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Abstract—Geomagnetic disturbances have been shown to
disrupt the operation of the bulk electrical system through low-
frequency effects in the earth’s magnetic field that in turn induce
changing electrical fields on the earth’s surface. As a result,
geomagnetically induced currents flow in transmission lines,
introducing the risk for widespread damage to high-voltage
transformers and voltage collapse due to induced reactive power
loss. In a previous work, the authors showed how certain
modeling assumptions can lead to results that are unacceptable
in certain edge case scenarios. In this paper, the authors build
on their previous results using a probabilistic approach for
uncertainty quantification in order to compare the results from
electromagnetic transient program modeling software, ATP, to
the positive-sequence calculation software, PowerWorld.

Index Terms—electromagnetic transient program, geomag-
netic disturbances, geomagnetically induced currents, positive-
sequence calculation, uncertainty quantification modeling.

I. INTRODUCTION

As observed through geomagnetic disturbance (GMD)
events, GMD can severely affect critical infrastructure and
its operation through induced quasi-direct currents [1]. The
power industry has been working towards understanding the
impact of geomagnetically-induced currents (GICs) on the
grid and in the development of tools to help with mitigation
over the last decade. This work has led to the creation of
a North American Electric Reliability Corporation (NERC)
Standard TPL-007-4 [2], which is being implemented and has
led to the developed GMD assessment processes that consider
physics-based models.

When considering a physics-based model, one must also
consider uncertainties within the model [3]. This uncertainty
can be quantified [4], and analyzed statistically [5] in order to
guide the decisions regarding whether to accept certain mod-
eling assumptions. Several GIC-oriented modeling tools have
already been implemented, including harmonic generation
and propagation, transformer thermal models, commercial
power flows [6], and dynamic simulations [7]. This wide array
of tools is crucial for modeling the power system to ensure
safe and reliable operation, but it is also crucial to know
which tools are appropriate to use in particular circumstances
and to understand when a tool may not provide the necessary
resolution. The latter includes situations due to individual
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modeling uncertainties such as operating condition, trans-
former saturation, grounding resistance, and other system
characteristics which should all be appropriately considered
[8]–[10].

In this work, implicit modeling uncertainties are quantified
through a probabilistic approach for the purpose of under-
standing the advantages, limitations, and impacts of different
types of models used for GMD events. Further, statistical
analysis is performed on GMD synthetic data, generated
using the Alternative Transient Program (ATP) [11]. Data
from ATP is then compared with results generated by the
modeling software PowerWorld [12] for similar scenarios,
and modeling differences are statistically analyzed.

The specific contributions of this work towards the state-
of-the-art are:

• GMD implicit modeling uncertainty quantification.
• Statistical analysis of GMD synthetic data.
• Error quantification between different modeling tools.
The remainder of the paper is organized as follows.

Section II provides theoretical background on uncertainty
quantification and model calculations. Section III presents the
conceptual framework of this research. A case study based
on the IEEE 9-bus is shown in Section IV. Finally, Section V
presents concluding remarks from this work.

II. THEORETICAL BACKGROUND

A. Uncertainty Quantification

Uncertainty propagation can be understood as the quantifi-
cation of uncertainties in the system outputs from uncertain
models or inputs. Modeling uncertainty can be either struc-
tural/topological or parametric [13]. If one assumes that there
is no numerical uncertainty, or uncertainty in system inputs,
then one can assume that the source of uncertainty in outputs
are from the model.

Considering uncertainty quantification, there are two types
of approaches [14]: forward propagation and inverse assess-
ment. The following will summarize the first approach, which
was leveraged for this work.

The forward propagation approach for uncertainty quantifi-
cation focuses on the effect of the outputs from the variability
listed in the sources of uncertainty. The aim of the analysis
can be:

1) Evaluate mean and variance of outputs.979-8-3503-9678-2/23/$31.00 © 2023 IEEE



2) Evaluate reliability of the outputs.
3) Assess the probability distribution of the outputs.
The arithmetic mean, is equal to the sum of all of the

samples divided by the number of samples. This can be
mathematically expressed by:

x̄ =
1

n

(
n∑

i=1

xi

)
=

x1 + x2 + · · ·+ xn

n
. (1)

where, x̄ is the arithmetic mean of samples x1, x2, . . . , xn

and n is the number of samples. The variance of a collection
of n equally likely values can be otherwise mathematically
expressed by:

σ2 =
1

n

n∑
i=1

(xi − x̄)2. (2)

were σ2 is the variance and σ is the standard deviation.
With these two metrics available, reliability of the outputs
can be provided through statistical hypothesis testing [15].

Considering reliability evaluation of outputs, the classical
formulation towards such is the quasi-static state estima-
tion problem, modeled through the Weighted Least Squares
(WLS) method [14]. In this classical formulation, the system
is modeled as a set of non-linear algebraic equations, known
as the measurement model:

z = h(x) + e. (3)

where z ∈ R1×d is the measurement vector, x ∈ R1×N

is the vector of state variables, h : R1×N → R1×d is a
continuously non-linear differentiable function, and e ∈ R1×d

is the measurement error vector. Each measurement error,
ei is assumed to have zero mean, standard deviation σi

and Gaussian probability distribution. d is the number of
measurements and N is the number of states.

In the classical WLS approach, the best estimate of the
state vector in (3) is found by minimizing the weighted norm
of the residual, or the cost function J(x):

J(x) = ∥z− h(x)∥2R−1 = [z− h(x)]TR−1[z− h(x)] (4)

where R is the covariance matrix of the measurements. In
[5], it is shown that in the gross error analytic process,
a two-step approach should be adopted. In the first step,
all measurements should be weighted equally proportional
to the measurement magnitude and gross error analysis is
performed. After gross error processing, in the second step,
meter precision can be restored and state estimation can be
executed.

Regarding the solution of (4), it is obtained through the
Newton-Raphson method. The linearization of (3) equals:
In this paper, we consider the standard deviation of each
measurement to be 1% of the measurement magnitude, which
has been shown to improve the detection of bad data [5]. In
order to solve this problem, (3) is linearized at a certain point
x∗ in (5) and the optimal states are found through an iterative
process.

∆z = H∆x+ e (5)

where H = ∂h
∂x is the Jacobian matrix of h at the current

state estimate x∗, ∆z = z − h(x∗) = z − z∗ is the
correction of the measurement vector and ∆x = x−x∗ is the
correction of the state vector. The WLS solution can be seen,

geometrically [16], as the projection of ∆z onto the Jacobian
space by a linear projection matrix P , i.e. ∆ẑ = P∆z.
Letting r = ∆z − ∆ẑ be the residual vector, the P matrix
that minimizes J(x) will be orthogonal to the Jacobian range
space and to r; ∆ẑ = H∆x̂. This is in the form:

⟨∆ẑ, r⟩ = (H∆x̂)TR−1(∆z−H∆x̂) = 0. (6)

Solving (6) for ∆x̂:

∆x̂ = (HTR−1H)−1HTR−1∆z. (7)

At each iteration, a new incumbent solution x∗
new is found

and updated following x∗
new = x∗+∆x̂. (7) is solved at each

iteration until ∆x̂ is sufficiently small to claim convergence
of the solution.

The projection matrix P is the idempotent matrix that has
the following expression:

P = H(HTR−1H)−1HTR−1. (8)

As shown in [15], the geometrical position of the mea-
surement error in relation to the range space of H provides
another way of interpreting the state estimation. Hence, as the
measurement vector can be decomposed into two subspaces,
and thus it is possible to decompose the measurement error
vector into two components, as follows:

e = Pe︸︷︷︸
eU

+(I − P )e︸ ︷︷ ︸
eD

. (9)

The component eD is the detectable error, which is the
residual in the classical WLS model, while the component
eU is the undetectable error, also known as the masked
component of the error. eD is in the orthogonal space to the
range space of Jacobian whereas eU is hidden in the Jacobian
space.

e2 = eD
2 + eU

2. (10)

The error vector e in (10) is called the Composed Mea-
surement Error (CME). In order to quantify the undetectable
error, the Measurement Innovation Index (II) is introduced
[17]:

IIi =
eiD
eiU

=

√
1− Pii√
Pii

. (11)

Low Innovation index translates into a large component
of error that is not reflected in the residual. Therefore, the
residual will be very small even if there is a gross error. By
using (10) and (11), the CME can be expressed in terms of
the residual and the innovation index:

CMEi = ri

(√
1 +

1

IIi
2

)
. (12)

The CME values are thus estimated from real measure-
ments taken from the SG, and can then be used for bad data
analysis [16]. Real measurements in the context of this work
are defined as measurements obtained from power systems
simulators, such as ATP [11].

Regarding gross error analysis, a χ2 hypothesis testing
is used for the detection of bad data in the measurement
set. On such, the J(x̂) based objective function value (13)
is compared to a χ2 threshold, and is the estimated state
vector. The latter is based on a chosen probability p (typically



p = 0.99) and the degrees of freedom df of the measurement
model:

J(x̂) =

df∑
i=1

[
ei
σi

]2
> χ2

df ,p
. (13)

If the value of J(x̂) is greater than the χ2 threshold, then
a gross error is detected, and the signal does not follow the
hypothesized distribution, i.e., modeling assumptions are not
supported. Still, following [3], bad data is identified through
analysis of the normalized composed measurement error, and
corrected through a relaxed model [13]. This methodology is
used in comparing results from this work.

B. Modeling Methodology

PowerWorld is a power system simulation package with
many analytical features. The two features of focus in this
research are power flow calculations and the GIC add-on.

Power flow calculations are performed by solving the
power flow equations:

Pk = Vk

N−1∑
j=1

[Vj [Gkjcos(θk − θj)+Bkjsin(θk − θj)]] (14)

Qk = Vk

N−1∑
j=1

[Vj [Gkjsin(θk−θj)−Bkjcos(θk−θj)]] (15)

Because of the non-linearity in the power flow equations,
they must be solved using an iterative method such as
Newton-Raphson [14]. PowerWorld performs this calculation
to solve power system models. Conversely, ATP is an elec-
tromagnetic transient program (EMT) which solves power
system models through numerical integration of ordinary
differential equations. While the input to both software is
nearly identical, the internal modeling of each is unique,
and therefore can be analyzed using the forward propagation
approach presented previously.

PowerWorld also has a modeling feature that allows for
simulation of geomagnetically induced currents. Induced
currents that flow through transmission lines cause a DC
bias, which can saturate transformers. This saturation, specif-
ically half-cycle saturation, causes an increase in transformer
reactive power loading that has been shown to increase
linearly with GIC through the transformer [18]. Because of
this approximate linear relationship, reactive power losses of
the transformer can be scaled linearly with relation to the
GIC flow. This is implemented in PowerWorld through an
additional reactance in parallel with shunt magnetizing reac-
tances [12]. GIC effects are further modeled in PowerWorld
through the use of DC voltage sources in series with trans-
mission lines, wherein the magnitude of voltage varies with
the expected electric field based on geographical location.
Such modeling features require the use of standard modeling
inputs such as line resistance, transformer configuration, and
parameters, as well as more obscure parameters such as
substation grounding resistance, transformer coil resistance,
winding characteristics, and geographical coordinates [12].

GMD effects are similarly modeled in ATP, through the
inclusion of DC voltage sources in series with transmission
lines near affected transformers. ATP requires similar pa-
rameters to PowerWorld such as line resistance, transformer
configuration and parameters. However, inputs such as ge-
ographical coordinates are not required in ATP. Thus, GIC

characteristics are matched as closely as possible through the
measured transformer neutral current in each model.

In the following, the conceptual framework towards mod-
eling uncertainty quantification is presented.

III. CONCEPTUAL FRAMEWORK

The goal of this work is GMD implicit modeling uncer-
tainty quantification. For such, we demonstrate and quantify
differences between synthetic data generated in ATP and
PowerWorld software, considering GMD events. Utilities
and the industry at large may tend towards using only one
software for their modeling needs. However, in some cases,
the use of only one type of software that incorporates only
one kind of model, as positive sequence power flow of
PowerWorld, may mean that important information about the
system is omitted, especially in edge cases. In turn, this
may result in misoperations or failures to operate due to
unforeseen system conditions or parameters that cannot be
modeled in a specific software.

The question then is, when are these omitted system infor-
mation acceptable? To answer this question in this work we
demonstrate and quantify the differences between synthetic
data generated by ATP and PowerWorld, through a gross error
analysis χ2 hypothesis testing. On such, it is assumed that
ei, i.e., the residual between both software generated data,
considering the same modeling assumptions, has a Gaussian
normal distribution with zero mean and known standard
deviation equal to 1% of the measurement magnitude [4].
Considering such, a null hypothesis H0 and an alternative
hypothesis H1 are made:

H0 → E[J(x̂)] = m− n (16)

H1 → E[J(x̂)] > m− n (17)

Thus, the hypothesis test is done as follows:

• If J(x̂) > C, then reject the hypothesis H0.
• If J(x̂) < C, then reject the hypothesis H0.

For the hypothesis test, C is a constant to be determined
and given by:

C = χ2
df ,p

(18)

The C value depends then on the degrees of freedom of the
measurement model (df ) and the confidence level chosen (p).
This means that if H0 is true, the probability of J(x̂) > C is
1−p. Thus, if the H0 is rejected, the synthetic data generated
by ATP and PowerWorld will have unacceptable differences,
thus the modeling assumptions made are unacceptable. Mod-
eling cases are observed at varying severity and analyzed to
determine if such modeling features are able to be ignored.

In both ATP and PowerWorld models, system parameters
for the IEEE 9 bus system [14], are matched as closely
as possible in order to isolate modeling differences due
to calculation methods rather than parameter discrepancies.
Transformer grounding resistances and GIC magnitudes are
varied to determine severity of error between each model for
a variety of scenarios. System imbalance is further introduced
in the ATP model and compared with positive sequence Pow-
erWorld models as an additional test of modeling limitations.



TABLE I
CASES CONSIDERED

Use-Cases

2Ω 10Ω 25Ω 40Ω
0.1A 5a.1,.2,.3 6a.1,.2,.3 7a.1,.2,.3 8a.1,.2,.3

0.25A 5b.1,.2,.3 6b.1,.2,.3 7b.1,.2,.3 8b.1,.2,.3

0.5A 5c.1,.2,.3 6c.1,.2,.3 7c.1,.2,.3 8c.1,.2,.3

1A 5d.1,.2,.3 6d.1,.2,.3 7d.1,.2,.3 8d.1,.2,.3

10A 5e.1,.2,.3 6e.1,.2,.3 7e.1,.2,.3 8e.1,.2,.3

25A 5f.1,.2,.3 6f.1,.2,.3 7f.1,.2,.3 8f.1,.2,.3

50A 5g.1,.2,.3 6g.1,.2,.3 7g.1,.2,.3 8g.1,.2,.3

75A 5h.1,.2,.3 6h.1,.2,.3 7h.1,.2,.3 8h.1,.2,.3

100A 5i.1,.2,.3 6i.1,.2,.3 7i.1,.2,.3 8i.1,.2,.3

IV. CASE STUDY

A Fast-Fourier Transform (FFT) was applied to time-
series data from ATP in order to calculate phasor values
of voltage for each phase at each bus within the IEEE 9-
bus system. These phasor values were then converted to per
unit using the system voltage and compared to the per-unit
PowerWorld phasor calculations of voltage at each bus. Test
cases included different phase unbalances conditions, GIC
values and grounding resistances values. In the following,
test results are presented.

Fig. 1. J(x̂) Case 6i

Table I presents the cases analyzed. Abnormally high
model values corresponding to predicted unacceptable mod-
eling assumptions are in red, and predicted acceptable as-
sumptions are in black. Regarding Table I, dotted notation
represents cases with different phase unbalance conditions
of 0, 1, 2 and 3%. Second to last rows represents different
GIC currents injected on transformers secondary. First row
represents different transformer grounding resistances.

As an example, case 5a.1 represents injected GIC of 0.1
A, 1% load imbalance and 2 Ω of transformers grounding
resistance. Considering the χ2 test, df was equal to 100, and
p equal to 0.99. This translated to a C value equal to 61.754.

Figure 1 illustrates the J(x̂) for case 6i. As noted, two
values are above the threshold and two are below. The two
cases above the threshold correspond to predicted unaccept-
able modeling assumptions being upheld. For the other cases,
one can see that the J(x̂) is below the threshold value,
and therefore predicted unacceptable modeling assumptions

Fig. 2. Load Imbalance Case 6i

TABLE II
CONFUSION MATRIX

n = 144 Actual Acceptable Actual Unacceptable
Predicted Acceptable TP = 40 FP = 32

Predicted Unacceptable FN = 47 TN = 25

are not being upheld. The latter represents false negatives,
which are not as dangerous to GMD system planning as false
positives, which represent predicted acceptable modeling
assumptions not upheld.

Figure 2 illustrates the normalized residual mean for com-
parison 6i. As one can see from Figure 2, the values of
residual increase with the load imbalance. This is of course
expected, as PowerWorld does not model imbalance system
operation while ATP does.

Table II presents a confusion matrix for all cases consid-
ered. As one can see, the number of true positives and true
negatives, i.e., modeling assumptions that directly correspond
with their predicted value, make up 45.1% of cases consid-
ered. That said, the percentage of modeling assumptions that
are incorrectly supported or not, 54.9%, are considerable.
Specifically, the number of false positive (FP ) cases make up
almost a quarter of total cases at 22.2%. Such cases are those
in which modeling assumptions are expected to be acceptable,
but are above the acceptable χ2 threshold, and are therefore
not supported.

V. CONCLUSIONS

This paper presents GMD modeling uncertainty quantifi-
cation as well as statistical analysis of synthetic generated
data. A probabilistic approach is used towards implicit mod-
eling uncertainties quantification. Considering such, several
modeling assumptions are made with different conditions
simulated, including grounding resistance, voltage imbalance,
GIC values and transformer saturation. Statistical analysis of
synthetic data highlights that the actual modeling assumptions
that correspond to their predicted conditions are less than
half, 45.1%, while a significant portion of cases, 22.2%,
correspond to predicted acceptable modeling assumptions
that are actually not acceptable. It should be noted that
the latter cases could potentially have a high impact on
system operation. Further analysis is currently being made



on the specific false positive cases and uncertainty propaga-
tion potential consequences to system operation, as well as
mitigation strategies.
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