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Research Article

Exploring the impact of dexamethasone on gene
regulation in myeloma cells
Victor Bessonneau-Gaborit1,2,*, Jonathan Cruard1,*, Catherine Guerin-Charbonnel1,3 , Jennifer Derrien1,
Jean-Baptiste Alberge1, Elise Douillard1,2, Magali Devic1,2 , Sophie Deshayes1, Loı̈c Campion1,3, Frank Westermann4,5 ,
Phillipe Moreau1,2, Carl Herrmann6, Jérémie Bourdon7 , Florence Magrangeas1,2,† , Stéphane Minvielle1,2,†

Among glucocorticoids (GCs), dexamethasone (Dex) is widely
used in treatment of multiple myelomas. However, despite a
definite benefit, all patients relapse. Moreover, the molecular
basis of glucocorticoid efficacy remains elusive. To determine
genomic response to Dex in myeloma cells, we generated bulk
and single-cell multi-omics data and high-resolution contact
maps of active enhancers and target genes. We show that a
minority of glucocorticoid receptor-binding sites are associated
with enhancer activity gains, increased interaction loops, and
transcriptional activity. We identified and characterized a pre-
dominant enhancer enriched in cohesin (RAD21) and more ac-
cessible upon Dex exposure. Analysis of four gene-specific networks
revealed the importance of the CTCF–cohesin couple and the syn-
chronization of regulatory sequence openings for efficient tran-
scription in response to Dex. Notably, these epigenomic changes are
associated with cell-to-cell transcriptional heterogeneity, in par-
ticular, lineage-specific genes. As consequences, BCL2L11-encoding
BIM critical for Dex-induced apoptosis and CXCR4 protective from
chemotherapy-induced apoptosis are rather up-regulated in dif-
ferent cells. In summary, our work provides new insights into the
molecular mechanisms involved in Dex escape.
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Introduction

Dexamethasone (Dex), a synthetic glucocorticoid (GC) known for its
anti-inflammatory and immunosuppressive activities, in combi-
nation with immunomodulatory drugs (IMiDs) and proteasome
inhibitors (PIs), is the standard induction treatment in transplant-
eligible patients with newly diagnosed multiple myeloma (MM). The
use of a new class of drugs, the monoclonal antibody daratumumab, in

combination with thalidomide (IMiD), bortezomib (PI), and Dex, im-
proved depth of response and progression-free survival (Moreau et
al, 2019). Recently, T-cell-engaging therapies administrating bis-
pecific antibodies targeting CD3 and B-cell maturation antigen for
patients who had relapsed or refractory MM, in which Dex is de-
livered in premedication, showed a promising efficacy in depth and
duration of the response (Moreau et al, 2022). Despite spectacular
therapeutic improvement, few patients are cured; therefore, it is
necessary to better understand the precise mechanisms of action
of each agent alone or in combination.

Dex exerts its biological functions by binding to the glucocor-
ticoid receptor (GR) encoded by NR3C1. Upon Dex binding, the
complex translocates to the nucleus, where it associates with DNA
at GR-binding sites, acts as a transcription factor (TF), and regulates
gene expression (Reddy et al, 2009). GR binding appears to be
preprogrammed by the binding of lineage-specific TFs and chro-
matin accessibility before exposure (Biddie et al, 2011; John et al,
2011). At these loci, GR co-binds with cell-specific pioneer TFs in-
cluding CEBPB in the liver (Grøntved et al, 2013), PU.1 in the mac-
rophage lineage (Oh et al, 2017), and AP1 in murine hepatocytes
(Biddie et al, 2011). GR binds predominantly at distal enhancers
(Reddy et al, 2009) and drives transcription by interacting with gene
promoters via chromosomal loops. GR binds thousands of locations
across the genome but only few enhancers cooperate with each
other to activate Dex-responsive genes (Vockley et al, 2016;
McDowell et al, 2018). A previous study exploiting protein-directed
chromatin interactions approach suggests that at GR-responsive
genes, chromatin interaction loops between enhancers and pro-
moters are preestablished, whereas in a subset of genomic loci, GR
binding induces de novo interactions (Kuznetsova et al, 2015). High-
resolution genome-wide maps of chromatin interactions in re-
sponse to Dex confirmed and extended the model that GR binding
acts predominantly through preestablished chromatin interactions
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†Florence Magrangeas and Stéphane Minvielle are co-seniors

© 2023 Bessonneau-Gaborit et al. https://doi.org/10.26508/lsa.202302195 vol 6 | no 9 | e202302195 1 of 17

on 28 August, 2023life-science-alliance.org Downloaded from 
http://doi.org/10.26508/lsa.202302195Published Online: 31 July, 2023 | Supp Info: 

http://crossmark.crossref.org/dialog/?doi=10.26508/lsa.202302195&domain=pdf
https://orcid.org/0000-0001-7493-4314
https://orcid.org/0000-0001-7493-4314
https://orcid.org/0000-0001-6254-3455
https://orcid.org/0000-0001-6254-3455
https://orcid.org/0000-0003-1584-3636
https://orcid.org/0000-0003-1584-3636
https://orcid.org/0000-0001-6674-8626
https://orcid.org/0000-0001-6674-8626
https://orcid.org/0000-0001-6674-8626
https://orcid.org/0000-0001-6674-8626
https://orcid.org/0000-0002-5031-3748
https://orcid.org/0000-0002-5031-3748
https://orcid.org/0000-0003-1389-312X
https://orcid.org/0000-0003-1389-312X
https://orcid.org/0000-0003-1389-312X
https://doi.org/10.26508/lsa.202302195
mailto:florence.magrangeas@chu-nantes.fr
mailto:stephane.minvielle@univ-nantes.fr
https://doi.org/10.26508/lsa.202302195
https://www.life-science-alliance.org/
http://doi.org/10.26508/lsa.202302195


and increases their frequency (D’Ippolito et al, 2018). However,
these studies did not resolve the influence of increased chromatin
accessibility on chromatin loops and enhancer activity as shown by
Stavreva et al (2015). Moreover, how these enhancers combine to induce
gene expression is still poorly understood. Given that dex is an essential
drug in the treatment landscapeofMMdisease course, the analysis of its
molecular action on the genome of myeloma cells and on transcrip-
tional heterogeneity is needed to better understand treatment escape.

Results

GR binds to preestablished chromatin sites in MM cells

To investigate the genomic features associated with GR binding in
malignant plasma cells, we conducted chromatin immunopre-
cipitation sequencing (ChIP-seq) for GR, and acetylation of his-
tone H3 at lysine 27 (H3K27ac), assay for transposable-accessible
chromatin sequencing (ATAC-seq), and RNA sequencing (RNA-
seq) in the Dex-sensitive human myeloma cell line MM.1S ex-
posed to Dex (0.1 μM) or to equal-volume ethanol (EtOH) for 1 and
4 h (Fig 1A). As expected, a large majority (84%; 15,862/18,844) of
GR-binding sites fell within already accessible chromatin and 76%
(14,243/18,844) of these sites were annotated as transcriptionally
active chromatin at transcription start sites (TSSs) or active en-
hancers (Fig S1A–C). In addition, GR-binding sites were found in
almost all (99%; 808/815) preestablished super-enhancers (SEs)
(Hnisz et al, 2013). SE-associated genes included key genes for
plasma cell development and MM biology such as IGLL5, IRF4,
XBP1, PRDM1, and IKZF1 in line with previous results (Lovén et al,
2013) (Fig S1D).

We next sought to identify TFs that could play an important role
in driving GR binding to chromatin in myeloma cells. Motif
discovery analysis using the MEME (Multiple Em for Motif Elicitation)
(Bailey et al, 2015) algorithm revealed motif enrichment for IRF4
binding (ISRE), a TF critical for MM proliferation and/or survival
(Shaffer et al, 2008), and the anticipated GR-responsive element
(GRE) in GR-binding sites (Fig 1B). These findings suggest that upon
Dex exposure GR binds preferentially to IRF4 chromatin complexes.
To test this, Rapid Immunoprecipitation Mass spectrometry of
Endogenous protein (RIME) experiments were performed in MM.1S
Dex-treated cells using GR as bait (Fig 1C; Table S1). We found that
IRF4 was one of the top-ranking partners along with IKZF1 and IKZF3
previously reported to be essential TFs in MM (Krönke et al, 2014).
Co-immunoprecipitation (Co-IP) experiments confirmed that GR
interacts with IRF4 in the nucleus of MM.1S exposed to Dex (Figs
1D and S1E). In addition, RIME identified known GR interactors
including seven subunits of the SWI/SNF chromatin remodeling
complex, of which the ATP-dependent remodeling enzyme SMARCA4
(alias BRG1) and ARID1A, required for GR-chromatin remodeling and
transcriptional regulation (Fletcher et al, 2002; Trotter & Archer,
2004; Trotter et al, 2008). GR peaks in Dex-treated cells and IRF4
peaks in untreated cells strongly overlapped (73%) with H3K27ac-
enriched regions (Fig 1E). Enrichment of the IRF4 motifs and IRF4-
binding colocalization with 77% of GR-bound active regulatory
regions suggest that IRF4 is the specific TF associated with GR

binding in myeloma cells. However, unlike CEBPB, which is strongly
Dex-induced in the liver (McDowell et al, 2018), IFR4 is repressed
(log2fold change = −0.55 at 4 h of Dex exposure), which is also the
case for its two main responsive genes in MM.1S cells (Low et al,
2019): TNFRS17 (alias B-cell maturation antigen) and MANF (log2fold
change = −0.59 and −0.43 at 24 h of Dex exposure, respectively) (Figs
1F and S2).

Despite the large number of GR-binding sites on the genome,
only a small number of genes were deregulated in response to Dex
(982 up-regulated, 3.2%; 649 down-regulated, 2.1%; abs [log2fold
change] > 0.6 and FDR < 0.05) in myeloma cells including well-
known ubiquitous GR-responsive genes like TSC22D3 (alias GILZ),
FKBP5, and cell-specific genes like BCL2L11 (alias BIM), an essential
gene for Dex-induced death in MM.1S, and CXCR4, the chemokine
receptor gene known to be associated with MM progression and
poor prognosis (Fig 1F). Thus, suggesting that only a fraction of GR-
binding sites is critical for transcriptional activity induced by Dex
exposure.

Enhancer contact map in response to Dex treatment

As expected, GR-bound regions enriched in H3K27ac signal occurred
predominantly (85%) at distal enhancers (Fig S3A and Table S2); they
were closer to up-regulated genes than to stable genes (Wilcoxon test,
P < 0.0001) (Fig S3B), closer to each other compared with GR peaks
without H3K27ac changes (Wilcoxon test, P < 0.0001) (Fig S3C) and
formed new SEs associated with known ubiquitous GR-responsive
genes, including DDIT4, FKBP5, and TSC22D3 (Fig S3D). In an attempt to
decipher which GR-binding sites are mandatory to promote tran-
scriptional regulation, we firstly drew an enhancer contact map of GR-
activated enhancers and defined at high resolution the changes in
chromatin topology resulting from Dex exposure. We employed
H3K27ac HiChIP method (Mumbach et al, 2016, 2017) (Fig 2A), which
interrogates chromatin contacts between active elements (enhancers
or promoters) distal (i.e., located more than 5 kb away from closest
TSS) or proximal (i.e., less than 5 kb from closest TSS). We identified
21,249 and 23,278 H3K27ac chromatin interactions across the genome
in MM.1S EtOH and MM.1S Dex, respectively. Mapping of the enhancer
connectome showed an overall enrichment of H3K27ac ChIP-seq
signal in loop anchors compared with non-anchors (Wilcoxon test,
P < 0.0001) (Fig S4A), a median loop distance of 125 kb (Fig S4B), and
revealed that most of the loops (80%) involved a proximal anchor (Fig
S4C). We were particularly interested in interaction loops that in-
creased their frequency upon Dex exposure compared with stable
and decreased interactions (Fig 2B). The distal interactions subgroup
was overrepresented at the expense of the proximal interaction
subgroup (Chi2 test, P < 0.0001), whereas distal–proximal interactions
subgroup remained unchanged (Fig 2C). The anchors were enriched in
GR occupancy (Wilcoxon test, P < 0.0001) (Fig 2D) and gained chro-
matin accessibility (Chi2 test, P < 0.0001) (Fig 2E). Finally, increased
ATAC-seq peaks (27%) in these anchorswere enriched in the GREmotif
(P-val = 1 × 10−30), whereas stable ATAC-seq peaks were enriched in the
ISRE motif (P-val = 1 × 10−69). A scanning-motif approach for GRE and
ISRE revealed that GRE was found in 11.72% and 1.98% of increased
and stable ATAC-seq peaks, respectively. We also found ISRE in 19.48%
and 9.68% of increased and stable ATAC-seq peaks, respectively
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(Fig 2F; Table S3). This reinforces the fact that for an opening to occur,
the GR must bind directly to the DNA.

Predominant enhancer (pE) genomic features

To further investigate the impact of Dex exposure on regulatory
networks, we selected among the Dex-increased distal–proximal
interaction loops those associated with Dex-up-regulated genes
(Fig S5A). We retained 62 interaction loops corresponding to 55
genes (Fig 2B), which displayed high transcriptional variability, in
terms of median expression, induction intensity, and ratio of
expressing cells (Fig S5B). Half of the genes appeared to be reg-
ulated by short-range promoter–enhancer interactions (<5 kb) (Fig
S5C). Analysis of the enhancer connectome upon Dex exposure
revealed formation of about one SE in 80% of gene networks (Fig

S5D). Of note, the density of interconnections was very varied from
one network to another (Fig S5E) but was not associated with the
level of gene expression, nor was the number of interactions that
increased in the presence of Dex associated with the level of ex-
pression (| r | < 0.2). Interestingly, a careful visual inspection of
increased interactions across BCL2L11, CXCR4, FKBP5, and TSC22D3
revealed a particular enhancer that formed more spatial contacts
than the others after Dex exposure (Fig S5F). Our observations,
together with previous results (Kuznetsova et al, 2015; Vockley et al,
2016), suggest that one particular enhancer could act as a regu-
latory hub to promote transcription of Dex-responsive genes. To
explore this hypothesis, we firstly selected in each network one
enhancer (as described in the Materials and Methods section), we
retained 34 enhancers referred to as pE (Fig S6A and B; Table S4),
among those, 79% were located within a SE. The pEs showed

Figure 1. Preprogrammed chromatin landscape guides GR binding in malignant plasma cells.
(A) Scheme of sequencing data used to define chromatin landscape of MM.1S cell line. (B) De novo Multiple Em for Motif Elicitation top motif enriched in MM.1S
chromHMM functional states. (C) Radar chart showing GR-binding partners using rapid immunoprecipitation mass spectrometry of the endogenous protein method in
MM.1S (Dex 1 h); arbitrary units. (D) Immunoprecipitation of IRF4 transcription factor in MM.1S cells in control and Dex conditions. Revelation by IRF4 and GR antibodies.
(E)Overlap of chromatin immunoprecipitation sequencing peaks for GR (MM.1S Dex 1 h), IRF4 (MM.1S EtOH, Lovén et al [2013]), and H3K27ac (MM.1S EtOH). (F) Volcano plot
of differential RNAseq in Dex treatment compared with control, dysregulated genes are coloured in green (up) and red (down), and key genes are highlighted.
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Figure 2. H3K27 acetylation chromatin interaction in response to Dex.
(A) Scheme depicting H3K27ac loop interactions between regulatory regions through linear genome. (B) Volcano plot of HiChIP H3K27ac differentially induced (FDR <
0.05) loops between EtOH and DexMM.1S cells, increased (log2FC > 0.6) loops in red and decreased (log2FC < −0.6) loops in blue; interactions with anchors overlapping with
Dex-induced gene expression are shown with green dots. (C) Annotation of interactions depending on three categories: Dist-Dist (>5 kb from closest transcription start site
[TSS] for each HiChIP anchors); Prox-Dist (5> kb from closest TSS for one HiChIP anchor and <5 kb for the other); prox-Prox (<5 kb from closest TSS for each HiChIP
anchors). (D) Box plots illustrating the significantly higher levels of GR signal in increased interactions compared with GR signal in stable or decreased interactions.
(E) Barplots showing proportion of interactions with and without transposable-accessible chromatin sequencing (ATAC-seq) peaks in increased and decreased
interactions. Red dotted lines show the expected proportion of interactions with ATAC-seq peaks in case of no difference between up and down interactions.
(F) Heatmaps illustrating ATAC-seq signal (EtOH and Dex conditions) and GR chromatin immunoprecipitation sequencing signal in ATAC-seq Dex-increased or Dex-stable
peaks located within anchors of the Dex-increased H3K27ac HiCHIP loop. Notable significant motifs found with de novo motif discovery approach are highlighted at right.
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Figure 3. Comparison of molecular features between pE and rE among regulatory networks.
(A) Box plot illustrating the absolute distance from closest Dex-induced transcription start site of GR predominant enhancers (pEs) (green) and GR regular enhancers
(rEs) (yellow). (B) Uniform Manifold Approximation and Projection of scATAC-seq profiles in MM.1S cells, coloured by sample of origin (left), GRpE activity score (middle),
and GRrE activity score (right). (C) chromatin immunoprecipitation sequencing (ChIP-seq) signal for RAD21 (left) and CTCF (right) in control (light green and light blue) and
in Dex condition (green and blue) at the GRpE (top) and GRrE positions (bottom); box plots illustrating mean differences between Dex and EtOH ChIP-seq signals for
RAD21 (left) and CTCF (right) at GRpE versus at GRrE. (D) Box plot illustrating the ratio of Dex-increased chromatin loops for the anchor containing a GRpE (green) or the
anchors containing GRrEs (yellow). (E) Details of cohesiveness index of pE for each of the 37-gene regulatory networks. The higher the index, themore essential the pE is for
the network cohesion. Index could not be computed for PRR15 because the network only has two vertices. (F) Snapshot visualisation of GR HiChIP and GR ChIP-seq data
at four different loci: FKBP5, CXCR4, TSC22D3, and BCL2L11.
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different molecular features than regular enhancers (rEs) (Fig 3).
The pEs were closer to their target gene promoter (Fig 3A) and more
accessible (Figs 3B and S7). We detected an enrichment of cohesin
subunit RAD21 after Dex exposure at pEs, which correlated with
gene expression (r = 0.31), whereas Dex exposure had no effect on
CTCF binding at both pEs and rEs (Fig 3C). In line with our hypothesis,
pEs formed more increased interaction loops than rEs (Fig 3D) and
were essential for the cohesion of the network (Fig 3E). For example,
GR HiChIP experiments, which interrogated chromatin contacts be-
tween GR-bound elements, clearly showed the central position of pEs
in the FKBP5, TSC22D3, CXCR4, and BCL2L11 loop networks (Fig 3F). The
features of pEs are similar to those of the hub enhancers described by
(Huang et al, 2018), but unlike the latter, they regulate other genes
than the cell-identity genes. From these results, we conclude that in
spite of a great variability of network connections and transcriptional
changes, the pEs have common characteristics, they open more, bind
more cohesin, and interact more than rEs upon Dex exposure.

Importance of CTCF–cohesin couple and co-accessibility in
Dex response

To characterize the relationship between epigenomic events involving
pEs and changes in gene expression, we focused our analysis on the
four GR-responsive genes described above: FKBP5, CXCR4, TSC22D3,
and BCL2L11. These four genes are well representative of the different
subgroups of genes regulated by Dex: ubiquitous versus lineage-
specific, densely connected versus poorly connected, robust induc-
tion versus medium induction. Regarding chromatin interaction maps
assessed by H3K27ac-HiChIP experiments, we observed changes
among the regulatory network of these genes (Fig 4). At the FKBP5 gene
locus, we found a strong inductionof long-distance pE–rE contacts and
short-distance rE–rE contactswithin SEs in Dex-treated cells compared
with EtOH-treated cells (Fig 4A). Increase of contacts between en-
hancers coincided with strong up-regulation (log2fold change = 4) of
FKBP5. In contrast, regarding the CXCR4 gene locus, Dex induced new
contacts between pE and CXCR4 promoter and between the promoters
of CXCR4 and DARS1 without formation of SE. These new contacts
preceded a 2.9-log2fold change increase of CXCR4 expression, whereas
DARS1 expression remained unchanged (Fig 4B). However, in the case
of TSC22D3 locus, though a strong induction of gene expression after
Dex exposure was found (log2fold change = 4.3), interaction loops
changes were only moderate (logfold change < 1.5) (Fig 4C). This in-
dicates that the H3K27ac-HiChIP assay is sometimes limited in defining
contact maps that could explain gene expression changes, which is
probably because of technical constrains. Indeed, in addition to a
possible overestimation of interactions, given the high overlap be-
tween H3K27ac-increased enhancers and H3K27ac-increased loops
(Fig S8A), we cannot exclude, in control conditions, an overrepre-
sentation of labile contacts ineffective for transcription because of the
fixation steps that freeze chromatin contacts. In addition, possible
artifacts are introduced by bulk analysis, which averages out the ef-
fects on heterogeneous populations. To circumvent these limitations,
we employed a computational method based on co-accessibility
scores at single-cell resolution that predicts cis-regulatory DNA in-
teractions between two regulatory elements in the same cell from
scATAC-seq data (Pliner et al, 2018) (Fig S8B). As anticipated, Dex

exposure significantly modified co-accessibilities of regulatory ele-
ments (P = 0.02; Fig S8C). Analysis of scATAC-seq data at TSC22D3 gene
locus indicated significant gain in accessibility only at GR-bound pE
(called GRpE) and the proximal rE (called GR1), both enhancers being
clustered in the SE (Fig 5A top). Co-accessibility scores predicted
significant Cicero links between these enhancers and the promoter,
and within the SE (Fig 5A middle). These results indicate that Dex
exposure leads to an increase in the number of cells with co-
accessibility between enhancers within SE, and between SE and the
promoter. Because we have observed CTCF occupancy at enhancers in
control condition and RAD21 enrichment at pEs upon Dex exposure, we
investigated binding of these molecules at TSC22D3 gene locus. We
found that the promoter and its SE were in close proximity to con-
vergently oriented CTCF-binding sites predicted to form strong
CTCF-associated loops (Oti et al, 2016). Although there were no CTCF
occupancy changes, we observed a strong enrichment of cohesin
subunit RAD21 at GR-binding sites of GRpE, GR1, and the promoter
(Fig 5A bottom). These observations are consistent with a recent report
that GR associates with cohesin complex at GR-responsive sites,
strengthening preestablished chromatin loops, promoting DNA loop
extrusion, and activation of Tsc22d3 expression (Rinaldi et al, 2022).

We observed a similar phenomenon for the other ubiquitous GR-
responsive gene FKBP5 in response to Dex: an increased accessi-
bility at GR-binding sites of GRpE, GR4, and the promoter (Fig 5B top).
However, the number of Cicero-based links within SEs and also be-
tween SEs, increased significantly (Fig 5B middle), which was con-
cordant with HiChIP data (Fig 4A). Cicero’s linksmostly involve GRpE, as
shown by its central position in the predicted network (Fig 5B bottom
right). We also found RAD21 enrichment at GR-binding sites of two
neighbouring enhancers (<4 kb), GRpE and GR6 both located in the
downstream SE. In addition, this SE harbored multiple CTCF sites,
exhibiting inward-oriented CTCF motifs indicating a CTCF boundary,
whereas chromatin configuration at its regulatory partner, the intra-
genic SE that clustered 4 rEs, exhibited one inward-oriented CTCF-
binding motif (Fig 5B bottom). This suggests that GR binding could
promote loop extrusion via cohesin mechanism, where a loop anchor
(GRpE locus in this study) forms contacts with a contiguous genomic
domain, such as SE; those structures are referred to as architectural
stripes (Vian et al, 2018) that enhance transcription, in agreement with
the recent study of Rinaldi (Rinaldi et al, 2022).

In contrast, the lineage-specific gene BCL2L11, already expressed
in control condition, displayed a moderate up-regulation upon Dex
exposure. We observed that among the 10 regulatory elements
bound by GR, only GRpE was more accessible upon Dex exposure
(Fig 5C top). Not surprisingly, Cicero’s algorithm predicted a new co-
accessibility link between the GRpE and the promoter (Fig 5C
middle). The network graphs showed the switch of the promoter
to a central position in the network directly connected to GRpE
upon Dex exposure (Fig 5C bottom right). We also observed an
enrichment of cohesin (RAD21) at both GRpE and the promoter
which could stabilize contacts, suggesting that GR binding to GRpE
promotes GRpE–promoter interactions at the expense of other
promoter–enhancer interactions. However, given the moderate
increase of transcription, we hypothesize that the “rewiring” occurs
in a subset of the cell population. Likewise, in the another lineage-
specific gene CXCR4, which displayed a mild transcriptional acti-
vation upon Dex exposure, we observed a greater accessibility at
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GR-binding sites of GRpE and the promoter; though for the latter, it
was a small trend (adjusted P-value = 0.11) (Fig 5D top). An en-
largement of this region clearly revealed a new significant link
between GRpE and promoter upon Dex exposure (Fig 5D bottom).
Furthermore, the recruitment of RAD21 at GR-binding sites of these
looping partners is consistent with a strengthening of GRpE–
promoter interaction at least in a subpopulation of cells.

Together, the results show that interaction of the pE with other
regulatory sequences (rE and promoter) depends on the organiza-
tion of the network. Especially, efficient transcription in response to
Dex coincides with synchronization of regulatory sequence openings
within the cell population and recruitment of cohesin at GR-binding
sites, which reinforces the importance of the CTCF–cohesin couple in
the stabilization of enhancer–promoter interactions.

Cell-to-cell transcriptional heterogeneity within myeloma cells
after Dex treatment

The importance of synchronized openings suggests that regions that
do not open simultaneously may be associated with transcriptional

heterogeneity in the cell population. To test this hypothesis, we
performed scRNA-seq assay in MM.1S cells collected at 4 and 24 h in
the presence of Dex (0.1 μM) or EtOH. We focused our analysis on the
genes most strongly induced by Dex. Analysis of logfold change
distribution permitted to isolate 51 highly induced genes, termed
single-cell Dex-activated genes (scDAGs) (Fig S9A). More than half
(29/51) were in common with the 55 selected genes involved in an
increased proximal–distal interaction upon Dex exposure (Fig 2B;
Table S4). To measure the level of cell-to-cell transcriptional vari-
ability, we calculated scDAG expression information entropy (Landau
et al, 2014; Pastore et al, 2019) and found that, among cells exposed to
Dex, the median expression increased, leading to an increased
fraction of positive cells toward 1; we hence observed a decrease in
entropy, that is, less heterogeneity among the cells. However, gene
expression among the cells remained heterogeneous, with a high
interquartile range (Fig 6A). To further examine the transcriptional
variability that remained after Dex exposure, we analyzed the cor-
relations between scDAGs. Although not very strong, we observed
higher pairwise correlation coefficients between scDAGs than be-
tween random genes (Fig S9B–D). In addition, scDAGs were clustered

Figure 4. Epigenetic changes in response to Dex at different loci.
(A, B, C) Snapshots illustrating the example of GR binding to its consensus motif GR responsive element that increases the H3K27ac chromatin immunoprecipitation
sequencing signal as much as the preexistent H3K27ac chromatin interactions for (A) FKBP5, (B) CXCR4, and (C) TSC22D3 loci. Predominant enhancer is indicated by a black
star, promoter is indicated by a red dot.
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Figure 5. scMultiome sequencing in response to Dex at 4-gene type Dex-responsive shows different mechanisms.
(A) Violin plot for scATAC-seq data in GR enhancers and promoters in control (EtOH) versus treatment (Dex) (top); snapshot of scATAC-seq data and co-accessibility links
at TSC22D3 (middle), and snapshot of chromatin immunoprecipitation sequencing (ChIP-seq) for GR, CTCF (EtOH and Dex), and RAD21 (Ratio Dex/EtOH) at the
corresponding locus (bottom); triangle represents predicted CTCF motif orientation (blue for forward strand and red for reverse strand); Violin plot of scRNA-seq gene
expression level for TSC22D3 (middle right). (B) Violin plot for scATAC-seq data in GR enhancers and promoters in control (EtOH) versus treatment (Dex) (top); snapshot
of scATAC-seq data and co-accessibility links at FKBP5 (middle) and snapshot of ChIP-seq for GR, CTCF (EtOH and Dex), and RAD21 (Ratio Dex/EtOH) at corresponding locus
(bottom), triangle represents predicted CTCF motif orientation (blue for forward strand and red for reverse strand); Violin plot of scRNA-seq gene expression level for
FKBP5 (middle right); co-accessibility network in EtOH and Dex conditions (bottom right). (C) Violin plot for scATAC-seq data in GR enhancers and promoters in control
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in two main groups: a large cluster (cluster 1; 45/51 genes), including
the proapoptotic gene BCL2L11 and ubiquitous GR-responsive genes
like TSC22D3, FKBP5, and DDIT4, and a second cluster, encompassing
six genes, including CXCR4 (Fig S10A). These results suggest that
within Dex-treated cells, two subpopulations coexist: a cell pop-
ulation that predominantly expresses most of scDAGs, referred to
as highly Dex-responsive cells, and another population of cells
expressing a reduced number of scDAGs. To further explore this
possibility, we employed the method recently described by Hoffman
et al (2020) to estimate the number of scDAGs expressed in each cell
at 4 and 24 h of Dex or EtOH exposure. We found that an EtOH-treated
cell had amedian background ratio of responding genes (RRG) of 12%
(6/51 scDAGs), whereas a Dex-treated cell had a median RRG of 51%
(26/51 scDAGs) (Fig 6B), similar to that of 24 h Dex exposure (55%; 21/
38 DAGs) (Fig S10B). These results were confirmed by Uniform
Manifold Approximation and Projection (UMAP) plots colored by the
RRG as a color that revealed an important cell-to-cell heterogeneity
among Dex-treated cells. Notably, highly Dex-responsive cells tended
to cluster together at the top of the cluster, whereas poorly re-
sponsive cells were scattered around (Fig 6C). To know how scDAGs
were expressed in the population, we determined the ratio of
responding cells (RRC) for each gene. In control condition, the
median RRC was 13%, whereas, in the Dex condition, it rose to almost
50% (49%) at 4 h but dropped (37%) at 24 h (Figs 6D and S10C).
However, RRC values in the Dex condition were very scattered: if we
consider particularly the four genes of interest, the ubiquitous Dex-
responsive genes like FKBP5 and TSC22D3 exhibited a transcriptional
response in almost all cells; in contrast, cell-type specific genes like
BCL2L11 and CXCR4 were up-regulated in only 38% and 41% of Dex-
treated cells, respectively (Figs 6D and S10C). Merged UMAP plots
colored according to gene expression of uncorrelated genes BCL2L11
and CXCR4 (R2 = −0.02) clearly showed that their expressions were
mutually exclusive (Fig 6E). The same applied to CXCR4 and TSC22D3
and to CXCR4 and FKBP5 Fig S11. Altogether, scRNA-seq analysis
revealed that, on average, myeloma cells expressed only half of the
overall Dex-responsive genes. In addition, in most of the poorly
responding cells (i.e., RRG < 50%), BCL2L11, the most important GC-
induced death gene in MM, was not expressed.

Discussion

Although the efficacy of Dex in MM can largely be attributed to GR-
induced apoptosis, the genomic responses to Dex treatment in
malignant plasma cells’ genome remain unknown. Given that Dex is
used at all stages of treatment, it was crucial to investigate its
molecular mode of action by using new genomic tools to better
understand treatment escape and provide new insights into
combination therapy options. In this study, we confirm the im-
portance of preprogrammed chromatin landscape in guiding most

of GR binding at open and active genomic loci and we show that in
plasma cell cellular context, IRF4 is probably the transcriptional
factor which cooperates with GR. However, given the suppressive
effect of Dex on IRF4 expression, we cannot rule out the possibility
that other factors may be involved after GR binding. As described by
Vockley et al (2016), we show that despite a strong association of
H3K27ac with GR binding within enhancers engaged in long-range
interactions to form lineage-specific networks, the changes in
enhancer activity upon Dex exposure are limited and only a small
number of genes were deregulated in response to Dex (Fig 1F).

Within some gene-specific regulatory networks, we identified a
particular enhancer, referred to as pE, that opens more, interacts
more than rEs, and recruits cohesin subunit RAD21 upon GR binding
(Fig 3). Targeted genome engineering could be used to directly test
the importance of this main enhancer. However, a recent work in
acute lymphoblastic leukemia has demonstrated that upon Dex
treatment, this specific enhancer promotes an active chromatin
interaction with the BCL2L11 promoter to up-regulate gene tran-
scription (Jing et al, 2018). Similarly, knockdown of a predicted in-
ternal enhancer in the FKBP5 gene locus corresponding to the above
GR6 located in the same anchor as the pE induced a 40% reduction in
FKBP5 expression in primary renal proximal tubular epithelial cells
(Wilson et al, 2022). We can speculate that activation of both en-
hancers is essential for amaximal induction of FKBP5 expression. The
activity of critical Dex-regulated enhancers is sensitive to DNA
methylation (Jing et al, 2018; Wiench et al, 2011; Wilson et al, 2022),
suggesting that inhibition of chromatin accessibility by increased
methylation in key regulatory regions as pE may play a critical role in
Dex resistance in MM.

We also found that cohesin subunit RAD21 recruitment was
associated with Dex-induced GR binding at pEs close to preoccu-
pied CTCF-binding sites, suggesting that CTCF and cohesin are
central to mediate stable chromatin loops formed with enhancers
activated by GR binding (Fig 5). In addition to stabilizing long-range
interactions, association of GR with cohesin complex promotes loop
extrusion and long-range gene regulation (Rinaldi et al, 2022).
Furthermore, recent results reported the importance of cohesin for
regulating the robustness of tissue-specific enhancer–promoter
interactions (Aljahani et al, 2022). All these results could explain
how GR binding regulates 3D organization of the genome and
transcription of both ubiquitous and lineage-specific genes.

It is now established that nucleosome shifts associated with
Dex-induced GR binding to both closed nucleosomal or pre-
accessible active enhancers require the action of SWI/SNF
remodeling complex to regulate gene expression (Johnson et al,
2018). We show that synergistic opening of regulatory sequences
within a cell population plays a more important role in tran-
scriptional efficacy than the mere opening of novel regions (Fig 5).
Nevertheless, it cannot be excluded that GR at high concentration,
induced either by high dose of Dex or prolonged exposure to Dex,
may act in a tetrameric state to invade closed chromatin sites and

(EtOH) versus treatment (Dex) (top); snapshot of scATAC-seq data and co-accessibility links at BCL2L11 (middle), and snapshot of ChIP-seq for GR, CTCF (EtOH and Dex)
and RAD21 (Ratio Dex/EtOH) at the corresponding locus (bottom); violin plot of scRNA-seq gene expression level for BCL2L11 (middle right); co-accessibility network in EtOH
and Dex conditions (bottom right). (D) Violin plot for scATAC-seq data in GR enhancers and promoters in control (EtOH) versus treatment (Dex) (top); snapshot of scATAC-
seq data and co-accessibility links at CXCR4 (middle) and snapshot of ChIP-seq for GR, CTCF (EtOH and Dex), and RAD21 (Ratio Dex/EtOH) at corresponding locus
(middle); violin plot of scRNA-seq gene expression level for CXCR4 (middle right); zoom on CXCR4 locus (bottom).
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potentially regulate the expression of genes that are not cell-type
specific (Paakinaho et al, 2019).

Together, our findings suggest that GR must associate with at
least two complexes: SWI/SNF and cohesin to accurately regulate
its target genes in myeloma cells.

An important question is whether these multiple enhancer-
enhancer and enhancer-promoter interactions at a given gene
locus occur in the same cells or not. This is not solved at the
moment because of technical limitations. Our work does not an-
swer this question, but provides a computational prediction of the
synchronized opening of pairwise anchor sites of interaction loops
and gives additional clues in understanding the mechanisms of
gene regulation (Fig 5). Our analysis of chromatin architecture,
enhancer–promoter interactions, and transcriptional activity in
four representative gene loci suggests that Dex-induced GR binding
provokes, depending on the gene network, either a rewiring of the
promoter–enhancer interactions (Fig S12A), an activation of pE–

promoter interaction (Fig S12B) or a stabilization of the loops inside
of a hub (Fig S12C) or not (Fig S12D).

Finally, we showed that these epigenomic changes are associ-
ated with a heterogeneous response to Dex in myeloma cells. On
average, cells express only 51.6% of scDAGs. Similarly, on average,
scDAGs are expressed in only 51.6% of cells after 4 h of treatment, this
average decreases slightly to 41.2% at 24 h (Figs 6B and S10B). Ex-
pression varies according to genes. In fact, ubiquitous genes like FKBP5
and TSC22D3 are expressed in almost all cells, whereas cell-specific
genes like CXCR4 and BCL2L11 are expressed in less than half of the
cells. However, it cannot be ruled out that the differences in expression
between the four selected genes may be because of differences in
stability or turnover of their mRNAs and cell cycle effect. In myeloma
cells, GR binding could lead to a mutually exclusive expression of
BCL2L11 and CXCR4, and provides new insights into the mechanisms of
drug escape, although considering that GR levels can be a limiting
event in Dex treatment (Heuck et al, 2012; Kervoëlen et al, 2015).

Figure 6. Cell-to-cell transcriptional
heterogeneity after Dex exposure.
(A) Shuriken plot illustrating median,
interquartile range, fraction of positive cells,
and entropy for control and Dex-treated
cells; for each parameter, maximum value is
used as reference (1; second value is
represented as a proportion of this
maximum value). (B) Box plots illustrating the
ratio of responding genes after 4 h of treatment
in control and Dex conditions, with the
addition of a dot indicating the mean.
(C) Uniform Manifold Approximation and
Projection (UMAP) plot of MM.1S cells from
scRNA-seq coloured by condition (left) and
UMAP plot coloured by the ratio of responding
genes for 4 h of exposure (right). (D) Violon
plots illustrating ratio of responding cells
after 4 h of treatment. (E) UMAP plots coloured
for BCL2L11 expression (red), CXCR4 (green)
expression and merged.
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Given the potential role of CXCR4 in tumor growth and dis-
semination (Alsayed et al, 2007; Roccaro et al, 2015), its increased
expression upon Dex exposure in a subset of MM.1S cells that do
not express the proapoptotic gene BCL2L11 (Fig 6) raises the
provocative possibility that minor populations of myeloma cells
could proliferate in response to Dex. In this context, the three-
drug combination of a human monoclonal anti-CXCR4 antibody
with lenalidomide and Dex or bortezomib and Dex phase Ib/II
study demonstrating a high response rate is of particular interest
(Ghobrial et al, 2019).

Lastly, we show that IKZF1 and IKZF3 are among the few GR-
cobound partners (Table S1), suggesting that these lineage-specific
TFs could play a role in Dex response as previously described for
the MegaTrans complex in the functionally active estrogen-
regulated enhancers (Liu et al, 2014). A recent study showed that
these TFs are degraded by IMIds (Sievers et al, 2018). Because both
drugs are combined to treat MM patients, we cannot exclude an
antagonistic role of these molecules. Further studies to identify the
GR-IKZF1/3 target genes, if any, are warranted.

Materials and Methods

Molecular biology

Cell line culture
MM.1S is a multiple myeloma glucocorticoid-sensitive cell line
(ATCC CRL-2974). Cells were cultured in RPMI-1640 supplemented
with 10% FBS, and 2 mM L-glutamine. Cell line is tested negative for
mycoplasma according to the manufacturer’s instructions (PCR
Mycoplasma-Test Kit I, A9753; ITW Reagent). Cells were initially
cultured for 24 h in reduced-serum, hormone-strippedmedia (RPMI
1640 medium, no glutamine, no phenol red, 32404014; Thermo
Fisher Scientific) with 10% charcoal/dextran-treated FBS (Charcoal
STRP FBS One Shot, A3382101; Thermo Fisher Scientific) and 2 mM
L-glutamine to a concentration of 1 million cells per mL. Subse-
quently, Dex (D4902; Sigma-Aldrich) was added to the media at
0.1 µM for all treatment timepoints and EtOH was used as vehicle
control.

ChIP-seq procedure
MM.1S cells were exposed to Dex or EtOH for 1 h and crosslinked
with freshly made 1% formaldehyde (28908; Thermo Fisher Sci-
entific) for 15min and quenched with 125mMGlycine (50046; Sigma-
Aldrich) for 10 min. Cells were pelleted and washed in PBS, then
pelleted again and stored at −80°C.

ChIP-seq CTCF and RAD21 was performed as previously de-
scribed (Jin et al, 2018) with the following modifications.
Formaldehyde-fixed cells were lysed and chromatin sheared by
sonication using a Bioruptor Pico (Diagenode). IP was carried out
using 3 µg of polyclonal CTCF antibody (C15410210; Diagenode) or
using 5 µg of Anti-Rad21 antibody (ab992; Abcam). DNA from
protein-associated complexes and corresponding input samples
were washed, eluted, and reversed crosslinking by incubation
with RNase A (AM2270; Thermo Fisher Scientific) and protein
digested with Proteinase K (25530049; Thermo Fisher Scientific).

Samples were purified with DNA Clean and Concentrator columns
(ZD4013; Ozyme) and measured using the Qubit dsDNA HS Kit
(Q32851; Thermo Fisher Scientific). Libraries were prepared using
NEBNext Ultra II DNA Library Prep according to the manufacturer’s
instructions (E7103S; New England Biolabs). Libraries were se-
quenced using Miseq platform (Kit 150cycles V3-PE) with 20million
reads per sample.

ChIP-seq GR (H-300) (sc-8992; Santa Cruz Biotechnology) and
H3K27ac (AM-39133; Active Motif) were performed by Active Motif
Epigenetic Services. Sequencing depth was 40 million reads for
CHIP-seq GR Dex, 38 million reads for CHIP-seq GR EtOH, 28 million
reads for CHIP-seq H3K27ac Dex, and 27 million reads for CHIP-seq
H3K27ac EtOH.

RNA-seq procedure
MM.1S cells were exposed to Dex or EtOH for 4 h. Total RNA from
MM.1S cells was isolated using direct-zol RNA MicroPrep kits
(ZR2060; Ozyme) with on-column DNase treatment according to the
manufacturer’s instructions. Before RNA-seq, RNA quality was
confirmed on the Agilent Bioanalyzer 2100 using the RNA 6000
Nano Kit (5067-1511; Agilent). Total RNA-seq libraries were
generated using NEBNext Poly(A) mRNA Magnetic Isolation
Module (E7490S; New England Biolabs) and NEBNext Ultra II
Directional RNA Library Prep (E7765S; New England Biolabs).
Libraries were sequenced using the Illumina HiSeq 2500 (Hiseq
Rapid SBS kit v2 2*75 cycles).

Fast-ATAC procedure
The Fast-ATAC protocol was performed as previously described
(Corces et al, 2016) using 0.1 million cells. MM.1S cells were exposed
to Dex or EtOH for 1 h, washed in PBS 1X, and centrifuged. The pellet
was resuspended in the transposase reaction mix (25 μl of 2x TD
buffer, 5 µl of TDE1, 0.5 µl of 1% digitonin, 19.5 µl of nuclease-free
water) (FC-121-1030; Illumina, G9441; Promega). Transposition re-
actions were incubated at 37°C for 30 min in an Eppendorf Ther-
moMixer with agitation at 1,000 rpm. Transposed DNA was purified
using the kit “DNA Clean and Concentrator”-5 (ZD4013; Ozyme).
Transposed fragments were amplified and purified as described
previously (Buenrostro et al, 2015) with Nextera Index Kit (FC-121-
1011; Illumina). qPCR was performed to determine the optimal
number of cycles to amplify the library to reduce artifacts asso-
ciated with saturation PCR of complex libraries. PCR was then
performed for the optimum number of cycles using the following
PCR conditions: 72°C for 5 min; 98°C for 30 s; and thermocycling at
98°C for 10 s, 63°C for 30 s, and 72°C for 1 min. Libraries were
amplified for a total of 11 cycles. Library amplification was followed
by solid-phase reversible immobilization methodology (SPRI) size
selection to exclude fragments larger than 1,200 bp. Libraries were
sequenced using Illumina HiSeq 2500 (Rapid Run HiSeq paired-end
2*75 cycles).

HiChIP procedure
MM.1S cells were exposed to Dex or EtOH for 1 h, were pelleted, and
resuspended in freshly made 1% formaldehyde (28908; Thermo
Fisher Scientific) at a volume of 1 ml of formaldehyde for every one
million cells. The cells were incubated at room temperature for
10min with rotation. Glycine (50046; Sigma-Aldrich) was then added
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to a final concentration of 125 mM to quench the formaldehyde. The
cells were incubated at room temperature for 5 min with rotation.
The cells were pelleted and washed in PBS, then pelleted again, and
stored at −80°C.

The HiChIP protocol was performed as previously described
(Mumbach et al, 2016) using 7.5 µg antibody to H3K27ac (C15410196;
Diagenode) with the following modifications. Samples were
sheared using Bioruptor Pico (Diagenode), the amount of Tn5
(15027865; Illumina) used and number of PCR cycles performed
were based on the post-ChIP Qubit amounts. Libraries were se-
quenced on NovaSeq 6000 (NovaSeq 6000 S1 Reagent Kit 2*100
cycles).

Single-cell RNA-seq procedure
For scRNA-seq, MM.1S cells were exposed to Dex or EtOH for 4 and
24 h. Single-cell RNA-seq profiling was performed with the Chro-
miumTM Single Cell Controller. A total of 6,000 cells was loaded per
lane and processed for complementary DNA synthesis and library
preparation, per themanufacturer’s protocol using 39 v3.1 chemistry
(10X Genomics—1000121). Libraries were sequenced on NovaSeq
6000 (NovaSeq 6000 S1 Reagent Kit 2*100 cycles) to amean depth of
45,000 reads/cell using the read lengths 26 bp Read1, 8 bp i7 Index,
98 bp Read2.

Single-cell multiome ATAC + gene expression procedure
For scMultiome, MM.1S cells were exposed to Dex or EtOH for 1 and
4 h. Single-cell 39 gene expression and open chromatin libraries
were simultaneously generated using Chromium Next GEM Single-
Cell Multiome ATAC + Gene Expression Kit from 10x Genomics,
following the protocol provided by the manufacturer. A total of
5,000 nuclei were loaded per lane on the ChromiumTM Single-Cell
Controller. Libraries were sequenced on NovaSeq 6000 (NovaSeq
6000 SP Reagent Kit 2*50 cycles) to a minimum depth of 24,000
reads/nucleus for Gene Expression library and 42,000 reads/
nucleus for ATAC library.

RIME
RIME GR (H-300) (sc-8992; Santa Cruz Biotechnology) and IRF4 (sc-
6059; Active Motif) were performed by Active Motif Epigenetic
Services. MM.1S cells were exposed to Dex (GR) or EtOH (IRF4) for
1 h and fixed according to the manufacturer’s instructions (RIME
Cell Fixation protocol, Active Motif). Analyses were performed by
an active motif and results are given as a supplementary table
(see Table S1). Identified proteins in the IgG negative control were
removed and background proteins with a spectral count < 5. The
final list is composed of proteins identified in both replicates;
their spectral count is the average of spectral count in both
replicates.

Cell protein extraction and fractionation procedure
MM.1S cells were exposed to Dex or EtOH for 1 h. We used NE-PER
Nuclear and Cytoplasmic Extraction reagent (78833; Thermo Fisher
Scientific) to obtain cytoplasmic and nuclear protein fractions
based on the vendor’s instructions. Nuclear protein fractions were
desalted with ZebaTM Spin Desalting Columns (89882; Thermo
Fisher Scientific). Protein was quantified with BC Assay Protein
Quantitation Kit (UP40840; Interchim).

Co-IP
5 μg of anti-IRF4 Antibody (F-4) agarose conjugate (sc-48338;
SantaCruz Biotechnology) was added to 50 μg of desalted nu-
clear protein, the mixture was incubated overnight with mixing at
2–8°C. The immunocomplexes were collected by centrifugation at
1,000g for 5 min at 4°C, washed twice with cold PBS, and resus-
pended in an electrophoresis sample buffer, 2X (sc-24945; Santa
Cruz Biotechnology).

Western blotting
Proteins extracted from cells or isolated by Co-IP were separated in
4–20% SurePAGE, Bis–Tris Gels (M00655; GeneScript) at 200 V for
30 min, and then transferred onto a nitrocellulose membrane at
150 mA for 2 h. Immunoblotted proteins on the membrane, labelled
with specific antibodies were imaged by autoradiography. All pri-
mary and secondary antibodies were used according to the
manufacturer’s instructions. The primary antibodies used were:
IRF4 (3E4) (#646402; BioLegend); GR-HRP (sc-393232; Santa Cruz
Biotechnology); β-actin (MAB8929; R&D systems); lamin A/C (E-1)
(sc-376248; Santa Cruz Biotechnology).

Computational analysis

Chromatin state annotation
To obtain functional annotation of MM.1S cell line, we used
ChromHMM (v1.11) (Ernst & Kellis, 2010, 2012). Five histone marks
available from ENCODE consortium (ENCODE Project Consortium,
2012) (H3K4me1, H3K4me3, H3K27ac, H3K36me3, and H3K27me3) in
three different cell lines (MM.1S, U266, and GM12878) were analyzed
using hidden Markov model to identify 10 different chromatin
states. Default parameters of chromHMM were used. Bam files were
binarized into 200-bp genomic windows and the presence or ab-
sence of each histone mark was evaluated. Then, we employed
biological analysis to annotate those chromatin states giving them
biological meanings.

Treatment of ChIP-seq data
ChIP-seq sequencing quality was assessed with fastqc (v0.11.8)
(Andrews, 2010). ChIP-seq read adaptors were firstly trimmed using
trimmomatic (v0.39) (Bolger et al, 2014) and then reads were
mapped using bowtie2 (v2.1.0) (Langmead et al, 2009) to the Human
genome UCSC hg19 (GRCh37) (Kent et al, 2002). Only one mismatch
was allowed. After alignment step, unmapped reads, low-quality
mapped reads (mapQ < 30), and reads mapped to ENCODE blacklist
regions (Amemiya et al, 2019) were removed with samtools (v1.3.1)
(Li et al, 2009) for analysis. We also removed reads that were like to
be optical and/or PCR duplicates using picard MarkDuplicates
(v2.23.5) from GATK (McKenna et al, 2010).

ChIP-seq-enriched regions defined as peaks were called using
macs2 (v2.1.1) (Zhang et al, 2008) versus input (sequencing without
immunoprecipitation). We only retained peaks higher than speci-
fied P-value threshold (P-val < 1 × 10−7).

Treatment of ATAC-seq data
All ATAC-seq data were processed based on Kundaje laboratory-
proposed pipelines (Koh et al, 2016; Liu et al, 2019) available
on github. Quality of sequencing assessment, read adaptor
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trimming, read mapping to human genome hg19, and filtration
were performed the same way as ChIP-seq reads. Before peak-
calling steps, and because of the Tn5 insertion, mapped reads
were shifted with, respectively, 5 and 4 bp for strand + and
strand − with samtools. Finally, enriched regions defined as
ATAC-seq peaks were called using macs2 only significant peaks
were retained (FDR < 0.05).

RNA-seq differential analysis
Each RNA-seq sample was mapped using Tophat2 (Trapnell et al,
2009) versus hg19 reference genome. We then employed the pro-
posed protocol (Trapnell et al, 2012) to perform differential ex-
pression analysis with cufflinks. Only genes with a LogFC greater
than or equal to 0.6 and an FDR < 0.05 were kept for analysis.

HiChIP data treatment and differential analysis
We employed HiC-pro (Servant et al, 2015) to process HiChIP
data from raw data to normalized contact maps. All reads were
mapped to hg19 genome using bowtie2 (global parameters: --very-
sensitive -L 30 --score-min L, −0.6, −0.2 --end-to-end --reorder;
local parameters: --very-sensitive -L 20 --score-min L, −0.6, −0.2
--end-to-end --reorder). Contact maps were generated at dif-
ferent resolutions (1, 2, 15, 20, and 40 kb) and normalized by
the iterative correction and eigenvector decomposition method.
HiC-pro output directory was then used as input to hichipper
(Lareau & Aryee, 2018) with MboI restriction site position for loop
calling. Differential analysis of chromatin loops was performed
with function exactTest of package edgeR (Robinson et al, 2010),
with default parameters except for dispersion, which was set to
“trended.” Interactions with FDR below 5% and absolute logFC
above 0.60 were considered significant.

Global treatment of genomic data
Genomic data were proceeded using different genomic tools such as
Bedtools (v2.28.0) (Quinlan&Hall, 2010) formanipulating genomicfiles,
the homer suite for annotation, and motif scanning (v4.4) (Heinz et al,
2010). Data were also treated using own Python scripts (v2.7).

Motif search
De novo motif discovery was performed using the MEME suite
(v4.11.2) (Bailey et al, 2015) for GR peaks centralized on peak submit
and extend with 250 bp in both directions. Motif from 6 to 16 bp were
searched with a maximum of five motifs were asked. To identify
sequences where a specific motif is found, we employed FIMO tool
from MEME. Finally, to identify a centrally enriched motif, we used
centriMo from MEME.

Signal track generation
We employed the bamCoverage tool from the Deeptools (v2.0)
(Ramı́rez et al, 2014) suite to generate bigWig files. Signal track files
were normalized using Read Per Genomic Content (RPGC) method
also known as the 1X normalization included in bamCovergae
options. Once those files were generated, we used the bigwig-
Compare tool to create a differential track between H3K27ac with or
without Dex. All ChIP-seq and ATAC-seq files were generated with
this method. Visualization of signal tracks was obtained using the
Integrative Genome Viewer IGV (Robinson et al, 2011).

Genome ontology analysis
Genome ontology analysis was performed using GREAT (v3.0.0)
(McLean et al, 2010) with default parameters (gene regulatory
domain: prox. 5 kb upstream and 1 kb downstream; dist. up to
1,000 kb). Enrichment statistics were computed using binomial and
hypergeometric gene-based tests. Pathways were selected as
significantly enriched if the false discovery rate (FDR q-value) was
lower than 0.01.

Differential analysis of ChIP-seq H3K27ac peaks
To find H3K27ac ChIP-seq responding to GR binding, we first
selected all H3K27ac peaks found within GR peaks (n = 16,228). On
those sites, we then estimated the normalized count (RPGC) of
H3K27ac ChIP-seq in both conditions. Log2fold changes were
then calculated for each site and we consider H3K27ac Dex
increased all sites with a log2FC higher than 0.1. The H3K27ac
Dex-increased peaks are given in the supplementary table (see
Table S2).

Identification of the GRpE among each regulatory network of
Dex-responsive genes
It has been shown that GR-binding sites with effects on expression
are activated and enriched for the GR-binding motif (Vockley et al,
2016; McDowell et al, 2018). Inspecting more particularly specific
networks: for example, TSC22D3 and BCL2L11 (Fig S6A and B), it
appeared that activated enhancers with the GR-binding motif
also displayed a strong GR signal, with the value within the 1%
highest values on the whole genome. Based on these findings, we
defined pE as follows: pE had to overlap with the presence of a GR
motif and have a not-negative Dex/EtOH log2 ratio for H3K27ac
signal; among the peaks satisfying those conditions, the one with
the highest GR signal value was selected, provided that this value
was at least 80% of the maximum GR signal for the region (see
Table S4).

Differential analysis of ATAC-seq peaks found within chromatin
loop anchors
We collected all ATAC-seq peaks found within chromatin loop
anchors and, for each peak, we estimated the RPGC count of
ATAC-seq in EtOH and Dex conditions. Log2FC was then esti-
mated and all ATAC-seq peaks with a LogFC greater than or
equal to 0.6 were considered as ATAC up. The ATAC Dex-
increased peaks obtained are given as supplementary table
(see Table S3).

CTCF motif orientation-based loop prediction
To predict which CTCF ChIP-seq peaks could potentially create DNA
contact, we employed the algorithm and scripts proposed by Oti
et al (2016) on our own CTCF ChIP-seq data in MM.1S cell line to
define predicted CTCF loops based on motif orientation.

Global treatment of single-cell data
Preprocessing steps for single-cell data were done using
CellRanger Software suite, respectively, cellranger (v5.0.0)
(Zheng et al, 2017) and cellranger-arc (v1.0.1) for scRNA-seq and
scMultiome-seq (Satpathy et al, 2019). For both types of data,
the hg38 genome assembly provided by 10xGenomics was used

An analysis of enhancer–promoter connectivity alterations Bessonneau-Gaborit et al. https://doi.org/10.26508/lsa.202302195 vol 6 | no 9 | e202302195 13 of 17

https://doi.org/10.26508/lsa.202302195


for alignment. Further analyses were performed on R (v3.6). For
scRNAseq, Count matrices were loaded into R using the Seurat
package (v3.9.9) (Satija et al, 2015). For each cell, we calculated
the percentage of mitochondrial reads (percent.mt) and the
percentage of nuclear-retained lncRNA (percent.nc). We also
used the CellCycleScoring function from Seurat to assign a cell
cycle state to each cell (Phase); the assignment of the cell cycle
state is based on the S. score and G2M.score calculated by
this function. Cells were then filtered on the following criteria:
5 < percent.mt < 25, percent. nc < 10, a minimum of 2,000 reads,
and 1,500 different genes expressed. Normalization was per-
formed using the Seurat NormalizeData function with standard
parameters. The function FindVariableFeatures was then used
to select the 3,000 most variable features, those features have
been scaled with Seurat ScaleData function, because cell cycle
was a major part of the variability, we added S.score and
G2M.score to the vars. to.regress argument of the function. We
reduced dimension using RunPCA from Seurat; only the first
30 dimensions were used for downstream analyses. We also
calculated a 2D embedding of our cells with RunUMAP; neighbor
search and clustering were performed using FindNeighbors and
FindClusters functions, with default parameters. For scMultiome-
seq, RNA and ATAC matrices were loaded into R using Seurat and
Signac (v1.1.0) (Stuart et al, 2020 Preprint) packages. For each cell, we
calculated the percent. mt, percent. nc and the Phase. For the ATAC
data, we also calculated TSS score and the ratio of reads over-
lapping with the blacklisted regions of the genome contained in
the blacklist hg38 unified provided by the Signac package. Cells
detected by cellranger were filtered on both RNA and ATAC data.
For RNA data, we kept cells between 3,800 and 150,000 reads and
more than 2,000 different genes expressed. We also kept cells
with a percent. mt between 5 and 30 and a percent. nc lower than
8. For ATAC data, we kept cells with a number of reads between
10,000 and 500,000 and a number of different features between
5,000 and 60,000. We also filtered cells with a TSS enrichment
between 3.5 and 15, a nucleosome signal lower than 1.5 and more
than 50% reads in peaks. For normalization and dimensionality
reduction, we used the RunTFIDF and RunSVD functions from the
Signac packages. RunSVD was run on the features selected by
FindTopFeatures with min.cutoff set to q80. UMAP embedding,
neighbor search, and clustering were performed the same way
as for the RNA data alone. Differential expression and acces-
sibility were tested using the findMarkers function provided by
Seurat, with test. use argument, respectively, set to “MAST” and
“LR.”

Assessment of scATA-seq peaks co-accessibility
Co-accessibility scores between scATACseq peaks were calculated
using Cicero (v1.3.4.11) (Pliner et al, 2018) with default parameters.
Co-accessibility tables were built on each treatment condition
separately. From those tables of co-accessibility scores, we built
two networks for each of the 34 Dex-responsive genes GRpEs on one
hand and GRrEs on other hand. Nodes of those networks were
defined as all peaks overlapping with the selected regions. Edges
were built using the co-accessibility tables, considering only
connections with a score higher than 0.1.

scDAGs
We studied the distribution of logFC above 0 and found out it was
bimodal with a small part of positive logFC being far from the main
part. We then used Gaussian mixture model to identify the small
subpopulation of high logFC genes, that is, scDAGS.

RRG
For each gene, we computed the 80th percentile of expressed
values in untreated cells; we then calculated, for each cell, the RRG
as the percentage of scDAGs with expression value above the gene
threshold for untreated cells, 4 h of Dex-treated cells, and 24 h Dex-
treated cells.

Data Availability

ChIP-seq, HiChIP-seq, ATAC-seq, RNA-seq, scRNAseq, and scMul-
tiome have been deposited at the European Genome-phenome
Archive (EGA, https://www.ebi.ac.uk/ega), which is hosted by the
EBI and the CRG, under dataset accession EGAD00001011136,
EGAD00001011138, EGAD00001011135, EGAD00001011137, EGAD00001011139,
and EGAD00001011140, respectively.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202302195.
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