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ABSTRACT 18 

Group living is thought to have important antipredator benefits for animals, owing to the 19 

mechanisms of shared vigilance (“many-eyes” hypothesis), risk dilution (“dilution effect” 20 

hypothesis), and relative safety in the center of the group (“selfish herd” hypothesis). However, it 21 

can also incur costs since social stimuli, such as conspecific aggression, may distract individuals 22 

from anti-predator behavior (“distracted prey” hypothesis). We simultaneously evaluated how 23 

these four different hypotheses shape anti-predator behaviors of breeding king penguins 24 

(Aptenodytes patagonicus), which aggregate into large colonies, experience frequent aggressive 25 

social interactions, and are regularly exposed to predation by giant petrels (Macronectes sp.) and 26 

brown skuas (Catharacta loonbergi) when breeding on land. We approached 200 incubating 27 

penguins at four different periods of the breeding season across a range of overall increasing 28 

colony densities. We measured the distance at which focal birds detected the approaching threat 29 

(alert distance: AD), whether birds decided to flee or not, and the distance of flight initiation 30 

(flight initiation distance: FID, viz. the bird attempting to walk away with its egg on its feet). We 31 

quantified relative local neighbor density, centrality within the colony (rank), and the number of 32 

aggressions the focal bird emitted towards neighbors during the approach. We found that birds 33 

engaged in aggressive conflicts with neighbors were less likely to flee, and that increasing 34 

relative local neighbor density at low and medium overall colony density resulted in a decrease 35 

in bird AD, both supporting the “distracted prey” hypothesis. However, at maximal overall 36 

colony density, increasing relative local neighbor density resulted in longer AD, supporting the 37 

“many-eyes” hypothesis. We found no support for the “dilution effect” and “selfish herd” 38 

hypotheses, and no effects of any hypothesis on FID. 39 
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Keywords: antipredator behaviour, escape flight distance, optimal escape decisions, predation 40 

risk, predator-prey decision, risk taking 41 

INTRODUCTION 42 

Predation can be an important source of mortality in wild animals (Roos et al. 2018). 43 

Aggregating into large social groups is often viewed as a solution to decrease predation risk for 44 

the individual and its offspring (Alexander 1974; Hoogland 1981). At least four non-mutually 45 

exclusive hypotheses have been proposed to explain how group size and social interactions may 46 

influence predator-prey interactions (for a review of the relationship between group size and 47 

flight initiation distance, see Ydenberg and Dill 1986; Stankowich and Blumstein 2005). 48 

Firstly, one important mechanism identified in decreasing predation risk with increasing 49 

group size is that of shared vigilance by group members towards potential threats (Caraco et al. 50 

1980; Lima and Dill 1990; Quenette 1990). Since larger groups have more individuals scanning 51 

for predators at any given time, the presence of “many eyes” in a group allows for the earlier 52 

detection of predators than would be possible for single individuals (the “many-eyes hypothesis”; 53 

Pulliam 1973; Lima and Dill 1990). Information on the presence of a predator can disseminate 54 

rapidly through the group, most often through the use of alarm calls, allowing individuals to 55 

assess the risk and decide to flee sooner than is possible alone (Burger and Gochfeld 1991; 56 

Mayer et al. 2019). Thus, larger groups are often more rapid in detecting a predator than single 57 

individuals, and more likely to raise alarm of an approaching predator sooner than smaller 58 

groups (Hoogland 1981; van Heezik and Seddon 1990; Cresswell 1994), though vigilance 59 

behavior may also be affected by other environmental characteristics such as species 60 

gregariousness, diet or habitat (Morelli et al. 2019). 61 



 
 

 
 

4 

Secondly, large groups also provide the advantage of diluting individual predation risk 62 

(Ydenberg and Dill 1986). Most predatory species can only capture a single prey at a time, and 63 

thus the chance that each individual prey will be the target of predation reduces with increasing 64 

group size (Dehn 1990; Roberts 1996; Bednekoff and Lima 1998). According to the “dilution 65 

effect hypothesis” individuals in larger groups may tolerate the closer approach of predators 66 

before initiating flight (enabling a longer amount of time to be spent on tasks such as foraging), 67 

since the risk of predation is diluted with each additional conspecific nearby (Cresswell 1994; 68 

Boland 2003; Fernández-Juricic and Schroeder 2003). The dilution effect is not only limited to 69 

larger group sizes, but also to denser groupings of individual prey, regardless of overall group 70 

size (Roberts 1996; Hebblewhite and Pletscher 2002; Frommen et al. 2009). For example, many 71 

bird species that migrate in flocks or cluster together on breeding grounds may benefit from the 72 

dilution effect by reducing individual predation risk while foraging or breeding (Wiklund and 73 

Andersson 1994; Harts et al. 2016; Duca et al. 2019), though in some groups individual risk-74 

taking may vary with life-history stage (e.g., in long-distance migratory waders, 75 

Charadriiformes, risk-taking is lowest during reproduction and highest during migration; Mikula 76 

et al. 2018).  77 

Thirdly, individual spatial positioning within the group may provide dissimilar anti-78 

predator benefits. The “selfish herd” hypothesis (Hamilton 1971) suggests that animals located 79 

more centrally in a group should be less vulnerable to attacks from predators than those on the 80 

periphery as predators come from outside the group and target the closest available prey 81 

(Hamilton 1971). In other words, maintaining conspecifics between a predator and oneself will 82 

reduce individual predation risk. Prey animals should therefore select higher value central 83 

positions when joining a group, which is indeed seen in minnows, Phoxinus phoxinus (Krause 84 
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1993), sheep, Ovis aries (King et al. 2012), and fiddler crabs, Uca pugilator (Viscido and 85 

Wethey 2002). If selfish herd effects are important, there should be evidence of divergent 86 

predation rate, pressure or risk between the center and the periphery of a group (Morton et al. 87 

1994; Viscido et al. 2001). When redshanks, Tringa totanus, were targeted by sparrowhawks, 88 

Accipiter nisus, birds that were more peripheral and further from neighbors were at the highest 89 

risk of predation (Quinn and Cresswell 2006). In colonial web-building spiders, Meteperira 90 

incrassata, predatory attacks occur most often on the periphery (Rayor and Uetz 1990). There 91 

may also be evidence of different levels of investment by prey into anti-predator monitoring 92 

between central and peripheral animals. Increased vigilance by peripheral animals has been 93 

observed in black-tail prairie dogs, Cynomys ludovicianus (Hoogland 1981), African mammals 94 

(Burger and Gochfeld 1994), including springboks, Antidorcas marsupialis, (Bednekoff and 95 

Ritter 1994), and scaled doves, Columbina squammata (Dias 2006). 96 

Finally, although larger groups provide the benefit of shared vigilance and predation risk 97 

dilution, individuals in such groups have to process a noteworthy amount of social information 98 

from their conspecifics (Treves 2000). As a consequence, the time spent processing social cues 99 

and interacting with conspecifics, noise and conflicts from and between conspecifics may detract 100 

from the time and energy investments usually placed into scanning for predators (Mooring and 101 

Hart 1995; Yee et al. 2013). This is known as the “distracted prey hypothesis” which proposes 102 

that external stimuli – such as sounds – are capable of hijacking finite resources, thus impairing 103 

the prey’s ability to detect and react to approaching predators (Chan et al. 2010; Petrelli et al. 104 

2017). Social distractions (such as aggressive interactions between conspecifics) may also 105 

distract prey from predator detection and delay behavioral responses such as the initiation of 106 

flight. This is, for instance, the case in a cichlid fish species (Neolamprologus pulcher), where 107 
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individuals respond significantly later to predator images during territorial contests than when 108 

they are alone, illustrating the trade-off between time and energy investments into aggressive 109 

social behaviors and vigilance towards predators (Hess et al. 2016).  110 

Here, we investigated the relative importance of the (1) “many-eyes”, (2) “dilution 111 

effect”, (3) “selfish herd” and (4) “distracted prey” hypotheses on prey anti-predator behaviors of 112 

breeding king penguins (Aptenodytes patagonicus). These four hypotheses are not mutually-113 

exclusive, and thus can be investigated simultaneously. For instance, individuals in larger groups 114 

may benefit from risk-dilution, shared vigilance, and selfish herd effects, all while paying 115 

potential costs of social distractions. King penguins are an ideal model system to test these non-116 

mutually exclusive alternatives. This seabird species forms extensive, densely packed colonies 117 

when breeding on land (over tens of thousands of birds strong, Barbraud et al. 2020). Breeding 118 

birds incubate/raise a single egg/chick on their feet and aggressively defend their small breeding 119 

territory against both predators and conspecifics (Stonehouse 1960; Weimerskirch et al. 1992). 120 

Aggressive social interactions are particularly high and can average 100 interactions per hour 121 

(Côté 2000). Of particular interest is the finding that king penguins are highly sensitive to social 122 

aggression, even when they are not directly involved in social conflicts (as demonstrated by 123 

elevated by-stander heart rate responses when witnessing aggressive neighbors fighting; Viblanc 124 

et al. 2012). In addition, higher stress hormones and heart rates are detected in more densely 125 

packed colony areas (Viblanc et al. 2014a; Viblanc et al. 2014b). Thus, frequent social 126 

aggression in these birds may interfere with antipredator behaviors, such as vigilance and flight. 127 

King penguins are subject to on-land predation by giant petrels, Macronectes giganteus and 128 

Macronectes halli, and brown skuas, Catharacta loonbergi, especially known to predate on eggs 129 

and young chicks, but occasionally targeting adults as well (Hunter 1991; Descamps et al. 2005). 130 
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These predators will harass incubating and brooding adults sometimes causing them to flee and 131 

abandon their eggs. Breeding birds then face three choices: to stay and fight, risking injuries that 132 

could be fatal; to flee cumbersomely by waking with their egg or offspring on the top of their 133 

feet and to cluster closer to neighbors; or to abandon reproduction and flee entirely by walking 134 

rapidly (often includes tripping and flipper beating against the ground; RG, VAV, JPR, BG, PB, 135 

TH; personal observations). Yet, how shared vigilance (1. “many-eyes” hypothesis), safety in 136 

large numbers (2. “dilution effect” hypothesis), safety in a central location (3. “selfish herd”), 137 

and acute social interactions (4. “distracted prey” hypothesis) (Table 1) interact in shaping prey 138 

antipredator behavioral responses is unknown. 139 

We used Alert Distance (AD), or the distance at which the targeted bird detects an 140 

approaching threat (in this case, an experimenter), and Flight Initiation Distance (FID), or the 141 

distance at which the targeted bird begins to flee from the approaching threat to simultaneously 142 

investigate the “many-eyes”, “dilution effect”, “selfish herd” and “distracted prey” hypotheses. 143 

AD and FID are popular measures used in the literature to study the reactions of prey to 144 

approaching danger and optimal escape strategies. The great advantage of these measures is that 145 

they can be collected through non-lethal approaches by a human experimenter using standardized 146 

approach protocols (see Hammer et al. 2022 for an example in king penguins). From an 147 

evolutionary perspective, prey are expected to react in much the same way to a human approach 148 

as to an approach by a true predator, as behavioral responses should be selected to over-estimate 149 

rather than under-estimate risk (Frid and Dill 2002; Beale and Monaghan 2004). AD and FID are 150 

therefore promising behavioral responses that can be used to better understand how group size 151 

and social interactions may shape predator-prey interactions. 152 
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We evaluated AD and FID in response to standardized human approaches in relation to 153 

both overall colony density (low, med, high, maximal) that increased as the breeding season 154 

progressed, relative local neighbor density (number of neighbors around a focal bird centered 155 

around the mean overall colony density at any given stage of the season), relative colony rank 156 

(rank centered with each colony density stage), and the number of aggressive interactions (i.e., 157 

social distractions) exchanged between the focal bird and its neighboring conspecifics during the 158 

approach. Whereas the “many eyes” hypothesis predicts that AD should occur earlier in larger 159 

groupings as there are more vigilant individuals present at any given point in time, the 160 

“distracted prey” hypothesis predicts that AD and/or FID will be delayed in denser groups due to 161 

increased social stimuli, such as aggression with neighbors, that hinders predator detection and 162 

flight. The “selfish herd” hypothesis predicts that peripheral individuals in the colony (those of 163 

low colony rank as counted from the periphery to the center of the colony) where predation risk 164 

is highest, will have higher AD and FID than individuals in less risky central positions. Finally, 165 

the “dilution effect” predicts that FID will be delayed at high local social density due to reduced 166 

predation risk on the individual, but should be unrelated to social interactions (social aggression, 167 

in our case). Predators may be allowed to approach even closer in aggressive groupings of prey 168 

than the dilution effect predicts alone, as is the case in king penguins, as larger groups may allow 169 

for group defense from predators (i.e., mobbing).  170 

 171 
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METHODS 172 

Study site and animals 173 

During the 2011-2012 breeding season, 200 king penguins were randomly chosen and 174 

approached in “La Baie du Marin” colony (Possession Island, Crozet Archipelago, 46°25’S – 175 

51°52’E), home to approximately 22 000 breeding pairs (Barbraud et al. 2020). According to 176 

STRANGE guidelines (Webster and Rutz 2020), study subjects were selected to reduce potential 177 

biases (and were hence not blindly selected), nevertheless we highlight some of the potential 178 

biases here. All birds were incubating and therefore of similar breeding status (but see 179 

discussion) and appeared in physically good overall condition; but we did not have any 180 

information on bird age, sex, laying date, or previous exposure to humans. Individuals were 181 

chosen from a distance and not after being approached or captured, therefore we expect no strong 182 

initial sampling bias. Between successive approaches, birds were at least 50 meters apart. The 183 

individuals were divided into four groups of 50 birds, measured approximately 15 days apart 184 

from mid-November 2011 to mid-January 2012. As colony density increases over the breeding 185 

season (see Viblanc et al. 2014b for colony dynamics), our objective was to sample birds in 186 

natural conditions of increasing social density. Thus, we defined four groups corresponding to 187 

periods of increasing overall colony density with: low density (mean  SE birds/m
2
: 4.05   0.11, 188 

19-22 Nov. 2011), medium density (4.48  0.14, 3-5 Dec. 2011), high density (5.04  0.11, 22-189 

23 Dec 2011), and maximal density (5.47   0.11, 13-16 Jan 2012). 190 

 191 
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Approach protocol 192 

Approaches (always the same experimenter, BG, dressed in the same clothing) were started at a 193 

standardized start distance of 18 m when the focal individual was awake. A distance of 18 m 194 

corresponded to a distance 1.5 times greater than maximal detection distance recorded in a 195 

preliminary study to ensure starting distance far exceeded maximum alert distance (Hammer et 196 

al. 2022, see also Fleming and Bateman 2017). Start distance was standardized due to its known 197 

effect on AD and FID (Blumstein 2003; Blumstein 2010; Dumont et al. 2012). Distances were 198 

measured to the nearest cm using a laser telemeter (Leica DISTO
TM

 D5 Lasermeter, Leica 199 

Geosystems AG, Hexagon, Sweden). The experimenter, while walking at a regular speed, 200 

followed a direct trajectory towards the focal individual. Both when the first sign of detection 201 

was observed (AD; focal animal tilting its head or stretching its neck in the direction of the 202 

experimenter), and when flight was initiated (FID; focal animal attempting to walk away with its 203 

egg on its feet), the experimenter took a standardized one-minute pause to record the distance 204 

between his position and the bird. Several focal birds did not flee up until contact. Thus, FID was 205 

divided into two separate analyses: i) the decision to flee or not, and ii) the flight initiation 206 

distance for birds that decided to flee. During the approach, the number of aggressive 207 

interactions initiated by the focal bird towards its neighbors was counted by the approaching 208 

experimenter and recorded as a proxy of social distraction. Aggressive interactions included: bill 209 

gaping (non-physical-threats displays, the focal bird extending its head with bill open wide, 210 

vocalizing towards a neighbor); bill pecking (the birds extending its neck and physically pecking 211 

a neighbour) and flipper blows (the bird striking a neighbor with an extended flipper) (see Côté 212 

2000, Viera et al. 2011). The number of aggressive interactions initiated by the focal bird was 213 

then weighted to account for known differences in energetics: aggressions with physical contact 214 
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(bill pecking, flipper blows) weighed more heavily than non-physical threats (bill gaping); 215 

according to Viera et al. (2011), contact aggressions are 3.2 times more energy costly than 216 

threats (mean  SE = 0.69  1.00, range = 0.0 – 5.2).  217 

Two speeds of approach (prior to AD and prior to FID) were calculated using the 218 

distance walked (m) and the duration of approach (s). The mean  SE speed of approach prior to 219 

AD was 0.51   0.07 m/s (range = 0.28 – 0.76 m/s), and between AD and FID was 0.42   0.05 220 

m/s (range = 0.24 – 0.54 m/s). Weather conditions were recorded prior to each approach and 221 

used as control variables in the analyses (Hammer et al. 2022). Air temperature was recorded to 222 

the nearest 1°C, and wind and rain levels were scored between 0 (none) and 2 (strong or heavy), 223 

intermediate levels (0.5) being allowed. 224 

Before approaching the birds, we counted the number of neighbors surrounding each 225 

focal individual, defined as the first circle of animals that were direct neighbors (mean   SE = 226 

7.49  1.93; range = 4 - 14) and recorded the mean distance of the neighbors to the focal 227 

individual (mean   SE = 0.81  0.14; range = 0.53 – 1.22 m). The distance between the birds 228 

was initially visually estimated from a distance and subsequently corrected to the closest 10 cm 229 

during the approach. Local density (number of birds/m
2
) was then calculated as the number of 230 

neighbors surrounding a focal bird divided by the area of a circle (πr
2
) with the mean distance 231 

between the focal bird and its neighbors acting as the radius. Local bird density increased with 232 

overall colony density (F3,192=28.0, P<0.001) (Fig. 1). As local neighbor density naturally 233 

increased together with increasing colony density (i.e., low, medium, high, maximal) as the 234 

breeding season advanced, we centered local neighbor density within each colony density stage 235 

to obtain an index of local neighbor density which was independent of overall colony density. 236 
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Thus, relative local neighbor density was calculated as d -    , with d being the local neighbor 237 

density of a focal bird, and     being the mean neighbor density over all birds measured at a 238 

given stage (i.e., within low, medium, high, and maximal colony density stages). A bird with 239 

relative local neighbor density >0 (or <0) thus experienced a “local” social environment that was 240 

relatively more or less crowded than the average at a given stage. 241 

 242 

Statistical analyses 243 

All statistical analyses were performed in R 1.4.1106 (R Development Core Team 2021). Results 244 

are presented as means  SE. Effects were considered statistically significant for P < 0.05. We 245 

investigated the “many eyes”, “dilution effect”, “selfish herd”, and “distracted prey” hypotheses 246 

by considering the joint effects of overall colony density, relative local neighbor density, relative 247 

colony rank (see below), and number of aggressive interactions of the focal individual to their 248 

neighbor (all independent variables) on focal bird AD, FID, and decision to flee or not (all 249 

dependent variables in separate models). The number of aggressions displayed against 250 

neighboring individuals during the entire approach was used to quantify the amount of social 251 

distraction to which the focal birds were subject. Similar to relative local neighbor density, we 252 

calculated relative colony rank (or the relative centrality of the focal bird within the colony) by 253 

centering bird rank within each overall colony density stage (low, medium, high, maximal) in the 254 

manner of r -    , with r being the rank of a focal bird, and     being the mean rank over all 255 

measured birds at a given stage. Thus, a bird with a relative colony rank >0 (or <0) was 256 

relatively more (or less) central in the colony than the average at a given stage. General linear 257 

mixed models with appropriate error distributions were used to investigate sources of variation in 258 
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AD (gaussian distribution), the decision to flee or not (binomial distribution), and FID (gaussian 259 

distribution after log transformation). Models were run using the package “lme4” functions lmer 260 

and glmer (Bates et al. 2015). Models were checked for the normality of their residuals using 261 

“fitdistrplus” (Delignette-Muller and Dutang 2015). For models with a gaussian distribution, the 262 

significance of fixed effects were tested with “lmerTest” anova (Kuznetsova et al. 2017) using F 263 

tests with Satterthwaite estimation for the denominator degree of freedom. Wald chi-square tests 264 

were used for models with a binomial distribution (Anova). We further tested if behavioral 265 

decisions (AD, FID, and the decision to flee or not) were affected by the interaction between 266 

relative local neighbor density and overall colony density (low, medium, high, maximal); this 267 

interaction was dropped from the models if it was non-significant. The area of the colony in 268 

which we approached the bird was initially included as a random factor in all our models to 269 

control for unmeasured differences in landscape, chronic and spatially variable amounts of 270 

human disturbance, etc., and the fact that several birds were measured in similar areas. However, 271 

this random effect was removed from the binomial model as no variation in the decision to flee 272 

could be attributed, and the model could not converge. In all models we initially controlled for 273 

time of day (linear and quadratic effects, decimal), weather (temperature, wind and rain levels), 274 

and speed of approach to account for tentative effects on AD, FID, and the decision to flee 275 

(Hammer et al. 2022), but removed them from the final models if they were non-significant (all P 276 

> 0.097). All independent variables were tested for collinearity using Variance Inflation Factors 277 

(VIF) according to the suggestions by Zuur et al. (2010) and all variables were scaled and 278 

centered prior to inclusion (Schielzeth 2010). Temperature was, in any case, removed from all 279 

the models due to collinearity issues with colony density as temperature generally increased as 280 

the summer season progressed and the breeding season advanced.  281 
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 282 

Ethics statement 283 

No animal was caught or handled over the course of this study. The research was approved by 284 

the Ethical Committee of the Institut Polaire Français – Paul-Emile Victor. Authorization to enter 285 

the colony and approach birds was obtained from Terres Australes et Antarctiques Françaises. 286 

The observations complied with the current laws of France. No eggs were abandoned during the 287 

course of this study. 288 

 289 

RESULTS 290 

Over the entire season, individuals (N = 194) became alert on average at 7.31  1.91 m; (range = 291 

3.41 – 12.3 m). The interaction between relative local neighbor density and overall colony 292 

density was significant (LMM, F3,173.3 = 2.84, P = 0.039) (Fig. 2). AD decreased with increasing 293 

relative local neighbor density at low (slope = -0.48, 95% CI [-1.02, 0.06]) (Fig. 3). However, at 294 

medium (slope = -0.46, 95% CI [-95, 0.04]) and high (slope = -0.12, 95%CI [-0.71, 0.47]) 295 

overall colony density, there was no relationship between AD and relative local neighbor 296 

density. Finally, at maximal colony density AD increased with increasing relative local neighbor 297 

density (slope= 0.64, 95% CI [0.02, 1.26]). AD was not significantly affected by the number of 298 

aggressive interactions between the focal individual and their neighbors (F1,172.7 < 1), nor by 299 

relative colony rank (F1,175.0 < 1). 300 

Of the 200 individuals approached, 50% did not flee. Focal birds that were more 301 

aggressive towards their neighbors during approach were significantly less likely to flee (X
2
 = 302 
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4.16, P = 0.041). The decision to flee (GLM, N = 193 with complete information), was not 303 

explained by relative colony rank, relative local neighbor density, or overall colony density (all 304 

X
2
 < 1.6) (Fig. 4).  305 

Of the individuals that decided to flee (LMM, N = 93), the mean FID was at 3.00  1.57 306 

m; (range = 0.54 – 8.46 m). Birds showed greater FID when approached at faster speeds between 307 

AD and FID (F1,79.8 = 20.1, P <0.001) (Fig. 5). Variation in FID was not explained by aggression 308 

with neighbors (F1,78.5 = 2.45, P = 0.122), relative colony rank (F1,72.0 < 1), relative local neighbor 309 

density (F1,80.0 < 1), or overall colony density (F3,78.7 = 1.02, P = 0.390).  310 

 311 

DISCUSSION 312 

 This study examined the contribution of the “many-eyes”, “dilution effect”, “selfish 313 

herd”, and “distracted prey” hypotheses in shaping prey anti-predator behavior in colonial king 314 

penguins. Our results show that at low and medium overall colony density, increasing relative 315 

local neighbor density resulted in a decrease in bird alert distance (AD) to an approaching 316 

experimenter, while at maximum overall colony density, increasing relative local neighbor 317 

density resulted in longer AD. These results provide support for the “distracted prey” hypothesis 318 

at low colony densities and the “many-eyes” hypothesis at maximum colony density. In addition, 319 

birds who engaged in aggressive behaviors with their neighbors during the approach were less 320 

likely to initiate flight, supporting the “distracted prey” hypothesis. In contrast, bird flight 321 

initiation distance (FID) did not appear to vary depending on overall or relative local bird 322 

density, nor was it affected by bird aggression or relative colony rank. Our results provide 323 

limited evidence in support of a selfish herd effect or risk dilution effect in flightless colonial 324 
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penguins typically exposed to both land-based (giant petrels stalking the outskirts of the colony) 325 

and airborne (brown skuas) predators. 326 

 To the best of our knowledge, no study has so far investigated all four of these 327 

hypotheses simultaneously, especially not in incubating birds, although the “many-eyes” and 328 

“dilution effect” hypotheses have been simultaneously studied using both mathematical models 329 

(Fairbanks and Dobson 2007; Rieucau and Martin 2008; Beauchamp 2017) and field studies 330 

(Boland 2003; Schmitt et al. 2014). For instance, in bighorn sheep (Ovis canadensis) foraging 331 

ewes were found in predictive models to benefit from both the “many-eyes” and “dilution effect” 332 

hypotheses as group size increased (Rieucau and Martin 2008). Similarly, emus (Dromaius 333 

novaehollandiae) spent less time in vigilance in larger groups, detected approaching threats 334 

sooner, and waited longer before initiating flight, supporting both the many-eyes and dilution 335 

effect hypotheses (Boland 2003). In Columbian ground squirrels (Urocitellus columbianus) a 336 

predator detection model was better supported than a dilution model (Fairbanks and Dobson 337 

2007), and in plains zebras (Equus quagga), predator detection benefits were found to be more 338 

influential in mixed-species groupings than dilution effects (Schmitt et al. 2014). Over 53 339 

published studies, Beauchamp (2017) found the many-eyes and dilution effect hypothesis acted 340 

together to reduce predation risk most often in species that form groupings. These studies serve 341 

to emphasize the point that hypotheses in relation to group size on prey reactions to approaching 342 

predators and other environmental (social) stimuli are not mutually exclusive and may frequently 343 

work in concert (Roberts 1996). Yet, whereas the “many-eyes” and “dilution effect” hypotheses 344 

have been considered together in past studies, the inclusion of the “distracted prey” or “selfish 345 

herd” hypotheses in understanding prey reactions remains an open question. Although these 346 

hypotheses have not been considered conjointly, all but the “distracted prey” hypothesis have 347 
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been tested individual in starlings, Sturnus vulgaris (Zoratto et al. 2009). They have been shown 348 

in larger groups to decrease individual vigilance yet respond faster to the approach of a model 349 

predator (“many-eyes”, Powell 1974), form larger flocks when predation risk is high (“dilution 350 

effect”, Carere et al. 2009), and individuals show higher rates of vigilance and decreased 351 

foraging rate when on the periphery of the group (“selfish herd”, Jennings and Evans 1980). 352 

When considered alone, the “selfish herd” hypothesis has mixed support in the field (for 353 

mathematical support see: Reluga and Viscido 2005; Morrell et al. 2011), with some studies 354 

supporting individual risk minimization by selfish attraction to other members when under attack 355 

(sheep, King et al. 2012; fish, Krause 1993; crabs, Viscido and Wethey 2002), and other failing 356 

to detect such effects (fish, Parrish 1989; birds, Sankey et al. 2021). 357 

Of the four hypotheses (“many-eyes”, “dilution effect”, “selfish herd”, and “distracted 358 

prey”), only the “many-eyes”, “selfish herd”, and “distracted prey” hypotheses imply changes in 359 

vigilance effort. In the “many-eyes” hypothesis, larger and/or denser groupings contain more 360 

individuals that can contribute to group-vigilance at any point in time, leading to an increase in 361 

AD. Indeed, AD is expected to be longer when the focal individual is investing more into 362 

vigilance behavior, surveying its surroundings, thus being able to detect approaching threats 363 

sooner (Fernández-Juricic and Schroeder 2003; Beauchamp 2015; Uchida et al. 2019; Morelli et 364 

al. 2019; but see Tätte et al. 2019). According to the “selfish herd” hypothesis, individuals in the 365 

periphery who are less protected by conspecifics face the highest predation risk and should 366 

therefore have the highest vigilance (hence highest AD). In contrast, the “distracted prey” 367 

hypothesis predicts that external stimuli may distract from vigilance behavior, leading to shorter 368 

AD. At low and medium colony densities, we observed that incubating adult king penguins show 369 

a decrease in AD as relative local neighbor density increased supporting the “distracted prey” 370 
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hypothesis. However, at maximal colony density AD increased with relative local neighbor 371 

density, consistent with the “many-eyes” hypothesis. Earlier in the breeding season (at low 372 

colony density) king penguin breeding pairs establish their territories within the colony 373 

(Stonehouse 1960; Weimerskirch et al. 1992). The social aggression that occurs during territory 374 

establishment (Côté 2000) and the resulting colony instability at that time (Viblanc et al. 2014b) 375 

may distract individual birds from surveying for predators. These results are consistent with 376 

reports from other species. For instance, in a study that surveyed both a South American cichlid 377 

fish, Nannacara anomala, and the willow warbler, Phylloscopus trochilus, male-male conflicts 378 

reduced vigilance behavior and resulted in a delay of predator detection when shown the image 379 

of a predator (Jakobsson et al. 1995) A similar result was found in another cichlid species, 380 

Neolamprologus pulcher (Hess et al. 2016). Similarly, European robins, Erithacus rubecula, 381 

were significantly slower to react to a stuffed sparrowhawk, Accipiter nisus, when engaged in 382 

territorial defense (Dunn et al. 2004). Later in the breeding season (at maximum colony density), 383 

king penguins are already settled into their territories and colony density is relatively stable 384 

(Viblanc et al. 2014). At high density, the information about disturbances may disseminate 385 

rapidly from neighbor to neighbor and may aid in searching for and detecting predators (a ripple 386 

of disturbance is caused by entering the colony, which alerts neighboring individuals of 387 

approaching threats, TLH, VAV, PB pers. obs.) (see also Hernández-Matías et al. 2003). Hence, 388 

at low colony densities, the distraction hypothesis appears supported, but at high colony densities 389 

the many eyes hypothesis is supported. Furthermore, those results may be amplified in concert 390 

with predation pressure on the eggs of incubating king penguins which varies across the breeding 391 

season. Indeed, previous studies show that predation pressure increases over the breeding season 392 

(Descamps et al. 2005). With low predation pressure and low colony density at the start of the 393 
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breeding season, breeding king penguins may be more attentive to their social environment than 394 

to predators. In contrast, with higher predation pressure later in the season when the colony is at 395 

its peak density, breeders would shift their attention more towards predators and antipredator 396 

responses than to their peers (Descamps et al. 2005).  397 

In contrast to AD, bird flight initiation distance (FID) is expected to vary with the 398 

“dilution effect”, “distracted prey” and “selfish herd” hypotheses. All hypotheses predict similar 399 

responses in terms of FID. FID is the result of a decision-making process that occurs after a 400 

predator is detected. On one hand, as the number of individuals within a group increases, 401 

individual predation risk decreases, and therefore FID should be reduced (“dilution effect” 402 

hypothesis). On the other hand, as the number of individuals increases, so does the number of 403 

social distractions (e.g., aggression between neighbors), which in turn should distract the focal 404 

individuals from performing the necessary decisions needed to initiate flight at an appropriate 405 

time, causing FID to be delayed. In the “selfish herd” hypothesis, central positions face reduced 406 

predation risk, and the colony is more densely packed, and should therefore have shorter FID. 407 

Yet, FID was not impacted by relative local neighbor density, overall colony density, rank, or 408 

aggression with neighbors in incubating king penguins, and therefore neither hypothesis 409 

appeared to be strongly supported. One potential explanation to this result may have to do with 410 

the cost of reproduction shaping optimal flight initiation distances (Cooper and Frederick 2007). 411 

In king penguins, truly fleeing from an approaching predator means abandoning the egg/chick 412 

and losing reproduction for the year. Most often, flight is attempted by slowly moving away with 413 

the egg or young chick on top of the feet – an action that is obviously mechanically constrained. 414 

In addition, even attempting to slowly move away with the egg or young chick may trigger 415 

aggressive responses from neighboring conspecifics and increase the risk of injuries and damage 416 
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to the egg. Indeed, the commitment to reproduction is especially high in king penguins, as it 417 

takes the cooperation of a breeding pair for over 14 months to raise a single chick, and successful 418 

reproduction occurs at best every two years (Jiguet and Jouventin 1999). Thus, there may be 419 

strong selection in this species for behaviors aimed at the early detection of approaching threats 420 

and for active territory defense (Côté 2000) despite risks of injury, rather than fleeing altogether 421 

from approaching predators, given the elevated fitness costs of abandoning reproduction. FID 422 

may then be a relatively inflexible trait in breeding individuals of this species and therefore 423 

dilution or distraction effects on this trait may be small. Our previous study found that FID and 424 

the decision to flee were significantly repeatable, highlighting moderate to strong individual 425 

components in incubating king penguins (Hammer et al. 2022). It is perhaps then not surprising 426 

that personality traits were not significantly affected by the social environment, whereas AD, a 427 

trait found to be highly flexible and lowly repeatable (Hammer et al. 2022), was.  428 

We found that the decision to initiate flight in this species was significantly reduced when 429 

the focal bird was engaged in social aggression with neighboring conspecifics, a result which 430 

supports the “distracted prey” hypothesis. In this species, territorial defense of incubation and 431 

brooding territories is high (Côté 2000), and the “distracted prey” hypothesis suggests that time 432 

spent processing social cues and engaging in social interactions with conspecifics may 433 

undermine the ability to perform anti-predator behaviors such as vigilance and flight (Chan et al. 434 

2010). It appears that for king penguins, social aggression may be a strong distraction from the 435 

ability to decide when to initiate flight. Although previous studies have not considered how 436 

social aggression may affect individual responses to approaching predators, allogrooming 437 

impala, Aepyceros melampus, had reduced vigilance rates and responded on average 4 seconds 438 

later to a simulated predator than non-allogrooming individuals (Mooring and Hart 1995). 439 
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Anoles, Anolis sagrei, when presented with a conspecific tolerated closer approaches of a model 440 

predator before initiating flight (Yee et al. 2013). Of particular interest is that territorial defense, 441 

such is seen in king penguins, is particularly distracting for focal individuals (as discussed 442 

above). For example, in a South American cichlid fish, Nannacara anomala, individuals engaged 443 

in territorial mouth wrestling showed reduced vigilance, and chose low intensity behaviors such 444 

as display and tail beating when in the presence of a model predator (Brick 1998). 445 

Many studies have focused on prey behavioral responses to predators in the context of 446 

foraging (Fernández et al. 2003; Randler 2005; Fairbanks and Dobson 2007; Rieucau and Martin 447 

2008; Taraborelli 2008; Schmitt et al. 2014), urbanization (Chapman et al. 2012; Møller et al. 448 

2015; Hall et al. 2020; Morelli et al. 2019), distance to refuges (Dill & Houtman 1989; 449 

Bonenfant & Kramer 1996; Engelhardt et al. 2011; Morelli et al. 2022), or in relation to sexual 450 

dimorphism (Møller et al. 2016, 2019; Kalb et al. 2019; Hensley et al. 2015; Samia et al. 2015). 451 

In contrast, ours focused on the existence of a trade-off between vigilance and flight behavior 452 

depending on the individual perceptions of the social and predatory environments in the context 453 

of colonial breeding (Williams 1966). Colonial breeding in seabirds has mostly been suggested 454 

to emerge as a consequence of the utilization of patchy and unpredictable marine food resources 455 

and limited favorable breeding grounds (Clode 1993; Boulinier et al. 1996; Danchin and Wagner 456 

1997; Boulinier et al. 2008). The role predation plays in its evolution, however, remains unclear 457 

(Rolland et al. 1998). Several studies have reported antipredator benefits to colonial breeding, by 458 

diminishing individual predation risk through dilution, predator-mobbing, or selfish herd effects 459 

(Brown and Brown 1987; Picman et al. 2002; Hoogland and Sherman 2012). Our results are 460 

consistent with apparent anti-predator benefits of colonial breeding which comes in the form of 461 
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shared vigilance and predator detectability, but that are traded-off with costs and loss of predator 462 

detectability due to social distractions. 463 

Although our present study provided little support for selfish herd effects in king 464 

penguins, observations in the field show that birds subject to an experimental reduction in local 465 

breeding density (by means of exclosure pens) cluster closer together rather than use the 466 

available freed-up space (Viblanc 2011), consistent with the selfish herd notion of minimizing 467 

individual predation risk. Clustering close to conspecifics combined with the high territorial and 468 

aggressive behavior of king penguins (Côté 2000) results in producing a tightly woven network 469 

or aggressive birds, making it hard for predators to land in the middle of the colony (TLH, PB, 470 

BG, JPR, RG, VAV; personal observations). Of interest is the idea that breeding aggregations in 471 

penguins result from a combination of self-organized dynamics related to predation risk (selfish 472 

herd effects) and external forcing factors such as topographically limited possibilities of spatial 473 

re-arrangement, for instance due to the retainment of nesting sites year after year (e.g., in Adélie 474 

penguins, Pygoscelis adeliae, McDowall and Lynch 2019). This may result in trapping 475 

individuals into suboptimal spatial arrangements, with strong edge effects (McDowall and Lynch 476 

2019; Schmidt et al. 2021). King penguins incubate their single egg on their feet, hence, virtually 477 

nothing is known on how closely individuals retain breeding sites year after year, nor whether 478 

variation in individual’s ability to maintain a breeding site may lead to a situation of entrapment 479 

into suboptimal conditions. Future studies should aim at understanding how the “dilution effect”, 480 

“many-eyes”, “selfish herd”, and “distracted prey” hypotheses are shaped not only by social and 481 

predatory environments, but in interaction with local topography and individual quality. In 482 

addition, nothing is known on how such interactions might be shaped by residual reproductive 483 

value. For instance, studies in seabirds have found that older parents for which residual 484 
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reproductive value is low are less responsive to stressors (Heidinger et al. 2006, 2010, but see 485 

Elliott et al. 2014). It would thus be of interest to understand how age and residual reproductive 486 

values factor into affecting physiological stress responses in addition to behavior in shaping 487 

antipredator decisions. 488 

While overall colony density increases as the breeding season progresses, reproductive 489 

investment of the breeding individuals also changes with advancing breeding season. Two 490 

factors might affect the responses of incubating birds sampled early or late in the breeding 491 

season. First, birds that entered reproduction early in the season come nearer to hatching as the 492 

breeding season progresses, and hence reproductive investment should increase. It is likely that, 493 

as reproductive investment increases, protecting the investment (i.e., deciding to not flee, or to 494 

flee later from an approaching threat) may weigh more heavily on anti-predator behavior (Clark 495 

and Ydenberg 1990). Second, birds sampled later in the season may be late breeding birds just 496 

starting their incubation. Late breeders in king penguins rarely, if ever, succeed, as chicks are 497 

most likely to die before or over winter (Stonehouse 1960; Weimerskirch et al. 1992; Stier et al. 498 

2014). In turn, the lower value of reproduction later in the season may render individuals less 499 

willing to defend their brood and more likely to flee. Unfortunately, not knowing the incubation 500 

stage of birds in our study, we were unable to differentiate responses under those different 501 

scenarios. Thus, future studies are needed to specifically test if anti-predator responses are linked 502 

to reproductive value and breeding advancement in the king penguin as found in other species 503 

(Albrecht & Klvana 2004; Osiejuk & Kuczynski 2007; see also Dowling & Bonier 2018). While 504 

we did not see a change in FID or a change in the probability of initiating flight as the breeding 505 

season progressed, there remains a link between reproductive success, brood investment, and risk 506 

assessment in later breeding birds that needs to be explored in more depth. For instance, focusing 507 
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on physiological stress responses (e.g., heart rate known to vary with advancing breeding season; 508 

Viblanc et al. 2015) in addition to behavioral responses to approaching predators may yield some 509 

valuable information (Viblanc et al. 2015). 510 

To conclude, our study found that the “many-eyes” hypothesis was supported at 511 

maximum colony density, while the “distracted prey” hypothesis was supported at lower colony 512 

densities in incubating king penguins. In addition, focal birds that were engaged in social 513 

aggression with neighboring conspecifics were less likely to initiate flight. We found little 514 

support for the “selfish herd” hypothesis based on bird centrality in the colony, and no evidence 515 

that the dilution effect was strongly influential. These results show that prey behavioral decisions 516 

towards approaching threats are complex, and likely explained by a mix of mutually non-517 

exclusive hypotheses. Future studies on prey reactions to predators should consider testing for 518 

joint effects of environmental and social factors in understanding risk-benefit assessments in 519 

wild animals.  520 
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FIGURE CAPTIONS 834 

Figure 1. The linear relationship of colony density and relative local neighbour density in 835 

incubating king penguins (Aptenodytes patagonicus). Significant differences are distinguished 836 

using the letters a, b, c, d. Dots represent the relative local density values; the horizontal bar 837 

represents the median, shading represents the interquartile range, and the vertical line represents 838 

the 95% confidence interval.  839 

 840 

Figure 2. Variables affecting Alert Distance (AD) in incubating king penguins (Aptenodytes 841 

patagonicus). A) Standardized linear mixed model estimates (z-scores) and 95% confidence 842 

intervals for the effects of the number of aggressions with conspecifics, relative local neighbour 843 

density, colony density (low, medium, high, and maximal), and the interaction between relative 844 

local neighbour density and colony density (n = 194 observations).  845 

 846 

Figure 3. The significant effect of the interaction between relative local neighbour density 847 

(number of birds/m
2
) and colony density (low, medium, high, and max) on Alert Distance 848 

(AD) is depicted in incubating king penguins (Aptenodytes patagonicus). Dots represent the 849 

raw AD values (n = 194 observations); shading represents the 95% confidence interval predicted 850 

from the model while holding other variables in the model constant.  851 

 852 

Figure 4. Variables affected the probability of initiating flight in incubating king penguins 853 

(Aptenodytes patagonicus). A) A generalized linear mixed model depicting the decision to flee 854 
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(binomial; 0 = no flight initiated, 1 = flight initiated). Odds ratios and 95% confidence intervals 855 

for the number of aggressions with conspecifics during the approach, relative local neighbour 856 

density, and colony density (low, medium, high, and maximum) (n = 193 observations). B) The 857 

significant predicted effect between the probability to initiate flight (binomial; 0 = no flight 858 

initiated, 1 = flight initiated), and the number of aggressions during the approach against 859 

neighbouring individuals by the focal individual. Shading represents the 95% confidence interval 860 

predicted from the model while holding other variables in the model constant.  861 

 862 

Figure 5. Variables affecting Flight Initiation Distance (FID) in incubating king penguins 863 

(Aptenodytes patagonicus). A) Standardized linear mixed model estimates (z-scores) and 95% 864 

confidence intervals for the effects of the number of aggressions against conspecifics, relative 865 

local neighbour density, and colony density (low, medium, high, and maximum) (n = 93 866 

observations). B) The significant predicted effect of approach speed on log FID is depicted. Dots 867 

represent log FID values; shading represents the 95% confidence interval predicted from the 868 

model while holding other variables in the model constant.  869 
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TABLES 872 

 873 

 Hypothesis Predictions References 

1 Many eyes hypothesis 

Alert distance should occur earlier in larger or denser 

groupings, as more vigilant individuals are present to 

raise an alarm 

Pulliam 1973; 

Lima and Dill 

1990; Lima 

1995 

2 Dilution hypothesis 
Flight initiation distance should be delayed at high social 

density, as individual predation risk is reduced 

Pulliam 1973; 

Alexander 

1974;  

Ydenberg and 

Dill 1986; 

Lima and Dill 

1990 

3 Selfish herd hypothesis 

Alert and flight initiation distances should be higher 

when individuals are in the periphery of a group, as 

predation risk is higher than in the center 

Hamilton 

1971 

4 
Distracted prey 

hypothesis 

Alert and/or flight initiation distances should be delayed 

in denser groups, as increased stimuli (e.g. noise) may 

hijack finite attention resources and hinder predator 

detection. The distracted prey hypothesis was originally 

proposed for distractions of anthropogenic origin, but 

can be extended to any kind of distraction. 

Chan et al. 

2010; Petrelli 

et al. 2017 

 874 

Table 1. Description of the four main hypotheses proposed to explain the effects of group size, 875 

social density and social interactions on antipredator behavior measured by alert and flight 876 

initiation distances. Note that these hypotheses are not mutually-exclusive.   877 
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