics of the 3-valued
Kleene logic, introduced by Goto for these operations; see [12]. In short, using
the classical algebraic interpretation of Boolean formulas on {0, 1} ⊂ R+

0 where,
¬a ≡ 1 − a, a ∧ b ≡ min(a, b), and a ∨ b ≡ max(a, b), one obtains the Kleene
semantics by the correspondence X ≡ 1/2. For example, one obtains, 1∧X = X
and 1 ∨X = 1.

Production rules. A production rule is a guarded Boolean action with delay.
It is of the form

G → s = 1 [d] or G → s = 0 [d] , (1)

where the guard G is a logical predicate on signals, s is a signal, and d ∈ (0,∞) is
the propagation delay. Intuitively, a production rule with guard G, action s = b,
where b ∈ {0, 1}, and delay d sets signal s’s value to b upon predicate G being
true for d time.

Circuit. A circuit is specified by:

– Finite, disjoint sets of input, local, and output signals, denoted by I, L, and
O.

– Initial values for all local and output signals. We write s(0) for the initial
value of signal s ∈ L ∪ O.

– A set of production rules R whose guards are predicates on the circuit’s
signals and whose actions involve only local and output signals. We require
that (i) for each signal s, there is at most one production rule that sets s to
1, and at most one that sets s to 0, and (ii) guards of production rules that
set a signal s are mutually exclusive for all signal values from B.

Similarly to Martin [1] we use production rules to model gates: actions that
set a value to 1 correspond to the pull-up stack of a gate and actions that set a
value to 0 to the pull-down stack. Any meaningful circuit will further have the
properties that any local and output signal appears in a production rule that
sets it to 0 and one that sets it to 1; if not, the signal will remain at its initial
value for all times. Further, as already demanded in the last bullet above, the
guards of these opposing production rules will not both evaluate to true for any
choice of signal values; if not, the pull-up and pull-down stacks of this gate will
drive the gate’s output at the same time.

Signal trace. A signal trace for signal s ∈ S is a function vs : R+
0 → BX

mapping the time t to the value of s at time t. By slight abuse of notation,
we write s(t) for vs(t). We restrict signal traces to contain only finitely many
value-changes in each finite time interval.

Execution. It remains to define how a circuit, with a given input, switches signal
values. For that purpose fix a circuit, input signal traces for all its inputs I, and
a time T > 0 until which the execution is to be generated.

Intuitively an execution induced by the circuit and the input signal traces is
inductively generated via applying the production rules to the current signal

On the Susceptibility of QDI Circuits to Transient Faults 5

values. If a guard of a production rule is true, its action is scheduled to take
place after the rule’s delay.

Care has to be taken to handle instability of guards. If a guard that results
in a scheduled action on a signal, but whose action has not yet been applied,
becomes false, we remove the scheduled action and instead set the signal to X
after a small delay ε > 0. An ε smaller than the rule’s delay accounts for the fact
that non-binary outputs can propagate faster than full-swing transitions. The
signal’s value X is then propagated accordingly throughout the circuit. Indeed
we will let ε → 0 in later sections to account for the worst case behavior of gates.

Formally, the execution prefix until time T , induced by the circuit and the
input signal traces, is a signal trace prefix until time T for each local and output
signal obtained as follows:

1. Initially, all signals are set to their initial values as specified by the circuit.
Further, the current time t = 0, and the set of scheduled actions is empty.

2. Handle unstable guards:
– For each production rule whose action s = b, with b ∈ B, currently being

scheduled: if the rule’s guard evaluates to 0 or X, and s(t) ̸= b (we say
the guard is unstable), then remove the event from the scheduled events
and set s = X. (generate-X)

3. Apply actions:
– For each action s = v, with v ∈ BX, scheduled for time t, set s(t) = v

and remove the action from the scheduled actions.
4. Schedule actions:

– For each production rule: if its guard evaluates to 1, schedule the rule’s
action s = b to take place after the rule’s delay d, i.e., at time t + d
(unless s(t) = b already).

– For each production rule: if its guard evaluates to X and the rule’s action
is s = b with s(t) ̸= b, schedule the action s = X for time t + ε (unless
s(t) = X already). (propagate-X)

5. Advance time t to the nearest future time at which an action is scheduled or
an input signal switches value. If t ≥ T , return the local and output signal
traces until time T ; otherwise, continue with step 2.

One observes that an execution prefix until time T ′ > T is an extension of an
execution prefix until time T : for each local and output signal s, the signal values
in both prefixes are identical within [0, T]. We may thus speak of the execution
as the limit of execution prefixes until times T → ∞.

3.1 Example

As an example let us consider the circuit with input signal i, no local signals, and
output signal o. As initial value we choose o(0) = 1. The circuit comprises of a
single inverter with input i, output o, and delay 1.0, i.e., the circuit’s production
rules are:

i → o = 0 [1.0] (2)

¬i → o = 1 [1.0] . (3)

6 El Shehaby et al.

We consider three input traces: (a) Initially i(0) = 0, then i transitions to 1
at time 1 where it remains. (b) Prefix like (a), but the input transitions back to
0 at time 1.5. (c) Like (b), but with value X during times [1, 1.5).

The execution prefixes until time T = 4 induced by the above circuit and the
input signal traces (a), (b), and (c) are depicted in Figure 1.

i

o

0 1 2 4

i

o

0 1 1.5 2.5 4

i

o

0 1 1.5 2.5 4

Fig. 1. Execution prefixes until time T = 4 of an inverter with input i and output o.
Signal value X is depicted as a value of 0.5 and marked red. The propagation delay ε
for signal value X is set to 0.1. Left: input signal trace (a). Middle: input signal trace
(b). Right: input signal trace (c).

In the example, input traces (a) and (b) result in the guard of rule (2)
becoming true at time 1. Accordingly, an action to set o = 0 is scheduled for
time 1+d = 2. While in input trace (a), the guard remains true until time 2, and
thus o is set to 0 at time 2, in input trace (b), the guard is falsified at time 1.5,
resulting in the action being canceled and o is set to X at time 1.5 (generate-X
in the algorithm).

For input trace (b), we have that the guard of rule (3) becomes true at time
1.5. Accordingly the action o = 1 is scheduled for time 1.5 + d = 2.5. Since the
guard remains true until time 2.5, the action is applied resulting in o(2.5) = 1.

Finally, input trace (c) demonstrates the algorithmic rule propagate-X in
step 5: the X value at the input is propagated with propagation delay ε = 0.1 to
the output. Resetting the output to 1 at time 2.5 occurs as for input trace (b).

4 Results

4.1 Well-defined executions

We start with a basic result on the consistency of an execution as defined by the
algorithm.

Lemma 1 Any signal trace of an execution has at most finitely many value-
changes within a finite time interval; it is thus a well-defined signal trace.

Proof. Assume by contradiction that a signal trace has infinitely many value-
changes within a finite interval [t, t′] ⊂ R. By consistency of prefixes of execu-
tions, this implies that the algorithm returns an execution with infinitely many
value-changes when setting T = t′.

In the algorithm, at any point in time τ there is at most one action per non-
input signal in the set of scheduled actions and at most bounded many actions

On the Susceptibility of QDI Circuits to Transient Faults 7

per input signal until time T . Observing that there is a minimum propagation
delay dmin > 0 for signal values 0, 1, and X, any newly scheduled action must
occur at earliest at time τ+dmin. Thus, only bounded many actions occur within
[τ, τ + dmin]. The statement follows. ⊓⊔

4.2 A transient-fault insertion tool

To study the effect of short transient faults on the behavior of circuits we extend
the algorithm from Section 3 to allow the insertion of external events: signal
transitions from a set of external events are applied at the end of step 3. Step 5
is changed to include external events when updating time t to the time of the next
event. A transient fault then corresponds to two subsequent signal transitions of
the same signal in the set of external events in our model. This is less general
than transient faults in physical implementations, where a transient fault, e.g.,
induced by an additional charge due to a particle hit, can lead to a single early
transition by happening just before a valid signal transition. The assumption,
however, is conservative in the sense that we assume that such a charge is small
enough to lead to a pulse, i.e., double transition, potentially violating a gate’s
stability condition: in fact we will later in Section 4.3 assume that transient faults
are not necessarily full-swing binary pulses and have value X in our model.

We have implemented the algorithm in Python and shall discuss results for
a widely-used QDI circuit component, a linear pipeline, in the following.

Linear pipeline. To study the susceptibility of QDI circuits to transient faults,
we used the tool to insert short pulses (glitches) at different times. As a proto-
typical QDI circuit, we used the linear 3-stage Muller pipeline shown in Figure 2.

C C C
C1

en1

C2

en2 en3

C3Cin

INV2 INV3

MCE1 MCE2 MCE3

INV1

INV4

Fig. 2. Linear Muller pipeline with 3 stages. The delays are set to 1 (INV2, INV3), 5
(C gate), 4 (source delay = INV1), and 4 (sink delay = INV4).

Delays have been uniformly set to 1 for the two pipeline inverters INV2 and
INV3, to 5 for all Muller C-elements (MCE1 to MCE3), and 4 for the leftmost
inverter INV1 and the rightmost inverter INV4, which model the source and
sink of the pipeline, respectively. Figure 3 shows an execution prefix until time
T = 32 in absence of transient faults, generated by our tool. Figures 4 and 5
show execution prefixes of the same circuit until time T = 32 when a glitch
of width 0.1 is inserted at the same signal, c2, at different points in time: the
intervals during which a signal has value X are marked in red. One observes that
the behavior is different in presence of the glitch, as detailed in the following.

8 El Shehaby et al.

c_in

en1

c1

en2

c2

en3

c3

0 4 9 13 14 15 19 20 23 24 25 26 30 31 32

Fig. 3. Execution prefix of linear 3-stage pipeline until time T = 32.

c_in

en1

c1

en2

c2

en3

c3

0 4 9 10 13 32

Fig. 4. Execution prefix of linear 3-stage pipeline until time T = 32 with glitch of
width 0.1 inserted at time 10 at signal c2.

Non-masked glitch. In Figure 4, the glitch occurs at the input of the MCE
while it is in storage mode, i.e., non-matching inputs. Since the other stable
input en3 is at a different logic level than the MCE output c3, the X value is
generated at the latter signal, and subsequently propagates through the circuit.

Masked glitch. By contrast, the glitch in Figure 5 occurs at the MCE input
while in combinational mode, i.e., matching inputs. The glitch is masked at the
output c3, but the X value appears for a short period of time at en1 (since an
inverter propagates its input value). During this time span, the X value appeared
and disappeared while the other MCE was also in combinational mode, hence
was prevented from propagating the unstable value further in the circuit.

Susceptibility to transient faults. The two different behaviors raise the ques-
tion of when a QDI circuit like the linear pipeline can mask glitches successfully,
and when it is susceptible to them. To address that, we relate susceptibility to
the occurrence of glitches at signals of particular interest (typically the output
signals to the environment). We call these signals of interest the monitored sig-
nals. For example, in the linear pipeline, signals c1 and c3 are the outputs to
the environment represented by the source on the left and the sink on the right.

In general, let C be a circuit, and i an input signal trace. Let M ⊆ L∪O be
the set of monitored signals. Then, (C, i) is susceptible to a glitch (of width w)
at signal s ∈ I ∪ L ∪ O at time t, if there exists a signal m ∈ M and a time t′

On the Susceptibility of QDI Circuits to Transient Faults 9

c_in

en1

c1

en2

c2

en3

c3

0 4 9 13 14 15 19 20 22 23 24 25 26 30 31 32

Fig. 5. Execution prefix of linear 3-stage pipeline until time T = 32 with glitch of
width 0.1 inserted at time 22 at signal c2.

such that in the execution, induced by the circuit C and the input signal traces
i and with a glitch (of width w) at signal s and time t, it is m(t′) = X.

Revisiting the example of the linear pipeline, and letting M = {c1, c3} be
the set of monitored signals, the pipeline with its input is susceptible to a glitch
(of width 0.1) at signal c2 at time 10, but not at time 22 (see Figures 4 and 5).

This directly leads to the question of the sensitivity windows, i.e., the times
when a circuit with an input is susceptible and when not. Related, if combined
with a probability measure on faults occurring at these times, one may ask how
likely a transient fault is to cause a glitch at a monitored signal. We address
both questions in the following.

4.3 Equivalence of transient faults

While the previous tool allows one to sample the susceptibility at particular
times, such an approach has several drawbacks: (i) it is time consuming to gen-
erate such sweeps and (ii) small susceptible windows may be overlooked.

In the following we present an alternative approach that relies on showing
the equivalence between certain transient faults. We begin the analysis with a
definition. We say signal s has a pulse at time t of width w > 0 if s changes
value at time t, remains constant within time [t, t + w), and changes value at
time t+w. A v-pulse, with v ∈ BX, is a pulse that has value v during [t, t+w).
We speak of a transient fault as an X-pulse that has width of at most some
predefined small γ > 0.

We are now ready to show a monotonicity property of the value X in execu-
tions: If transient faults are added to a circuit’s execution, the resulting execu-
tion differs from the original one at most by turning Boolean values into X. For
example, a transient fault may not result in a later 0-1 transition.

Theorem 1 (Monotonicity of X) Let C be a circuit and i be input traces.
Let e be the execution induced by circuit C and input traces i, and e′ the execution
induced by circuit C and input i in presence of transient faults. Then for all
signals s and times t, if s(t) ∈ B in e′, then s(t) is identical in e and e′.

10 El Shehaby et al.

Proof. Assume, by means of contradiction, that the statement does not hold and
let t be the smallest time at which executions e and e′ do not fulfill the theorem’s
statement. Then there is a signal s such that s(t) = b ∈ B in execution e′ and
s(t) = v ̸= b in execution e. We distinguish between two cases for value v:

Case v = X. If so, in execution e, signal s was set to X at some time τ ≤ t,
and not set again within [τ, t]. By minimality of t, and the definitions of e and
e′, s was also set to X in e′ at time τ (or earlier). It follows that in execution
e′, signal s was set to b within (τ, t]. This implies that a rule with guard G and
action s = b was triggered at a time before t, and thus G was true in execution
e′. By minimality of t and the definitions of e and e′, G must have been also
true in e, resulting in the same action being scheduled also in e; a contradiction
to the assumption that v = X.

Case v = ¬b. If so, s was set via two different rules in e and e′ and not set
to another value until time t. This implies that mutually exclusive guards have
evaluated to 1 in e and e′ before time t; a contradiction to the minimality of t
in combination with the theorem’s statement.

The theorem’s statement follows in both cases. ⊓⊔

We next define time intervals that play a central role in a circuit’s behavior
in presence of transient faults.

Given a circuit C and an execution e of C, the set of value switching times,
VC(e), is the set of times τ0 = 0, τ1, . . . at which a signal in execution e switches
value. A value region of execution e is an interval [t, t′) ⊂ R, where t, t′ are
consecutive value switching times of execution e. A postfix of a value region
[t, t′) is a (potentially empty) interval [t′′, t′) ⊆ [t, t′).

Theorem 2 Let C be a circuit, i be input traces, γ > 0 the width of a transient
fault, and ε > 0 the propagation delay of value X. Let e be the execution induced
by circuit C and input traces i.

Then, for a signal s of the circuit, and a value region R of execution e, the
set Σs(R) of times t ∈ R such that (C, i) is susceptible to a transient fault (of
width γ) at signal s at time t ∈ R converges to a postfix of R as ε → 0 and
γ → 0.

This means that every value region can be split into two intervals per signal:
the left part of the region that contains the times at which the circuit is not sus-
ceptible, and the right part where it is susceptible to faults. Either part/interval
can be empty.

Proof. In the following fix C, i, γ, ε, execution e, signal s, and value region R
of execution e. We first show a monotonicity property within a value region.

Lemma 2 Let R = [t, t′) be a value region of execution e and s a signal. Further,
let e1 and e2 be executions of C with the same input traces as e, but with e1
additionally having transient faults within R at s up to some time τ1 ∈ R and e2
having at least one transient at a time τ2 ∈ R at s, where τ1 ≤ τ2 ≤ t′−|C|ε−γ.

On the Susceptibility of QDI Circuits to Transient Faults 11

Then for all value regions R′ of execution e and all signals s′, if s′ has value
X at some time within R′ in execution e1, then it does so at some time within
R′ in execution e2.

Proof. Within the same value region, both transient faults cause the same sig-
nals to become X, given that τ1, τ2 are sufficiently far from the value region’s
boundary t′ to allow for propagation of X with delay ε (at most |C|ε time): this
follows from the fact that the circuit’s signal values and set of scheduled actions
are identical at the start of the first transient in e1 and in e2.

Further, a signal with value X remains so unless it is set again to a Boolean
value by a production rule. This can only happen by its guard becoming true
right after a transient fault. Since, τ1 ≤ τ2, and both times are in the same
value region, any event scheduled (and not canceled) after the transient fault
at τ2 must also be scheduled (and not canceled) after the transient faults that
occur until time τ1: signals have the same Boolean values and remain stable for
a longer time in e1 than in e2.

The argument is inductively repeated for each subsequent value region of
execution e. ⊓⊔

We are now in the position to show the section’s main result.

Proof (Proof of Theorem 2). Letting ε → 0 and γ → 0, we have from Lemma 2
that if a transient fault at a signal s at a time τ1 ∈ R that causes X at a signal s′

then a transient fault at a signal s at a time τ2 ∈ R, where τ1 ≤ τ2, also causes s′

to become X at some point in time. The theorem’s statement then follows from
the definition of a postfix of R. ⊓⊔

4.4 Automated computation of susceptible regions

Theorem 2 directly leads to an algorithm that marks all sensitivity windows,
i.e., susceptible times, within an execution prefix: for each non-output signal s,
and for each value region R, it finds per bisection of repeatedly inserting tran-
sient faults the boundary of non-susceptible times (on the left within R) and
susceptible times (on the right within R). The algorithm’s time complexity is

determined by one bisection per region (with precision ε > 0), i.e.,
∑

R log |R|
ε , as

opposed to a naive search that injects a fault every ε > 0 with a complexity in-
versely proportional to ε. Moreover, the naive algorithm may miss susceptibility
windows smaller than ε, while our algorithm provably finds all such windows.

To test the algorithm’s use on typical circuit instances we have implemented
it in Python [13]: given a circuit, input traces, the set of monitored signals, as
well as a time T until which an execution prefix is to be generated, it outputs a
figure with all susceptible windows highlighted in blue as well as the percentage
of the length of the susceptible windows in the execution prefix (by default
excluding the monitored signals, but with the possibility to include them). This
value corresponds to the probability of a transient fault causing an X value at a
monitored signal, i.e., the probability to fail P (fail), given a uniform distribution

12 El Shehaby et al.

of a single transient on all times in the execution prefix and on all signals that are
not monitored signals (by default; alternatively on all signals). Clearly, though,
the uniform distribution can be easily replaced by a more involved distribution.
Towards this direction, the tool also outputs the probability per signal. This
allows one to compute a weighted average, e.g., depending on driver strength
or shielding at certain signals. Figure 6 shows the tool’s output for the previous
example of the 3-stage linear pipeline with sensitivity windows marked in blue.

c_in

en1

c1

en2

c2

en3

c3

0 4 9 13 14 15 19 20 23 24 25 26 30 31 32

Fig. 6. Execution prefix of linear 3-stage pipeline until time T = 32 with sensitivity
windows marked in blue. Monitored signals are c1 and c3. Here, P (fail) = 0.54375.

A fault occurring at any point of the blue sensitivity windows will drive
one (or more) of the circuit’s monitored signals to X. A fault hitting any other
region (excluding the monitored signals) will be masked and will not reach the
monitored signals of the circuits. Observe that in this example all sensitivity
windows are trivial postfixes of regions: a region is either fully non-susceptible
or susceptible; in general this does not necessarily hold.

4.5 Comparison of fault-tolerance depending on speed

We next illustrate the use of our tool for a linear pipeline, where we vary the
source and sink latencies. Inverter delays are symmetric and normalized to 1 and
Muller C-element latencies are set to 5 inverter delays. The results are shown in
Figure 7, with cuts in Figures 8 and 9. The length of the execution prefix has
been chosen sufficiently high, to account for a sufficiently long time for P (fail)
to be dominated by the periodic operation of the circuit rather than the initial
transient phase: T = 500 in the overview plot and T = 1000 in the detailed
sweeps.

Figure 7 shows an overview of the behavior of the circuit under a stable
environment, be it fast or slow, and how the circuit reacts when there is an
unbalance between the speeds of source and sink. The z-axis displays the prob-
ability of an X value presence at any of the monitored signals. The x and y-axes
represent the speeds (latencies) of sink and source, respectively, in time units.
The pattern of the plot is best visualized when having the latter axis inverted.
The diagonal of the frame where both sink and source latencies are equal to 1

On the Susceptibility of QDI Circuits to Transient Faults 13

Fig. 7. Influence of source and sink speed on P (fail). Linear 3-stage pipeline with delays
as follows: 1 (INV), 5 (MCE), varying source and sink delays. T = 500.

Fig. 8. Influence of sink speed on
P (fail). Linear 3-stage pipeline with de-
lays: 1 (INV), 5 (MCE), 4 different source
delays, varying sink delay. T = 1000.

Fig. 9. Influence of source speed on
P (fail). Linear 3-stage pipeline with de-
lays: 1 (INV), 5 (MCE), 4 different sink
delays, varying source delay. T = 1000.

(fast) to where they are both 25 (slow) represents the stable/balanced environ-
ment, i.e., the source provides tokens with the same speed as the sink provides
the acknowledgment. The figure indicates that P (fail) is high when the envi-
ronment is stable and fast, and decreases as it gets stable and slow. When the
environment is balanced, the MCEs in the circuit are not waiting for either the
data or the ack signals; both are supplied within short intervals of time from
each other. Since the waiting phases are those where the MCE operates in the
vulnerable storage mode (inputs mismatching), one observes that reducing the
waiting period decreases P (fail).

The environment imbalance is divided further into 2 modes of operation.
On the right side (for relatively low source delay) of the figure, the circuit is
operating in bubble-limited mode, where the sink’s response to the source’s new
tokens is slow. On the left half of the figure, the sink’s activity is faster than the
source’s, driving it in token-limited mode.

The vulnerability of the bubble-limited mode can be seen more clearly in
Figure 9; this is where the system is most prone to failure. The probability
P (fail) varies from around 60-80%, where it reaches the maximum when the sink
delay is equal to 22 while source delay is 1 (maximum imbalance). Similarly, the
token-limited mode falls near the sink latency of 1 in Figure 8, varying from

14 El Shehaby et al.

c_in en1 c1 en2 c2 en3 c30.0
0.2
0.4
0.6
0.8
1.0

source: 1, sink: 1

c_in en1 c1 en2 c2 en3 c30.0
0.2
0.4
0.6
0.8
1.0

source: 1, sink: 4

c_in en1 c1 en2 c2 en3 c30.0
0.2
0.4
0.6
0.8
1.0

source: 1, sink: 25

c_in en1 c1 en2 c2 en3 c30.0
0.2
0.4
0.6
0.8
1.0

source: 4, sink: 1

c_in en1 c1 en2 c2 en3 c30.0
0.2
0.4
0.6
0.8
1.0

source: 4, sink: 4

c_in en1 c1 en2 c2 en3 c30.0
0.2
0.4
0.6
0.8
1.0

source: 4, sink: 25

c_in en1 c1 en2 c2 en3 c30.0
0.2
0.4
0.6
0.8
1.0

source: 25, sink: 1

c_in en1 c1 en2 c2 en3 c30.0
0.2
0.4
0.6
0.8
1.0

source: 25, sink: 4

c_in en1 c1 en2 c2 en3 c30.0
0.2
0.4
0.6
0.8
1.0

source: 25, sink: 25

Fig. 10. Circuit fault probability per signal of the linear 3-stage pipeline with varying
source and sink delays. Delays: 1 (INV), 5 (MCE), and 3 different source and sink delays
indicated in the figure. T = 1000.

around 40-60%. The latter figures show several cross-sections of the 3D-plot
from Figure 7. In addition to mapping the token-limited and the bubble-limited
areas to these 2 graphs, we can also spot the points belonging to the balanced
environment diagonal in the frame in Figure 7. These points are where the
abrupt changes of behavior of each line occur, and consequently we can pinpoint
where one region of the mode of operation ends and the other starts.

Finally, Figure 10 shows the fault probabilities per signal of the linear pipeline
as reported by our tool for varying source and sink delays (fast, normal, and
slow). It allows us to give a more detailed interpretation of our observations in
Figure 8. The probabilities for the monitored signals c1 and c3 are always 1.0
as by definition of the fault probabilities.

Interestingly, c2 has a high fault probability, too. For fast sink this can be
explained as follows: MCE3 spends most of the time in the vulnerable storage
mode, waiting for a transition on c2. As soon as one occurs, it triggers a tran-
sition on c3 which, after the short sink delay, puts MCE3 back to storage mode.
This only leaves a very short time window where MCE3 is masking faults at c2.
The enable signals, in turn, are only vulnerable during those short windows,
thus showing low fault probability, especially when the source delay is high, see
subplot “source:25, sink:1”.

Recall that we have chosen a relatively large switching delay for the MCE,
and our pessimistic model assumes the MCE to be vulnerable during the whole
switching duration. This explains why in general P (fail) increases for faster op-
eration speed: the proportion of the sensitive MCE switching phase increases.
This can be most directly observed for the balanced cases.

For the other imbalanced extreme with “source:1, sink:25” we observe high
fault probability for the enable signals. This is not surprising, since now the
MCEs spend most of the time waiting for transitions on these signals. A fault

On the Susceptibility of QDI Circuits to Transient Faults 15

probability of 1.0 for c1 and c3 is also unsurprising, due to our definitions, as
mentioned already. Quite unexpected, on the first glance, is the fact that c2

again shows high fault probability, even though we can assume good masking by
MCE3 for that input. The reason here is that, via INV2, faults from c2 directly
propagate to en1 which is known to have low protection by masking. As a result,
we see a generally high fault probability in this mode.

5 Conclusion

We have shown that the regular operation of circuits can be decomposed into
time windows within which faults are equivalent in that their effect (as perceived
at some selected monitoring signals) remains the same. These time windows are
bounded by an arbitrary bound on the left and a regular signal transition on the
right. Consequently, for determining the effect of transient faults on a circuit, a
single bisection between each pair of neighboring signal transitions is sufficient
to determine all sensitivity windows.

The approach has two advantages over standard sweeping approaches to find
sensitive regions: (i) it provably finds all sensitivity windows, no matter how
small they are. Sweeping by contrast always leaves the possibility open that a
small window may exist between two samples. (ii) It outperforms sweeping in
that a small grid of samples is not necessary: many (large) windows require only
a single sample via our method, and at most a bisection.

Based on this result we have developed a Python-based tool that, starting
from a production-rule based circuit description, systematically explores its re-
silient and its vulnerable windows (along with the respective fault effects). The
relative size of the windows is then used to predict the proportion of (random)
faults that will be effective, and thus, given a fault rate, the failure rate. Since
our approach allows identifying the windows individually, it is possible to at-
tach weights to the diverse nodes to account for different susceptibility (drive
strength, e.g.) in the overall prediction. We have illustrated the function of our
tool on a typical QDI circuit example which showed that the tool is efficient and
allows for fast analysis.

While we focused on a proof-of-concept with smaller circuits, a next step is
to run our method on larger circuits. Another extension of our approach is to
determine the constituent parameters for the window sizes. Since we determine
all windows individually in our automated process, backtracking to the origins
of the relevant signal transitions is possible. With that information we can de-
termine in detail how individual parameters like circuit delays or pipeline load
influence resilience and hence elaborate targeted optimizations. Finally, work on
improving the performance of the implementation is planned: the proposed al-
gorithm is easily parallelizable since windows can be determined independently
and hence concurrently.

16 El Shehaby et al.

References

1. A. J. Martin, “Compiling communicating processes into delay-insensitive vlsi cir-
cuits,” Distributed computing, vol. 1, no. 4, pp. 226–234, 1986.

2. W. J. Bainbridge and S. J. Salisbury, “Glitch sensitivity and defense of quasi delay-
insensitive network-on-chip links,” in 2009 15th IEEE Symposium on Asynchronous
Circuits and Systems. IEEE, 2009, pp. 35–44.

3. C. LaFrieda and R. Manohar, “Fault detection and isolation techniques for quasi
delay-insensitive circuits,” in International Conference on Dependable Systems and
Networks, 2004. IEEE, 2004, pp. 41–50.

4. S. Peng and R. Manohar, “Efficient failure detection in pipelined asynchronous
circuits,” in 20th IEEE International Symposium on Defect and Fault Tolerance in
VLSI Systems (DFT’05). IEEE, 2005, pp. 484–493.

5. Y. Monnet, M. Renaudin, and R. Leveugle, “Formal analysis of quasi delay insensi-
tive circuits behavior in the presence of seus,” in 13th IEEE International On-Line
Testing Symposium (IOLTS 2007). IEEE, 2007, pp. 113–120.

6. ——, “Asynchronous circuits transient faults sensitivity evaluation,” in Proceedings
of the 42nd annual design automation conference, 2005, pp. 863–868.

7. F. Huemer, R. Najvirt, and A. Steininger, “Identification and Confinement of Fault
Sensitivity Windows in QDI Logic,” in Proceedings. Austrochip Workshop on Mi-
croelectronics 2020. IEEE, 2020.

8. P. Behal, F. Huemer, R. Najvirt, A. Steininger, and Z. Tabassam, “Towards ex-
plaining the fault sensitivity of different qdi pipeline styles,” in 2021 27th IEEE In-
ternational Symposium on Asynchronous Circuits and Systems (ASYNC). IEEE,
2021, pp. 25–33.

9. Z. Tabassam and A. Steininger, “Set hardened derivatives of qdi buffer template,”
in 2022 IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT). IEEE, 2022, pp. 1–6.

10. W. Jang and A. J. Martin, “Seu-tolerant qdi circuits [quasi delay-insensitive asyn-
chronous circuits],” in 11th IEEE International Symposium on Asynchronous Cir-
cuits and Systems. IEEE, 2005, pp. 156–165.

11. M. Katelman, S. Keller, and J. Meseguer, “Rewriting semantics of production rule
sets,” The Journal of Logic and Algebraic Programming, vol. 81, no. 7-8, pp. 929–
956, 2012.

12. J. A. Brzozowski, Z. Ésik, and Y. Iland, “Algebras for hazard detection,” in Pro-
ceedings 31st IEEE International Symposium on Multiple-Valued Logic. IEEE,
2001, pp. 3–12.

13. R. E. Shehaby, M. Függer, and A. Steininger, “Sensitivity analyzer for asyn-
chronous logic (SeAL),” https://github.com/mfuegger/SeAL, 2023.

14. A. J. Martin, “The limitations to delay-insensitivity in asynchronous circuits,” in
Beauty is our business. Springer, 1990, pp. 302–311.

15. R. Manohar and Y. Moses, “The eventual c-element theorem for delay-insensitive
asynchronous circuits,” in 2017 23rd IEEE International Symposium on Asyn-
chronous Circuits and Systems (ASYNC), 2017, pp. 102–109.

16. P. A. Beerel, R. O. Ozdag, and M. Ferretti, A designer’s guide to asynchronous
VLSI. Cambridge University Press, 2010.

17. G. Gill, V. Gupta, and M. Singh, “Performance estimation and slack matching for
pipelined asynchronous architectures with choice,” in 2008 IEEE/ACM Interna-
tional Conference on Computer-Aided Design. IEEE, 2008, pp. 449–456.

18. T. E. Williams, M. Horowitz, R. Alverson, and T. Yang, “A self-timed chip for
division,” in Stanford Conference on Advanced Research in VLSI, 1987, pp. 75–96.

On the Susceptibility of QDI Circuits to Transient Faults 17

A Appendix

Section A.1 gives a brief overview on the main concepts of asynchronous circuits
used in this work. Sections A.2 and A.3 demonstrate the applicability of our
approach to circuits different than the linear pipeline.

A.1 Asynchronous circuits: overview on concepts used in this work

QDI circuit. Asynchronous circuits, unlike their synchronous counterparts, are
not governed by a rigid time grid that centrally determines the communica-
tion between any two entities. Alternatively, data transfer follows a closed-loop
control provided by a local handshake process that specifies when new data is
available for sending and recognizes when old data has been processed. Delay-
insensitive (DI) circuits offer the ultimate timing flexibility by automatically
adapting to gate and wire delays. Very few circuits, however, can actually be
designed following the DI delay model, since such circuits can provably be con-
structed only from inverters (1 input) and Muller C-elements (MCEs, 2 inputs)
when restricted to single-output gates [14, 15]. By adding the isochronic fork
constraint, one obtains the class of quasi delay-insensitive (QDI) circuits, which
is only lightly-constrained with respect to timing and provides sufficient expres-
sivity. This timing assumption requires the delays of the individual paths of an
isochronic fork to be about equal, assuring that a signal arrives at all ends of
the fork at about the same time [1, 16].

Muller C-element. The MCE is a fundamental building block in QDI circuits,
as it can be seen as the simplest form of storage element, and it is crucially
used in the so called completion detection (CD) units. It can also serve as a
control unit in some QDI buffer templates. The MCE can be considered as an
AND gate with hysteresis. In case of matching inputs, it sets the output to this
corresponding value; when inputs don’t match, the output retains its previous
logic level.

QDI pipeline. In a QDI pipeline, data is issued by a source and travels through
sequential stages of latches, which are sometimes separated by logic function
units, until it reaches the sink (in absence of logic functions, the pipeline acts
as a data queue). Figure 11 shows the components of one such stage. When
new data is detected at the input side, the buffer captures it only when an
acknowledgement from the next stage is received, indicating that old data has
been stored. The CD then signals the receipt of this new data item by issuing
an acknowledgment signal to its previous stage, closing the control loop.

Since there is no explicit request signal in the QDI design style, data must be
encoded using a so-called DI code. The encoding depends on the communication
protocol in use. The return-to-zero (RTZ), or 4-phase, protocol is commonly used
along with the dual-rail encoding scheme, where one data bit is encoded on two
wires, namely the true and false rails: Any two data items are separated by a
spacer. This spacer is encoded by logic ‘0’ on all rails and carries no information.

18 El Shehaby et al.

Only one rail for each bit can be set to logic ‘1’ at a time; having both rails set
to ‘1’ violates the protocol and is considered illegal. The CD indicates validity
and completeness of a data item or a spacer, issuing the appropriate ack to the
other stage. The CD is made up of a simple OR gate in the case of a single bit,
and employs additional logic for higher bit-widths, as shown in Figure 12.

Latch

Buffer

CD

EN

data_in data_out

ack_in

ack_out

Fig. 11. QDI pipeline stage with latch
components

C

C

C

a1.F

a1.T

an.F

an.T

ack

a2.F

a2.T

an-1.F

a-1.T

a1.F

a1.T

Fig. 12. The internal structure of a
multi-bit CD using OR gates and
MCEs

A.2 Comparison of fault-tolerance for Muller pipeline rings

Another common asynchronous pipeline construct is rings. We interpret the
pipeline operation to implement a 4-phase QDI protocol in the following. Shown
in Figure 13, is a 3-stage Muller pipeline where one data token, one spacer, and
one bubble keep rotating. Note that when using the term token on its own, it
encompasses a data token along with a spacer, so 1 token means one of each. It is
possible to also interpret a token to follow the 2-phase communication protocol,
and in this case we would double this count.

In order to study the resilience of a Muller ring w.r.t. the activity inside the
pipeline, we need to vary its occupancy, i.e., the number of data items revolving
in it [17]. We need at least one bubble in the ring, regardless of how many stages
constitute it. When the number of data items in the ring is small, the other stages
of the pipeline will be filled with holes. When there is more holes than data, the
pipeline is said to be data-limited ; when there is more data than holes, it is said
to be hole-limited [17]. These operation modes correspond to the token-limited
and bubble-limited modes, respectively, in the linear Muller pipeline.

We use our tool to study the effect of varying the ring occupancy, by building
the ring with a different number of stages and changing the token count. As this
is a Muller pipeline, each C-element needs alternating input sequences to be able
to transition from 0 to 1 every stage.

On the Susceptibility of QDI Circuits to Transient Faults 19

C C C
C1

en1

C2

en2 en3

C3

INV2 INV3

MCE1 MCE2 MCE3

INV4

Fig. 13. Ring 3-stage pipeline. The delays are set to 1 (INV) and 5 (MCE).

In order to keep the pipeline running and avoid deadlock, the process of
correctly initializing the stages of the ring is crucial. As previously mentioned,
there must be at least one bubble in the pipeline. For each combination of tokens
and stages, we calculate the number of bubbles needed and we fill the pipeline
in the following manner:

– If the number of bubbles is much larger than the number of tokens, we start
by filling the pipeline with bubbles, and insert tokens equally paced from
one another.

– If the number of bubbles is much lower than the number of tokens, we start
by inserting tokens, and spread the bubbles in between.

– If there is only one bubble, it doesn’t matter where it is inserted. Same if
there is only one token.

– A token is always inserted as a data token and a spacer that are not separated
by a bubble.

The results for these settings are shown in Figure 14. The first point of each
line (from the left) represents the maximum number of tokens allowed for the
corresponding number of stages (recall that this count represents, in fact, a data
token and a spacer). The top left region represents the bubble-limited operation
mode, where one can clearly see that P (fail) gets higher. The increasing number
of stages also seems to play a role in this trend. From what we have previously
observed we can conjecture that this is because an idle (waiting) stage (MCE)
has the highest fault probability, while one that processes a token/transition is
more resilient. By adding stages while keeping the number of tokens constant,
we add idle stages – consequently P (fail) increases.

As we move to the edges of the token-limited region where the number of
bubbles largely exceeds the number of tokens, P (fail) converges to a steady
percentage of approximately 45%.

Finally, we compare throughput and probability to fail as a function of the
same ring pipeline with a varying number of (4-phase) tokens. It has been pre-
viously observed [17,18] that the throughput as a function of tokens behaves as
a canopy plot: it is low for small numbers of tokens (token-limited), high in the
middle, and low for large numbers of tokens (bubble-limited). Figure 15 com-
pares this behavior with the failure probability as determined by our tool for

20 El Shehaby et al.

Fig. 14. Influence of number of tokens and stages on the probability to fail P (fail).
Ring pipeline with varying number of stages and tokens. Delays as follows: 1 (INV), 5
(MCE). T = 500. A token encompasses a data token along with a spacer, so 1 token
means one of each, following the 4-phase communication protocol. In the case of a
2-phase protocol, this token count is doubled.

execution prefixes of length T = 200. While the canopy diagram suggests that
4 and 5 tokens yield optimum throughput, the failure probability favors a lower
token count. So for maximum performance the better choice would be 4 tokens.
This result is not general and seems to depend on the design choices, but the
general strategy should be to also consider P (fail) in the system design.

A.3 Multi-bit QDI designs

To demonstrate the ability of our tool to handle larger, multi-bit designs, we
ran the algorithm to determine susceptible windows on execution prefixes of
duration T = 500. As circuits under test we used 4-bit and 8-bit versions of
the previously analyzed linear and ring pipeline. Our tool reported the following
values for P (fail): (i) the 3-stage linear pipeline with 4-bit resulted in 0.22 and
with 8-bit in 0.10. (ii) the 3-stage ring pipeline with 4-bit resulted in 0.22 and
with 8-bit in 0.16. The observed decrease of P (fail) for higher pipeline width is
as expected from literature: while the last rail to switch is the most critical one
(it triggers the completion detector), the faster bits are less critical and hence
contribute to lowering the overall fault probability – with growing impact for
increasing bit number.

All results were obtained within minutes on a MacBook Pro (M2, 2022) with
24 GB RAM.

On the Susceptibility of QDI Circuits to Transient Faults 21

Fig. 15. Influence of number of tokens on the probability to fail P (fail) and the through-
put (in 4-phase tokens per INV delay passing MCE1). Ring pipeline with 20 stages and
varying number of tokens. Delays as follows: 1 (INV), 5 (MCE). T = 200. A token
encompasses a data token along with a spacer (4-phase; for 2-phase interpretation
multiply by factor 2).

