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Abstract—The dense nature of transportation networks ex-
pands the challenge of their visualization and processing. Several
statistical backbone extraction techniques are proposed to reduce
their size while keeping essential information. Here, we perform a
comparative evaluation of seven prominent statistical backbone
extraction techniques in the USA weighted air transportation
network. One can classify the airports into hubs, spokes, and
focus airports based on the business models used by the airlines.
We compare the extracted backbones using various performance
measures. We consider the number of components, sizes, the
fraction of airport type, edge type, and weights preserved by
each method. Results show that the Enhanced Configuration
Model (ECM) Filter tends to preserve edges between spoke
airports uncovering the infrastructure connecting the regional
spoke airports. In contrast, the alternative filters (Disparity, Polya
Urn, Marginal Likelihood, Noise Corrected, Global Statistical
Significance (GLOSS), Locally Adaptive Network Sparsification
(LANS)) highlight edges between the hub and spoke, focus and
spoke, and spoke and spoke airports revealing more of the hub
and spoke foundation used by airlines. Moreover, the Disparity
Filter, Marginal Likelihood Filter, and Noise Corrected Filter
preserve the highest proportion of weights while Polya Urn
Filter and ECM Filter keep the lowest. The GLOSS and LANS
Filters maintain a moderate fraction of weights between the two
extremes.

Index Terms—Complex Networks, Backbone Filtering Tech-
niques, Network Compression, Graph Summarization, Sparsifi-
cation, Transportation Networks

I. INTRODUCTION

Networks are widely adopted for analyzing complex sys-
tems in many fields. In particular, there is a significant
interest in analyzing transportation networks [1]–[4]. In these
networks, nodes represent spatial units such as cities, airports,
ports, and stations, while edges describe transport-related
interactions between the nodes. Edges are typically weighted
by frequency, distance, capacity, or the time it takes to travel
between nodes. Since transport networks are spatial, nodes

This material is based upon work supported by the Agence Nationale de
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are preferably visualized in their location, producing dense
networks with regionally clustered edges. This type of lo-
cally dense representation makes processing and visualization
challenging tasks. Filtering the edges with weights below
a global threshold value is a naive approach to reducing
the network size. Unfortunately, this approach destroys the
heterogeneity of the edge weight distribution. Consequently,
various backbone extraction techniques have been proposed to
reduce the network size while preserving the highest amount
of ”information”. One can classify current backbone extraction
techniques into structural and statistical methods. Structural
techniques remove edges and nodes according to a criterion
allowing the latent structure of the network to emerge [5]–[11].
They are generally designed to preserve critical topological
properties of the network, such as the average distance, the
community structure, and so on. In contrast, statistical tech-
niques consider that noisy edges that need to be filtered hide
the network structure [12]–[18]. They assess the significance
of an edge through a statistical test, eliminating the least
significant edges.

A previous study [19] compared six backbone extraction
techniques in the Southeast Asian intercity air transport net-
work [20]. It includes one statistical method (disparity filter)
and five structural techniques (global weight thresholding, k-
core decomposition, minimum spanning tree, primary linkage
analysis, and multiple linkage analysis) [12], [21]–[24] . They
evaluate the extracted backbones based on their geographical
and topological structures, pointing out the potential of each
technique in the light of different transport research appli-
cations. For instance, they recommend k-core decomposition
to analyze the best-connected core for multiplex networks.
They suggest that Primary linkage analysis is well-suited for
functional/nodal regions analysis and highlighting hub-and-
spoke structures. Finally, they recommend the Disparity Filter
for analyzing the overall topological and spatial information
for large-scale networks and possible hidden structures.



After the Airline Deregulation Act in 1978, airport hubs
have formed the backbone of the USA’s present-day flying
network and marketplace. Many regular airline companies
such as American Airlines and United Airlines embrace the
hub-and-spoke business model. However, not all airlines rely
on this system. Many low-cost airlines provide point-to-point
networks to route passengers on strategically chosen flight
paths between focus airports, such as Southwest Airlines and
JetBlue. In this study, we first consider a toy example (a
part of the US Air Transportation Network) to understand
better the behavior of various statistical backbone extraction
techniques under test. We compare their ability to preserve
different types of airports (hub, focus, and spoke) and edges.
Finally, we extend our investigation to the North American air
transportation Network to consolidate our findings

The rest of the paper is organized as follows. Section
II introduces the backbone extraction techniques under test.
Section III compares the backbone extraction techniques in
a toy example. Section IV compares the backbone extraction
techniques in the North American air transportation network.
Finally, we make some concluding remarks in Section V.

II. BACKBONE EXTRACTION TECHNIQUES

This section briefly presents the statistical backbone extrac-
tion techniques under evaluation. Assume that G(N,E,W ) is
a simple, undirected, and weighted graph where N is the set
of nodes of size n = |N | nodes and E ⊆ N ×N is the set of
edges of size m = |E| edges. W represents the weight matrix,
whose element wij indicates the weight of the edge joining
node i and j. We recall the degree ki of node i is the number
of its neighbors, and its strength si =

∑
j wij is the sum of

the weights of the edges incident to it. S =
∑

wij is the the
strength of the network

All these statistical techniques share a common framework.
Given an edge connecting node i to node j, they perform a
statistical test based on a defined null model or the empirical
data to compute the p-value αij . Edges with p-values larger
than a predefined statistical significance threshold α are con-
sidered non-significant and thus removed.

A. Global Threshold

The most straightforward technique is filtering edges with
weights lower than a predefined threshold α.

B. Disparity Filter [12]

This popular technique assesses the significance of an edge
locally from the viewpoint of the incident nodes considered
independently. It assumes that a node i distributes its total
strength si uniformly among its edges. Based on the defined
model, it normalizes the weights following: xij =

wij

si
.

Then it performs a one-sided right-tail test computing αij the
probability of observing a normalized weight X at least as
”extreme” as xij . It is given by:

αij = P(X > xij |ki)

= 1− (ki − 1)

∫ xij

0

(1− x)ki−2dx
(1)

C. Polya Urn Filter [13]

In the Pólya Urn [25], observing a particular event increases
the probability of further observing it. Similarly, one can
assume that edge weights are due to an aggregation process
of nodes interacting with each other over time. Based on this,
it assumes that a node i distributes its strength si randomly
through a Pólya process. For each edge, it performs a one-
sided right-tail test computing αij the probability that node
i will assign randomly through a Pólya process a weight X
larger than or equal to wij . It is given by:

αij = P(w ≥ wij |ki, si, a)

= 1−
wij−1∑
w=0

(
si
w

)
B( 1a + w, ki−1

a + si − w)

B( 1a ,
ki−1
a )

(2)

A reinforcement parameter a governs this mechanism. The
higher the value of the reinforcement mechanism a, the larger
the weight must be for the edge to be considered significant.
Note that the disparity filter is a special case of the Polya Urn
Filter.

D. Marginal Likelihood Filter [14]

While the Disparity Filter and Polya Urn Filter assess the
significance of an edge in the light of each node it connects
independently, the Marginal Likelihood Filter considers the
two nodes the edge connects. An integer-weighted edge is
treated as multiple unit edges. The null model assumes that
each unit edge randomly chooses two nodes, which results
in a binomial distribution. For each edge, it performs a one-
sided right-tail test computing αij the probability of drawing
at least wij unit edges from the strength S of the network with
probability p =

sisj
2S2 proportional to both nodes’ strengths. It

is given by:

αij = P(w ≥ wij |si, sj , S)

= 1−
wij−1∑
w=0

(
S

w

)
pw(1− p)S−w

(3)

E. Noise Corrected Filter [15]

Similar to the Marginal Likelihood Filter, it assumes edge
weights are drawn from a binomial distribution. However, it
estimates the probability of observing a weight connecting two
nodes using a Bayesian framework. This framework enables
us to generate posterior variances for all edges. This posterior
variance allows us to create a confidence interval for each
edge weight. Finally, we remove an edge if its weight is less
than δ standard deviations stronger than the expectation, where
δ is the only parameter of the algorithm. It also provides a
direct approximation through Binomial distribution similar to
the Marginal Likelihood Filter. however, the probability of a
unit edge connecting node i with node j is defined as follows:
p =

sisj
S2 .



F. GLOSS Filter [17]

The GLOSS filter assumes that one cannot assess edges
independently of the overall network topology. Therefore, it
defines a global null model for evaluating the significance of an
edge. However, it makes no assumptions about the distribution
of weights. Instead, it employs the empirical distribution. The
model is a network with the same topology as the original
network and edge weights randomly drawn from the empirical
weight distribution. For each edge, it performs a one-sided
right-tail test computing αij the probability of observing at
least wij edge weight between node i and node j considering
the nodes’ observed degrees ki, kj and strengths si, sj as
constraints. It is given by:

αij = P(w > wij |si, ki, sj , kj)

=

∫∞
wij

Pobs(w)P (si, sj |w, ki, kj)dw∫∞
0

Pobs(w)P (si, sj |w, ki, kj)dw
(4)

where, P (si, sj |w, ki, kj) = F (si − wij , ki − 1)F (sj −
wij , kj − 1). The function F (s, k) is the probability of
randomly extracting from the weight distribution Pobs(w), k
elements whose sum is equal to s, which means that:

F (s, k) =

∫
Pobs(x1)dx1

∫
Pobs(x2)dx2...

×
∫

Pobs(xk)dxkδ(x1 + x2 + ...+ xk − s)

(5)

G. LANS Filter [18]

Like the GLOSS Filter, it makes no assumptions about the
underlying weight distribution. Instead, it employs the em-
pirical cumulative density function to judge statistical signif-
icance. First, it normalizes the weights following: xij =

wij

si
.

Then from the viewpoint of node i it calculates the probability
of choosing an edge at random with a normalized weight at
least equal to the observed normalized weight xij . It is given
by:

αij = P(X > xij)

= 1− 1

ki

ki∑
k=1

1{xik ≤ xij}
(6)

where 1{} is an indicator function.

H. ECM Filter [16]

Like the GLOSS Filter, it makes no assumptions about the
underlying weight distribution. Using the Enhanced Config-
uration Model of network reconstruction, it employs a null
model based on the canonical maximum-entropy ensemble
of weighted networks having the same degree and strength
distribution as the real network. We refer the readers to the
original paper for a detailed mathematical explanation.

III. COMPARING BACKBONE EXTRACTION TECHNIQUES
ON A TOY EXAMPLE

We begin our review of the backbone extraction techniques
using a ”toy network,” a subgraph from the original worldwide
air transportation network [26], including 42 US Airports

and 378 edges. Edges represent routes between airports, and
weights are the number of flights offered by different com-
panies flying between 17 May and 22 May 2018. After the
Airline Deregulation Act in 1978, airport hubs have formed
the backbone of the country’s present-day flying network
and marketplace. Many regular airline companies, such as
American Airlines and United Airlines, embraced the hub-and-
spoke business model. A traveler from a spoke airport would
fly using a small carrier into a hub, then to another hub with
a large carrier, and then reach the final destination by flying
from the hub to another spoke airport. However, some airlines
do not rely on the hub-and-spoke system. Indeed, Low-cost
companies such as Southwest Airlines and JetBlue provide
point-to-point networks to route passengers on strategically
chosen flight paths between focus airports. Therefore, we can
consider three types of airports (Hubs, Spokes, and Focus).
The toy example network contains 20 Hubs (Stars), 20 Spokes
(Triangles), and 3 Focus (Square) airports. We extract the top
most significant 30 edges for each backbone filtering technique
to build the backbones. We use the Global Threshold Filter as
a reference in the comparative evaluation. Figure 1 represents
the backbone extracted by the Global Threshold Filter in the
toy example. It shows the top 30 edges with the highest
weights connecting the Hubs, Focus, and Spokes airports.

Fig. 1. The backbone preserves the 30 top most significant edges extracted by
the Global Threshold Filter. Stars, squares, and circles represent hub, focus,
and spoke airports. The node’s size and the edge’s width are proportional to
the weighted degree and weight, respectively.

Table I reports the number of components identified by each
filtering technique and their relative size. Except for LANS
and ECM, the filters demonstrate their ability to extract a
large connected component with a few small ones. In contrast,
the backbones of LANS and ECM spread across multiple
components of more homogeneous sizes.

Table II reports the percentage of nodes, hub, focus, and
spoke airports preserved by each filtering technique. LANS
and ECM Filters keep a significant proportion of nodes (above
80%). The other filters are far behind, with a score similar
to the Global Threshold Filter. Indeed, they keep around
60% of the nodes of the toy network. All the filters are
pretty effective at keeping the hub airports. The LANS Filter
backbone includes them all. The GLOSS and ECM Filters



TABLE I
RELATIVE SIZE OF THE COMPONENTS EXTRACTED BY THE FILTERING

TECHNIQUE IN THE TOY EXAMPLE IN DECREASING ORDER . NOTE THAT
VALUES BETWEEN () REPRESENT THE NUMBER OF COMPONENT WITH THE

SAME SIZE.

Filter % C1 % C2 % C3 % C4 % C5
Global Threshold 92.3 7.7 - - -

Disparity 93.1 6.9 - - -
Polya Urn 92 8 - - -

Marginal Likelihood 93.1 6.9 - - -
Noise Corrected 70 23.33 6.67 - -

GLOSS 56.67 26.67 10 6.66 -
LANS 27.79 25 19.45 11.1(2) 5.56
ECM 28.95 15.79 10.52(2) 7.9(3) 5.26(2)

follow. They preserve a significant fraction of hub airports
(95%). Polya Urn Filter and the global threshold filter are the
less effective, with a score of 85%. The third column of the
table shows that the filters preserve all the focus airports. It
is not the case for GLOSS and the Polya Urn Filter. Indeed,
they isolated one focus airport. The last column reports the
percentage of spoke airports preserved. The Global Threshold
Filter and Polya Urn Filter keep the lowest fraction of spoke
airports (30%). The Disparity Filter, Marginal Likelihood
Filter, Noise Corrected Filter, and GLOSS Filter preserve a
medium proportion between 40% and 45%. LANS Filter and
the ECM Filter are the more effective. Indeed, they keep a
significant balance of spoke airports (65% and 80%).

TABLE II
FRACTION OF NODES, HUB, FOCUS, AND SPOKE AIRPORTS PRESERVED

BY THE FILTERING TECHNIQUES IN THE TOY EXAMPLE.

Filter % Nodes % Hubs % Focus % Spokes
Global Threshold 60 85 100 30

Disparity 67 90 100 40
Polya Urn 58 85 67 30

Marginal Likelihood 67 90 100 40
Noise Corrected 69 90 100 45

GLOSS 69 95 67 45
LANS 83 100 100 65
ECM 88 95 100 80

Table III reports the fraction of various edge types preserved
in the extracted backbones (hub-hub, hub-focus, hub-spoke,
and focus-spoke).

Let’s start with the hub-hub edges. One can observe that
the GLOSS Filter and Polya Urn Filter score similarly to
the Global Threshold Filter at preserving the hub-hub edges
(≈ 8%). In contrast, the other filters keep a lower fraction.
In particular, LANS Filter and ECM Filter preserve a lower
portion (5.95% and 4.32%), nearly half the amount of the
reference filter.

Let’s now turn to the hub-focus edges. The Global threshold
Filter keeps 10% of hub-focus edges. The other filters preserve
a lower proportion (≤ 8.6%). The GLOSS Filter is the worst,
with only 1.72% of the hub-focus edges kept.

Let’s now consider the hub-spoke edges. The Global thresh-
old and Polya Urn Filter preserve the same fraction of the
hub-spoke edges (6.72%). The other filters preserve a slightly
higher fraction. In particular, the LANS and ECM Filters retain
the highest fraction of the hub-spoke edges (≈ 12.6%).

Finally, results are more mixed for focus-hub edges. Indeed,
the Disparity Filter, Polya Urn Filter, and GLOSS Filter follow
the reference filter. They preserve the same amount of the
focus-hub edges (7.69%). The Marginal Likelihood Filter,
Noise Corrected Filter, and ECM Filter are more effective.
Indeed, they preserve more than twice the fraction of these
edges compared to the reference. The LANS Filter does not
retain any of the focus-spoke edges.

TABLE III
THE PROPORTION OF HUB-HUB (H-H), HUB-FOCUS (H-F), HUB-SPOKE
(H-S), AND FOCUS-SPOKE (F-S) EDGES PRESERVED BY THE FILTERING

TECHNIQUES IN THE TOY EXAMPLE.

Filter % H-H % H-F % H-S % F-S
Global Threshold 8.10 10.34 6.72 7.69

Disparity 7 8.62 9.24 7.69
Polya Urn 8.65 8.62 6.72 7.69

Marginal Likelihood 7 6.9 9.24 15.38
Noise Corrected 6.48 6.9 10 15.38

GLOSS 8.10 1.72 10.92 7.69
LANS 5.95 6.9 12.61 0
ECM 4.32 6.9 12.61 23

Table IV reports the fraction of weights associated with
the different types of edges kept in the backbone. The first
column gives the total fraction of weight independently of
their class. One can see that the Global Threshold Filter
preserves the highest possible fraction of weights (36.10%).
Indeed, it retains the links with the top weights exclusively.
The Disparity Filter, Marginal Likelihood Filter, and Noise
Corrected Filter are not far behind. They retain ≈ 34%). In
contrast, the Polya Urn Filter preserves the smallest portion
of weights (7.6%), showing its ability to keep edges with
low weights in the backbone. The other filters are distributed
between these two extremes. When we look at the fraction of
hub-hub edges retained in the various backbones, we observe
the same ranking with all types of nodes. Indeed hub-hub
links have generally heavy weights. Concerning the hub-focus
links, the Polya Urn Filter and GLOSS Filter preserve a tiny
portion of weights (≈ 4.8%). The global Threshold filter,
as expected, keeps the highest fraction (≈ 50%). The other
filters preserve ≈ 10% fewer edge weights than the Global
Threshold Filter. Now, look at the hub-spoke links results
reported in the fourth column. Once again, the Polya Urn
Filter preserves a tiny portion of this type of edge (≈ 6.2%).
The ECM Filter follows. Indeed, it keeps a smaller fraction
of edges than the Global Threshold Filter. All the other filters
outperform the Global Threshold Filter at preserving a high
fraction of hub-spoke links. Indeed, this type of link usually
does not have the top weights. The last column reports the
fraction of focus-spoke links kept in the various backbones.
The Global Threshold, Disparity, and GLOSS Filters preserve



the same fraction (≈ 23%). The Marginal Likelihood, Noise
Corrected, and ECM Filters retain a significant proportion
ranging between 38% and 45%. In contrast, the Polya Urn
Filter preserves a tiny portion of weights associated with
the Focus-Spoke edges (1.1%). The LANS backbone do not
preserve any of this type of edges.

Table V summarizes the strengths and weaknesses of the
backbone filtering techniques based on these results.

TABLE IV
FRACTION OF WEIGHTS PRESERVED BY THE FILTERING TECHNIQUES IN
THE TOY EXAMPLE FOR THE DIFFERENT TYPE OF EGDES: ALL TYPE OF

EDGE TYPE (W), HUB-HUB (H-H), HUB-FOCUS (H-F), HUB-SPOKE (H-S),
AND FOCUS-SPOKE (F-S)

Filter % W % H-H % H-F % H-S % F-S
Global Threshold 36.10 36.32 49.55 28.35 23.94

Disparity 34.74 32.58 44.9 34.37 23.94
Polya Urn 7.61 9.62 4.92 6.29 1.10

Marginal Likelihood 34.78 32.58 39.71 35.82 38.30
Noise Corrected 34 30.3 39.7 37.9 38.29

GLOSS 20.38 18.35 4.69 35.72 23.94
LANS 30.22 26.31 39.71 37.38 0
ECM 26.10 22.65 39.71 20.91 45.31

IV. COMPARING BACKBONE EXTRACTION TECHNIQUES IN
THE NORTH-AMERICAN AIR TRANSPORTATION NETWORK

We reproduce the same experiment with a bigger network
to validate our findings. We extract the nodes and edges of
North America from the original world transportation network.
Indeed, it is easier to classify the airports in this region
than in the rest of the world. The network contains 839
nodes and 4,046 edges. Finally, we extracted the network’s
backbone preserving the most significant 10% edges using all
the filtering techniques under test.

Table VI reports the size and the number of components of
the various backbones. Results are similar to the toy example.
Indeed, the LANS and ECM filters split the network into
several parts while the other filtering techniques retain a large
component.

Table VII reports the fraction of nodes kept by the back-
bones when filtering 90% of edges. One can consider three
categories when comparing the total number of nodes pre-
served in the various backbone. The first class contains ECM,
LANS, and GLOSS filters. They keep the higher fraction of
nodes (mean value around 45%). Polya Urn and Disparity
filters form the second category. In that case, the mean value
of the fraction of kept nodes drops to 30%. Finally, Marginal
Likelihood, Noise Corrected, and Global threshold filters are
similar. Indeed, they keep around 15% of the nodes. Moreover,
except for the ECM Filter, all filters effectively keep Hub
and Focus airports. Indeed, they retain between 80 % and
100 % of these types of nodes characterized by high traffic.
This observation is in line with the toy example. In contrast,
The ECM Filter preserves only 32% of the hubs and 17%
of the focus airports. The last column reports the fraction of
spokes contained in the backbones. Globally, the results are

comparable with the toy example network. The hierarchy is
unchanged except for the Polya Urn filter and the Marginal
Likelihood Filter. Indeed, compared to the global threshold
filter, this time, the Polya Urn Filter preserves more spoke
airports while the Marginal preserves less.

Table VIII reports the fraction of edges preserved by the
filtering technique in the North American network. Concerning
the hub-hub edges, results correlate well with the behavior
observed in the toy example. Indeed, this time all the filters
contain a lower amount of this type of node than the global
threshold filter. We notice a different behavior for the ECM,
LANS, and GLOSS Filters for the hub-focus edges. The ECM
and LANS Filters preserve a low fraction of these edges,
while the GLOSS Filter preservers a higher amount. Except
for the ECM Filter, all the filters behave similarly as in the
toy example for the hub-spoke edges. Indeed, the ECM Filter
preserves a very tiny portion of these edges. The ECM filter
and LANS filter behavior deviate from the toy example for
the focus-spoke edges. Indeed, the LANS Filter starts to keep
this type of edge, while the ECM Filter barely retains any
edges of this type. This network contains two new classes of
edges that do not exist in the toy example: the focus-focus and
spoke-spoke edges. Disparity, Marginal Likelihood, and Noise
Corrected Filters keep nearly the same amount of these focus-
focus nodes as the Global Threshold Filter (≈ 10%). The other
techniques hold a lower share. In particular, the ECM Filter
removes all of them. One can notice that all the backbone
filtering methods preserve a higher fraction of the spoke-spoke
edges than the Global Threshold Filter. It is particularly true
for the ECM Filter that keeps almost 40%.

Table IX reports the fraction of weights kept by the filtering
techniques in the North-American Network. The results of the
total fraction of weights and the hub-hub edge weights are
similar to the toy example network. Only the ECM Filter
deviates. It preserves a tiny fraction of the weights. LANS
and ECM Filters keep a low fraction contrasting with the toy
example for the hub-focus weights. Looking at the hub-spoke
edge weights, unlike in the toy example, GLOSS and LANS
Filter preserve a lower fraction than the Global Threshold this
time. For the focus-spoke edge weights, the LANS Filter does
not remove all edges of this type, thus increasing the weight.
On the other hand, the ECM Filter almost removes all these
edges, thus decreasing the preserved weight. The other filters
exhibit the same behavior as in the toy example. We observe
two categories for the focus-focus edge weights. The first
category contains the Disparity, Marginal Likelihood, Noise
Corrected, and the Global Threshold Filters. They preserve
more than 50% of these links. The techniques in the second
category keep a lower amount. In particular, the Polya Urn
Filter preserves a tiny portion (7%), and the ECM Filter does
not preserve any. Finally, all techniques preserve a fraction
similar to the reference filter for the spoke-spoke edge weights,
except the Polya Urn Filter. Indeed, it keeps a low amount of
spoke-spoke edge weights (7%).

All filtering techniques generally maintain a similar behav-
ior except for the ECM Filter. They preserve a lower fraction



TABLE V
SUMMARY ON STRENGTHS AND WEAKNESSES OF THE STATISTICAL BACKBONE FILTERING TECHNIQUES.

Filter Strengths Weaknesses
Global Threshold

• Preserves the highest possible fraction of weights
• Retains a large connected component
• Prioritizes hub-hub and hub-focus edges with high

weights

• Preserves a medium portion of nodes (60%)
• Ignores edges with low weights

Disparity
• Preserves a very high fraction of weights
• Retains a large connected component
• Prioritizes hubs-spoke edges with high weights

• Preserves a medium portion of the nodes (67%)
• Biased to edges with high weights

Polya Urn
• Retains a large connected component
• Preserves similar portions for each edge type

• Preserves a medium portion of the nodes (58%)
• Preserves very low fraction of weights (7.6%)

Marginal Likelihood
• Preserves a high portion of weights (34.7%)
• Retains a large connected component
• Prioritizes edges between hub-spoke and focus-spoke

edges, preserving more hubs and spoke airports

• Preserves a medium portion of nodes (67%)

Noise Corrected
• Preserves a high portion of weights (34%)
• Retains a large connected component
• Prioritizes edges between hub-spoke and focus-spoke

edges, preserving more hubs and spoke airports

• Preserves a medium portion of nodes (67%)

GLOSS
• Preserve a medium portion of the nodes (70%)
• Prioritizes hub-spoke edges
• Preserves almost all the hub and half of the spoke

airports

• Preserves a medium portion of weights (20%)
• Do not retain a large connected component

LANS
• Preserves a high portion of nodes (83%)
• Preserves a high portion of weights (30%)
• Prioritizes hub-spoke edges

• Do not retain a large connected component
• Ignores focus-spoke edges.

ECM
• Preserves a high portion of nodes (88%)
• Prioritizes hub-spoke and focus-spoke edges
• Preserves a medium portion of weights (26%)

• Do not retain a large connected component

TABLE VI
RELATIVE SIZE OF THE COMPONENTS EXTRACTED BY THE FILTERING
TECHNIQUE IN THE THE NORTH AMERICA NETWORK IN DECREASING

ORDER . THE FIRST THREE COLUMNS SHOWS THE SIZE OF COMPONENTS
WITH A SIZE LARGER THAN 10%, THE LAST COLUMN SHOWS THE

NUMBER OF COMPONENTS WITH SIZE LOWER THAN 10%.

Filter % C1 % C2 % C3 # C ≤ 10%
Global Threshold 100 - - -

Disparity 96 - - 4
Polya Urn 81 - - 20

Marginal Likelihood 100 - - -
Noise Corrected 100 - - -

GLOSS 85 - - 16
LANS 26 17 13 10
ECM 22 20 - 54

of nodes than in the toy example. Still, the LANS and ECM
Filters maintain the highest percentage of nodes compared to
the other techniques. Moreover, due to the spoke-spoke edges
in the network, the Disparity Filter, Polya Urn Filter, GLOSS

TABLE VII
FRACTION OF NODES, HUB, FOCUS, AND SPOKE AIRPORTS PRESERVED

BY THE FILTERING TECHNIQUES IN THE NORTH AMERICA NETWORK.

Filter % Nodes % Hubs % Focus % Spokes
Global Threshold 15.6 100 82.6 10.6

Disparity 26.8 100 95.6 22.2
Polya Urn 33.3 100 95.6 29.1

Marginal Likelihood 17.4 100 91.3 12.3
Noise Corrected 16.3 100 82.6 11.4

GLOSS 35.3 100 86.9 31.5
LANS 49.9 100 91.3 46.95
ECM 48.9 32.1 17.3 50.5

Filter, and LANS Filter shift their priority in preserving hub-
spoke edges to the spoke-spoke edges. Additionally, the ECM
Filter almost ignores all types of edges and keeps only the
spoke-spoke edges. These edges are associated with small
weights usually, which explains the low percentage of weight



TABLE VIII
THE PROPORTION OF HUB-HUB (H-H), HUB-FOCUS (H-F), HUB-SPOKE (H-S), FOCUS-FOCUS (F-F),FOCUS-SPOKE (F-S), AND SPOKE-SPOKE (S-S)

EDGES PRESERVED BY THE FILTERING TECHNIQUES IN THE NORTH-AMERICAN NETWORK.

Filter % H-H % H-F % H-S % F-F % F-S % S-S
Global Threshold 23.4 15.8 10.9 10.3 8.5 1.9

Disparity 16.5 14.2 10.8 12.3 8.9 4.7
Polya Urn 13 13.1 10.7 6.1 7.7 7.7

Marginal Likelihood 10.7 13.1 12.1 11.3 12.8 2.4
Noise Corrected 11.4 14.7 12.3 10.3 10.9 2.3

GLOSS 10.4 9.8 9.8 6.1 8.7 11.3
LANS 5.3 3.2 14.8 5.1 7.1 6.5
ECM 0.3 0.2 1.6 0 1.3 39.6

TABLE IX
FRACTION OF WEIGHTS PRESERVED BY THE FILTERING TECHNIQUES IN THE NORTH-AMERICAN NETWORK FOR THE DIFFERENT TYPE OF EGDES: ALL

TYPE OF EDGES (W), HUB-HUB (H-H), HUB-FOCUS (H-F), HUB-SPOKE (H-S), FOCUS-FOCUS (F-F),FOCUS-SPOKE (F-S), AND SPOKE-SPOKE (S-S)

Filter % W % H-H % H-F % H-S % F-F % F-S % S-S
Global Threshold 47.6 61.8 56.3 44.5 54.9 39.2 23.5

Disparity 41.1 51.7 52.3 37.2 56.8 33.7 21.1
Polya Urn 11.6 12.7 12 13.2 7.1 6.3 6.9

Marginal Likelihood 44.8 38.5 50 45.6 56.7 50.1 28.1
Noise Corrected 45.3 38.9 52.8 46.9 54.9 45.8 27.5

GLOSS 25.4 27.9 28.7 24.4 21.1 23.8 24.1
LANS 24.1 23.3 16.8 28.8 30.6 15.4 20.2
ECM 2.4 1.6 0.8 1.5 0 0.5 21.1

preserved by the ECM Filter.

V. CONCLUSION

This paper evaluates statistical backbone extraction tech-
niques in filtering the hub and spoke infrastructure of the
air transportation network. Results show that the reference
(Global Threshold Filter) extracts a backbone mainly com-
posed of the hub and focus airports, revealing the rich-club
phenomena in the air transportation network. In contrast, other
statistical filters tend to preserve various categories of links
(edges connecting the hub to spoke, focus to spoke, and spoke
to spoke airports), revealing more information on the hub and
spoke foundation used by airline companies. The ECM filter
has a unique behavior. It keeps mainly edges between spoke
airports uncovering the infrastructure connecting the regional
spoke airports. Moreover, LANS and ECM split the backbone
into multiple components. It is an undesired property for a
transportation network. Indeed, both filters preserve a low
portion of hub-hub and focus-hub edges which usually hold the
network together. Furthermore, results show that the Disparity
Filter, Marginal Likelihood Filter, and Noise Corrected Filter
preserve the highest fraction of weights. In contrast, Polya Urn
Filter and ECM Filter perform poorly. The other techniques
retain a moderate weight fraction between these extremes.
Future work will consider an extensive investigation of various
transportation networks to consolidate these findings.
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