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Abstract. Seismic fragility curves are key quantities of the Seismic Probabilistic Risk Assess-
ment studies carried out on industrial facilities. They express the probability of failure of a me-
chanical structure conditional to a scalar value derived from the seismic ground motion called
Intensity Measure (IM). Estimating such curves is a daunting task because for most structures of
interest few data are available. For this reason, some methods of the literature rely on the use of
the parametric log-normal model coupled with Bayesian approaches for parameter estimation.
We are interested in this work in binary datasets (failure or not failure) and we investigate the
influence of the choice of the prior and of the IM – Peak Ground Acceleration vs. Pseudo Spec-
tral Acceleration – on the convergence of the estimates for a given seismic scenario. We show
that Bayesian fragility curve estimation results based on Jeffreys’ prior outperform the ones
based on classical priors whatever the IM. We also show that, when an IM is more correlated to
the structural response, the differences between the results obtained with the different priors are
less marked. They testify to the fact that an IM more correlated to the response of the structure
induces a lower variability of the estimate of the median of the log-normal model. This is not
the case for the log standard deviation whose estimate is affected by samples which are more
degenerate with this kind of IM, namely which are partitioned into two disjoint subsets when
classified according to IM values: the subset for which there is no failure and the other one for
which there is failure, these two subsets possibly being present in the same sample or separately.
Such degeneracy affects all methods to varying degrees, but with Jeffreys’ prior the results are
clearly better, attesting to its robustness against such inevitable situations in practice.
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1 Introduction

Seismic fragility curves are key quantities of the Seismic Probabilistic Risk Assessment
(SPRA) studies carried out on mechanical structures. They were introduced in the 1980s for
safety studies of nuclear facilities (see e.g. [1–5]). They express the probability of failure of
the mechanical structure conditional to a scalar value derived from the seismic ground mo-
tions – called Intensity Measure (IM) – such as the Peak Ground Acceleration (PGA) or the
Pseudo-Spectral Acceleration (PSA) for a fixed frequency and damping. In practice, various
data sources can be exploited to estimate fragility curves, namely: expert judgments supported
by test data [1–3, 6], experimental data [3, 7, 8], results of damage collected on existing struc-
tures that have been subjected to an earthquake [9–11] and analytical results given by more
or less refined numerical models using artificial or real seismic excitations (see e.g. [12–17]).
Parametric fragility curves were historically introduced in the SPRA framework because their
estimates require small sample sizes. The log-normal model has since become the most widely
used model (see e.g. [9–22]). Several strategies can be implemented to fit the median, α, and
the log standard deviation, β, of the model. Some of them are compared in [10] highlighting
advantages and disadvantages. When the data is binary – i.e. when it indicates failure or not –
[10] recommended maximum likelihood estimation (MLE). When the data are independent, the
bootstrap technique can be used to obtain confidence intervals relating to the size of the sample
considered (e.g. [9, 12, 13]).

Among the various other methods not mentioned in this short introduction, the Bayesian
framework has recently become increasingly popular in seismic fragility analysis (see e.g.
[7, 16, 22–28]). It actually allows to solve irregularity issues encountered in the estimation
of the parametric fragility curves. MLE-based methods can indeed lead to unrealistic or de-
generate fragility curves such as unit step functions when the data availability is sparse. Those
problems are especially encountered when resorting to complex and detailed modeling due to
the calculation burden or when dealing with tests performed on shaking tables, etc. In earth-
quake engineering, Bayesian inference is often used to update log-normal fragility curves ob-
tained beforehand by various approaches, by assuming independent distributions for the prior
values of α and β such as log-normal distributions (see e.g. [11, 16, 22, 25, 26]).

This work follows the one presented in [29] which deals with Bayesian problems in which
only few binary data are available. Using the reference prior theory as a support, the authors
have proposed an objective approach to choose the prior and to simulate a posteriori fragility
curves. This approach led to the Jeffreys’ prior and the authors have shown the robustness
and advantages of the Jeffreys’ prior in terms of regularization (no degenerate estimations) and
stability (no outliers of the parameters) for fragility curves estimation. Since this prior depends
only on the characteristics of the ground motion – the distribution of the IM of interest – its
calculation is then suitable for any equipment of an industrial installation subjected to the same
seismic hazard. So, in this work, we are interested in the influence of the choice of the IM –
PGA vs. PSA – on the convergence of the estimates, for a given magnitude (M) - source-to-site
distance (R) scenario and a given mechanical structure.

The paper is organized as follows. Section 2 presents the statement of the problem from
the Bayesian viewpoint. A review of the objective prior theory is presented in section 3. The
principal achievements of [29] on which we rely are summarized in section 4. Section 5 is
dedicated to reviewing estimation tools and benchmarking metrics used to support comparisons
with classical approaches of the literature. They are implemented in section 6 on a case study,
a piping system. A conclusion is proposed in section 7.
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2 Bayesian problem

A log-linear probit model is often used to approximate fragility curves. In this model the
probability of failure given the IM takes the following form:

Pf (a) = P(‘failure’|IM = a) = Φ

(
log a− logα

β

)
, (1)

where α, β ∈ (0,+∞) are the two model parameters and Φ is the cumulative distribution
function of a standard Gaussian variable. In the following we denote θ = (α, β). In the Bayesian
point of view θ is considered as a random variable [30]. Its probability density function is
denoted by π and called the prior, it is supposed to be defined on a set Θ ⊂ (0,+∞)2.

The statistical model consists in the observations of independent realizations (a1, z1), . . . ,
(ak, zk) ∈ A× {0, 1}, A ⊂ [0,∞), k being the data-set size. For the ith seismic event, ai is its
observed IM and zi is the observation of a failure (zi is equal to one if failure has been observed
during the ith seismic event and it is equal to zero otherwise). The joint distribution of the pair
(a, z) conditionally to θ has the form:

p(a, z|θ) = p(a)p(z|a, θ), (2)

where p(a) denotes the distribution of the IM and p(z|a, θ) is a Bernoulli distribution whose
parameter (the probability of failure) depends on a and θ as expressed by equation (1). The
product of the conditional distributions p(zi|ai, θ) is the likelihood of the model:

ℓk(z|a, θ) =
k∏

i=1

p(zi|ai, θ) =
k∏

i=1

Φ

(
log ai

α

β

)zi (
1− Φ

(
log ai

α

β

))1−zi

, (3)

denoting a = (ai)
k
i=1, z = (zi)

k
i=1. The a posteriori distribution of θ can be computed by Bayes

theorem. The resulting posterior distribution is:

p(θ|a, z) = ℓk(z|a, θ)π(θ)∫
Θ
ℓk(z|a, θ′)π(θ′)dθ′

. (4)

3 Reference prior theory

To choose a non-subjective prior, in [29] is considered the criterion introduced by Bernardo
[31] to define the so-called reference prior. It consists in choosing the prior that maximizes the
mutual information indicator I(π|k) which expresses the information provided by the data to
the posterior, relatively to the prior. In other words, this criterion seeks the prior that maximizes
the “learning” capacity from observations. The mutual information indicator is defined by:

I(π|k) =
∫
(A×{0,1})k

KL(p(·|a, z)||π)p(a, z)
k∏

l=1

λ(dal, dzl), (5)

where p(a, z) =
∫
Θ
ℓk(z|a, θ′)

∏k
l=1 p(al)π(θ

′)dθ′ and the reference measure λ(da, dz) is the
product of the Lebesgue measure over A w.r.t. a and the discrete measure δ0 + δ1 over {0, 1}
w.r.t. z: we have

∫
A×{0,1} ψ(a, z)λ(da, dz) =

∫
A ψ(a, 0)da+

∫
A ψ(a, 1)da for any test function

ψ. The indicator (5) is based on the Kullback-Leibler divergence between the posterior and
the prior, which is known to numerically express this idea of the information provided by one
distribution to another one:
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KL(p||π) =
∫
Θ

p(θ) log
p(θ)

π(θ)
dθ. (6)

A suitable definition of a reference prior is suggested in the literature as the solution of an
asymptotic optimization of this mutual information metric [32, 33]. It has been proved that,
under some mild assumptions which are satisfied in our framework, the Jeffreys’ prior defined
by

J(θ) ∝
√

| det Ik(θ)|, (7)

is the reference prior, with Ik being the Fisher information matrix:

I(θ)ki,j = −
∫
(A×{0,1})k

ℓk(z|a, θ)
∂2 log ℓk(z|a, θ)

∂θi∂θj

k∏
l=1

p(al)λ(dal, dzl). (8)

The property I(θ)k = kI(θ) (with I(θ) = I(θ)1) makes J independent of k, as its defini-
tion only stands up to a multiplicative constant. The Jeffreys’ prior is already well known in
Bayesian theory for being invariant by a reparametrization of the statistical model [34]. This
property is essential as it makes the choice of the model parameters θ without any incidence on
the resulting posterior.

4 Jeffreys’ prior construction

4.1 Jeffreys’ prior calculation

In a first step, we compute the Fisher information matrix I(θ) in our model. Here, θ =
(α, β) ∈ Θ and

I(θ)i,j = −
∫
A×{0,1}

p(z|a, θ)∂
2 log p(z|a, θ)
∂θi∂θj

p(a)λ(da, dz) (9)

for i, j ∈ {1, 2}, with p(z|a, θ) = ℓ1(z|a, θ) being the likelihood expressed in equation (3), i.e.

log p(z|a, θ) = z log Φ

(
log a− logα

β

)
+ (1− z) log

(
1− Φ

(
log a− logα

β

))
. (10)

From [29], the information matrix I(θ) is given by:

I(θ) =
( 1

α2β2 (A01 + A02)
1

αβ3 (A11 + A12)
1

αβ3 (A11 + A12)
1
β4 (A21 + A22)

)
, (11)

with

A01 =

∫
A

Φ′(γ(a))2

Φ(γ(a))
p(a)da, A02 =

∫
A

Φ′(γ(a))2

Φ(−γ(a))p(a)da,

A11 =

∫
A
log

a

α

Φ′(γ(a))2

Φ(γ(a))
p(a)da, A12 =

∫
A
log

a

α

Φ′(γ(a))2

Φ(−γ(a))p(a)da,

A21 =

∫
A
log2

a

α

Φ′(γ(a))2

Φ(γ(a))
p(a)da, A22 =

∫
A
log2

a

α

Φ′(γ(a))2

Φ(−γ(a))p(a)da,

(12)

and γ(a) = β−1 log a
α

.
The Jeffreys’ prior is known to be improper in numerous common cases (i.e. it cannot

be normalized as a probability). In the present case, its asymptotic behavior is computed for
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different limits of θ = (α, β) in [29] which shows that it is indeed improper. This characteristic
is not an issue, as our work focuses on the posterior which is proper as proved in [29]. This
property is essential as MCMC algorithms would not make any sense if the posterior were
improper.

4.2 Practical implementation

In this work we use 105 artificial seismic signals generated using the stochastic generator
defined in [35] and implemented in [36] from 97 real accelerograms selected in the European
Strong Motion Database for 5.5 ≤ M ≤ 6.5 and R < 20 km. Enrichment is not a necessity in the
Bayesian framework – especially if a sufficient number of real signals is available – but it allows
comparisons with the reference method of Monte-Carlo for simulation-based approaches as well
as comparative studies of performance. For instance, Figure 1 shows that the synthetic signals
have the same PGA distribution as the real ones as well as the PSA which is here calculated at
5 Hz for 1% damping ratio (see section 6 for justification). Moreover, the asymptotic expansions
provided in [29] give complementary and essential insight into the Jeffreys’ prior. They evince
that its behavior in α is similar to that of a log-normal distribution having the same median as
that of the IM with a variance which is the sum of the variance of the IM and of a term which
depends on β. Figure 1 illustrates also this result for the two IMs.

0 1 2 3 4 5 6
α

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pr
ob

ab
ili

ty
de

ns
it

y

J(α, β), β = 0.5
generated PGA

LN (µIM, σ2
IM)

real PGA

(a) PGA

0 5 10 15 20
α

0.00

0.05

0.10

0.15

0.20

pr
ob

ab
ili

ty
de

ns
it

y

J(α, β), β = 0.5
generated PSA

LN (µIM, σ2
IM)

real PSA

(b) PSA

Figure 1: Comparison of a sectional view of the Jeffreys’ prior w.r.t. α (black) with the approx-
imated distributions of real accelerograms via Gaussian kernel estimation (red), the histograms
of the generated signals (blue) and the log-normal approximations (purple) for both IMs.

In practice, due to the use of Markov Chain Monte Carlo (MCMC) methods to sample the a
posteriori distribution, the prior must be evaluated (up to a multiplicative constant) many times
in the calculations. Because of its computational complexity due to the integrals to be computed,
we performed evaluations of the prior on an experimental design based on a fine-mesh grid of
Θ (here (0,+∞)2) and to build an interpolated approximation of the Jeffreys’ prior from this
design. This strategy is more suitable for our numerical applications and very tractable because
the domain Θ is only two-dimensional. Figure 2 shows plots of the Jeffreys’ priors.

5 Estimation tools, competing approaches and benchmarking metrics

In this section, we first present the Bayesian estimation tools and the Monte-Carlo reference
method to which we refer to evaluate the relevance of the log-normal model. Then, to evaluate
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Figure 2: The Jeffreys’ priors calculated from PGA and PSA on subdomains of Θ = (0,+∞)2.

the performance of the Jeffreys’ prior, we present two competing approaches that we implement.
On the one hand, we apply the MLE method widely used in literature, coupled with a bootstrap
technique. On the other hand, we apply a Bayesian technique implemented with the prior
introduced by Straub and Der Kiureghian [11]. Performance evaluation metrics are then defined.

5.1 Fragility curves estimations via Monte-Carlo

We assume that a validation data-set (aMC, zMC) = ((aMC
i )N

MC

i=1 , (zMC
i )N

MC

i=1 ) is available. For
nonparametric estimations, good candidates are Monte-Carlo (MC) estimators which estimate
the expected number of failures locally w.r.t. the IM. We first need to define a subdivision
of the IM values and to estimate the failure probability on each of the sub-intervals. Regular
subdivisions are not appropriate because the observed IMs are not uniformly distributed. We
follow the suggestion by Trevlopoulos et al. [21] to take clusters of the IM using K-means.
Given such Nc clusters (Kj)

Nc
j=1, the Monte-Carlo fragility curve estimated at the centroids

(cj)
Nc
j=1 is expressed as

PMC
f (cj) =

1

nj

∑
i, aMC

i ∈Kj

zMC
i , (13)

where nj = Card(i, aMC
i ∈ Kj) is the size of cluster Kj . An asymptotic confidence interval

for this estimator can also be derived using its Gaussian approximation. It is accepted that a
MC-based fragility curve is a reference curve because it is not based on any assumption.

5.2 Fragility curves estimations in the Bayesian framework

From equation (4) a posteriori samples of θ can be obtained by MCMC methods. We have
implemented an adaptive Metropolis-Hastings (M-H) algorithm with Gaussian transition kernel
and covariance adaptation [37]. Such an algorithm allows for simulations from a probability
density known up a multiplicative constant. The a posteriori samples of θ can be used to define
credible intervals for the log-normal estimates of the fragility curves.

5.3 Competing approaches for performance evaluation

Multiple MLE by bootstrapping. The best known parameter estimation method is the
MLE, defined as the maximal argument of the likelihood derived from the observed data:

θ̂MLE
k = argmax

θ∈Θ
ℓk(z|a, θ). (14)
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A common method for obtaining a wide range of θ estimates is to compute multiple MLE by
bootstrapping. Denoting the data-set size by k, bootstrapping consists in doing L independent
draws with replacement of k items within the data-set. Those lead to L different likelihoods
from the k initial observations, and so to L values of the estimator which can be averaged. In
the context of fragility curves, this method is widespread (see e.g. [9, 10, 13, 38, 39]). The
convergence of the MLE and the relevance of this method is stated in [40]. Nevertheless the
bootstrap method is often limited by the irregularity of the results for small values of k (see e.g.
[6]). In this context, the L values of θ are used to define confidence intervals for the log-normal
estimates of the fragility curves.

Prior suggested by Straub and Der Kiureghian [11]. The prior suggested by Straub and
Der Kiureghian – called SK’s prior – is defined as the product of a normal distribution for ln(α)
and the improper distribution 1/β for β, namely:

πSK(θ) ∝
1

αβ
exp

(
− (logα− µ)2

2σ2

)
. (15)

In [11] the parameters µ and σ of the log-normal distribution are chosen to generate a non-
informative prior. For a fair comparison with the approach proposed in this paper, we decided
to choose µ and σ being equal to the mean and the standard deviation of the logarithm of the
IM, whether the PGA or the PSA. This choice is consistent with the fact that the Jeffreys’ prior
is similar to a log-normal distribution with these parameters (see Figure 1). The prior πSK(θ) is
plotted in Figure 3 for the two IMs.
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Figure 3: Prior suggested by Straub and Der Kiureghian [11] scaled on log-normal estimations
of the IM distributions.

An analysis of the posterior which results from SK’s prior is given in [29]. It shows that the
posterior is improper. This statement jeopardizes the validity of a posteriori simulations using
MCMC methods if we consider the whole domain Θ = (0,+∞)2. This issue is nevertheless
manageable with the consideration of a truncation w.r.t. β.

5.4 Benchmarking metrics

In order to evaluate the performance of the proposed approach, we consider two quantitative
metrics which can be calculated for each of the methods described in section 5.3. We consider
the sample (a, z). We denote by a 7→ P

|a,z
f (a) the random process defined as the fragility

curve conditional to the sample (the probability distribution of P |a,z
f (a) is inherited from the a
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posteriori distribution of θ). For each value a the r-quantile of the random variable P |a,z
f (a) is

denoted by q|a,zr (a). We define:

• The conditional quadratic error:

EQ|a,z = E
[
∥P |a,z

f − PMLE
f ∥2L2|a, z

]
, ∥P∥2L2 =

1

Amax

∫ Amax

0

P (a)2da. (16)

PMLE
f stands for the log-normal estimate of the fragility curve obtained by MLE with all

the database available. We further check that this estimate is close to the reference curve
obtained by MC.

• The conditional width of the 1− r credible zone for the fragility curve:

Sr|a,z = ∥q|a,z1−r/2 − q
|a,z
r/2 ∥2L2 . (17)

To estimate such variables, we simulate a set of L fragility curves (P θi|a,z
f )Li=1 where (θi)

L
i=1

is a sample of the a posteriori distribution of the model parameters obtained by MCMC. The
empirical quantiles q̂θ

L
i=1|a,z

r (a) of (P θi|a,z
f (a))Li=1 are approximations of the quantiles q|a,zr (a) of

the random variable P |a,z
f (a). We derive:

• The approximated conditional quadratic error:

ÊQ|a,z
L =

1

L

L∑
i=1

∥P θi|a,z
f − PMLE

f ∥2L2 . (18)

• The approximated conditional width of the 1− r credible zone for the fragility curve:

Ŝr|a,z
L = ∥q̂θ

L
i=1|a,z

1−r/2 − q̂
θLi=1|a,z
r/2 ∥2L2 . (19)

The normalized L2 norms are normalized integrals over a ∈ [0, Amax] which are approximated
numerically using Simpson’s interpolation on a regular subdivision 0 = A0 < · · · < Ap =
Amax. In the forthcoming section we use A0 = 0, Amax = 24m/s2 for the PGA and Amax =
50m/s2 for the PSA with p = 200.

For the MLE with bootstrapping, we can define a conditional quadratic error as in equa-
tion (18) and conditional width of the 1 − r confidence interval as in equation (19) using a
bootstrapped sample (θi)

L
i=1.

6 Numerical application

6.1 Presentation of the piping system

This case study concerns a piping system that is a part of a secondary line of a French
Pressurized Water Reactor. This piping system was studied, experimentally and numerically, as
part of the ASG program [41]. Figure 4 shows a view of the mock-up mounted on the shaking
table Azalee of the EMSI laboratory of CEA/Saclay whereas the Finite Element Model (FEM)
– based on beam elements – is shown in Figure 4-right. The latter has been implemented with
the homemade FE code CAST3M [42] and has been validated via an experimental campaign.
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(a)

Guide

Rod

Mass

Clamped end

(b)

Figure 4: (a) Overview of the piping system on the Azalee shaking table and (b) Mock-up FEM.

One end of the mock-up is clamped whereas the other is supported by a guide in order to
prevent the displacements in the X and Y directions. Additionally, a rod is placed on the top of
the specimen to limit the mass displacements in the Z direction (see Figure 4-right). In the tests,
the excitation is only imposed in the X direction. For this study, the artificial signals are filtered
by a fictitious 2% damped linear single-mode building at 5 Hz, the first eigenfrequency of the
1% damped piping system. As failure criterion, we consider excessive out-of-plane rotation of
the elbow located near the clamped end of the mock-up, as recommended in [43]. The critical
rotation considered here is equal to 1.6◦. This is the level quantile 90% of a sample of size 105

of numerical simulations carried out assuming a linear behavior of the piping system. A linear
behavior is considered to simply highlight the influence of the choice of IM. Indeed we use on
the one hand the PGA and on the other hand the PSA of the initial set of synthetic signals (i.e
not filtered signals), calculated at 5 Hz and 1% damping ratio. Figure 5 shows that the PSA is
clearly better correlated with the response of the structure than the PGA.
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Figure 5: Scatter plots of the out-of-plane elbow rotation as a function of (a) PGA and (b) PSA
for a linear seismic behavior of the piping system.

For the two IMs, Figure 6 shows the comparisons between the reference MC-based fragility
curves PMC

f and their log-normal estimates PMLE
f , both estimated via 105 simulations results.
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In both cases, the log-normal fragility curves are good approximations of the reference ones.
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Figure 6: Reference fragility curves PMC
f compared with PMLE

f computed using the full data-set
generated (105 items) for the two IMs. The red crosses represent the observations.

6.2 Results and discussion

Figures 7 and 8 present the results for the PGA and the PSA as IM respectively. Figures 7-(a)
and (b) (resp. figures 8-(a) and (b)) show the metrics ÊQ|a(j),z(j)

L,R , Ŝr|a(j),z(j)

L,R , j ∈ {1, . . . ,m},
R ∈ {‘MLE’, ‘SK’, ‘Jeffreys’}, L = 5000, 1− r = 95% for any k varying from 15 to 100 and
m = 200. Figures 7-(c) and 8-(c) present examples of fragility curves credibility (or confidence
for the MLE) intervals for the three methods introduced in section 5.3 for k = 30, in comparison
with PMLE

f . Those are computed from generated pairs (α, β) whose scatter plots are presented
in figures 7-(d) and 8-(d).

In addition, to get a better overview on the results, we also show in figure 9 the coefficients
of variation of the two parameters (α, β) as a function of both IM and k.

Generally speaking, theses results show, as expected, that when the IM is more correlated
to structural response, the differences between the methods are less marked, although in detail
there may be some small differences depending on the sample size. Figure 9 clearly shows that
an IM more correlated to the response of the structure induces a lower variability of the estimate
of the median of the log-normal model. This is not the case for the log standard deviation whose
estimate is affected by samples which are more degenerate with this kind of IM, namely which
are partitioned into two disjoint subsets when classified according to IM values: the subset for
which there is no failure and the other one for which there is failure, these two subsets possibly
being present in the same sample or separately. Such degeneracy affects all methods to varying
degrees but in all cases, the Jeffreys’ prior outperforms SK’s prior and MLE.

Whereas the SK’s prior is calibrated to look like the Jeffreys’ prior, figures 7-(d) and 8-(d)
show that many outliers – i.e. large values of the pair (α, β) – are simulated with the SK’s
prior. These values explain that the credible intervals of the fragility curves and the metrics
ÊQ|a(j),z(j)

L,R and Ŝr|a(j),z(j)

L,R are larger with the SK’s prior. This observation is both supported by
figure 9 and by the calculations provided in [29] regarding β. Indeed, in [29] is shown a better
convergence of the Jeffreys’ prior toward 0 when β −→ ∞. This better asymptotic behavior
results in posteriors which happen to give a lower probability to outlier points – phenomenon
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particularly noticeable when the data-set is small – as well as to the weight of the likelihood
within the posterior.

Although the intervals compared – that of the Bayesian framework and that of the MLE –
are not of the same nature – credible interval for the first versus confidence interval for the
second – these results clearly illustrate the advantage of the Bayesian framework over the MLE
for small samples. Indeed, irregularities appear in the MLE method that are characterized by
null estimates of β, which result (i) in important coefficient of variation of β (figure 9) and
(ii) in “vertical” confidence intervals on fragility curves estimations (figures 7-(c) and 8-(c)).
When few failures are observed, some samples – both initial and bootstrapped samples – are
degenerate, as explained earlier. As no prior is considered in MLE, the likelihood can then be
easily maximized with β = 0. In [29], it is proven that such scenarios result in degenerate
likelihood. This last statement is perceived better through figures 7-(d) and 8-(d). The zero-
degenerate β values that result from the MLE appear clearly. This leads to a confidence interval
generally larger than the credible intervals, except for very small values of k (k ≃ 20) when
the IM is well correlated with the response of the structure, i.e. with the PSA. Indeed, with a
perfect IM - which only exists if we know the structural response itself - the fragility curve is
degenerate and has the form of a unit step function. The associated confidence interval is of
null size, since in this case it does not require any sample to estimate the fragility curve. So,
although apparently better, such confidence intervals are meaningless since they are based on
degenerate estimates.

As proven in [29], in the Bayesian context, the same degenerate samples also produce degen-
eracy but “less marked” than for MLE, as the phenomena is regularized by the prior distribution.
As the results show, this affects SK’s prior more than Jeffreys’ one. This is observed, in partic-
ular, when the IM is very well correlated with the response of the structure since, in this case,
it is more probable to obtain this kind of degenerate samples. Therefore, when k < 40, the
credible intervals are slightly larger with the PSA than with the PGA. This is also confirmed by
the results shown in figure 9. So, counter-intuitively, when very few data are available, a less
well-specified problem from the point of view of the choice of the IM leads to better conver-
gences of the estimates, because it produces fewer degenerate samples. However, this remains
confined to very small sample sizes and therefore cannot be considered representative. Note
that, in all cases, the Jeffreys’ prior outperforms SK’s prior and MLE.
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Figure 7: (a) the dashed lines plot the quadratic errors as a function of the number of data k and
the shaded areas show their confidence intervals; (b) the dashed lines plot the widths of the 95%
credible intervals (for Bayesian estimation) or confidence intervals (for MLE) and the shaded
areas show their confidence intervals; (c) the shaded areas show the 95% credible (for Bayesian
estimation) or confidence (for MLE) intervals resulting from a total of 5000 simulations of θ
using the three methods considered for k = 30; (d) scatter plots of the generated θ to estimate
the fragility curves for the three methods (500 points from the 5000 θ = (α, β) generated are
plotted); the green cross in (d) plot θMLE which is used for the computation of PMLE

f , plotted as
a green dashed line in (c). Here the PGA is used as IM.
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Figure 8: Same as in figure 7, but here the PSA is used as IM.

106



Antoine Van Biesbroeck, Clément Gauchy, Cyril Feau and Josselin Garnier

20 40 60 80
Number of data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

σ
[α

]/
E

[α
]

PGA

MLE
SK
Jeff

(a)

20 40 60 80
Number of data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

σ
[α

]/
E

[α
]

PSA

MLE
SK
Jeff

(b)

20 40 60 80
Number of data

0

2

4

6

8

10

σ
[β

]/
E

[β
]

PGA

MLE
SK
Jeff

(c)

20 40 60 80
Number of data

0

2

4

6

8

10

σ
[β

]/
E

[β
]

PSA

MLE
SK
Jeff

(d)

Figure 9: Average coefficient of variation of α (a-b) and of β (c-d) for the PGA and the PSA.
For each value of k, 200 samples of size k have been used to compute the average values of the
resulting 200 coefficients of variation from 5000 estimates of θ each.
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7 Conclusion

Assessing the seismic fragility of Structures and Components when little data is available is
a daunting task. The Bayesian framework is known to be efficient for this kind of problems.
Nevertheless, the choice of the prior remains tricky because it has a non-negligible influence on
the a posteriori distribution and therefore on the estimation of any quantity of interest linked to
the fragility curves.

Using the reference prior theory to define an objective prior, we have derived the Jeffreys’
prior for the log-normal model with binary data which indicate the state of the structure (e.g.
failure or non-failure). In doing so, this prior is completely defined, it does not depend on an
additional subjective choice.

Since this prior depends only on the characteristics of the ground motion – the distribution of
the IM of interest – its calculation is then suitable for any equipment of an industrial installation
subjected to the same seismic hazard. So, in this work, we were interested in the influence of
the choice of the IM – PGA vs. PSA – on the convergence of the estimates, for a given (M,R)
seismic scenario and a given mechanical structure, namely a piping system.

The results show, as expected, that when the IM is more correlated with the structural re-
sponse, the differences between methods are less marked, although in detail there may be some
small differences depending on sample size, due to possible degenerate samples. Theses re-
sults testify to the fact that an IM more correlated to the response of the structure essentially
induces a lower variability of the estimate of the median of the log-normal model. This is not
the case for the log standard deviation whose estimate is affected by samples which are more
degenerate with this kind of IM. Such degeneracy affects all methods, however, in all cases, the
Jeffreys’ prior outperforms the classical approaches of the literature both in terms of regulariza-
tion (absence of degenerate estimation) and stability (absence of outliers when sampling the a
posteriori distribution of the parameters).
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