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Abstract

We present the MsSpec Atomic Scattering Amplitude Package (MASAP), composed of a com-
putation program and a graphical interface to generate atomic scattering amplitude (ASA) of an
atom, either isolated or embedded in an environment, at any chosen energy of the impinging elec-
tron up to ≈15 KeV. The ASA is calculated using an effective, complex optical potential which
provides damping effects in the scattering process in a fully relativistic framework. Optionally,
scalar relativistic and non-relativistic approximations are also available to assess their applicabil-
ity to a given problem. In order to describe electron propagation in solids we suggest to replace
ASA’s based on Plane Waves (PW) scattering with effective ASA’s based on curved Spherical
Waves (SW) using truncated-overlapped potentials of the Muffin-Tin (MT) type constructed ac-
cording to the Mattheiss prescription. The graphical user interface generates not only ASA data
files providing atomic Differential Cross Sections (DCS) but also files of related quantities such
as total Cross Section (CS), both elastic and inelastic, atomic tl-matrices and phase shifts. We
found in general that the imaginary part of the optical potential enhances the calculated elastic
DCSs in the forward direction compared to the same potential without the imaginary part, a fea-
ture related to the optical theorem, but gives rise to a lower intensity at all other directions as
expected due to the damping effect of the complex part of the potential. We show calculated
differential and transport Cross Sections for aluminum and gold atoms both in isolation and in
crystals with the Face-Centered-Cubic (FCC) structure.

Keywords: atomic scattering amplitude; solid state effects; optical potential; relativistic effects;
differential cross section

PROGRAM SUMMARY/NEW VERSION PROGRAM SUMMARY
Program Title: MASAP
CPC Library link to program files: (to be added by Technical Editor)
Code Ocean capsule: (to be added by Technical Editor)
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
Programming language: FORTRAN 77, Python3
External routines:

• SciPy (https://www.scipy.org)
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• Atomic Simulation Environment (https://wiki.fysik.dtu.dk/ase/)

• h5py (https://www.h5py.org)

• wxPython (https://www.wxpython.org)

Nature of problem:

Calculation of atomic scattering amplitudes of scattered electrons by an embedded atom in a solid including
damping and relativistic effects. Comparison between ASA’s in an isolated atomic system and a solid.
Introduction of an effective ASA for electrons propagating in a solid derived from Multiple Scattering
Theory.
Solution method:

Potential scattering theory. Muffin-tin approximation. Superposition of atomic electron density obtained
by self-consistent Dirac-Fock atomic calculations. Hedin-Lundqvist potential as an optical potential. Fully
relativistic theory, with scalar-relativistic and non-relativistic approximations for comparison.
Additional comments including restrictions and unusual features:

Even though the program can perform calculations at impinging electron energies up to ≈15 Kev, DCS
calculations are recommended in the range 50 : ≈1500 eV both in the case of isolated atoms and atoms
embedded in solids, since this interval is more suitable for studying the details of the atomic potentials in
their environment.
In the case of solids, at energies lower than ≈50 eV, the details of the electronic structure might be im-
portant, whereas in the case of isolated atoms this range might suffer from the neglect of the polarization
potential and coupling to available inelastic channels. In this respect an option to add an empirical form of
a polarization potential to investigate its effects is available to the interested user.

1. Introduction

The scattering of electrons by atoms, molecules and solids is of widespread importance in
many areas of physics, ranging from radiation physics and material analysis to Auger-electron
spectroscopy (AES), and X-ray Photoelectron Spectroscopy (XPS). We refer to [1, 2] and refer-
ences therein for a more complete discussion of the various areas of application. In particular
elastic-scattering cross sections have been frequently used in theoretical descriptions (e.g., by
Monte Carlo simulations) of electron transport in solids. These and related calculations have
been performed for applications in surface analysis by AES and XPS and Analytical Electron
Mycroscopy (AEM).

In the paper by Jablonski et al [1] the emphasis was on the type of potential used to calculate
the Atomic Scattering Amplitudes (ASA), whether of the Thomas-Fermi-Dirac (TFD) or of the
Dirac-Hartree-Fock (DHF) type. Ref. [2] makes instead use of a more elaborate optical-model
potential developed by one of the authors (F. Salvat) in Ref. [3].

In connection with this problem, the main motivation behind this paper is the introduction
of an exchange-correlation potential of the Hedin-Lundqvist type (HL) [4, 5] for the calculation
of ASA’s that has been used up to now with remarkable success in the interpretation of x-ray
absorption spectra and photoelectron diffraction [6, 7, 8]. The hope is that the study of atomic
DCS’s will bring new information compared to EXAFS structural analysis.

The second motivation takes inspiration from Multiple Scattering Theory and realizes that
in order to describe the propagation of an electron in solids one does not need an ASA based
on PW’s, but on SW’s, leading to an effective ASA. Moreover the atomic potential to be used
is a truncated-overlapped potential of the Muffin-Tin (MT) type constructed according to the
Mattheiss prescription [9].

The present program tries to fulfill both aims by using the HL potential to calculate ASA of
isolated atoms, but also provides the possibility to input a cluster of atoms, using the overlapped
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atomic densities to construct the cluster MT potential. In this way one can calculate both PW
and SW ASA’s to be used in the simulation of electron transport in solids and electron-molecule
scattering. We refer to Ref. [10] regarding the construction of MT cluster potentials and densities.
Throughout the paper we use atomic units for lengths and Rydberg units for energies.

2. Theoretical background

2.1. Relativistic Electron-Atom potential scattering

The Dirac Equation (DE) is the starting point for a fully relativistic calculation of the Atomic
Scattering Amplitudes. In our units, indicating by α = e2/(~c) = 1/137.036 the fine structure
constant, the DE for an electron with total energy (including rest mass) E in presence of a central
potential V(r), to be specified later, writes

α2

2

(

E − V(r)
)

Ψ =

(

α

i
~α · ~∇ + β

)

Ψ (1)

Here Ψ is the Dirac bi-spinor

Ψ =

(

gκ(r)χµκ
i fκ(r)χµ−κ

)

(2)

where gκ(r) and fκ(r) are the upper and lower radial function components, and

~α =

(

0 ~σ

~σ 0

)

~β =

(

1 0
0 −1

)

(3)

are the velocity and mass term operators, ~σ denoting the Pauli matrices. In the bi-spinor Eq. (2),
χ
µ
κ is the spin-orbital

χ
µ
κ = Y

Jµ

l 1/2 =
∑

ν

〈l µ − ν|J µ〉 Yl µ−ν(r̂)χν (4)

labeled only by the orbital projection µ and the relativistic quantum number κ. In this equation
Yl µ(r̂) is the Spherical Harmonics with angular momentum l and projection µ, χν is the usual spin
function and 〈l µ − ν|J µ〉 is a Clebsh-Gordan coefficient. Since the spin-orbital is an eigen-state
of J2, L2 and S2 one can easily derive that

(1 + 2~s · ~l)Y Jµ

l 1/2 = −κ Y
Jµ

l 1/2 (5)

Therefore the relativistic quantum number κ determines both J = |κ| − 1/2 and l according to
κ = l for J = l − 1/2 and κ = −(l + 1) for J = l + 1/2. We refer the interested reader to [11] for
the steps leading from the bi-spinor DE to the following radial equations

uκ(r) =
−2

α (ǫ − V(r))

(

d

dr
− κ

r

)

vκ(r)

vκ(r) =
α

2
1

1 + 1
4 α

2 (ǫ − V(r))

(

d

dr
+
κ

r

)

uκ(r) (6)

in terms of
uκ(r) = r gκ(r); vκ(r) = r fκ(r) (7)

3



where now ǫ = E − 2/α2 is the electron energy less its rest mass. This is positive for continuum
scattering states.

Following [12], we use the second equation of (6) to replace vκ(r) into the first equation.
Introducing the quantity

B(r) =
1

1 + 1
4 α

2
(

ǫ − V(r)
)

(8)

we find, in terms of the non-relativistic operator,

Hnr(r) =
d2

dr2
+ ǫ − V(r) − κ(κ + 1)

r2
(9)

the expression
(

Hnr(r) +
α2

4
(

ǫ − V(r)
)2 −

α2

4
B(r)

[

d

dr
V(r)

( d

dr
− 1

r

)

+
1 + κ

r

d

dr
V(r)

])

uκ(r) = 0

(Hnr(r) + Hm(r) + HD(r) + Hso(r)) uκ(r) = 0

(10)

which is a kind of pseudo-Schrödinger Equation. The Hm(r) term is known as the mass rela-
tivistic correction, the HD(r) one as the Darwin correction and Hso(r) is the spin-orbit potential.
Indeed, according to Eq. (5), (1 + κ) acting on a spin-orbital state is equivalent to −2~s · ~l. Notice
that κ(κ + 1) = l(l + 1) for all κ.

The associated indicial equation is obtained by inserting the assumed low r behavior of
uκ(r) ∼ rρ [a0 + a1 r + ...] into Eq. (10) and equating to zero the coefficient of the lowest power
of r (rρ−2). Taking into account that limr→0 rV(r) = −2Z, where Z is the atomic number of the
atom under consideration, so that limr→0 B(r) ∼ 2r/(Zα2), one finds

ρ(ρ − 1) + ρ − (κ2 − (

Z α)2) = 0 (11)

which gives ρ = [κ2 − (Z α)2]1/2 (taking only the positive root for regular behavior at the origin).
This is obviously the same low r behavior of the DE.

The solution of Eq. (10) provides the upper component of the radial DE. The lower one can
be obtained by inserting this solution into the second equation in (6). We do not use the lower
component, because the upper component is sufficient to provide the exact relativistic atomic
t-matrix, as shown below.

The equation (10) is numerically solved by the Numerov procedure after elimination of the
first order derivative (as detailed in [12]), by applying the method of Gaussian elimination with-
out pivoting with the initial behavior given by Eq. (11) [13]. We also use the more flexible
linear-log mesh ρ̃ = αr + β log(r) instead of the usual Herman-Skillman (HS) mesh, since the
relativistic corrections take effect at much smaller values of r than the initial point of the HS
mesh. We should therefore perform a change of variable from r to ρ̃ before applying the Nu-
merov procedure, which requires constant spacing of the integration variable. For details the
reader is referred to [14].

In order to find the atomic t-matrices in the relativistic framework we need the free radial
solutions of the DE for positive energies, both regular and irregular. They are obtained from Eq.
(1) (via Eq. (10)) by setting V(r) to zero and are given in [11].
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As in the non-relativistic framework, the relativistic t-matrix is obtained by matching smoothly
the solution of the DE inside the atomic sphere with the free solution outside the sphere at a ra-
dius Rs, which is the chosen MT radius for an atom embedded in an environment or determined
such that |V(Rs)|/ǫ ≈ 10−5, in the case of an isolated neutral atom. The matching condition,
including the derivative, is

(

gκ(r)χµκ
i fκ(r)χµ−κ

)
∣

∣

∣

∣

∣

∣

r=Rs

=

(

jlκ (kr)χµκ
i CS κ j

l
(kr)χµ−κ

)

− ik tκ

(

h+
lκ

(kr)χµκ
i CS κ h+

l
(kr)χµ−κ

)
∣

∣

∣

∣

∣

∣

r=Rs

(12)

where C = α/[2 (1 + 1
4 α

2 ǫ)], S κ = κ/|κ|, k2 = ǫ(1 + α
2

4 ǫ) is the free electron energy and k is its
momentum. Therefore, indicating by lκ the l-value associated to κ so that l = lκ − S κ, we find

tκ =
i

k

[gκ(r) j′
lκ

(kr) − g′κ(r) jlκ (kr)]

[gκ(r) (h+
lκ

)′(kr) − g′κ(r) h+
lκ

(kr)]

∣

∣

∣

∣

∣

∣

∣

r=Rs

=
i

k

[ fκ(r) j′
l
(kr) − f ′κ (r) j

l
(kr)]

[ fκ(r) (h+
l
)′(kr) − f ′κ (r) h+

l
(kr)]

∣

∣

∣

∣

∣

∣

∣

r=Rs

(13)

As a consequence, tκ is determined solely by the knowledge of the upper component gκ(r). As a
check, we have verified that the second expression in terms of the lower component fκ(r) provides
the same t-matrix.

The advantage of using the pseudo-SE for solving the DE is that it is possible to assess
the relevance of the various potential terms in Eq. (10) to the case under consideration. To
this purpose the present package generates three kinds of t

pa
κ -matrices, according to the kind of

potential approximations (pa) retained. Correspondingly, three DCS are provided. A fourth DCS
is generated for a Slater X-alpha constant exchange potential, which is used only for comparison
reasons to illustrate the drawbacks of this kind of exchange in a scattering process.

Retaining in the last equation (10) only the first term one recovers the usual non-relativistic
SE (pa = nr). According to Eq. (13) the corresponding radial solution generates the non-
relativistic tnr

κ -matrices. Notice that in this case the electron momentum is k =
√
ǫ.

By adding the second Hm(r) and the third HD(r) term we obtain the scalar relativistic equation
(pa = sr) that provides the tsr

κ -matrices in the same approximation.
Finally when the potential includes also the spin-orbit term Hso(r) we recover the fully rel-

ativistic potential, including spin-orbit effects (pa = so). In this case, the value of the quantum
number κ determines both J and l. Correspondingly, according to the value of the quantum num-
ber J = |κ| − 1/2, the program generates two sets of t-matrices, tso− for J = l − 1/2 (κ positive)
and tso+ for J = l + 1/2 (κ negative).

If the potential has a coulombian tail, e.g. when treating scattering off positive ions, it is suf-
ficient to replace in the first of Eq. (13) the Bessel and Hankel functions with the corresponding
radial functions upper solutions of the Dirac equations written for a pure Coulomb potential with
the appropriate asymptotic charge. Then the calculation of the DCS’s proceeds as illustrated
below, with the caveat to avoid the forward divergence characteristic of the Coulomb potential.
Since our emphasis in this paper is on the use of the HL potential and not on the scattering by
positive ions, we refer the reader to the exhaustive discussion contained in Ref. [2].

In relativistic theory, the elastic-scattering DCS
(

dσ
dΩ

)

k
for unpolarized incident beam incident
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on an isolated atom is given as [15]
(

dσ

dΩ

)

k

= | fk(θ)|2 + |gk(θ)|2 (14)

where fk(θ) and gk(θ) are the direct and spin-flip scattering amplitudes. These amplitudes are
expressed in terms of the tso±-matrices for spin-up (+) and spin-down (-) scattering as

fk(θ) =
∑

l

[

(l + 1) tso+
l (k) + l tso−

l (k)
]

Pl(cos θ)

gk(θ) =
∑

l

[

tso−
l (k) − tso+

l (k)
]

P1
l (cos θ) (15)

In these equations, Pl(x) is the Legendre polynomial of order l, and P1
l
(x) is the associated

Legendre polynomial given by P1
l
(x) =

√

(1 − x2) dPl(x)/dx.
Neglecting spin-orbit effects, tso+

l
(k) = tso−

l
(k) = t

(nr,sr)
l

(k), according to the chosen approxi-
mation for the potential (either nr or sr) and the scattering amplitude reduces to

fk(θ) =
∑

l

[

(2l + 1) t
(nr,sr)
l

(k)
]

Pl(cos θ) (16)

while gk(θ) is identically zero. Equations (14), (15) for central field potentials were first derived
by Mott [16] and the resulting DCS is sometimes referred to as the Mott cross section.

Since the two spin-orbit channels are decoupled for spherical radial potentails, in general the
relation between the t-matrix and the s-matrix is given by

tκ(k) =
sκ(k) − 1

2ik
(17)

sκ(k) = e2iδκ(k) (18)

where δκ(k) is the potential phase shift for channel κ. It is known in scattering theory that the
difference in amplitude between the incoming l-wave and the outgoing scattered wave is the
factor sκ. Therefore |sκ| = 1 if the scattering potential is real (the flux of particles is conserved),
whereas |sκ| < 1 if the potential has a complex part, representing the absorption of part of the
incoming flux. The elastic CS σela

k
is given by

σela
k =

∫

dΩ

(

dσ

dΩ

)

k

= 2π
∫ π

0
sin θ dθ

(

| fk(θ)|2 + |gk(θ)|2
)

(19)

In accordance with the optical theorem, the total CS σtot
k

is related by the imaginary part of the
forward scattering amplitude fk(0) by

σtot
k =

4π
k
ℑ fk(0) (20)

since gk(θ) is zero at θ = 0, being proportional to P1
l
(cos θ).

Because σtot
k
= σela

k
+ σine

k
where σine

k
is the inelastic CS, σine

k
is obtained by

σine
k =

4π
k
ℑ fk(0) − 2π

∫ π

0
sin θdθ

(

| fk(θ)|2 + |gk(θ)|2
)

(21)
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Another cross section of interest is the transport CS (or momentum-transfer CS) σtr
k

defined as
[1]

σtr
k =

∫

dΩ (1 − cos θ)
(

dσ

dΩ

)

k

= 2π
∫

sin θ dθ (1 − cos θ)
(

| fk(θ)|2 + |gk(θ)|2
)

(22)

σtr
k

is related to the momentum transfer ∆k as follows.

〈∆k〉 = k
σtr

k

σele
k

(23)

Finally, δκ(k) can be obtained from Eq. (18).

δκ(k) =
1
2i

ln sκ(k)

= nπ +
1
2

arg(sκ(k)) − i

2
ln |sκ(k)| (24)

where nπ is determined by the Levinson’s theorem, stating that n is the number of bound states
with l symmetry. When |sκ(k)| < 1, δκ(k) has a non-zero imaginary part.

All of the above relations, valid in the framework of a complete relativistic description, re-
main so even if the radial part of the potential is approximated in the way described above.

2.2. The interaction potential V(r)

The interaction potential V(r) is defined as

V(r) = Vc(r) + Vexc(r, ǫ) (25)

where Vc(r) is the electrostatic Coulomb potential, which for a single atom with atomic number
Z is given by

Vc(r) = −2Z

r
+

2
r

∫ r

0
ρ(r′) r′2dr′ + 2

∫ ∞

r

ρ(r′) r′dr′ (26)

and ρ(r) is the atomic charge density normalized such that
∫ ∞

0
ρ(r) r2dr = Z and calculated using

the self-consistent single configuration Dirac-Fock atom code [17].
In Eq. (25) Vexc(r, ǫ) is a local exchange-correlation (EXC) (possibly energy dependent)

potential.
One such instance is the energy-dependent EXC potential of Furness and McCarthy used in

[1, 2] and given by

Vexc(r) = [ǫ − Vc(r)] −
{

[ǫ − Vc(r)]2 + ρ(r)
}1/2

(27)

The corresponding potential, obtained by summing Eq.s (26) and (27), is called the Dirac-
Hartree-Fock (DHF) potential in Ref. [1] and static-exchange (SE) potential in Ref. [3]. This
latter work adds to this a correlation-polarization potential obtained by combining the correlation
potential derived from the local density approximation with a long-range polarization interaction,
so that the new potential is denominated SECP. Moreover, in order to mimic the opening of in-
elastic channels in the scattering process, a further absorptive (complex) part is added with a
strength adjusted by means of an empirical parameter.
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In this paper we propose instead to use the Hedin-Lundqvist (HL) EXC complex potential
[10] for the calculations of the Atomic Scattering Amplitudes. This potential is derived within
the GW approximation in many-body theory and is parameter free. In order to calculate the
self-energy, the local density approximation replaces the exact self-energy by that of the homo-
geneous electron gas calculated at the local density of the system under investigation. Therefore
we can define a sort of universal EXC potential as

Vexc(r, ε) ≈ Σh

[

p(r), ε − Vc(r); ρ(r)
]

(28)

Σ[p, ω; ρ] is the self-energy of an electron in an homogeneous interacting electron gas with local
momentum p(r), energy ω = ε − Vc(r), and the density ρ of the actual physical system. The
local momentum p(r) is defined approximately as p2(r) = k2 + k2

F
(r), where k2 is the electron

kinetic energy measured from the Fermi level for an extended system or from the first ionization
potential for finite systems (atoms and molecules) and k2

F
(r) is the local Fermi energy, defined

below as a function of the local density ρ. The GW approximation [4, 5] with the non-perturbed
Green function G0 and the screening Coulomb W gives the electron self energy as

Σh(p, ω) =
i

(2π)4

∫

dp′dω′ eiω′δ

×G0(p + p′, ω + ω′)W(p′, ω′) (29)

G0(p, ω) =
1

ω − p2 + isign(ω − εF)
(30)

W(p′, ω′) =
V(p′)
ǫ(p′, ω′)

(31)

The Fermi energy εF is defined by

εF = k2
F , (32)

kF =
(

3π2ρ
)1/3
=

1
βrs

, (33)

β =

(

4
9π

)1/3

, (34)

rs =

(

3
4πρ

)1/3

. (35)

In the plasmon-pole approximation [4, 5], the dielectric function ǫ of the electron gas is
written as

1
ǫ(p, ω)

= 1 +
ω2

p

ω2 − ω2
1(p)
, (36)

ωp = 4εF

√

βrs

3π
(37)

ω1(p) = ω2
p + εF













4p2

3k2
F

+
p4

k4
F













, (38)

where ω1 is the dispersion of the plasmon pole.
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Explicit calculations, carried out in Appendix B of Ref. [18], show that the real part of
Vexc(r, ε) is the sum of three contributions:

ℜVexc(r, ε) = VDH
ex + Vsex + Vch (39)

where VDH
ex is the usual static and energy-dependent Dirac-Hara exchange, obtained by Dirac

and discussed by Hara, Vsex is a sort of screened exchange and Vch describes the effect of the
Coulomb correlation hole, originating from the fact that the test electron tends to keep away the
electrons of the system of both spins because of the Coulomb repulsion.

In terms of the reduced variable Xk = p(r)/kF(r), the high kinetic energy behavior of the
various terms in Eq. (39) is as follows [18]:

VDH
ex ≍ −kF/X

2
k ∼ −ρ(r)/p2(r); Vsex ≍ −1/X4

k ; Vch ≍ −1/Xk (40)

Notice that the EXC potential of Furness and McCarthy in Eq. (27) has the same asymptotic
behavior as the Dirac-Hara exchange VDH

ex if one assumes that in the spirit of the local density
approximation E − V(r) ∼ p2(r). This energy dependence of the exchange is required by the
fact that the higher the energy of the test electron the lesser is the effect of the Pauli exclusion
principle, since the wave function overlap of the test electron with the electrons of the system
decreases with the energy of the former. However this decrease is too rapid and it is mitigated
by the presence of the Coulomb correlation hole. The combined energy dependence has been
recognized as essential for a reliable calculation of the potential phase shifts in the structural
analysis of the extended x-ray absorption fine structure (EXAFS) in many systems.

The imaginary part of Vexc(r, ε) is non zero only if k2 > ωp, where ωp is the local plasmon
energy in the system. In other words, there is no damping if the test electron kinetic energy
is not sufficient to excite the local plasmon mode of the medium. Lower energy excitations,
like particle-hole excitations, are not possible because of the assumption of the plasmon-pole
approximation for the dielectric function ǫ(p, ω). Although negligible in a first approximation,
they should be added for a complete treatment of the damping. The performance of the HL
potential in the EXAFS analysis has been discussed by Mustre de Leon et al [19].

The quantity ℑVexc(r, ε) is related to the mean free path (MFP) of the test electron by

λ(r) =
k

ℑVexc(r, ε)
(41)

written in a.u. (see Eq. (78) of Ref. [20]). It is a function of r through the dependence of Vexc

on the local density ρ(r). The quantity to compare with experimental MFP data is the average of
λ(r) over the system under study [21].

The original derivation of the HL potential was proposed by Hedin and Lundqvist [4, 5] for
valence electrons. After, Lee and Beni extended its validity to the atomic region [22]. For details
on the analytical formulas we refer to Appendix B of [18]. They are coded into the subroutine
hlvxc of the program. For fixed electron energy, the real and imaginary parts are output in the file
vxc xm.dat together with the Furness and McCarthy exchange potential of Eq. (27) for an easy
comparison. Numerically interpolated values have also been given by [19].

It is worth remembering that a many-pole model of the dielectric function (and therefore of
the self-energy) has been introduced by J. J. Rehr and collaborators to improve on the single pole
approximation. We refer the interested reader to their main papers on the subject [23, 24].

The complex part of the potential describes the attenuation of the elastic scattering amplitude
of the impinging electron due to inelastic losses, but enhances the elastic DCS in the forward
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direction compared to the case of the real potential. There is an option in the program to set it to
zero, so that one can estimate the global effect of the inelastic processes on the elastic scattering
cross section. We refer to Ref. [10] for plots of the real and imaginary parts of Vexc(r, ε) as a
function of ε for two different values of rs = 0.1, 0.01.

Finally there is the possibility for the interested user to add to the Coulomb part an empirical
polarization potential of the type

Vpol(r) = −α0

2
1

[r2 + d2]2
(42)

where α0 is the atomic polarizability and d is a constant of the order of atomic radius [25]. Note
that at large r, Vpol(r) ≍ r−4. It is however ignored in truncated potentials for atoms in a medium.
If α0 is different from zero, this potential is added to the Coulomb potential using the input d.
This option is useful if one wants to assess the effect of the polarization potential at electron
energies lower than 50 eV, even though its effects might be noticeable even at higher energies
[3]. We refer to this latter work and references therein for a more complete discussion on this
point and the value of the parameters α0, d. Except when explicitly stated, all the calculations
presented in this work omit this kind of potential.

2.3. The electron transport in solids

One of the applications of ASA is the description (eg by Monte Carlo simulations) of elec-
tron transport in solids. We would like to suggest a different method inspired by Multiple scat-
tering Theory (MST) which should be more adherent to physical reality. In MST, within a non-
relativistic or scalar relativistic approximation, the cross section for electrons scattering off a
finite cluster of atoms, however big, located at sites Ri can be written, following Ref. [20] (Sec-
tion 4.6 page 209), as

dσ

dk̂s

= (4π)2

∣

∣

∣

∣

∣

∣

∣

∣

∑

i,L

∑

j,L′

i−l′YL′(k̂s) e−ik̂s·R jτ
ji

L′L ilYL(k̂i)eik̂i·Ri

∣

∣

∣

∣

∣

∣

∣

∣

2

(43)

where k̂i and k̂s are the incident and scattered wave vectors. The quantity τ ji

L′L is the scattering
path operator, central in MST, that describes the electron amplitude of propagation of a spherical
wave with angular momentum L around site i to a site j with angular momentum L′ (and vice-
versa, since the matrix is symmetric in both indices), after any number of scattering processes by
the atoms of the cluster. As customary in MST, L stands for l,m.

To get some insight into the physical interpretation of Eq. (43), we observe that in the case
of a single atom located at site i coincident with the center of coordinates, we have (as argued
below) τi j

LL′ = ti
l
δi j δLL′ , where tl is the scattering amplitude of the atom introduced above in

Section 2. By performing the sum over the angular momentum L and using the addition theorem
for Spherical Harmonics we obtain Eq. (16).

In the presence of several atoms located at sites i Eq. (43) tells that the total scattering am-
plitude of the cluster of atom for a plane wave impinging along the direction k̂i and scattered
along k̂s is obtained by summing all the single scattering amplitudes of their spherical compo-
nents L, L′ obtained by multiplying the amplitude of propagation between the two sites τi j

LL′ by
the phase factors eik̂i·Ri( j) representing the phase of the PW with respect to the two sites.
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In terms of the site scattering matrix T i
LL′δi j = ti

l
δi j δLL′ (assuming MT potentials) and the

free spherical wave propagator (SWP) G
i j

LL′ from site i to site j, it is clear that τi j

LL′ obeys the
following equation

τ
i j

LL′ = T i
LL′δi j +

∑

LL′k

T i
LL Gi k

LL′ τ
k j

L′L′
(44)

which is derived from a re-summation of the Born series in which the electron first scatters from
atom at site i, then propagates to cell k undergoing here another scattering event, then to the next
cell, and so on and so forth. The solution of this equation is given in terms of the inverse of the
MS matrix (T−1 −G) as

τ = (T−1 −G)−1 =
∑

n

(TG)n T =
∑

n

T (GT)n (45)

where the series expansion reproduces the original Born series (matrix multiplication in the ap-
propriate indexes is implied) and converges if ρ(TG), the spectral radius (maximum eigenvalue)
of TG, is less than one. For more details of the theory we refer to [10, 20].

A fairly good approximation to the SWP [26] is given by:

G
i j

LL′ ≈ −4π
eikRi j

kRi j

g0
ll′ (kRi j) YL(R̂i j) YL′(R̂i j) i(l−l′) (46)

The function g0
ll′ (ρ) represents a kind of curved wave correction [26] given by

g0
ll′ (ρ) =

[

1 +
L2 + (L′)2

2ρ2

]1/2

ei[L2+(L′)2]/(2ρ) J0

(

L2L′2

ρ2

)

(47)

where J0 is the spherical Bessel function of order zero and L2 = l(l + 1). In the following we
shall neglect the less important amplitude factors and retain only the phase factor.

A convenient simplification of the theory is achieved when ρ(TG) ≪ 1 (this is the case for
energies greater than ∼100 eV). In this case we can retain only the first and second term of the
Born series so that

τ
i j

LL′ = tlδ
i
LL′δi j +

∑

j

ti
l G

i j

L L′ t
j

l′ (48)

By inserting this expression into Eq. (43) one derives after some algebra

dσ

dk̂s

=

∣

∣

∣

∣

∣

∣

∣

∑

i

ei(k̂i−k̂s)·Ri f i(k̂s · k̂i)

+
∑

i j

ei(k̂i·Ri−k̂s·R j) f
j

e f f
(k̂s · R ji) f i

e f f (k̂i · R ji)
eikRi j

kRi j

∣

∣

∣

∣

∣

∣

∣

∣

2

(49)

where R ji = R j − Ri, f i(θ) is the same as in Eq. (16) with tl calculated for the truncated MT
sr-type potential at site i and we have defined an effective site-dependent scattering amplitude as

f i
e f f (θ; Ri j) =

∑

l

(2l + 1) ti
l(k) Pl(θ) ei[l(l+1)]/(2kRi j) (50)
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In this way we have neglected atomic spin-orbit effects which however can be easily incorporated
in the formalism.

As anticipated, the plane-wave electron scattering amplitude is modified by the presence of
the spherical wave propagator and assumes a distance dependence between scattering sites. The
main effect of the additional phase factor is to reduce the scattering amplitude in the forward
direction with an aperture cone and a reducing factor depending on the energy, the more so the
higher the impinging energy.

Equation (49) suggests that the present Monte Carlo programs for simulating electron trans-
fer in solids might benefit from the use of ASA for embedded atoms, the replacement of the
plane-wave ASA by the curved-wave effective ASA of Eq. (50) and the addition of a spherical
wave propagator eikRi j/(kRi j) between any two sites i and j, while preserving their stochastic
framework.

To see how this replacement can be achieved we give a short description of the Monte Carlo
algorithm as presently implemented, referring the reader to Ref.s [27, 28] and references therein
for more details and applications.

Briefly, in a Monte Carlo simulation the electron trajectory is considered a “random walk”
in which the electron direction is changed by elastic collisions only. The simulation is based on
two main assumptions:

• (1) multiple elastic electron collisions along the trajectory are well described by the Pois-
son stochastic process;

• (2) the scattering centers are randomly distributed in the solid, and can be approximated
by the potentials of isolated atoms.

Under these assumptions, the distances between elastic collisions Λ are described by the
exponential distribution

f (Λ) =
1
λe

exp(−Λ/λe) (51)

where λe is the elastic mean free path given by λe = (N σt)−1, N being the number of atoms per
unit volume and σt the total elastic cross section.

The distribution of scattering angles at the end of a linear segment is described by

W(θ) =
2π sin(θ) dσ/dΩ

σt

(52)

where dσ/dΩ is the plane wave differential elastic scattering cross-section corresponding to
scattering into a small solid angle dΩ at an angle θ with respect to the original direction.

In this framework we should therefore replace the Plane Wave DCS dσ/dΩ by the expression
given in Eq. (50), where the distance Ri j should be identified with the linear distance Λ traveled
by the test electron between two successive elastic scatterings. This replacement implies that
f i
e f f

(θ;Λ) should be recalculated at each scattering event, although Λ can be safely replaced by

an average value. The SW factor eikRi j/(kRi j) can be neglected since it does not depend on θ.
As a last remark, from the way it was derived Eq. (49) clearly represents the DCS for an ori-

ented molecule whose atoms are located at sites Ri. Being second order in the effective scattering
amplitude f i

e f f
(θ; Ri j) it is expected to be valid for incident electron energies above roughly 100

eV. DCS for randomly oriented molecules can be obtained by averaging Eq. (49) over all the
molecular orientations. Damping effects in the electron propagation could be taken into account
by the use of the complex HL potential to calculate the tl-matrices.

12



3. Running details

Figure 1: The directory tree of MASAP.

Figure 1 shows the directory tree of MASAP. MASAP contains the directories for the asa,
GUI and sample parts. This latter part contains some outputs generated by MASAP.

The users firstly compile the source files by using Makefile and the make command in the
asa directory:

$ make

The make command generates the executable asa.out, although this name can be changed, if
desired, by modifying Makefile.

The users at this point can either run directly asa.out in a chosen directory, giving as input
a data.ms file, whose template, called template data.ms, can be found in the directory MAS-
AP/asa/src and contains the explanation of all the input options, or take advantage of the graph-
ical interface by editing the calc asa v1.inp file in the asa directory to enter the chosen options,
and running calc asa 1.0.py:

$ py thon c a l c a s a 1 . 0 . py

The python script reads the corresponding inp file and runs asa.out to obtain the site T -matrix,
which are used to calculate the ASA’s. The calculated ASA’s are output to HDF files in new
directories whose top directory’s name is designated in the inp file. The HDF files also include
information on the options specified in the corresponding inp files. The typical options in the inp
file are as follows:

• asaPATH: specifies the path for running the executable asa.out.

• OnlyMainFile: if “no”, all the calculated results by asa.out are stored.

• NewDirName: specifies the name of the directory for the calculated ASA’s.
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• Potential: denotes the potential type. The real and complex Hedin-Lundqvist exc potentials
are denoted by “hr” and “hc”, respectively. The Dirac-Hartree-Fock potential is denoted
by “fc”. This potential is the same as the one used in Ref. [1] and allows the comparison
of the calculated ASA’s with those given in the atomic database developed by NIST [29].

• EnergyStart, EnergyEnd, EnergyInterval: specifies the range (and spacing) of the electron
energies at which to calculate the ASA’s.

• CheckStructure: if “yes”, the input options are visualized in the pop-up windows described
below.

Users define solid systems in a format accepted by the python module of Atomic Simulation En-
vironment, and specify the target element. The calculated ASA for each described solid system
is stored in separated HDF files in the directory designated by the NewDirName variable. Users
can also input isolated atomic systems in calc asa v1.inp. For atomic systems, space groups
are replaced by the keyword “atomic”, and lattice constants for solid systems are replaced by
the value of the atomic radii or by the keyword “calc”. When this latter option is chosen, the
program determines internally the atomic radius in the way specified below in Section 4. The
flow-chart in Fig. 2 illustrates the various steps of the process

In the GUI directory, gui 1.0.py can plot, besides ASA’s, related quantities such as cross
sections, site tκ- and sκ-matrices and so on.

Launching the program gui 1.0.py

$ py thon g u i 1 . 0 . py

causes the appearance of the window shown in Fig. 3 and of another window called “Data file
list” (there is no need to click the “Data file list” button). The users select in this last window one
of the HDF data file created in the previous step in the directory designated by the NewDirName
variable by clicking the “Add a data file” button of Fig. 3. Then they can explore all the functions
listed there by clicking the corresponding check boxes. The results, like the angular dependence
of the differential cross section or the energy dependence of the transport cross section are ex-
emplified in next section . The“Bohr radius” check box toggles between Ångstrom or atomic
units. The “Plot Data” button enables the instant plotting of the calculated data. By clicking the
“Export Data” button a directory, whose name is related to the time and the type of the calculated
data, is created in the same directory where gui 1.0py is running. Each selected calculation is
written here into separated text files that are useful for plotting figures according to the chosen
options.

The window “Data file list” shows paths of the selected HDF files calculated by asa.out and
calc asa 1.0.py. The content of the “Data file list” window can be edited via the “Add a data
file” and “Remove selected data file” buttons situated at the bottom of the main window. The
files to be removed should be selected by clicking them in the “Data file list” window before
clicking the “Remove selected data file” button. Finally, the exploit function v1.py program has
only auxiliary functions for gui 1.0.py, so that the users do not need to run it. The various steps
are illustrated in the flowchart of Fig. 4.

The gross structure of the program is very simple, as can be inferred having a look at the
main driving program. If the variable cluster is true, an overlapped charge density for each atom
in the cluster is constructed based on the Mattheiss prescription in the subroutine calphas. Then
atomic t-matrices, phase shifts, differential and total integrated cross sections are computed in
subroutine asa sub with the set of Muffin Tin radii so determined. If cluster is false, t-matrices,
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phase shifts, differential and total integrated cross sections are computed in the same subroutine
asa sub for an isolated atom with a radius Rs determined by the condition |V(Rs)|/ǫ ≈ 10−5.

In this case only one line of coordinates is sufficient in the input file data.ms to specify the
symbol and the atomic number of the atom in question. The atomic charge density is calculated
in the subroutine scfdat [17],

In the present version the program runs up to an energy of about 15 Kev. To increase further
this range the user should modify the parameters dpas of the linear-log mesh in the subroutine
llmesh in order to have more points in the final part of the integration range of the radial solution
of the pseudo-Schrödinger equation, otherwise the program is unable to calculate the atomic
matrices tl for high l. The variable dpas = dρ̃ is the constant spacing of the Numerov integration
procedure which, due to the relation ρ̃ = αr + β log(r), represents also the spacing of the radial
variable r, when this is greater than one. In the present version dpas = 0.01 and should be
decreased if needed.

4. Typical results

In this section, we show calculated DCS and σtr in isolated atomic systems and in solids.
aluminum and gold are chosen as typical light and heavy elements having FCC crystal structure.
The lattice constants of FCC aluminum and gold are 4.05 and 4.07 Å, respectively, resulting in
an atomic MT radius of about 1.43 Å [30, 31].

For each element we construct three kinds of atomic potentials. The first one, referred to
as “solid”, is a truncated-overlapped potential of the MT type, constructed according to the
Mattheiss prescription [9], representing the potential of an atom embedded in a cluster, that
can be chosen by the user. The second one, referred to as “input”, is the potential of an isolated
atom constructed on the basis of its self-consistent charge density, truncated at the same MT ra-
dius of the “solid” calculation. The label “input” refers to the fact that the MT radius is provided
in the input data file. The third one, referred to as “calc”, is the potential of an isolated atom,
truncated at a radius Rs determined such that |V(Rs)|/ǫ ≈ 10−5, as anticipated above in section
2.1. Since the potential decays exponentially for a neutral atom, it is expected that the calculated
DCS is insensitive to this truncation radius, which turns out to be of the order of about 5 to 15
a.u., depending on the element and the incident electron energy. Therefore, comparison of DCS
calculations between the “solid” and “input” conditions gives information of the effects of the
electron density in solids, comparison between the “input” and “calc” conditions gives informa-
tion of the effects of the truncation of the atomic potential, and comparison between the “solid”
and “calc” conditions gives information both on the truncation and the solid effects.

As anticipated, the real and complex Hedin-Lundqvist potentials are denoted “hr” and “hc”,
respectively, and the exchange part of the DHF potential in Ref. [1], used also in Ref. [2], is
denoted as “fc”. The non-relativistic and scalar-relativistic approximations are denoted as “nr”
and “sr”, respectively, whereas the use of the full relativistic potential with spin-orbit part is
denoted “so”. Not to clutter the figures, we have drawn only the “nr” and “so” options, although,
if needed, the user can also choose the “sr” option in the program. The notation “NIST” indicates
the DCS obtained from the database by NIST [29] and corresponds to our “calc” with “so” and
“fc” options. For sake of comparison it is also shown in the ‘solid” and “input” options.

Figures 5-8 show calculated DCSs for aluminum and gold at impinging electron energies of
100 and 1000 eV. Each figure compares calculated DCSs for the different types of potentials in
non-relativistic (“nr”) and full relativistic (“so”) options. We see that our calculated DCS’s with

15



the “fc” potential in the “calc” and “so” options reproduce rather well the DCS’s taken from the
NIST database [29], as calculated in Ref. [1].

A point worth of further investigation is the following. In the “solid” condition for aluminum
with the electron energy of 100 eV, the DCS’s calculated with the “hc” potential are closer to the
NIST one than those with the “hr” potential (see Fig. 5). Similarly, in the “solid” condition for
gold with the “so” potential, the DCS with the “hc” potential shows agreement with the NIST
ones (Figs. 7 and 8). This observation seem to indicate that damping effects by the imaginary
part of optical potential play some role in the connection between DCS with an effective atomic
radius in a solid and purely atomic DCS. So far, the atomic DCS (or ASA) databases have been
used to analyze electron scattering phenomena even in solids [1]. Tanuma et al. reported that,
according with the Bethe theory, damping effects in solids are less important than in atomic
systems [32]. This justifies the use of the atomic DCS (or ASA) without inelastic scattering for
studying solid systems. However, Bethe’s theory is valid in the electron-energy range higher
than about 1 keV. Thus, our results seem to suggest that damping effects make the DCS in solids
approximately similar to the atomic DCS, which justifies the use of the atomic DCS (or ASA)
database to analyze electron scattering phenomena in solid systems also at electron energies less
than 1 keV. Note that for high electron energy, the potential differences become less pronounced,
and thus the DCS’s for aluminum with the electron energy of 1000 eV are relatively similar (Fig.
6) On the other hand, because heavy element atoms have strong Coulomb attractive potential near
the nucleus, relatively larger difference between the DCS’s calculated with the various potentials
appears for gold in Fig. 8 than for aluminum in Fig. 6.

Moreover, a look at the various figures shows that the difference of DCS between the “solid”
and “input” conditions is smaller than that between the “input” and “calc” conditions. This
fact indicates that the difference in electron density generated by the overlapping mechanism is
less important than the truncation of the potential effective radius, for electron energies roughly
higher than 100 eV. Therefore the description of electron scattering in a solid requires a truncated
potential.

Since the idea behind the present paper is the investigation of the validity and limitations of
the HL potential, it is useful to restrict the application of the program to the somewhat low-energy
range of 50: ≈1500 eV. This is also the range used in EXAFS (Extended X-ray Absorption Fine
Structure) structural analysis, which is known to be sensitive to the details of the atomic potential.
In fact, at higher energies, the scattering process progressively becomes insensitive to the details
of the scattering potential. The hope is that the study of atomic DCS’s will bring new information
compared to EXAFS structural analysis.

In order to have an idea of the difference between the HL and Furness-McCarthy potentials,
Fig. 9 plots the real (vxcrl) and the imaginary part (vxcim) of the HL potential versus the Furness-
McCarthy exchange (vx f c) and X-alpha (v xa) potentials as a function of the radial distance
from the origin of the Krypton atom at 100 eV of electron energy. Notice that the imaginary
part vxcim has been mutliplied by ten to be visible on the same scale. Their mutual relation is
a representative case of a general behavior for atomic potentials. Near the origin vxcrl and v xa

have a value of 75.7 Ryd whereas at great distances vxcrl decays much more rapidly than v xa

(for example at 11 a.u. vxcrl = 4.3E(−05) compared to v xa = 2.4E(−3)). This behavior affects
the corresponding DCS’s values in the forward direction, in the sense that higher values of the
exchange potential correspond to higher cross sections.

The upper panel of Fig. 10 illustrates this behavior in the case of Al at 1Kev of incident
energy without polarization potential, whereas the lower panel plots the same comparison in the
presence of a polarization potential. As expected the polarization potential increases the DCS’s
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value in the forward direction. The curve for X-alpha potential is not shown because it would be
out of scale toward much higher DCS’s values.

A point worth mentioning is that the imaginary part of the optical potential enhances the
calculated elastic DCSs in the forward direction compared to the same potential without the
imaginary part, but gives rise to a lower intensity at all other directions as expected from the
damping effect of the complex part of the potential. The forward direction effect is related to the
optical theorem (21), because, in the presence of an absorptive part, ℑ fk(0) has a contribution
coming from all inelastic processes, so that | fk(0)|2 = |ℜ fk(0)|2 + |ℑ fk(0)|2 is enhanced.

Generally, relativistic effects are not important for light elements. For them, relativistic (“so”,
“sr”) and non relativistic (“nr”) DCS’s superimpose for all kinds of potentials. For heavy ele-
ments instead there is almost coincidence in a wide forward cone of about 30-40 degrees, after
which the DCS’s begin to differ, the more so the lower the energy. This finding can be explained
on the basis that the tail of the scattering potential contributes to the forward scattering, whereas
its interior determines the large angle scattering.

The role of the complex potential is illustrated in Fig. 11 where the DCS for the noble gas
Krypton at the impinging electron energy of 100 eV, calculated with the complex exchange-
correlation potential HL, labeled “hc”, is compared with the DCS calculated with the same po-
tential but without imaginary part, labeled “hr”, and the real DHF potential used in Ref. [1],
denoted “fc”. All calculations are done in the fully relativistic “so” mode, including therefore
the spin-orbit potential. The experimental results are taken from Ref.s [33] (symbol *), [34]
(symbol #) and [35] (symbol $). Notice that in the range 40-120 degrees the data from Ref.s
[34, 35] are almost coincident. The green curve represent the results calculated using the (non
relativistic) R-matrix method by Fon et al [36]. It should be compared with the curve labeled
“hr”, which does not differ significantly by the same curve calculated in non-relativistic mode as
already noted.

The comparison wih the experimental data reveals the need to include an absorptive part
in the scattering potential to describe the whole scattering angular range. There is however
a discrepancy between calculated (198 a2

0 sr−1) and experimental (136 a2
0 sr−1) forward cross

sections, indicating that the imaginary part of the HL potential is a bit overestimated.
It is also interesting to plot Krypton DCS spectra at 1, 2 and 3 Kev of impinging electron

energy against the experimental available data from [37]. The agreement is very good, as shown
in Fig. 12. Our calculations compare very well with those of Salvat in Ref. [3].

The comparison with the spectra at 100 eV and those at 1, 2 and 3 Kev confirms the fact
that the higher the electron impinging energy, the lower the discrimination power with respect
to the details of the atomic potential. The upper panel of Fig. 13 illustrates this fact. At 1 KeV
of incident energy the Krypton DCS’s corresponding to the “hr” and “fc” potentials are almost
identical, except in the forward direction, whereas the complex “hc” potential has still a notice-
able effect. Even this difference however decreases with increasing electron energy , as shown
in the middle panel of the same figure, which shows the same comparison at 3KeV. As another
example, the lower panel of Fig. 13 plots the DCS corresponding to three types of potential in
the case of Gold at 10 Kev of incident electron energy. The curves are almost coincident and
in good agreement with the same calculation shown in Fig. 6 of Ref. [1], indicating that at this
energy the scattering process is insensitive to the exchange and complex part of the potential.
The same is found for Krypton at 10 KeV.

The favorable situation for the complex “hc” potential found in Krypton is not met in the
case of Argon at 100 eV of incident energy. Fig. 14 compares in the upper panel the DCS’s for
Argon at 100 eV of impinging electron energy, in the “calc” mode with “so” option for “hr”, “hc”

17



potentials. The experimental points are derived from [38] (symbol #). The red curve, labeled “R-
matrix’, represent the results for the DCS calculated using the R-matrix method (non-relativistic)
by Fon et al [39]. It seems that the complex potential overdamps the spectral features and that
a description in terms of a real potential, at least in parts of the angular spectrum, would be
more appropriate (see the R-matrix spectrum). Another calculation with the complex part of the
potential reduced uniformly by the factor 0.7 reported in the lower panel of Fig. 14 shows a
better agreement with the data.

With our surprise the experimental spectrum at 300 eV is instead reproduced quite well by
the use of the complex (“hc”) potential, as shown in Fig. 15. Here the experimental points
are derived from [40] (symbol #) and [41] (symbol $). This finding seems to point out to an
incorrect energy dependence of the complex part of the HL potential, already pointed out at by
other authors [23, 24].

The quality of the energy dependence of the HL is illustrated in Fig. 16 where the integrated
total and elastic cross sections, derived from the DCS’s for the “hc-so” potential (no reduction of
the imaginary part) is compared with experimental data and R-matrix calculations. In both cases
the total calculated CS is roughly 50-100% higher than the experimental counterpart, whereas
the the disagreement is less for the elasic CS. In the case of Argon the total and elastic CS cross at
30 eV, indicating an inconsistency of the data or an high threshold for the opening of the inelastic
channels. Further investigation would be desirable.

Finally the upper panel of Fig. 17 compares the DCS’s for Mercury at 35 eV of incident
energy, in the “calc” mode with “so” option for “hc” and “hr” potentials with the relativistic
R-matrix calculations [42] (experimental data taken from Ref. [43]). As stated in Ref. [42]
the good agreement of the R-matrix calculations “suggests that channel coupling and relativistic
effects are not particularly important for these cases (25 and 35 eV). At these energies, it has
essentially become a potential-scattering problem, with the accuracy of the scattering potential
being the decisive element that determines success or failure of a theoretical approach”. This
observation explains also the relatively good agreement with the “hc” calculation, apart the slight
overdamping. Again, a reduction by a factor 0.7 of the imaginary part of the “hc” potential
improves decidedly the agreement both with the R-matrix approach and the experimental data, as
shown in the lower panel of Fig. 17. Fig. 18 compares instead the relativistic and non relativistic
DCS’s for the “hc” potential, which seems to confirm the conjecture made in Ref. [42]. Notice
however the disagreement in the forward 20 degrees cone, even with the “hr” type of potential, a
situation also observed in the case of Krypton at 100 eV (see Fig. 11). This disagreement can be
explained on the basis that the GW local density approximation for the self-energy, assumed in
the HL exchange-correlation potential, is not justified when the electron density is very low, as
in the tail of the atomic density.

All in all, we think that the whole matter deserves a more exhaustive analysis, which will
be given elsewhere. These preliminary results seem to indicate that the process of electron-atom
scattering is complementary to structural EXAFS analysis.

Fig. 19 compares the DCS’s calculated using plane wave (pw) and spherical wave (sw)
propagators (Eq. (50)) in the case of Aluminum at 100 eV of electron energy, in the “solid”
mode with “sr” and “hc” options. Usually the effect of the spherical wave correction on the TCS
σtr is a rough average increase of 25 % with respect to the plane wave calculation in the whole
50-1000 eV range of Aluminum and Gold.

The effect of the presence of a polarization potential is illustrated in Fig. 20. We again
consider a Krypton atom scattering an electron beam of 10 eV. The potential parameters defined
in Eq. (42) are taken as α0 = 16.7 au from Ref. [44] and d = 1.66 a.u. equal to the atomic
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radius. This value is in keeping with the empirical formula suggested in Eq. (5) of Ref. [3].
Calculations have been done in the “calc” mode with “hc” and “so” options. Fig. 20 compares
in the upper panel the DCS in presence (labeled “hc-wpl”) and in absence (labeled “hc-npl”) of
the polarization potential. The lower panel shows the same comparison at an impinging electron
energy of 100 eV. The effect of the polarization potential on the DCS is much less pronounced.
However, remembering Fig. 10, this is not a general rule.

Finally Figures 21 and 22 show the calculated σtr and the NIST one. Data are presented with
an energy mesh of 50 eV, but users can choose their own mesh. We can observe that σtr with
the “hc” potential is smaller than that with the “hr” potential, which agrees with the physical
intuition of the damping effects by the imaginary part of the optical potential. As in the case
of the calculated DCS, σtr calculated with the “hc” potential in the “solid” mode agrees with
the NIST one, which again justifies the use of the atomic CS without the damping effects for
analyzing electron scattering phenomena in solids. Comparison between σtr in the “input” and
“calc” mode shows that σtr calculated with the “hc” potential is sensitive to the atomic radius
for electron energies less than 200 eV, but σtr calculated with the real potentials “hr” and “fc”
are not, which indicates that the imaginary part of the “hc” potential has more contribution in
outer region within the atomic sphere than the real potentials. Note that σtr is less sensitive to
the forward scattering due to the factor (1 − cos θ) in Eq. (19).

5. Summary

The computational MASAP Package, composed of a computation program and a graphical
interface, generates atomic scattering amplitude of an atom, either isolated or embedded in an en-
vironment, at any chosen energy of the impinging electron up to 15 KeV. The ASA is calculated
using an effective, complex optical potential which provides damping effects in the scattering
process in a fully relativistic framework. Optionally, scalar relativistic and non-relativistic ap-
proximations are also available to assess their applicability to a given problem.

The GUI part allows to output quantities related ASA with user selected options into text
files for convenient plotting.

For sake of illustration, we have calculated the differential and transport CS’s for aluminum
and gold in isolated atomic systems and in solids. The comparison of the various DCS’s sug-
gest that the use of complex potential at impinging electron energy less than 1 keV justifies the
approximate application of the atomic databases DCS’s, based on free atom potential, to elec-
tron scattering phenomena in solid systems. Instead, the description of the free atom Differential
Cross Section has been shown to require the use of a complex potential in the whole angular
scattering range, confirming the conclusions of Ref. [3]. The preliminary analysis carried out on
selected examples seems to indicate that the process of electron-atom scattering is complemen-
tary to structural EXAFS analysis in providing information on the scattering potential.

Finally, taking inspiration from Multiple Scattering Theory for the description of electron
propagation in solids, an effective scattering amplitude has been suggested, to be used in Monte
Carlo simulations and electron-molecule scattering, based on spherical wave propagators and
MT atomic embedded potentials constructed according to the Mattheiss prescription [9].

6. Acknowledgment

The research leading to these results has received funding from the People Programme (Marie
Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) un-

19



der REA grant agreement n. PCOFUND-GA-2013-60912, through the PRESTIGE programme
(PRESTIGE-2017-2-0016) coordinated by Campus France.

References

[1] A. Jablonski, F. Slavat, C. J. Powell, Comparison of electron elastic-scattering cross sections calculated from two
commonly used atomic potentials, J. Phys. Chem. Ref. Data. 33 (2004) 409.

[2] F. Salvat, A. Jablonski, C. J. Powell, ELSEPA - Dirac partial-wave calculation of elastic scattering of electrons
and positrons by atoms, positive ions and molecules, Computer Physics Communications 165 (2) (2005) 157–190.
doi:https://doi.org/10.1016/j.cpc.2004.09.006.
URL https://www.sciencedirect.com/science/article/pii/S0010465504004795

[3] F. Salvat, Optical-model potential for electron and positron elastic scattering by atoms, Phys. Rev. A 68 (2003)
012708. doi:10.1103/PhysRevA.68.012708.
URL https://link.aps.org/doi/10.1103/PhysRevA.68.012708

[4] L. Hedin, New method for calculating the one-particle green’s function with application to the electron-gas prob-
lem, Phys. Rev. 139 (1965) A796–A823.

[5] L. Hedin, S. Lundqvist, Solid State Phys. 23 (1970) 33.
[6] A. Ankudinov, B. Ravel, J. J. Rehr, S. Conradson, Real-space multiple-scattering calculations and interpretation of

x-ray absoprtion near-edge structure, Phys. Rev. B 58 (1998) 7565–7575.
[7] A. Filipponi, A. Di Cicco, C. R. Natoli, X-ray absorption spectroscopy and n-body distribution functions in con-

densed matter (I): theory., Phys. Rev. B 52 (1995) 15122–15134.
[8] C. Fadley, S. Thevuthasan, A. Kaduwela, C. Westphal, Y. Kim, R. Ynzunza, P. Len, E. Tober, F. Zhang, Z. Wang,

S. Ruebush, A. Budge, M. V. Hove, Photoelectron diffraction and holography: Present status and future prospects,
Journal of Electron Spectroscopy and Related Phenomena 68 (1994) 19 – 47. doi:https://doi.org/10.1016/0368-
2048(94)02101-5.

[9] L. F. Mattheiss, Energy bands for solid argon, Phys. Rev. 133 (1964) A1399–A1403.
URL https://link.aps.org/doi/10.1103/PhysRev.133.A1399
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Figure 3: The main window of gui 1.0.py.
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Figure 5: Calculated DCS for aluminum at impinging electron energy of 100 eV. See text (Section 4) for the meaning of
the various labels.
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Figure 6: Calculated DCS for aluminum at impinging electron energy of 1000 eV. See text (Section 4) for the meaning
of the various labels.
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Figure 7: Calculated DCS for gold at impinging electron energy of 100 eV. See text (Section 4) for the meaning of the
various labels.
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Figure 8: Calculated DCS for gold at impinging electron energy of 1000 eV. See text (Section 4) for the meaning of the
various labels.
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were taken from Ref. [45], whereas those for the elastic CS were taken from Table 5 (column B) of Ref. [39]. Lower
panel: Same as upper panel, but for Krypton, where the R-matrix calculation and the experimental data for the elastic CS
were taken from Table 5 (column B) of Ref. [36], and those for the total CS again from Ref. [45].
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Figure 17: Upper panel: Comparison of the DCS’s for Mercury at 35 eV of incident energy, in the “calc” mode with
“so” option using the “hc” and the “hr” potentials with the relativistic R-matrix calculations [42]. The experimental data
are taken from Ref. [43]. Lower panel: Same as upper panel, but with the imaginary part of the “hc” potential reduced
uniformly by a factor 0.7. See text (Section 4) for the meaning of the various labels.
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Figure 18: Comparison of the DCS’s for Mercury at 35 eV of incident energy, in the “calc” mode between the relativistic
“hc” potential with “so” option and the same potential with non relativistic“nr” option. See text (Section 4) for the
meaning of the various labels.
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Figure 19: Comparison between DCS’s calculated using plane wave (pw) and spherical wave (sw) propagators for
Aluminum at 100 eV of impinging electron energy, in the “solid” mode with “sr” and “hc” options. See text (Section 4)
for the meaning of the various labels.

40



 0.1

 1

 10

 100

 1000

 0  20  40  60  80  100  120  140  160  180  200

Krypton 10 eV

D
iff

er
en

tia
l r

os
s 

se
ct

io
n 

(a
.u

.)

Angle (degree)

hc-npl
hc-wpl

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0  20  40  60  80  100  120  140  160  180  200

Krypton 100 eV

D
iff

er
en

tia
l c

ro
ss

 s
ec

tio
n 

(a
.u

.)

Angle (degree)

hc-npl
hc-wpl

Figure 20: Comparison between DCS’s for Krypton at 10 eV of impinging electron energy (upper panel) in the “calc”
mode with “hc” and “so” options, in presence (labeled “hc-wpl”) and in absence of the polarization potential (labeled
“hc-npl”). Lower panel: Same comparison as in upper panel, but at 100 eV of impinging electron energy.
See text (Section 4) for the meaning of the various labels.
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Figure 21: Calculated transport cross section for aluminum. See text (Section 4) for the meaning of the various labels.
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Figure 22: Calculated transport cross section for gold. See text (Section 4) for the meaning of the various labels.
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