
HAL Id: hal-04265643
https://hal.science/hal-04265643

Submitted on 31 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constrained Pseudorandom Functions from
Homomorphic Secret Sharing

Geoffroy Couteau, Pierre Meyer, Alain Passelègue, Mahshid Riahinia

To cite this version:
Geoffroy Couteau, Pierre Meyer, Alain Passelègue, Mahshid Riahinia. Constrained Pseudorandom
Functions from Homomorphic Secret Sharing. 42nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques,EUROCRYPT 2023, Apr 2023, Lyon, France. pp.194-
224, �10.1007/978-3-031-30620-4_7�. �hal-04265643�

https://hal.science/hal-04265643
https://hal.archives-ouvertes.fr

Constrained Pseudorandom Functions from Homomorphic
Secret Sharing

Geoffroy Couteau1, Pierre Meyer1,2, Alain Passelègue3,4, and Mahshid Riahinia4

1 Université Paris Cité, CNRS, IRIF, Paris, France.
couteau@irif.fr

2 Reichman University, Herzliya, Israel.
pierre.meyer@irif.fr

3 Inria, France.
alain.passelegue@inria.fr

4 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL), France.
mahshid.riahinia@ens-lyon.fr

Abstract. We propose and analyze a simple strategy for constructing 1-key constrained
pseudorandom functions (CPRFs) from homomorphic secret sharing. In the process, we obtain
the following contributions. First, we identify desirable properties for the underlying HSS scheme
for our strategy to work. Second, we show that (most of) recent existing HSS schemes satisfy
these properties, leading to instantiations of CPRFs for various constraints and from various
assumptions. Notably, we obtain the first (1-key selectively secure, private) CPRFs for inner-
product and (1-key selectively secure) CPRFs for NC1 from the DCR assumption, and more.
Lastly, we revisit two applications of HSS, equipped with these additional properties, to secure
computation: we obtain secure computation in the silent preprocessing model with one party
being able to precompute its whole preprocessing material before even knowing the other party,
and we construct one-sided statistically secure computation with sublinear communication for
restricted forms of computation.

1 Introduction

Since their introduction in [29], pseudorandom functions (PRFs) have played a central role in modern
cryptography and numerous extensions have been proposed. Of particular interest is the notion of
constrained pseudorandom functions (CPRFs), introduced concurrently in [6,34,11]. Recall that
a PRF is a family of keyed functions {Fk}k∈K : X → Y such that the input-output behavior of
any randomly selected Fk should be computationally indistinguishable from that of a truly random
function with same domain and range (without any knowledge of k). Constrained pseudorandom
functions for a class of constraints C extend PRFs by allowing to delegate partial evaluation keys
ckC for any C : X → {0, 1} ∈ C, termed constrained keys, generated from the master secret key k as
ckC ← Constrain(k,C). A partial key allows to compute Fk(x) for any input x such that C(x) = 0,
by running a constrained evaluation algorithm CEval(ckC , x), while preserving pseudorandomness of
evaluations on inputs x satisfying C(x) = 15. A constrained PRF can further be private, or constraint-
hiding, if a constrained key hides the constraint C. Significant efforts have been made to obtain CPRFs
for broad classes of constraints from various assumptions in the recent years [4,15,14,18,3,21,39,31,26].
As of today, CPRFs for simple class of constraints (e.g., point functions or constant-degree CNFs) are
known from minimal assumptions (e.g., from one-way functions [29,26]). Yet, constructing CPRFs
for broader classes of constraints such as NC1 has proven notoriously hard. While (private) CPRFs
for NC1 and even P/poly exist based on the learning with errors assumption (with subexponential
modulus-to-noise ratio) [15,14], other families of standard assumptions have so far failed to provide
advanced constructions, except for one construction for NC1 based on an exotic Q-type variant of DDH
over the group of quadratic residues modulo a safe prime q = 2p+ 1, and the DDH assumption [3].

This serious lack of constructions remains when considering simpler classes of constraints such as
inner products (C(x) = 0 iff 〈x, y〉 = 0 for some fixed vector y), despite the large amount of work on
inner-product-based encryption in other contexts (e.g., for attribute-based encryption or functional
encryption) and the recent lattice-based CPRF for inner-product [26].

5 The inverse condition is often used (pseudorandomness if C(x) = 0 and partial evaluation if C(x) = 1).
Our choice slightly simplifies our constructions.

In this work, we draw connections between constrained pseudorandom functions and homomorphic
secret sharing (HSS), a notion introduced by Boyle et al. in [10]. One of our main contributions is
to construct CPRFs for inner-product as well as for NC1 via HSS, leading to instantiations from a
wide variety of assumptions thanks to the recent developments in HSS [40,37,1]. Before describing
in more details our contributions, we briefly remind the definition of HSS. An HSS scheme for a
class of functions F allows to generate a public key pk and two evaluations keys ek0, ek1, such that
one can securely share an input x into two shares (I0, I1) ← Input(pk, x) such that, given one of
the two evaluation keys: each share computationally hides x, and it is possible to homomorphically
evaluate any function f ∈ F on the shares of x as yb = Eval(ekb, Ib, f), for b ∈ {0, 1}. Moreover, the
resulting shares satisfy y1 − y0 = f(x). Since its introduction, HSS has found numerous applications
in cryptography and beyond, and notably for (1) low-communication secure computation [10], and
for (2) secure computation with silent preprocessing [9,37]. In this work, we also revisit the latter
applications. Again, we briefly remind them before diving into the details of our contributions. A long-
standing problem in secure computation had been to achieve communication smaller than the circuit
size (for rich classes of functions). It was first solved via fully-homomorphic encryption (FHE) [27]. To
securely compute a function f on their respective private inputs x and y, Alice and Bob can use the
following protocol: Alice sends to Bob an FHE encryption of x, and Bob homomorphically computes
an encryption of f(x, y) by evaluating f(·, y). He then sends back the result to Alice who can recover
f(x, y) by decrypting. Homomorphic secret sharing leads to another solution to this problem, by first
having Alice and Bob compute shares of x and y (which is independent of circuit size) and then
locally compute shares of f(x, y).

Regarding secure computation in the preprocessing model, a protocol is split in two phases: a
first preprocessing phase run ahead-of-time (independently of inputs and function to compute) in
which Alice and Bob jointly generate long, correlated random strings, and a second online phase
where the actual secure computation takes place. In the latter phase, the former correlated random
strings are consumed by a fast, non-cryptographic, information-theoretic secure computation protocol.
Homomorphic secret sharing enables secure computation with silent preprocessing: a short one-time
interaction allows Alice and Bob to generate short keys, from which they can later locally (i.e., without
any interaction) stretch arbitrarily long correlated (pseudo-)random strings, which are later used in
the online phase. Effectively, this pushes almost all the computational overhead of the preprocessing
phase to a purely local computation.

1.1 Our Contributions

In this work, we show how to use homomorphic secret sharing schemes towards constructing con-
strained pseudorandom functions for rich classes of constraints and from new assumptions. Our main
contributions are threefold.

Extending HSS Properties. We identify two natural extensions of homomorphic secret sharing,
which we term respectively homomorphic secret sharing with simulatable memory shares and staged
homomorphic secret sharing. At a high level, both notions capture the ability to perform some limited
form of programming of HSS shares, i.e., to construct one of the two HSS shares of an input x before
knowing x. It turns out that most of known HSS constructions already achieve these extensions,
leading to constructions based on a wide variety of assumptions.

New Constructions of CPRFs. Combining our extensions of HSS with any standard PRF with
evaluation in NC1 (which is known from every assumption implying HSS), we construct: (1) private
CPRFs for inner-product, starting with any HSS with simulatable memory shares with statistical
correctness, and (2) CPRFs for NC1 starting with any staged HSS with statistical correctness. This
leads to the following statement.

Theorem 1 (informal). Assuming any of the following assumptions:

• the DCR assumption,

• the hardness of the Joye-Libert encryption scheme,

• the DDH and DXDH assumptions over class groups,

• the Hard Subgroup Membership assumption over class groups,

• the LWE assumption with super-polynomial modulus-to-noise ratio,

there exist (1-key, selectively secure) private CPRFs for inner product, and (1-key, selectively secure)
CPRFs for NC1.

Our results significantly expand the set of assumptions known to imply CPRFs for rich classes of
constraints. In particular, our CPRF for NC1 from DCR yields the first construction of a CPRF for a
rich class of constraints from a well-founded standard assumption beyond LWE-based constructions.

Revisiting Applications of HSS to Secure Computation. Equipped with our additional
properties for HSS, we revisit two standard applications, namely secure computation with silent
preprocessing, and secure computation with sublinear communication, and obtain the following
results.

Precomputable secure computation with silent preprocessing. As described above, secure
computation with silent preprocessing requires a short initial interaction before being able to run
the heavy local preprocessing. In particular, the parties need to have decided who they will execute
a secure computation protocol with. In contrast, we show that using staged HSS allows to build a
silent preprocessing protocol where one of the parties (say, Alice) can entirely run the heavy offline
computation before she even knows the identity of Bob (and in particular, before she interacts with
Bob). This means that Alice can, at any point, locally generate (her share of) long pseudorandom
correlated strings and store them for later use. Then, when she meets someone she wants to securely
compute a function with in the future, she can execute the short, one-time interactive protocol (with
little communication and computation), and be done with the preprocessing phase. Of course, the
other party still needs to execute the heavy offline computation after their interaction6. We call this
model secure computation with precomputable silent preprocessing; it is especially well suited to a
client-server setting, where a weak client (Alice) wants to start the bulk of the computation a long
time in advance, whereas the powerful server can run the heavy computation after its interaction
with the client.

One-sided statistically secure computation with sublinear communication. A core feature
of FHE-based sublinear secure computation is that it achieves one-sided statistical security when
using an FHE scheme with statistical circuit-privacy, since homomorphic evaluation of f(·, y) leaks
statistically no information about y beyond f(x, y). In other words, Bob’s security in the aforemen-
tioned protocol holds unconditionally. One-sided statistical security is a desirable security notion and
can be achieved quite easily if we do not require sublinear communication, e.g., by using the seminal
GMW protocol [30] with a one-sided statistically secure oblivious transfer [35] (to our knowledge,
this was first observed in [20]). Yet, as of today, one-sided statistically secure computation with
sublinear communication is only known from FHE : all HSS-based constructions inherently achieve
only computational security for both parties.

Using staged HSS, we obtain the first non-FHE-based constructions of one-sided statistically
secure protocols with sublinear communication. Concretely, we obtain secure computation for any
log log-depth circuits with optimal communication, where x remains statistically hidden, provided
that |x| < |y|/poly(λ) (where poly(λ) denotes some fixed polynomial), via a black-box use of staged
HSS. We also get secure computation of any layered arithmetic circuit C of size s over a sufficiently
large ring Zn, with sublinear communication O(s/ log log s) and one-sided statistical security (without
any restriction on the statistically protected input size), assuming the Paillier encryption scheme
is circular-secure. The latter construction is non-black box and exploits the specific structure of a
concrete Paillier-based staged HSS scheme from [37].

2 Technical Overview

2.1 General Strategy

Let us first explain a (partly wrong but insightful) strategy for constructing CPRFs from HSS. Let F
denote a pseudorandom function with keyspace K and domain X , and let C : X 7→ {0, 1} be a class of

6 It is not too hard to see that having both parties execute the bulk of the computation prior to interacting
(while keeping a non-cryptographic online phase) is impossible.

constraints. Consider an HSS scheme HSS = (Setup, Input,Eval) for a class of programs P such that
it contains all functions fx : (k,C) 7→ C(x) · Fk(x), for all x ∈ X . Then, we consider the following
construction.

• KeyGen(1λ, C) : sample a PRF key K
$← K. Run (pk, ek0, ek1)← Setup(1λ), (Ik0 , I

k
1)← Input(pk, k),

and (IC0 , I
C
1)← Input(pk, C). Set pp← pk and msk← (ek0, ek1, I

k
0 , I

k
1 , I

C
0 , I

C
1).

• Constrain(msk, C) : parse msk as (ek0, ek1, I
k
0 , I

k
1 , I

C
0 , I

C
1) and output ckC ← (ek1, I

k
1 , I

C
1).

• Eval(pp,msk, x) : run y0 ← Eval(0, ek0, I
k
0 , I

C
0 , fx) and output y0.

• CEval(pp, ckC , x) : run y1 ← Eval(1, ek1, I
k
1 , I

C
1 , fx) and output y1.

By correctness of the HSS scheme, for any input x, we have y1 − y0 = C(x) · Fk(x). Therefore, if
C(x) = 0, y1 = y0 i.e. the CEval algorithm outputs the same value as the evaluation with msk. Yet,
if C(x) = 1, y1 = y0 + Fk(x) and y0 is pseudorandom, even given y1 (and ckC).

The problem with the above construction is that the master secret key does depend on the
constraint C while it should be independent of it7. A way around this issue would be to use an HSS
scheme with programmable input shares, i.e., a scheme where IC0 can be generated before knowing
C, and the second share IC1 can be constructed afterwards from IC0 and C, when the constraint is
chosen. Unfortunately, the only known constructions of HSS with such a strong programmability
feature rely on powerful primitives such as threshold FHE. As FHE-style constructions of CPRFs for
all circuits are already known, this would defeat the purpose of obtaining constructions based on new
assumptions. In this work, we identify weaker properties which still suffice to instantiate the above
template, yet are achieved by most of known HSS constructions.

2.2 CPRF from HSS with Simulatable Memory Shares

As a start, we propose a first simple solution to circumvent the lack of programmability. This first
property already allows to handle simple forms of constraints such as inner-product, and follows
from the common design of HSS constructions. We start by providing a high-level description of HSS
schemes, which applies to essentially all known HSS constructions (beside FHE-based constructions).

HSS schemes rely on an additively homomorphic encryption scheme with some form of linear
decryption. The public key of the HSS scheme is the public key pk of the underlying encryption
scheme, and evaluation keys ek0, ek1 are additive shares of the underlying secret key s. A scheme
uses two types of data: (1) Input shares (I0, I1) which are generated by running Input(pk, x) on
some input x and consist in an encryption of (x, x · s), and (2) Memory shares (M0,M1) which
are typically additive shares of (x, x · s) over Z. Two types of operations are handled: Additions of
memory shares (simply add the shares as (x, x · s) + (y, y · s) = (x+ y, (x+ y) · s)), and a restricted
form of Multiplication. Specifically, multiplication can only be performed between an input share
of some value x and a memory share of some value y, and returns a memory share of their product
x · y. Typically, multiplication uses the memory share (y, y · s) to “linearly multiply-and-decrypt” the
encryption of (x, x · s), getting some encoding of (xy, xy · s). Then, the encoding is converted into a
valid memory share using a specific procedure, which depends on the concrete scheme and is often a
form of distributed discrete logarithm. We provide more details about multiplication later. Note that
one can transform any input share into a memory share of the same value by multiplying it with a
memory share of 1. At the end of a computation, each party recovers a memory value consisting in an
additive share of (z, z · s), and therefore a share of the result z by dropping the second part. One can
evaluate any polynomial-size program following the above restrictions, which precisely corresponds to
restricted multiplication straight-line (RMS) programs, and encompasses branching programs, NC1,
and more.

HSS with simulatable memory shares. Our starting point is the result of two observations.
First, we observe that any HSS following the above structure does in fact allow for a limited form of
programming regarding memory values. Indeed, while input shares include a homomorphic encryption
of the input (which cannot be generated without knowing the input), memory shares are simply

7 If the key could depend on C, one could just generate two independent PRF keys k0, k1 and define the
evaluation as FkC(x)

(x). Revealing k0 then allows to compute the evaluation on any x such that C(x) = 0
and reveals nothing about the key k1 used when C(x) = 1.

additive shares. Thus, we can always simulate a memory share of one party before knowing the value
to share, by generating a first random share u. The other share is later set to x− u when the actual
value x to share is known.

Second, we remark that two parties sharing input shares of some values (x1, . . . , xn) as well as
memory shares of a value z can compute memory shares of z ·P (x1, . . . , xn) for any RMS program P .
The trick is to evaluate all the operations of P “with z in front”, i.e. by maintaining as an invariant
that any memory share for any value y that should be used in the computation is replaced by a
memory share for the value z ·y. This invariant being preserved by the two RMS operations (addition
and multiplication), it is sufficient to guarantee that every memory value satisfies it when created.
This is simply done by transforming an input x into a memory value by multiplying it with the
memory share of z in order to get a memory share for z · x rather than for x.

CPRF for Linear Constraints. Combining these two observations leads to constructions of con-
strained PRFs for linear constraints (and in particular for inner-product). Looking back to the
construction aforementioned, we just would like to be able to generate IC0 , the share of C used for
evaluation with the master secret key, without knowing the constraint C in advance. We do it by
replacing IC0 by a simulated memory share M0 of the (yet unknown) constraint C. The constrained
key for C is then computed from M0 and C to generate the appropriate memory share M1 (i.e. setting
M1 such that M0 + M1 = C).

While this prevents the need for knowing the constraint ahead of time, this comes with a price:
we now get a memory share of C rather than an input share, which reduces the set of functions one
can evaluate. Still, thanks to our second observation, having a memory share of C and an input share
of k allows to compute shares of C · P (k) for any RMS program P . Moreover, given memory shares
of multiple Ci’s, one can then compute any linear combination of shares Ci · P (k), by summing the
latter additive shares. Notably, this allows computing shares of 〈C, x〉 · Fk(x) as long as the function
k 7→ Fk(x) is an RMS program (assuming F is in NC1 is sufficient for that purpose).

We just constructed constrained pseudorandom functions for inner-product from any assumption
that suffices to construct an HSS scheme for RMS programs satisfying the above conditions. For
example, using the recent HSS scheme of [37] yields a CPRF for inner products over Z (or any
integer ring) under the DCR assumption (which also implies PRFs in NC1). The construction extends
immediately to any constant-degree polynomial constraints (by memory-sharing all the coefficients of
C). It achieves 1-key selective security, as well as constraint privacy. To the best of our knowledge,
this is the first construction of (1-key, selective, private) CPRF for inner products that does not rely
on LWE.

Security analysis proceeds through a sequence of hybrid games. Recall that the adversary is given
a constrained key ckC of its choice, and access to an evaluation oracle Eval(pp,msk, ·). We first modify
the evaluation oracle to return C(x) ·FK(x)+ CEval(pp, kC , x) on query x. By correctness of the HSS,
the adversary’s view remains identical to its view in the previous game though the game no longer
relies in msk (and in particular now only relies on the evaluation key ek1 from ckC). This let us replace
the input share I1 of k in ckC by an input share of a dummy value, thanks to HSS security. Then, the
adversary does no longer have any information about k except in the evaluations, and we can use PRF
security to replace evaluations of FK(·) by truly random values, therefore proving pseudorandomness.
Constraint privacy is proven in a similar fashion.

2.3 Handling more Constraints via Staged HSS

While the above already offers enough flexibility to evaluate linear functions (and extensions thereof,
such as low-degree polynomials), we still cannot handle general computations like NC1 circuits. To
overcome this limitation, we show by a deeper analysis of known HSS schemes that most of them also
achieve some specific, limited form of programmability, which turns out to be sufficient to construct
CPRFs for all RMS programs (hence in particular for NC1).

Concretely, for a vector u = (u1, . . . , u`), our core observation is that it is possible to share u
between parties P0 and P1 with two alternate sharing algorithms (Input0, Input1) such that: (1) P0’s
share of u, obtained from Input0, is independent of u (and can be generated without u), (2) P0

and P1 can use specific Eval0,Eval1 evaluation algorithms to produce memory shares of P (u) for
any RMS program P , provided that P1 knows u in the clear. We call staged-HSS an HSS scheme
satisfying the latter properties, as it intuitively allows to split share generation and evaluation in

2 stages: a first input-independent stage, corresponding to P0’s view, and a second input-dependent
stage corresponding to P1’s view.

At first sight, staged-HSS might not seem particularly useful: if P1 knows u in the clear, then
P1 can already compute P (u) for any RMS program P . The key observation is that P0 and P1 get
memory shares of P (u), and not just P (u). This memory share can then be combined with the prior
observations to let P0, P1 compute additive shares of P (u) ·Q(v), for any other RMS program P,Q,
given input shares of v. Setting u to be the description of the constraint C, P to be a universal circuit
(with input x hardwired) which on input C returns C(x), v to be a PRF key k, and Q to be the RMS
program (with x hardwired) which on input k returns Fk(x), parties P0 and P1 can then compute
shares of C(x) ·Fk(x), with shares of P0 being independent of C. We can then instantiate our simple
aforementioned strategy for constructing CPRFs while circumventing the need for C during KeyGen.
As a result, we obtain (1-key selective) CPRFs for RMS programs (and therefore for NC1) from any
staged-HSS, i.e. from a wide variety of assumptions (including DCR [37,40], class groups assumptions,
or variants of QR [1,19], and more.). The security analysis is similar to our construction for inner-
product, though this new construction is no longer constraint-hiding, since the CEval algorithm now
relies on knowing C (i.e. u above) in clear.

It remains to explain why known HSS schemes are also staged-HSS schemes. To illustrate this,
we use the simple ElGamal-based HSS scheme from [10]8. We assume basic knowledge of ElGamal
encryption in what follows. This scheme follows the general structure detailed above by instantiating
the additively homomorphic encryption scheme with ElGamal encryption. That is, an input share for
x is an ElGamal encryption of the pair (x, x · s)9, i.e. a tuple (c0, c

′
0, c1, c

′
1) = (gr0 , hr0 · gx, gr1 , hr1 ·

gx·s) with s ∈ Zp being the secret key, h = gs being the public key, and r0, r1
$← Zp encryption

randomness10.
Multiplication between an input share (c0, c

′
0, c1, c

′
1) of x and a memory share (ασ, βσ) of y (which

is just an additive share of (y, y · s) over Zp owned by party Pσ) is done as follows. First, party Pσ
computes gσ ← (c′0)ασ/cβσ0 . Observe that g0 ·g1 = (c′0)α0+α1/cβ0+β1

0 = (gsr ·gx)y/(gr)sy = gxy. Hence,
parties get multiplicative shares g0, g1 of gxy. Doing the same with c1, c

′
1 allows to get multiplicative

shares of gxy·s. Then, an operation termed distributed discrete logarithm allows to transform these
multiplicative shares of (gxy, gxy·s) into additive shares of (xy, xy · s), i.e. memory shares for the
value xy, as desired. Despite being at the core of HSS constructions, the details of the distributed
discrete logarithm procedure do not matter here. The only important observation is that the ci = gri

components of input shares are independent of the input x; only the c′i components actually depend on
x. Furthermore, in the multiplication above, the only place where c′i is involved is in the computation

of gσ ← (c′i)
ασ/cβσi . Now, assume that one of the parties, say, P1, already knows y in the clear: in

this case, one can simply define α1 ← y and α0 ← 0, which form valid additive shares of y. But now,
P0 does no longer need to know c′i components either, since we now have g0 = 1/(ci)

β0 .

2.4 Applications of Staged HSS to Secure Computation

From a different angle, staged HSS allows Alice and Bob, respectively owning private inputs x and y,
to securely retrieve, given shares of their joint input (x, y), additive shares of f(x) · g(y) for any RMS
programs f, g, and even of any P (x, y) =

∑m
i=1 fi(x) · gi(y), where the (fi, gi) are RMS programs

since additive shares can be added.

Secure computation with precomputable silent preprocessing. In this setting, the goal of the
preprocessing phase is to securely distribute correlated randomness of a particular form (e.g., random
oblivious transfers, vector-OLE, batch-OLE, Beaver triples, authenticated Beaver triples, etc.) which
can be seen as special cases of the following general additive correlation: Alice receives random
vectors (rA, sA) and Bob receives random vectors (rB , sB), such that sA and sB form additive shares
of the tuple s = (Q1(rA, rB), · · · , Qm(rA, rB)), where Q1, . . . , Qm are public low-degree polynomials.
To silently distribute such (pseudorandom) correlations, Alice and Bob can use a generic secure
computation protocol to distribute HSS shares of two PRF keys (kA, kB) sampled by Alice and Bob

8 This scheme does not yield CPRFs as it does not achieve statistical correctness, but staged-HSS is easily
illustrated with it.

9 Actually of x and x · si’s for each bit si of s.
10 s is encrypted bit-by-bit in the actual construction.

respectively. Then, Alice locally defines rA ← (FkA(1), · · · , FkA(n)), and Bob does the same with
FkB . Both of them also compute their share sA and sB by homomorphically evaluating the program
Pi for i ≤ m with their share of (kA, kB), where Pi is defined as:

Pi : (kA, kB)→ Qi((FkA(1), · · · , FkA(n)), (FkB (1), · · · , FkB (n))) .

Note that, as long as F is in NC1 and Qi is a constant-degree polynomial, Pi remains in NC1. We
now observe that when Qi is a constant-degree polynomial, the program Pi can always be (publicly)
rewritten as

Pi(kA, kB) =

M∑
j=1

αj ·
∏
i∈SjA

FkA(i) ·
∏
i∈SjB

FkB (i) =

M∑
j=1

fj(kA) · gj(kB) ,

where SiA, S
i
B are public subsets of [n], by writing Qi in algebraic normal form and separating the

component of each monomial depending on whether they are computed using kA or kB . Above, each
of the fj , gj functions belong to NC1. Therefore, Pi belongs to the class of programs supported by our
staged HSS construction. Furthermore, Bob always knows his input kB in the clear. Therefore, using
staged HSS, Alice can generate the HSS shares of kA together with the input-independent share of kB ,
and she can locally compute (rA, sA) entirely from these shares, using the staged evaluation algorithm,
and later execute a short interactive update protocol with Bob (with communication and computation
independent of n and m) to let Bob (with input kB) obtain the full HSS shares of (kA, kB). Therefore,
Alice can entirely compute all of her preprocessing material before she even interacts with Bob (or
knows his identity).

Sublinear secure computation with one-sided statistical security. Our last application follows
the exact same line as above, further noting that evaluation of F (x, y) =

∑
i fi(x) · gi(y) can be

performed while statistically protecting one of the two inputs (e.g., x). Moreover, the class of such
functions F (x, y) contains in particular all arithmetic circuits (with fan-in 2) of size s and depth
log log s, as in such circuits, every output bit depends on at most log s inputs, and can therefore be
written as a multivariate polynomial in the inputs, with at most s monomials. As a consequence,
if there is a secure computation protocol for generating staged HSS shares of inputs x and y with
communication c(|x|, |y|), then there exists a protocol for securely computing all circuits of size s
and depth log log s with |x| + |y| inputs and m outputs with communication c(|x|, |y|) + 2m, which
is asymptotically optimal. It only remains to find a protocol to securely distribute staged HSS shares
with linear communication.

This is not easily done in general, as the standard technique to generate HSS shares with low
communication uses hybrid encryption: to share an input x, one generate HSS shares of some seed seed
(using a generic secure computation protocol), and publishes x⊕PRG(seed). Then, the homomorphic
evaluation first computes PRG(seed), unmaskes x, and then applies the function. The issue is that this
is inherently incompatible with having (one-sided) statistical security. We describe two cases where
we can get around this issue:

1. The first way is to use hybrid encryption only on y, for which we just aim to computational
security, and to share x using the standard staged HSS sharing algorithm. This yields a one-sided
statistically secure protocol for all log log-depth circuits with communication |y|+ |x| · poly(λ) +
O(m), which is optimal as soon as |x| < |y|/poly(λ). In other terms, if the input to be statistically
protected is polynomially smaller than the other input, we achieve optimal communication.

2. Our second solution relies on a specific construction of staged HSS scheme that relies on the
circular security of the Paillier-ElGamal encryption scheme. Here, we manage to leverage the
inherent compactness of this specific scheme to get a protocol with optimal communication |y|+
|x|+O(m) for arithmetic circuits over a sufficiently large ring (since Paillier encryption is compact
only when the values are from a large ring), by designing a tailored low-communication HSS share
distribution protocol. By breaking the circuit into log log-depth blocks, this generalizes naturally
to a one-sided statistically secure protocol with sublinear communication O(s/ log log s) for any
layered arithmetic circuits11 over a sufficiently large field.

11 An arithmetic circuit is layered if its nodes can be partitioned into layers, such that any wire connects
adjacent layers.

3 Preliminaries

We use λ to denote the security parameter. For a natural integer n ∈ N, the set {0, 1, . . . , n − 1}
is denoted by [n]. We mostly use bold lowercase letters (e.g., r) to denote vectors. For a vector
r = (r1, . . . , rn), the vector (gr1 , grn) is sometimes denoted by gr. We write poly(λ) to denote
an arbitrary polynomial function. We denote by negl(λ) a negligible function in λ, and PPT stands

for probabilistic polynomial-time. For a finite set S, we write x
$←− S to denote that x is sampled

uniformly at random from S. For an algorithm A, we denote by y ← A(x) the output y after running
A on input x.

We recall the notion of constrained pseudorandom functions. For simplicity, we focus on selective,
1-key secure, constraint-hiding, constrained pseudorandom functions, which are the main focus of our
work, and refer the reader to [6,34,11,5] for the general definitions. Additional definitions related to
our assumptions or applications to multi-party computation (MPC), and in particular definition of
pseudorandom correlation functions, can be found in the supplementary material, Section A.

Definition 1 (Constrained Pseudorandom Functions). Denote by λ a security parameter. A
Constrained Pseudorandom Function (CPRF) with domain X = {Xλ}λ∈N, key space K = {Kλ}λ∈N,
and range Y = {Yλ}λ∈N, that supports a class of circuits C = {Cλ}λ∈N, where each Cλ has domain
Xλ and range {0, 1}, consists of the following four algorithms:12

• KeyGen(1λ)→ (pp,msk): On input the security parameter λ, the master key generation algorithm
outputs a public parameter pp and a master secret key msk ∈ K.

• Eval(pp,msk, x)→ y: On input the public parameter pp, the master secret key msk, and an input
x ∈ X , the evaluation algorithm outputs a value y ∈ Y.

• Constrain(msk, C)→ ckC : On input the master secret key msk, and a circuit C ∈ C, the constrained
key generation algorithm outputs a constrained key ckC .

• CEval(pp, ckC , x) → y: On input the public parameter pp, a constrained key ckC , and an input
x ∈ X , the constrained evaluation algorithm outputs a value y ∈ Y.

Correctness. For any security parameter λ, any constrain C ∈ C, and any input x ∈ X such that
C(x) = 0, we have:

Pr

Eval(pp,msk, x) 6= CEval(pp, ckC , x) :

pp← Setup(1λ)

msk← KeyGen(pp)

ckC ← Constrain(msk, C)

 ≤ negl(λ).

1-Key Selective Security. We say that a CPRF is 1-key selectively secure if the advantage of any
PPT adversary A in the following game is negligible:

- Selective Choice of Constraint: The adversary chooses a (single) circuit C ∈ C and sends it
to the challenger.

- Setup: The challenger runs (pp,msk) ← KeyGen(1λ), initializes a set Seval = ∅, and computes

ckC ← Constrain(msk, C). The challenger also chooses a random bit b
$←− {0, 1}. It sends pp, ckC

to A.
- Pre-Challenge Evaluation Queries: A can adaptively send arbitrary input values x ∈ X

to chall. The challenger computes y ← Eval(pp,msk, x) and returns y to A. It also updates
Seval ← Seval ∪ {x}.

- Challenge Phase: A sends an input x∗ ∈ X as its challenge query to chall with the restriction
that x∗ /∈ Seval, and C(x∗) 6= 0. If b = 0, then chall computes y∗ ← Eval(pp,msk, x∗). If b = 1, it

picks a random value y∗
$←− Y. Finally, chall returns y∗ to A.

- Post-Challenge Evaluation Queries: A continues the queries as before, with the restriction
that it cannot query x∗ as an evaluation query.

- Guess: A outputs a bit b′ ∈ {0, 1}.

1-Key Selective Constraint-Hiding. We say that a CPRF is selectively 1-key constraint-hiding if
the advantage of any PPT adversary A in the following game is negligible:

12 In the remaining of the paper, we drop the λ subscript when it is clear from context.

- Selective Choice of Constraint: The adversary chooses a (single) pair of circuits (C0, C1) ∈ C
and sends it to the challenger.

- Setup: The challenger runs (pp,msk) ← KeyGen(1λ), chooses a random bit b
$←− {0, 1}, and

computes ck∗ ← Constrain(msk, Cb). It sends pp, ck∗ to A.
- Evaluation Queries: A can query evaluations for arbitrary inputs x ∈ X to chall, with the

restriction that C0(x) = C1(x) must hold. The challenger returns y ← Eval(pp,msk, x) to A.
- Guess: A outputs a bit b′ ∈ {0, 1}.

In both games, A wins if b′ = b and its advantage is defined as |2 · Pr[A wins]− 1| where the
probability is over the internal coins of A and of Setup.

4 Homomorphic Secret Sharing and Extensions

The core notion underlying our constructions is homomorphic secret sharing (HSS), introduced by
Boyle et al. in [10]. In this section, we remind the standard definition of HSS as well as propose
several extensions, in particular defining some special properties that play an important role in our
constructions. We further remark that these extensions are easily instantiated using the DCR-based
HSS construction from [37].

4.1 Homomorphic Secret Sharing

We start by recalling the standard definition of homomorphic secret sharing, as well as of Restricted
Multiplication Straight-line (RMS) programs which is the common model of computation in the
context of HSS.

Definition 2 (Homomorphic Secret Sharing). Denote by λ a security parameter. A Homo-
morphic Secret Sharing (HSS) scheme for a class of programs P which is defined over a ring R and
has input space I ⊆ R consists of three PPT algorithms (Setup, Input,Eval) such that:

• Setup(1λ) → (pk, (ek0, ek1)): On input the security parameter λ, the setup algorithm outputs a
public key pk and a pair of evaluation keys (ek0, ek1).

• Input(pk, x) → (I0, I1): On input the public key pk and an input x ∈ I, the input algorithm
outputs a pair of input information (I0, I1).

• Eval(σ, ekσ, Iσ = (I
(1)
σ , . . . , I

(ρ)
σ), P) → yσ: On input a party index σ ∈ {0, 1}, an evaluation key

ekσ, a vector of ρ input values (I
(1)
σ , . . . , I

(ρ)
σ), and a program P ∈ P, the evaluation algorithm

outputs the party σ’s corresponding share of the output yσ.

We require an HSS scheme to satisfy the following two properties:

• Correctness. For any security parameter λ ∈ N, and any program P ∈ P with input space
I ⊆ R, we have:

Pr
[
y0 − y1 = P (x(1), . . . , x(ρ))

]
≥ 1− negl(λ) ,

where the probability is taken over (pk, (ek0, ek1)) ← Setup(1λ), (I
(i)
0 , I

(i)
1) ← Input(pk, x(i)) for

i ∈ [ρ], and yσ ← Eval(σ, ekσ, (I
(1)
σ , . . . , I

(ρ)
σ), P), for σ ∈ {0, 1}.

• Security. For any PPT adversaries A,A′, and any bit σ ∈ {0, 1} the following value should be
negligible in λ: ∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


b′ = b :

(x0, x1, state)← A(1λ)

(pk, (ek0, ek1))← Setup(1λ)

b
$←− {0, 1}

(I0, I1)← Input(xb)

b′ ← A′ (state, pk, ekσ, Iσ)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
We now remind the definition of Restricted Multiplication Straight-line (RMS) programs. RMS
programs form a class of programs which encompasses branching programs of polynomial-size and
therefore NC1 circuits. In an RMS program, the multiplication is restricted to happen between an
input value and an intermediate value of the computation (so-called “memory” value).

Definition 3 (RMS Programs). An RMS program with magnitude bound B is defined as a
sequence of the instructions as follows:

- ConvertInput(Ix)→ Mx: Loads an input x into memory.
- Add(Mx,My)→ Mx+y: Adds two memory values.
- Mul(Ix,My) → Mx·y: Multiplies an input value and a memory value to produce a memory value

of their product.
- Output(Mx, n)→ x mod n: Outputs a memory value w.r.t. a modulus n < B.

4.2 HSS following the RMS Template

Similarly to [9], we first propose a more specific definition for HSS with additional algorithms that
are relevant in the context of RMS programs.

Definition 4 (HSS Following the RMS Template). A homomorphic secret sharing scheme
HSS = (Setup, Input,MemGen,Eval) following the RMS template is an HSS scheme as defined in
Definition 2 with an additional algorithm MemGen which serves to produce memory values as follows:

• MemGen(σ, ekσ, x)→ Mσ: On input a party index σ ∈ {0, 1}, an evaluation key ekσ, and an input
x ∈ I, the memory generator algorithm outputs a memory value Mσ.

Moreover, the Eval algorithm proceeds with sub-routines following the RMS operations ConvertInput,
Add,Mul,Output as follows:

• Eval(σ, ekσ, (I
(1)
σ , . . . , I

(ρ)
σ), P) → yσ: On input a party index σ ∈ {0, 1}, an evaluation key ekσ,

a vector of ρ input values (I
(1)
σ , . . . , I

(ρ)
σ), and an RMS program P , this algorithm follows the

instructions of P and processes them as follows:
• ConvertInput(σ, ekσ, I

x
σ)→ Mx

σ: This algorithm simply uses the MemGen and Mult algorithms
as follows:

- Run MemGen(σ, ekσ, 1)→ M1
σ.

- Run Mult(σ, ekσ, I
x
σ,M

1
σ)→ Mx

σ.
• Add(σ, ekσ,M

x,My)→ Mx+y: This algorithm directly adds the given memory values of x and
y. Namely, Mx+y

σ = Mx
σ + My

σ.
• Mul(σ, ekσ, I

x,My)→ Mx·y: It multiplies an input value Ix and a memory value My and outputs
a memory value of x · y. The template does not impose any non-black box requirement on
this algorithm.

• Output(σ,Mx, n)→ x mod n: It uses Mx to output xσ mod n.

Correctness and security properties are defined as in Definition 2, and we further require the following
property:
Additively Homomorphic Memory. The memory values generated in HSS should be additively
homomorphic. Meaning that for any two x, y ∈ I and any party index σ ∈ {0, 1}, it holds that

Mx
σ + My

σ = Mx+y
σ ,

where Mz
σ ← MemGen(σ, ekσ, z), for z ∈ {x, y}, and (pk, (ek0, ek1)) ← Setup(1λ). Throughout this

work, we may refer to memory values satisfying this property as “valid” memory values.

4.3 Extended Evaluation and Simulatable Memory Values

Any HSS following the RMS template as defined above satisfies the following lemma, which states
that one can evaluate share of z · P (x(1), . . . , x(ρ)) using only a memory value of z (instead of an
input value) together with the input values of the rest of variables (x(1), . . . , x(ρ)). This lemma plays
a central role in our CPRF constructions.

Lemma 1. Let HSS = (Setup, Input,MemGen,Eval) be an HSS scheme following the RMS template.
There exists an extended evaluation algorithm ExtEval:

• ExtEval(σ, ekσ,Mσ, (I
(1)
σ , . . . , I

(ρ)
σ), P) → yσ: On input a party index σ ∈ {0, 1}, an evaluation key

ekσ, a single memory value Mσ, a vector of ρ input values (I
(1)
σ , . . . , I

(ρ)
σ), and an RMS program

P , return a value yσ such that the following holds.

For any security parameter λ ∈ N and any RMS program P , we have:

Pr
[
y0 − y1 = z · P (x(1), . . . , x(ρ))

]
≥ 1− negl(λ) , (1)

where the probability is taken of the choice of (pk, (ek0, ek1))← Setup(1λ), (I
(i)
0 , I

(i)
1)← Input(pk, x(i)),

Mσ ← MemGen(σ, ekσ, z), and yσ ← ExtEval(σ, ekσ,Mσ, (I
(1)
σ , . . . , I

(ρ)
σ), P), for σ ∈ {0, 1}, i ∈ [ρ].

The proof of the above lemma is detailed in the supplementary material in Section B. It essentially
consists in recursively incorporating the memory value Mσ using the standard Eval algorithm by first
multiplying inputs with it.

We now introduce an additional property termed simulatable memory values. Here, we require that
for an input x ∈ I, the memory value of one of the two parties can be generated ahead of time
and without the knowledge of x using a simulation algorithm, while the other memory value can
be generated given the pre-computed first memory value and the exact value of x. This simulation
should not affect the correctness of ExtEval.

Definition 5 (HSS with Simulatable Memory Values). Let HSS = (Setup, Input,MemGen,Eval)
be an HSS following the RMS template as per Definition 4, with input space I over the ring R. We
say that HSS is simulatable with respect to its memory values if there exist algorithms Sim0 and Sim1

such that

• Sim0(1λ)→ M0: on input the security parameter λ outputs a memory value M0.
• Sim1(M0, z, (ek0, ek1))→ M1: on input a memory value M0, an element z ∈ I, and two encoding

keys (ek0, ek1) outputs a memory value M1.

We also require the two following properties:
Simulation Correctness. For any λ ∈ N and any z ∈ I, the above correctness condition (equation 1)
still holds when the memory value is simulated, i.e. when we first sample M0 ← Sim0(1λ) and then
M1 ← Sim1(M0, z, (ek0, ek1)).
Simulation Security. It should be computationally hard to distinguish the two memory values
obtained via the simulation algorithms. That is, for any λ ∈ N and any z ∈ I, we have (z,M0) ≈c
(z,M1) for any (pk, (ek0, ek1))← Setup(1λ), M0 ← Sim0(1λ), and M1 ← Sim1(M, z, (ek0, ek1)).

4.4 Staged Homomorphic Secret Sharing

Finally, we define a new notion termed staged-HSS which is merely extending the idea of HSS
with simulatable memory values to the case where we require the possibility of input values to be
simulatable as well.

Definition 6 (staged-HSS). Let HSS = (Setup,MemGen, Input,Eval) be an HSS scheme following
the RMS template, with input space I over the ring R. We say it is a staged-HSS if there exist
additional algorithms (Input0, Input1), and (Eval0,Eval1) such that:

• Input0(pk)→ (I0, aux): On input a public key pk, return a value I0 and an auxiliary output aux.

• Input1(pk, x, aux, (ek0, ek1)) → I1: On input a public key pk, an input x ∈ I, an auxiliary input
aux, and two encoding keys (ek0, ek1), return a value I1.

• Eval0(ek0, (I
(1)

0 , . . . , I
(ρ)

0), P) → M0: On input an evaluation key ek0, a vector of ρ input values

(I
(1)

0 , . . . , I
(ρ)

0), and a program P , return a memory value M0.

• Eval1(ek1, (I
(1)

1 , . . . , I
(ρ)

1), (x(1), . . . , x(ρ)), P) → M1: On input an evaluation key ek1, a vector of ρ

input values (x(1), . . . , x(ρ)) as well as (I
(1)

1 , . . . , I
(ρ)

1), and a program P , return a memory value
M1.

We further require the two following properties:

Correctness. We would like the outputs of Eval0 and Eval1 to be usable within the extended
evaluation algorithm ExtEval (Lemma 1). Formally, for any λ ∈ N and any two RMS programs
P,Q ∈ P, it should hold that

Pr[y0 − y1 = P (z(1), . . . , z(`)) ·Q(x(1), . . . , x(ρ))] ≥ 1− negl(λ) ,

where

– (pk, (ek0, ek1))← Setup(1λ),

– (Ix
(i)

0 , Ix
(i)

1)← Input(pk, x(i)) for all i ∈ [ρ],

– (I
z(i)

0 , aux(i))← Input0(pk) and I
z(i)

1 ← Input1(pk, z(i), aux(i), (ek0, ek1)) for all i ∈ [`],

– M0 ← Eval0(ek0, (I
z(1)

0 , . . . , I
z(`)

0), P),

– M1 ← Eval1(ek1, (I
z(1)

1 , . . . , I
z(`)

1), (z(1), . . . , z(`)), P),

– yσ ← ExtEval(σ, ekσ, (Mσ, I
x(1)

σ , . . . , Ix
(ρ)

σ), Q), for σ ∈ {0, 1}.

Security. The output of Input1 and Input should be computationally indistinguishable. Formally, for
any λ ∈ N, and any x ∈ I, the two following distributions should be computationally indistinguishable:I1 :

(pk, (ek0, ek1))← Setup(1λ)

(I0, aux)← Input0(pk)

I1 ← Input1(pk, x, aux, (ek0, ek1))


c
≈

{
I1 :

(pk, (ek0, ek1))← Setup(1λ),

(I0, I1)← Input(pk, x)

}
.

Theorem 2. Assuming the hardness of DCR, there exists HSS scheme following the RMS template
which generates simulatable memory values, as well as staged-HSS scheme for the class of RMS
programs.

The above theorem follows from the HSS scheme introduced by Orlandi, Scholl, and Yakoubov in [37]
that supports the class of RMS programs and works under the DCR assumption. In Appendix C,we
show that it satisfies the properties of all the three introduced variants.

5 Constrained Pseudorandom Functions

We now present our two transformations from homomorphic secret sharing to constrained pseudo-
random functions.

5.1 CPRF for Inner-Product from HSS

Our first construction is a 1-key selectively secure constrained pseudorandom function for inner-
product. The space input is Rn for some ring R and n > 0, and a constraint is defined by a vector
z ∈ Rn. A constrained key for a vector z allows to compute the PRF evaluation on input x ∈ Rn
if and only if 〈z,x〉 = 0. Specifically, the class of constraints is {Cz | z ∈ Rn} where the circuit
Cz : Rn → {0, 1} is defined as Cz(x) = 0 if 〈z,x〉 = 0, else 1.

The intuition behind our construction is that the master secret key and the constrained key (for
a vector z) are used to compute, via HSS, a share of 〈x, z〉 ·Fk(x), where k is a PRF key encoded via
the HSS scheme. Then, if 〈x, z〉 = 0, the two evaluations produce substractive shares of 0, i.e. equal
shares, while if 〈x, z〉 6= 0, the shares differ by (a non-zero multiple of) Fk(x). By the security of HSS,
the PRF key k remains hidden to the constrained key owner, hence the actual PRF evaluation (the
value of the share computed from the master secret key) is pseudorandom even given the value of the
second share (which can be computed from the constrained key).

Before diving into our construction, we generalize Lemma 1, stating that not only one can produce
shares of any evaluation of the form z · P (x) given a memory value for z and encoding of x, but of
any linear combination

∑
i α

(i)z(i) · P (x) with known coefficients given memory values for multiple
z(i)’s, i.e. for 〈z,α〉 for a known vector α = (α(1), . . . , α(`)).

Corollary 1. Let HSS = (Setup, Input,MemGen,Eval) be an HSS scheme following the RMS template.
There exists an extended evaluation algorithm LinExtEval:

• LinExtEval(σ, ekσ, (M
(1)
σ , . . . ,M

(`)
σ), (I

(1)
σ , . . . , I

(ρ)
σ), (α(1), . . . , α(`)), P)→ yσ:

On input a party index σ ∈ {0, 1}, an evaluation key ekσ, a vector of ` memory values (M
(1)
σ , . . . ,

M
(`)
σ), a vector of ρ input values (I

(1)
σ , . . . , I

(ρ)
σ), a vector of ` ring elements α(1), . . . , α(`), and an

RMS program P , this algorithm outputs a value yσ such that the following holds.

For any security parameter λ ∈ N, any α(i) ∈ R for i ∈ [`], and any RMS program P , we have:

Pr

[
y0 − y1 =

(∑̀
i=1

α(i) · z(i)
)
· P (x(1), . . . , x(ρ))

]
≥ 1− negl(λ) ,

where the probability is taken over sampling (pk, (ek0, ek1)) ← Setup(1λ), (I
(i)
0 , I

(i)
1) ← Input(pk, x(i)),

M
(j)
σ ← MemGen(σ, ekσ, z

(j)), and over the shares yσ ← LinExtEval(σ, ekσ, (M
(1)
σ , . . . ,M

(`)
σ), (I

(1)
σ , . . . ,

I
(ρ)
σ), (α(1), . . . , α(`)), P), with σ ∈ {0, 1}, j ∈ [`], i ∈ [ρ].

The proof of the above statement follows from Lemma 1 by linearly combining the substractive shares
obtained by applying ExtEval with each memory value.

For a PRF F : K ×Rn → Y with domain Rn and for x ∈ Rn, we denote by F•(x) : K → Y the
function that maps k ∈ K to Fk(x).

We now have all the ingredients for our first construction.

Construction 1 (CPRF for IP from HSS). Let F : K × Rn → Y be a PRF with evaluation
in NC1. Let HSS = (Setup, Input,MemGen,Eval) be a homomorphic secret sharing following the RMS
template with simulatable memory values. We design (KeyGen,Eval,Constrain,CEval) as follows:

KeyGen(1λ):

1. (pk, (ek0, ek1))
$← Setup(1λ).

2. Sample k
$← K for F

3. Run (I0, I1)← Input(pk, k).
4. For i ∈ {1, . . . , n}:

Mi
0 ← Sim0(1λ).

5. msk← ((ek0, I0, (Mi
0)i∈[n]), (ek1, I1))

6. Output pp = pk and msk.

Eval(pp,msk,x):

1. Parse msk as
((ek0, I0, (Mi

0)i∈[n]), (ek1, I1)).
2. Compute y0 ←

LinExtEval(0, ek0, (Mi
0)i∈[n], I0,x, F•(x)).

3. Output y0.

Constrain(msk, z):

1. Parse msk as
((ek0, I0, (Mi

0)i∈[n]), (ek1, I1))
2. Parse z = (z1, . . . , zn).
3. For i ∈ {1, . . . , n}:

Mi
1 ← Sim1(Mi

0, zi, (ek0, ek1))
4. Return ckz = (ek1, I1, (Mi

1)i∈[n]).

CEval(pp, ckz,x):

1. Parse ckz = (ek1, I1, (Mi
1)i∈[n]).

2. Compute y1 ←
LinExtEval(1, ek1, (Mi

1)i∈[n], I1,x, F•(x)).
3. Output y1.

Theorem 3. Assuming F is a secure PRF with evaluation in NC1 and HSS is a secure HSS scheme
following the RMS template with simulatable memory values, then Construction 1 is a selective 1-key,
constraint-hiding, secure CPRF for inner-product.

The proof of Theorem 3 is detailed in Appendix D.1.

Remark 1. In the above construction, we require the PRF range Y to be such that F is pseudorandom
on Zn, for a fixed n < B, where B is the magnitude bound of the RMS programs that the HSS scheme
used in the construction supports. We need to then reduce the outputs of the HSS evaluation algorithm
modulo n by inputting n as the modulus to algorithm Output (See Definition 4). This is used in the
security proof to ensure that masking with a pseudorandom value over Y causes the output to be
pseudorandom.

Corollary 2 (Private CPRF for Inner-Product from DCR). There exist 1-key selectively-
secure, constraint-hiding constrained pseudorandom functions for inner-product assuming the hardness
of DCR.

5.2 CPRF for NC1 from HSS

We now describe CPRF for the class of NC1 constraints. We consider the representation of an NC1

circuit C with input size n = poly(λ) and depth d = O(log n) to be a bit string (C1, . . . , Cz) ∈ {0, 1}z,
where z = poly(n) is the description size. Also, we denote the universal circuit by U(·, ·) that on input
a circuit C ∈ {0, 1}z and x = (x1, . . . , xn) ∈ {0, 1}n, outputs U(C, x) = C(x). Due to the work of
Cooks and Hoover [22], we know that there exists a universal circuit that correctly computes any NC1

circuit and is itself an NC1 circuit.
The strategy for our construction is similar as for inner-product. We aim to obtain substractive

shares U(C, x) ·Fk(x) via the (standard and constrained) evaluation algorithms, where F is a pseudo-
random function with evaluation in NC1, C denotes the constraint, and U denotes the above universal
circuit.

A crucial point is that the master secret key should allow to compute such a share for any input x
independently of the constraint C. Hence, we have to find a way to replace the encoding of C that is
given to the evaluator by oblivious values that guarantee the correctness. In the inner-product case,
where we want shares of 〈x, z〉 · Fk(x), we used simulated memory values as the independent share
of the undetermined constraint z, and programmed the constrained key to guarantee correctness
according to the constraint vector z. However, this technique cannot be applied to the case of NC1

constraints as we are dealing with non-linear evaluations.

The idea is again to use staged-HSS. We first compute a memory for U(C, x) using Eval0 and
Eval1. Then, this memory value is used in the ExtEval algorithm from Lemma 1 to compute a share
of U(C, x) · Fk(x) additionally using an encoding of k.

The important point here, is that inputs of Eval0 can be sampled obliviously using (I0, aux) ←
Input0(pk), and therefore can be sampled during Setup without the knowledge of the constraint C.
Yet, when computing the constrained key for C, the master key owner can use the full knowledge of
C as well as auxiliary information generated during Setup to appropriately compute memory values
for the i-th bit Ci of the description of C, using I1 ← Input1(pk, Ci, aux, (ek0, ek1)). The correctness
of staged-HSS then guarantees the correctness of evaluations, while its security plays a role in the
security proof to remove the need for both evaluation keys when computing I1, therefore allowing to
rely on HSS security to remove the information about the underlying PRF key k.

We now detail our construction. For any x ∈ {0, 1}n, we denote by U(·, x) the circuit that maps
C ∈ {0, 1}z to U(C, x) = C(x) ∈ {0, 1}.

Construction 2 (CPRF for NC1 from HSS). Let F : K × {0, 1}n → Y be a pseudorandom
function with evaluation in NC1, where Y is a finite cyclic group. Let HSS = (Setup,MemGen, Input,
Eval) be a staged homomorphic secret sharing scheme and denote by (Input0, Input1), and (Eval0,Eval1)
the additional algorithms defined in Definition 6. Let ExtEval be the modified evaluation algorithm
as in Lemma 1. We construct a constrained pseudorandom function that supports NC1 constraints as
follows:

• KeyGen(1λ):
- Run (pk, (ek0, ek1))← Setup(1λ).

- Choose a random key k
$←− K for F and compute (I0, I1)← Input(pk, k).

- For i ∈ {1, . . . , z}, compute (I
(i)

0 , aux(i))← Input0(pk).

- Output pp = pk, and msk = ((ek0, ek1, I0, I1), (I
(1)

0 , aux(1), . . . , I
(z)

0 , aux(z))).

• Eval(pp,msk, x):

- Parse pp = pk, and msk = ((ek0, ek1, I0, I1), (I
(1)

0 , aux(1), . . . , I
(z)

0 , aux(z))).

- Run M0 ← Eval0(ek0, (I
(1)

0 , . . . , I
(z)

0), U(·, x)). Here, I
(i)

0 represents the input value of Ci for
i ∈ {1, . . . , z}.

- Run y0 ← ExtEval(0, ek0,M0, I0, F•(x)). Here, M0 denotes the memory value of U(C, x), and
I0 denotes the input value of k.

- Output y0.

• Constrain(msk, C):

- Parse msk = ((ek0, ek1, I0, I1), (I
(1)

0 , aux(1), . . . , I
(z)

0 , aux(z))), and
C = (C1, . . . , Cz) ∈ {0, 1}z.

- For i ∈ {1, . . . , z}, run I
(i)

1 ← Input1(pk, Ci, aux(i), (ek0, ek1)).

- Output ckC = (ek1, I1, (I
(1)

1 , . . . , I
(z)

1), C).

• CEval(pp, ckC , x):

- Parse ckC = (ek1, I1, (I
(1)

1 , . . . , I
(z)

1), C).

- Run M1 ← Eval1(ek1, (I
(1)

1 , . . . , I
(z)

1), (C(1), . . . , C(z)), U(·, x)).

- Run y1 ← ExtEval(1, ek1,M1, I1, F•(x)).

- Output y1.

Theorem 4 (CPRF for NC1 from Staged HSS). Assuming F is a secure pseudorandom function
with evaluation in NC1 and HSS is a secure staged-HSS scheme, Construction 2 is a selective 1-key
secure constrained pseudorandom function for NC1.

The proof of Theorem 4 is detailed in Appendix D.2.

Remark 2. We note that the above construction is not constraint-hiding, since the constrained evalua-
tion algorithm relies on the knowledge of the constraint.

Corollary 3 (CPRF for NC1 from DCR). Assuming the DCR assumption holds, there exist 1-key
selectively-secure constrained pseudorandom functions for NC1 constraints.

Remark 3 (Other Instantiations). Although not explicitly detailed in this work, our transformations
from HSS to CPRF works using either of the schemes from [12] based on the Learning With Errors
(LWE) assumption with super-polynomial modulus, from [1] based on the hardness of Joye-Libert
encryption scheme, from [1] based on the Decisional Diffie-Hellman (DDH) and Decisional Cross-
Group Diffie-Hellman (DXDH) assumptions over class groups, or from [19] based on the Hard Sub-
group Membership (HSM) assumption over class groups. All of the above HSS schemes follow the
same outline as the DCR-based scheme of [37] when generating input and memory values. More
precisely, input values are ciphertexts computed using a PKE scheme, and in all of the mentioned
schemes, the used encryption tool generates ciphertexts that contain a separate part as a commitment
to the encryption randomness which is independent of the underlying plaintext. This feature makes
it feasible to generalize these schemes into staged-HSS schemes and then use it to construct CPRF
for NC1 constraints. These schemes also allow simulation of memory values which enables using the
scheme to construct CPRF for inner-product constraints. This holds since a valid memory value of
these schemes is a subtractive share of a secret vector dependent on the secret key of the used PKE,
thus one share can be sampled obliviously and the other one can be correctly computed given the
secret vector.

Also, using HSS with only polynomial correctness (e.g., the DDH-based scheme of [10]) still yields
CPRFs for polynomial-size domain. This leads to constructions of poly-size domain private CPRFs
for inner-products and CPRFs for NC1 from DDH, and from LWE with polynomial modulus-to-noise
ratio.

6 Applications to Secure Multiparty Computation

In this section, we explore the applications of staged-HSS (defined in Section 4) to secure computation.
We first show how using staged-HSS allows constructing a secure two-party computation protocol
with precomputable silent preprocessing. In this model, one party can perform all of the heavy
preprocessing, not only before the inputs are selected (which can be already achieved by “non-
staged” HSS for RMS programs) but also before knowing the identity of the other party. Next,
we show that the DCR-based construction of staged-HSS (provided in Section C) can be used to
obtain sublinear-communication secure two-party computation with one-sided statistical security.
Our proposal follows the same outline as [10] where the authors showed how HSS for RMS programs
yields secure computation with sublinear communication. Definitions and proofs for this section can
be found in Sections A and E.

We start by introducing the notion of precomputability for pseudorandom correlation functions.
Informally, precomputability enables the first party to generate its key locally before knowing anything

about the second party. The second party’s key is then (securely) computed as a function of the first
key.

In the absence of some form of trusted setup, dishonest-majority secure computation requires
computational assumptions. A popular paradigm (used for instance in [33,25]) is to first have the
parties jointly execute a precomputation phase which is independent of their inputs or the function
they want to compute, in order to distribute correlated randomness, and afterwards, use the computed
correlated randomness in an information-theoretic online phase to perform the secure computation.
Heuristically, this online phase, which is free of any expensive cryptographic operations, can be made
highly efficient. The generation of the correlated randomness in the precomputation phase can be
done via a pseudorandom correlation generator (PCG) [7] or a pseudorandom correlation function
(PCF), whose seeds (in the case of PCG), or keys (in the case of PCF) are generated using generic
(computationally secure) MPC protocol.

Using a precomputable PCF allows the parties to perform the following three-phase MPC protocol:
(1) Alice samples her PCF key, and can perform the expensive PCF evaluation with her key offline to
recover her share of the correlated randomness; (2) Alice and Bob use generic secure computation to
generate Bob’s key, which then allows Bob to evaluate the PCF with his key and recover his share of
the correlated randomness; (3) Alice and Bob perform the information-theoretic phase online, using
their correlated randomness. This allows Alice to perform the brunt of her computation offline, before
any interaction with Bob. This offline phase can be viewed as “party-independent” precomputation,
which is more general than input-independence.

Definition 7 (Precomputable Pseudorandom Correlation Function). Let Y be a reverse-
sampleable correlation with output lengths `0(λ), `1(λ) and let λ ≤ n(λ) ≤ poly(λ) be its input
length. We say that a pseudorandom correlation function (PCF.Gen,PCF.Eval) is precomputable if the
description of PCF.Gen contains the descriptions of two algorithms (PCF.Gen0,PCF.Gen1) such that

• PCF.Gen0(1λ): On input the security parameter λ, returns a key k0 and auxiliary output aux.
• PCF.Gen1(1λ, k0, aux): On input the security parameter λ, a key k0, and an auxiliary input aux,

outputs a key k1.

We also require the following property to hold:
Precomputability. For any security parameter λ ∈ N, the two following distributions are computa-
tionally indistinguishable:

{
(k0, k1) : (k0, k1)← PCF.Gen(1λ)

}
c
≈

{
(k0, k1) :

(k0, aux)← PCF.Gen0(1λ)

k1 ← PCF.Gen1(1λ, k0, aux)

}
.

Remark 4 (Design Choices for Definition 7).

– Syntax. Because we want the statement “a precomputable PCF is a PCF” to be formally true, we
define a PCF as a pair (PCF.Gen,PCF.Eval), and not as a triple (PCF.Gen0,PCF.Gen1,PCF.Eval).
In practice however, a precomputable PCF is more convenient to describe as such a triple, with
PCF.Gen implicitly understood to be defined by: On input 1λ, compute (k0, aux)← Gen0(1λ) then
k1 ← Gen1(1λ, k0, aux), and output (k0, k1).

– Computational Indistinguishability. A potentially inconvenient downside of only requiring compu-
tational indistinguishability in “precomputability” is that a precomputable PCF might be (N,B,
ε)-secure, but “replacing Gen with Gen0 and Gen1” might incur a security loss and yield a PCF
which is only (N,B, ε + ε′)-secure. However, since we will never consider such precise notions of
security, this will not be an issue in this paper.

– Privately Precomputable PCF. To be precise, the definition of precomputability actually captures
the stronger notion of private precomputability, in that it is computationally hard to determine
whether keys are generated together using Gen, or one after the other, using Gen0 and Gen1.

Below, we provide a construction of precomputable PCF for OLE correlations from staged-HSS,
and using a pseudorandom function. Given an input, first, each party samples a PRF key and sets
the first half of the correlated pair to be the value of the PRF on the input. Next, to generate
the additive shares of the product of these two values, they use staged-HSS. Here, we require the
staged-HSS scheme to generate shares that are individually pseudorandom given the input, and in
Lemma 2 we show that this can be assumed without loss of generality. This is because the property

“pseudorandom R-OLE-correlated outputs” for a PCF, which can be seen as a form of correctness
property, essentially requires that the PCF outputs not only valid OLE tuples but also pseudorandom
ones from the view of an external adversary.

Lemma 2 (HSS with Pseudorandom Outputs). Denote by P a class of programs defined over
a ring R, with input space I ⊆ R. Assuming the existence of one-way functions, any HSS scheme
for P can be modified in such a way that each output share is pseudorandom to an external adversary
given only the input (but neither input share).

Formally, assuming the existence of an HSS scheme HSS = (Setup, Input,Eval,Rec) for P, there
exists an HSS scheme HSS′ = (Setup′, Input′,Eval′,Rec′) for P such that:

∀σ ∈ {0, 1},∀(P : R → Y) ∈ P,∀x ∈ R :(x, yσ) :

(pk, (ek0, ek1))← Setup′(1λ)

(I0, I1)← Input′(x)

yσ ← Eval′(σ, ekσ, Iσ, P)


c
≈ {(x, r) : r

$← Y} .

Moreover, if HSS has additive reconstruction, then so does HSS′, and if HSS is a staged-HSS
scheme, then HSS′ is also a staged-HSS.

Construction 3 (Precomputable & Programmable PCF for OLE). Let F : K × I →
Y be a pseudorandom function with evaluation in NC1, where I,Y are finite rings. Let HSS =
(Setup,MemGen, Input,Eval) be a staged homomorphic secret sharing scheme and denote by (Input0,
Input1), and (Eval0,Eval1) the additional algorithms defined in Definition 6. Let ExtEval be the
modified evaluation algorithm as in Lemma 1. Our PCF works as follows:

• PCF.Gen(1λ):
- Run (k0, aux)← PCF.Gen0(1λ).

- Run k1 ← PCF.Gen1(1λ, k0, aux).

- Output (k0, k1).

• PCF.Gen0(1λ):
- Run (pk, ek0, ek1)← HSS.Setup(1λ).

- Sample k
(0)
prf

$← K, and compute (I0, I1)← HSS.Input(pk, k
(0)
prf).

- Run (I0, aux′)← HSS.Input0(pk).

- Output k0 = (ek0, I0, I0, k
(0)
prf), and aux = (aux′, ek1, I1).

• PCF.Gen1(1λ, k0, aux):

- Parse k0 = (ek0, I0, I0, k
(0)
prf), and aux = (aux′, ek1, I1).

- Sample k
(1)
prf

$← K, and compute I1 ← HSS.Input1(pk, k
(1)
prf , aux′).

- Output k1 = (ek1, I1, I1, k
(1)
prf).

• PCF.Eval(σ, kσ,x):

- Parse kσ = (ekσ, Iσ, Iσ, k
(σ)
prf).

- If σ = 0, then
∗ Run Mσ ← HSS.Eval0(ekσ, Iσ, F•(x)).

Else if σ = 1,

∗ Run Mσ ← HSS.Eval1(ekσ, Iσ, k
(σ)
prf , F•(x)).

- Run yσ ← HSS.ExtEval(ekσ, (Mσ, Iσ), f(x)), with f(x) defined as f(x) : (k(0), k(1)) 7→ Fk(0)(x)·
Fk(1)(x).

- Output (F
k
(σ)
prf

(x), yσ).

Theorem 5. Let R be a finite ring. Assuming F is a secure pseudorandom function with evaluation
in NC1 and HSS is a secure staged-HSS scheme, Construction 3 is a two-party precomputable PCF
for OLE correlations over R. Furthermore, this PCF is programmable.

The proof of Theorem 5 is provided in Appendix E.1. By combining Theorems 2 and 5, we get
Corollary 4.

Corollary 4 (Precomputable PCF for R-OLE from DCR). Assuming the DCR assumption
holds, there exists a two-party precomputable pseudorandom correlation function (as per Definition 7)
for the R-OLE correlation.

Corollary 5 (From OLE to Low-Degree Correlations). Assuming the existence of (one-way
functions and of) staged-HSS supporting the class of RMS programs, there exists a two-party precom-
putable PCF (Definition 7) for low-degree correlations (Definition 13). In particular, such a PCF
exists under the DCR assumption.

6.1 Sublinear Computation with One-Sided Statistical Security

Most constructions of two-party HSS for super-constant depth circuits can be used in a non black-box
way to build two-party secure computation with an amount of communication which is sublinear in
(or even independent of) the circuit-size: if the input share generation algorithm is simple enough to
be securely distributed with low communication, the parties need to only run the evaluation algorithm
locally, then reconstruct the output.

In the FHSS
update-Hybrid Model. The main component (apart from the HSS scheme itself) in building

sublinear secure computation from HSS is the low-communication distributed share generation.
When using staged-HSS, the first party can simply sample its share locally, so the hard part is
updating the second party so they can receive their share too. We formalize this task in Figure 1
as the ideal functionality FHSS

update. We prove in Lemma 3 that there exists sublinear two-party secure
computation, provided this step can be performed with one-sided statistical security and with low-
enough communication.

Functionality FHSS
update

The functionality is parameterized with a staged-HSS scheme staged-HSS =
(staged-HSS.Setup, staged-HSS.Input, staged-HSS.MemGen, staged-HSS.Eval).

Input: Wait to receive (share, staged-HSS.pk, I0, aux) from P0 and (input, x1) from P1.
Output: Compute I1 ← staged-HSS.Input1(staged-HSS.pk, x1, aux); output (staged-HSS.pk, I1)
to P1.

Fig. 1. Ideal functionality FHSS
update, parameterized by a staged-HSS scheme, for generating the second input

share given the first, precomputed, one.

Functionality FSFE(C)

The functionality is parameterised with an arithmetic circuit C : Rn0 ×Rn1 → Rm over a finite
field F.

Input: Wait to receive (input, σ, xσ) from each party Pσ (σ ∈ {0, 1}), where xσ ∈ Fnσ , and set
~x← (x0, x1).

Output: Compute ~y ← C(~x); Sample ~y0
$← Rm; Set ~y1 ← ~y − ~y0; Output ~y0 to P0 and ~y1 to

P1.

Fig. 2. Ideal functionality FSFE(C) for the two-party secure evaluation of an arithmetic circuit C.

Protocol ΠC

Parties: Alice and Bob
Parameters: The protocol is parameterized with:

– C : Fn0 × Fn1 → Fm is an arithmetic circuit over finite field F.
– HSS = (HSS.Setup,HSS.Input,HSS.MemGen,HSS.Eval) is a staged-HSS scheme with

pseudorandom shares supporting the class of RMS programs over F (seen as a ring).
We denote the staged input and evaluation algorithms by (HSS.Input0,HSS.Input1) and
(HSS.Eval0,HSS.Eval1). Let HSS.ExtEval be defined as in Lemma 1.

– F (·, ·) is a PRF in NC1 with domain {0, 1}λ, key space {0, 1}λ, and range Fn1 .

Hybrid Model: The protocol is defined in the FHSS
update-hybrid model.

Input: Alice holds x0 ∈ Fn0 and Bob holds x1 ∈ Fn1 .
The Protocol:

Alice’s precomputation phase. Alice does the following:
1. K

$← {0, 1}λ
2. (HSS.pk, ek0, ek1)← HSS.Setup(1λ)
3. (I0, aux)← HSS.Input0(HSS.pk)
4. (I0, I1)← HSS.Input(1λ,K)

5. α
$← {0, 1}λ, cin ← x0 + F (K,α), and rout

$← Fm
6. M0 ← HSS.Eval(ek0, I0, F (·, α))
7. y0 ← HSS.ExtEval(ek0, (M0, I0), fα,cin),

where fα,cin : (X,Y) 7→ C(cin − F (X,α), Y)

Online phase.
8. Alice sends (ek1, I1, cin, α, rout) to Bob, who waits to receive it.
9. Alice sends (share,HSS.pk, I0, aux) to FHSS

update;

Bob sends (input, x1) to FHSS
update, and waits to receive (HSS.pk, I1) from FHSS

update.
Bob’s computation phase. Bob does the following:
1. M1 ← HSS.Eval(ek1, I1, F (·, α))
2. y1 ← HSS.ExtEval(ek1, (M1, I1), fα,cin),

where fα,cin : (X,Y) 7→ C(cin − F (X,α), Y)

Output phase. Alice outputs y′0 ← y0 + rout; Bob outputs y′1 ← y1 − rout.

Fig. 3. (Sublinear) Secure Two-Party Computation with One-Sided Statistical Security from staged-HSS
Supporting the Class of RMS Programs.

Lemma 3 (Secure Computation with One-Sided Statistical Security in the FHSS
update-hybrid

model). Let C : Fn0 × Fn1 → Fm be an arithmetic circuit over a finite field F. Let staged-HSS be a
staged-HSS scheme with pseudorandom shares supporting the class of RMS programs over F (seen as
a ring).

The protocol ΠC provided in Figure 3 UC-securely implements the two-party functionality FSFE(C)
in the FHSS

update-hybrid model, against a passive adversary statically corrupting at most one of the parties,

with perfect security against Alice, and computational security against Bob. The protocol uses λO(1) +
(n1 +m) · log |F| bits of communication.

Instantiating FHSS
update under DCR. We now show how to instantiate FHSS

update for construction of
staged-HSS from DCR (Construction 4). This instantiation is non black-box in the HSS scheme, and
uses a combination of the Paillier-ElGamal encryption scheme, which is provably semantically secure
under DCR, and oblivious linear evaluation (OLE) with one-sided statistical security, which is known
from DCR.

Functionality FOLE

The functionality FOLE for (batch) oblivious linear evaluation is parameterized by a finite field
F, and interacts with two parties P0 and P1.

Input: Wait to receive (input, 0,u = (u1, . . . , us)) (where u1, . . . , us ∈ F) from P0 and
(input, 1,v = (v1, . . . , vt)) (where v1, . . . , vt ∈ F) from P1.

Output: Compute z ← (ui · vj)i∈[s],j∈[t], sample z0
$← Fs·t, set z1 ← z − z0; Output zσ to Pσ

for σ ∈ {0, 1}.

Fig. 4. Ideal functionality FOLE for (batch) oblivious linear evaluation.

Protocol ΠHSS
update

Parties: Alice and Bob.
Parameters: F2λ is an exponential-size finite field; n1 is an input size. staged-HSS is the
staged-HSS scheme of Construction 4, instantiated from Paillier-ElGamal. The Paillier-ElGamal
cryptosystem itself is parameterized by GenPQ, an algorithm that on input 1λ, generates
(N = p · q, p, q), where p and q are `(λ)-bit primes where ` : N? → N? is a function such
that ∀κ ∈ N?, `(κ) ≥ 1.5κ. Bsk := 22`(λ)−2 log |F| is the base for the decomposition of the secret
key into digits; s := 2`(λ) + 2 log |F| is the number of cyphertexts needed to encrypt the secret

key; t := dn1 log |F|
2`(λ) e.

Hybrid Model: The protocol is defined in the FOLE-hybrid model.

Input: Alice holds (HSS.pk, I0, aux) and Bob holds x1 = (x
(1)
1 , . . . , x

(t)
1) ∈ Rn1 ≈ [N]t.

The Protocol:

1. Alice does the following:
– Parse HSS.pk = (pkPaillierEG, D

(0), . . . , D(s−1))
// D(j) is a Paillier-ElGamal encryption under pk of the jth digit of the secret key in
base Bsk

– Parse I0 = (ctind, (ct
(i,j)
ind)(i,j)∈[t]×[s+1])

// ctind is of the form gr, and ct
(i,j)
ind is of the form gri,j

– Parse aux = (gr, pkrPaillierEG, (g
ri,j)(i,j)∈[t]×[s+1], (pk

ri,j
PaillierEG)(i,j)∈[t]×[s+1])

// pkPaillierEG = gskPaillierEG mod N2

2. Alice sends (N, pkPaillierEG, ctind) to Bob

3. Alice sends (input, 0, (1‖d)) to FOLE and waits to receive y(0) = (y
(0)
i,j)(i,j)∈[t]×[s+1];

Bob sends (input, 1, x1) to FOLE and waits to receive y(1) = (y
(1)
i,j)(i,j)∈[t]×[s+1].

// Adding the digit 1 to the secret key d condenses the notations of the encryption of the
input alone, and those of the input times each digit of the secret key, as x ·(1, d0, . . . , ds−1) =
(x, x · d0, . . . , x · ds−1).

4. Alice does the following:

For each (i, j) ∈ [t]× [s+ 1], ci,j ← (1 +N)y
(0)
i,j · hri,j

5. Alice sends c = (ci,j)(i,j)∈[t]×[s+1] to Bob, who waits to receive it.

6. Bob sets ctdep ← (ci,j · (1 +N)y
(1)
i,j)(i,j)∈[t]×[s+1] and outputs I1 ← (ctind, ctdep).

Fig. 5. Protocol for securely realizing FHSS
update under the circular security of the Paillier-ElGamal cryptosystem.

Lemma 4 (Instantiating Lemma 3 under DCR). Let HSS be the staged-HSS scheme of Construc-
tion 4. Assuming the DCR assumption holds, the protocol ΠHSS

update provided in Figure 5 UC-securely

implements the two-party functionality FHSS
update in the FOLE-hybrid model, against a passive adversary

statically corrupting at most one of the parties, with perfect security against Alice and Bob. The
protocol uses O(λ · n1) bits of communication.

We then obtain our final claim.

Theorem 6 (Computation for NC1 with Circuit-Independent-Communication and One-
Sided Statistical Security from Circular Security of Paillier-ElGamal). Let C be an RMS
program with n = n0 + n1 inputs and m outputs over F2λ . Assuming DCR and the circular security
of the Paillier-ElGamal encryption scheme, there exists a protocol that UC-securely implements the
two-party functionality FSFE(C), against a passive adversary that statically corrupts at most one of the
parties, with perfect security against a corrupted Alice, and computational security against a corrupted
Bob. The protocol uses λO(1) +O((n+m) · log |F|) bits of communication.

Proof. The proof follows from a combination of Lemmas 3 and 4, as well as a linear-communication
protocol for F2λ -OLE (which we batch “naively” in order to instantiate FOLE, which in fact corresponds
to t · (s+ 1)-batch OLE). Such a protocol is folklore, and can be achieved e.g. by using Gilboa’s [28]
information-theoretic reduction of OLE to string-OT and OT-extension [32,2].

Acknowledgments. We thank the anonymous reviewers of Eurocrypt 2023 for their comments.
Geoffroy Couteau was supported by the French ANR SCENE (ANR-20-CE39-0001) and by the France
2030 ANR Project ANR-22-PECY-003 SecureCompute. Pierre Meyer was supported by ERC Project
HSS (852952). Alain Passelègue and Mahshid Riahinia were supported by the French ANR RAGE
project (ANR-20-CE48-0011) and the France 2030 ANR Project ANR-22-PECY-003 SecureCompute.

References

1. Abram, D., Damg̊ard, I., Orlandi, C., Scholl, P.: An algebraic framework for silent preprocessing with
trustless setup and active security. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV. LNCS,
vol. 13510, pp. 421–452. Springer, Heidelberg (Aug 2022). https://doi.org/10.1007/978-3-031-15985-5˙15

2. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer extensions. Journal
of Cryptology 30(3), 805–858 (Jul 2017). https://doi.org/10.1007/s00145-016-9236-6

3. Attrapadung, N., Matsuda, T., Nishimaki, R., Yamada, S., Yamakawa, T.: Constrained PRFs for NC1 in
traditional groups. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp.
543–574. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-96881-0˙19

4. Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K., Stevens, S.: Key-homomorphic constrained
pseudorandom functions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp.
31–60. Springer, Heidelberg (Mar 2015). https://doi.org/10.1007/978-3-662-46497-7˙2

5. Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately. In: Fehr, S.
(ed.) PKC 2017, Part II. LNCS, vol. 10175, pp. 494–524. Springer, Heidelberg (Mar 2017).
https://doi.org/10.1007/978-3-662-54388-7˙17

6. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar,
P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (Dec 2013).
https://doi.org/10.1007/978-3-642-42045-0˙15

7. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation
generators: Silent OT extension and more. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part III. LNCS, vol. 11694, pp. 489–518. Springer, Heidelberg (Aug 2019). https://doi.org/10.1007/978-
3-030-26954-8˙16

8. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Correlated pseudorandom functions
from variable-density LPN. In: 61st FOCS. pp. 1069–1080. IEEE Computer Society Press (Nov 2020).
https://doi.org/10.1109/FOCS46700.2020.00103

9. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrù, M.: Homomorphic secret sharing: Optimizations
and applications. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp.
2105–2122. ACM Press (Oct / Nov 2017). https://doi.org/10.1145/3133956.3134107

10. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure computation under DDH. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg
(Aug 2016). https://doi.org/10.1007/978-3-662-53018-4˙19

11. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In:
Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (Mar 2014).
https://doi.org/10.1007/978-3-642-54631-0˙29

12. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without FHE. In: Ishai, Y.,
Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 3–33. Springer, Heidelberg (May
2019). https://doi.org/10.1007/978-3-030-17656-3˙1

https://doi.org/10.1007/978-3-031-15985-5_15
https://doi.org/10.1007/s00145-016-9236-6
https://doi.org/10.1007/978-3-319-96881-0_19
https://doi.org/10.1007/978-3-662-46497-7_2
https://doi.org/10.1007/978-3-662-54388-7_17
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1109/FOCS46700.2020.00103
https://doi.org/10.1145/3133956.3134107
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-030-17656-3_1

13. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under subgroup
indistinguishability - (or: Quadratic residuosity strikes back). In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 1–20. Springer, Heidelberg (Aug 2010). https://doi.org/10.1007/978-3-642-14623-7˙1

14. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs (and more) from LWE.
In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 264–302. Springer, Heidelberg
(Nov 2017). https://doi.org/10.1007/978-3-319-70500-2˙10

15. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from standard lattice
assumptions - or: How to secretly embed a circuit in your PRF. In: Dodis, Y., Nielsen,
J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (Mar 2015).
https://doi.org/10.1007/978-3-662-46497-7˙1

16. Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem with a double trapdoor
decryption mechanism and its applications. In: Laih, C.S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp.
37–54. Springer, Heidelberg (Nov / Dec 2003). https://doi.org/10.1007/978-3-540-40061-5˙3

17. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press (Oct 2001).
https://doi.org/10.1109/SFCS.2001.959888

18. Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC1 from LWE. In: Coron, J.S., Nielsen,
J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 446–476. Springer, Heidelberg (Apr / May
2017). https://doi.org/10.1007/978-3-319-56620-7˙16

19. Castagnos, G., Laguillaumie, F., Tucker, I.: Threshold linearly homomorphic encryption on z/2kz.
Cryptology ePrint Archive (2022)

20. Chaum, D.: The spymasters double-agent problem: Multiparty computations secure unconditionally from
minorities and cryptographically from majorities. In: Brassard, G. (ed.) CRYPTO’89. LNCS, vol. 435,
pp. 591–602. Springer, Heidelberg (Aug 1990). https://doi.org/10.1007/0-387-34805-0˙52

21. Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching programs: Proofs, attacks,
and candidates. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp.
577–607. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-96881-0˙20

22. Cook, S.A., Hoover, H.J.: A depth-universal circuit. SIAM J. Comput. 14(4), 833–839 (1985).
https://doi.org/10.1137/0214058, https://doi.org/10.1137/0214058

23. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure
public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer,
Heidelberg (Apr / May 2002). https://doi.org/10.1007/3-540-46035-7˙4

24. Damg̊ard, I., Groth, J., Salomonsen, G.: The Theory and Implementation of an Electronic Voting System,
pp. 77–99. Springer US, Boston, MA (2003). https://doi.org/10.1007/978-1-4615-0239-5˙6, https://doi.
org/10.1007/978-1-4615-0239-5_6

25. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from somewhat homomorphic
encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662.
Springer, Heidelberg (Aug 2012). https://doi.org/10.1007/978-3-642-32009-5˙38

26. Davidson, A., Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Adaptively secure constrained
pseudorandom functions in the standard model. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020,
Part I. LNCS, vol. 12170, pp. 559–589. Springer, Heidelberg (Aug 2020). https://doi.org/10.1007/978-3-
030-56784-2˙19

27. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM
STOC. pp. 169–178. ACM Press (May / Jun 2009). https://doi.org/10.1145/1536414.1536440

28. Gilboa, N.: Two party RSA key generation. In: Wiener, M.J. (ed.) CRYPTO’99. LNCS, vol. 1666, pp.
116–129. Springer, Heidelberg (Aug 1999). https://doi.org/10.1007/3-540-48405-1˙8

29. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (extended
abstract). In: 25th FOCS. pp. 464–479. IEEE Computer Society Press (Oct 1984).
https://doi.org/10.1109/SFCS.1984.715949

30. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for
protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC. pp. 218–229. ACM Press (May 1987).
https://doi.org/10.1145/28395.28420

31. Hofheinz, D., Kamath, A., Koppula, V., Waters, B.: Adaptively secure constrained pseudorandom
functions. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp. 357–376. Springer, Heidelberg
(Feb 2019). https://doi.org/10.1007/978-3-030-32101-7˙22

32. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh,
D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (Aug 2003).
https://doi.org/10.1007/978-3-540-45146-4˙9

33. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer - efficiently. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (Aug 2008).
https://doi.org/10.1007/978-3-540-85174-5˙32

https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-540-40061-5_3
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-319-56620-7_16
https://doi.org/10.1007/0-387-34805-0_52
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1137/0214058
https://doi.org/10.1137/0214058
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-1-4615-0239-5_6
https://doi.org/10.1007/978-1-4615-0239-5_6
https://doi.org/10.1007/978-1-4615-0239-5_6
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-030-56784-2_19
https://doi.org/10.1007/978-3-030-56784-2_19
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/978-3-030-32101-7_22
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-85174-5_32

34. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions
and applications. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013. pp. 669–684. ACM
Press (Nov 2013). https://doi.org/10.1145/2508859.2516668

35. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju, S.R. (ed.) 12th SODA. pp.
448–457. ACM-SIAM (Jan 2001)

36. Naor, M., Reingold, O., Rosen, A.: Pseudo-random functions and factoring (extended abstract). In: 32nd
ACM STOC. pp. 11–20. ACM Press (May 2000). https://doi.org/10.1145/335305.335307

37. Orlandi, C., Scholl, P., Yakoubov, S.: The rise of paillier: Homomorphic secret sharing and public-key
silent OT. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp.
678–708. Springer, Heidelberg (Oct 2021). https://doi.org/10.1007/978-3-030-77870-5˙24

38. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern,
J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (May 1999).
https://doi.org/10.1007/3-540-48910-X˙16

39. Peikert, C., Shiehian, S.: Privately constraining and programming PRFs, the LWE way. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 675–701. Springer, Heidelberg (Mar 2018).
https://doi.org/10.1007/978-3-319-76581-5˙23

40. Roy, L., Singh, J.: Large message homomorphic secret sharing from DCR and applications. In: Malkin, T.,
Peikert, C. (eds.) CRYPTO 2021, Part III. LNCS, vol. 12827, pp. 687–717. Springer, Heidelberg, Virtual
Event (Aug 2021). https://doi.org/10.1007/978-3-030-84252-9˙23

https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/335305.335307
https://doi.org/10.1007/978-3-030-77870-5_24
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-319-76581-5_23
https://doi.org/10.1007/978-3-030-84252-9_23

Supplementary Material

A Additional Definitions

A.1 Decision Composite Residuosity Assumption

The DCR Assumption. Let SampleModulus be a polynomial-time algorithm that on input the security
parameter λ, outputs (N, p, q), where N = pq for λ-bit primes p and q.

Definition 8 (Decision Composite Residuosity assumption, [38]). Let λ be the security
parameter. We say that the Decision Composite Residuosity (DCR) problem is hard relative to

SampleModulus if (N, x) ≈c (N, xN) where (N, p, q)
$←− SampleModulus(1λ), x

$←− Z∗N2 , and xN is
computed modulo N2.

Note that Z∗N2 can be written as a product of subgroups H×NRN , where H = {(1+N)i : i ∈ [N]}
is of order N , and NRN = {xN : x ∈ Z∗N2} is the subgroup of N -th residues that has order φ(N).

Circular-Secure Paillier Cryptosystem. We also recall the circular-secure Paillier cryptosystem
presented by Brakerski and Goldwasser in [13] which is introduced as a circular-secure version of
Paillier encryption [38]. The security of the scheme follows from the DCR assumption. The scheme is
parameterized by ` ∈ N that is polynomial in the security parameter λ.

BG.KeyGen(1λ):
1. Sample (N, p, q)← SampleModulus(1λ).

2. Sample g = (g0, . . . , g`−1)
$←− NR`N .

3. Sample d = (d(0), . . . , d(`−1))
$←− {0, 1}`.

4. Compute ĝ =
`−1∏
i=0

gd
(i)

i (mod N2).

5. Output pk = (N,g, ĝ) and sk = d.

BG.Enc(pk, x):

1. Sample r
$←− ZN .

2. Compute and output ct = (gr0, . . . , g
r
`−1, ĝ

r · (1 +N)x).

BG.Dec(sk, ct)
1. Parse ct = (c0, . . . , c`−1, ĉ).

2. Compute c̄ = (
`−1∏
i=0

c−d
(i)

i) · ĉ(mod N2).

3. Compute and output x = (c̄− 1)/N .

Paillier-ElGamal Cryptosystem. The Paillier-ElGamal cryptosystem [23,24,16] is defined by
following triple (PaillierEG.Gen,PaillierEG.Enc,PaillierEG.Dec), and boils down to using the ElGamal
cryptosystem over the group (Z?N2 ,×) where N is a Blum integer of the form N = pq, where p and q
are primes:

PaillierEG.Gen(1λ):

1. Sample g′
$← [N2]

2. Set g ← (g′)2N mod N2

3. Sample d
$← [N2]

4. Output (pk = gd mod N2, sk = d)

PaillierEG.Enc(pk, x):

1. Sample r
$← N

2. Output ct = (gr, pkr · (1 +N)x)

PaillierEG.Dec(sk, ct = (ct0, ct1)):
1. Set ct′ ← ct1 · (ct0)−d mod N2

2. Output x = ct′−1
N

Assuming the DCR assumption (Definition 8), the Paillier-ElGamal cryptosystem is semantically
secure. Observe that Paillier-ElGamal is a special case of the circular-secure Paillier cryptosystem of
[13], where ` = 1 (where ` is defined as in the previous paragraph). If we wish to encrypt (digits of)
the secret key under Paillier-ElGamal however, we will need to assume the circular security of the
Paillier-ElGamal encryption scheme.

A.2 Pseudorandom Functions (PRFs)

We first recall the Real-or-Random security notion of a pseudorandom function.

Definition 9 (Real-or-Random Security). Let λ be a security parameter. A function F : K×X →
Y is called a secure pseudorandom function if it is efficiently computable and for any PPT adversary
A, the following holds:∣∣∣Pr

[
AF (k,·)(1λ) = 1

∣∣∣k $←− K
]
− Pr

[
ARF (·)(1λ) = 1

∣∣∣RF $←− F
]∣∣∣ = negl(λ),

where F is the set of all functions with domain X and range Y.

Next, we recall the Find-and-Guess security of a pseudorandom function which is equivalent to
the Real-or-Random security up to a multiplicative gap of O(Q) between the advantage functions,
where Q is the number of evaluation queries.

Definition 10 (Find-then-Guess Security). Let λ be a security parameter. A function F : K ×
X → Y is called a secure pseudorandom function if it is efficiently computable and the advantage of
any PPT adversary A in the following game is negligible:

- Setup. The challenger chooses a random key k
$←− K and a random bit b

$←− {0, 1}, and initializes
a set S = ∅.

- Pre-Challenge Evaluation Queries. A adaptively sends arbitrary inputs x ∈ X to the
challenger. The challenger computes and returns Fk(x) to A. It also updates S ← S ∪ {x}.

- Challenge Phase. A sends an input x∗ ∈ X as its challenge query to the challenger with the
restriction that x∗ /∈ S. If b = 0, then the challenger computes y∗ ← Fk(x∗). If b = 1, then the

challenger samples a random element y∗
$←− Y. It then returns y∗ to A.

- Post-Challenge Evaluation Queries. A continues sending arbitrary inputs x ∈ X to the
challenger with the restriction that x 6= x∗, and receives Fk(x).

- Guess. A outputs a bit b′ ∈ {0, 1}.

A wins if b′ = b.

A.3 Pseudorandom Correlation Function

Definition 11 (Reverse-Sampleable Correlation). Let 1 ≤ `0(λ), `1(λ) ≤ poly(λ) be output-
length functions. Let Y be a probabilistic algorithm that, on input 1λ, returns a pair of outputs
(y0, y1) ∈ {0, 1}`0(λ) × {0, 1}`1(λ), defining a correlation on the outputs.

We say that Y defines a reverse-sampleable correlation if there exists a probabilistic polynomial
time algorithm RSample which takes as input 1λ, σ ∈ {0, 1}, and yσ ∈ {0, 1}`σ(λ), and outputs

y
`1−σ(λ)
1−λ , such that for all σ ∈ {0, 1} the following distributions are statistically close:

{(y0, y1) : (y0, y1)
$← Y(1λ)} and {(y0, y1) : (y′0, y

′
1)

$← Y(1λ), yσ ← y′σ, y1−σ ← RSample(1λ, σ, yσ)} .

Definition 12 (OLE Correlation). Let R be a finite ring. An OLE correlation over R can be

defined as being sampled as a pair (a, c0) and (b, c1), where a, b, c0
$← R and c1 ← (ab− c0). In other

words, each half of the correlation consists of a random ring element, a and b respectively, paired
with an additive secret share of the product ab.

Remark 5 (Remarks on OLE Correlations).

– An OLE Correlation is reverse-sampleable. Indeed, observe that the reverse-sampling can be
performed as follows. RSample(1σ, σ, yσ) : Sample a random α

$← R, set β ← (yσ.first · α −
yσ.second) and output (α, β).

– An OLE over F2 is a 1-out-of-2 bit-OT. A 1-out-of-2 bit-OT correlation can be defined as being
sampled as a pair (m0,m1) and (σ,mσ), where (m0,m1) are the OT sender’s random messages in
{0, 1}, and σ is the random choice bit given to the receiver. This notion is essentially equivalent
to an OLE correlation over F2 in that there exists a silent (i.e. “communication-free”) procedure
which allows two parties to convert their halves of a sample from one correlation to halves of a
sample from the other.

• From (m0,m1) and (σ,mσ) to (a, c0) and (b, c1): Assuming Alice and Bob have access to
pairs (m0,m1) and (σ,mσ), they can set a← (m1 −m0), c0 ← −m0, b← σ, c1 ← mσ.

• From (a, c0) and (b, c1) to (m0,m1) and (σ,mσ): Assuming Alice and Bob have access to
pairs (a, c0) and (b, c1), they can set m0 ← −c0, m1 ← a − c0, σ ← b. Note that Bob can
“set” mσ ← c1 and have this value correctly satisfy mσ = σ ·m1 + (1− σ) ·m0 (i.e. mσ = m0

if σ = 0 and mσ = m1 if σ = 1).

In particular, this local conversion procedure implies that the existence of a PCG (resp. PCF)
for the first form of OT correlations is equivalent to the existence of a PCG (resp. PCF) for the
second.

– Oblivious Linear Evaluation. An OLE correlation can be seen as giving one side the coefficients
(a,−c0) of a random linear function over R and the other side its evaluation on a random point
b, as c1 = a · b+ (−c0) .

Definition 13 (Constant-Degree Additive Correlations). Let R be a finite ring. A degree-d
correlation over R, parameterized by some tuple (Q1, . . . , Qm) of (n = nA + nB)-variate degree-d

polynomials can be defined as being sampled as a pair (~rA, ~sA) and (~rB , ~sB), where ~rA
$← RnA ,

~rB
$← RnB , ~sA

$← Rm and ~sB ← ((Q1(~rA, ~rB), . . . , Qm(~rA, ~rB)) − ~sA) ∈ Rm. In other words, each
half of the correlation consists of a random vector, ~rA and ~rB respectively, paired with an additive
secret share of the evaluations of the Qj(~rA, ~rB) for j ∈ [m].

As noted in [7], the reverse-sampling of additive correlations over a finite abelian group, such as
that of Definition 13, is well-defined and computationally efficient.

Definition 14 (Pseudorandom Correlation Function (PCF), [8]). Let Y be a reverse-samplea-
ble correlation with output length functions `0(λ), `1(λ) and let λ ≤ n(λ) ≤ poly(λ) be an input
length function. Let (PCF.Gen,PCF.Eval) be a pair of algorithms with the following syntax:

– PCF.Gen(1λ) is a probabilistic polynomial time algorithm that on input 1λ, outputs a pair of keys
(k0, k1); we assume that λ can be inferred from the keys.

– PCF.Eval(σ, kσ, x) is a deterministic polynomial time algorithm that on input σ ∈ {0, 1}, key kσ
and input value x ∈ {0, 1}n(λ), outputs a value yσ ∈ {0, 1}`σ(λ).

We say that (PCF.Gen,PCF.Eval) is an (N,B, ε)-secure pseudorandom correlation function (pre-PCF)
for Y, if the following conditions hold:

– Pseudorandom Y-correlated outputs. For every non-uniform adversary A of size B(λ), it
holds that for all sufficiently large λ,

|Pr[Exppr
A,N,0(λ) = 1]− Pr[Exppr

A,N,1(λ) = 1]| ≤ ε(λ)

where Exppr
A,N,b (b ∈ {0, 1}) is defined as in Figure 6. In particular, the adversary is given access

to N(λ) samples.

Experiment Pseudorandom Correlated Outputs

Exppr
A,N,0(λ) :

For i = 1, . . . , N(λ) :

x(i)
$← {0, 1}n(λ)

(y
(i)
0 , y

(i)
1)←↩ Y(1λ)

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1)i∈[N(λ)])

Output b

Exppr
A,N,1(λ) :

(k0, k1)← PCF.Gen(1λ)
For i = 1, . . . , N(λ) :

x(i)
$← {0, 1}n(λ)

for σ ∈ {0, 1}, y(i)σ ← PCF.Eval(σ, kσ, x
(i))

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1)i∈[N(λ)])

Output b

Fig. 6. Pseudorandom Y-correlated outputs of a PCF.

– Security. For every σ ∈ {0, 1} and every non-uniform adversary A of size B(λ), it holds that for
all sufficiently large λ,

|Pr[Expsec
A,N,σ,0(λ) = 1]− Pr[Expsec

A,N,σ,1(λ) = 1]| ≤ ε(λ)

where Expsec
A,N,σ,b (b ∈ {0, 1}) is defined as in Figure 7. In particular, the adversary is given access

to N(λ) samples

Experiment PCF Security

Expsec
A,N,σ,0(λ) :

(k0, k1)← PCF.Gen(1λ)
For i = 1, . . . , N(λ) :

x(i)
$← {0, 1}n(λ)

y
(i)
1−σ ← PCF.Eval(1− σ, k1−σ, x(i))

b← A(1λ, σ, kσ, (x
(i), y

(i)
1−σ)i∈[N(λ)])

Output b

Expsec
A,N,σ,1(λ) :

(k0, k1)← PCF.Gen(1λ)
For i = 1, . . . , N(λ) :

x(i)
$← {0, 1}n(λ)

y
(i)
σ ← PCF.Eval(σ, kσ, x

(i))

y
(i)
1−σ ← RSample(1λ, σ, y

(i)
σ)

b← A(1λ, σ, kσ, (x
(i), y

(i)
1−σ)i∈[N(λ)])

Output b

Fig. 7. Security of a PCF. Here, RSample is the algorithm for reverse sampling Y as per Definition 11.

Definition 15 (Programmability of a PCF for OLE, [8]). A pseudorandom correlation function
PCF = (PCF.Gen,PCF.Eval) for the OLE correlation supports reusable inputs if there exists an
algorithm PCF.Genp that takes additional random inputs ρ0, ρ1 ∈ {0, 1}? such that:

– Indistinguishability. The following holds:

{(k0, k1) : (k0, k1)← PCF.Gen(1λ)}
c
≈ {(k0, k1) : (ρ0, ρ1)← $, (k0, k1)← PCF.Genp(1

λ; ρ0, ρ1)} .
– Programmability. There exist public efficiently computable functions f0, f1 for which

Pr


{
a = f0(ρ0, x)

b = f1(ρ1, x)
:

ρ0, ρ1 ← $, (k0, k1)← PCF.Genp(1
λ; ρ0, ρ1)

(a, c0)← PCF.Eval(0, k0, x)

(b, c1)← PCF.Eval(1, k1, x)

 ≥ 1− negl(λ) .

– Security. for any σ ∈ {0, 1}, the following distributions are computationally indistinguishable:

{(kσ, (ρ0, ρ1)) : (ρ0, ρ1)← $, (k0, k1)← PCF.Genp(1
λ; ρ0, ρ1)}, and

{(kσ, {ρσ, ρ̃}) : (ρ0, ρ1, ρ̃)← $, (k0, k1)← PCF.Genp(1
λ; ρ0, ρ1)},

where the notation {ρσ, ρ̃} means (ρσ, ρ̃) if σ = 0 and (ρ̃, ρσ) if σ = 1.

A.4 Universal Composability

We refer the reader to [17] for details on the universal composability framework. The framework
is based on the real/ideal paradigm for arguing about the security of a protocol. We say that a
protocol π UC-realises (with computational security) an ideal functionality F in the presence of static
semi-honest adversary corrupting at most t parties, if for any p.p.t. static semi-honest t-adversary A
and any p.p.t. environment Z, there exists a p.p.t ideal-model t-adversary Sim such that the output
distribution of Z in the ideal-model computation of F with Sim is computationally indistinguishable
from its output distribution in the real-model execution of π with A. The composition theorem of
[17] states the following.

Theorem 7 ([17], informal). Let ρ be a protocol that UC-realizes F in the presence of adaptive
semi-honest t-adversaries, and let π be a protocol that UC-realizes G in the F-hybrid model in the
presence of adaptive semi-honest t-adversaries. Then, for any p.p.t. adaptive semi-honest t-adversary
A and any p.p.t. environment Z, there exists a p.p.t. adaptive semi-honest t-adversary Sim in the
F-hybrid model such that the output distribution of Z when interacting with the protocol π and Sim
is computationally indistinguishable from its output distribution when interacting with the protocol πρ

(where every call to F is replaced by an execution of ρ) and A in the real model.

B Proof of Lemma 1

We design the extended evaluation algorithm ExtEval(σ, ekσ,Mσ, (I
(1)
σ , . . . , I

(ρ)
σ), P) using the original

evaluation algorithm Eval. The idea is to recursively include the memory value in the computation.
First, we define the modified input converting algorithm ConvertInput′(σ, ekσ, I

x,Mz) which converts
input values into a memory values as follows

- ConvertInput′(σ, ekσ, I
x,Mz)→ Mx·z:

This algorithm runs Mult(σ, ekσ, I
x,Mz)→ Mx·z and returns Mx·z.

In other words, for any input x 6= z for which an input value Ix is provided, we can compute a
memory value Mx·z that is a memory value of z · x. In this way, we make sure that each memory
value represents a memory value of a multiple of z. Regarding this new shape of memory values, the
two other algorithms Add′ which adds memory values and Mult′ which multiplies input and memory
values can be simply defined as the original algorithms of Eval. Namely,

- Add′(Mx·z,My·z)→ Mz·(x+y):
This algorithm runs Add(Mx·z,My·z)→ M(x+y)·z.

- Mult′(Ix,My·z)→ Mx·y·z:
This algorithm runs Mult(Ix,My·z)→ Mx·y·z.

Finally, the output algorithm Output′(σ, ekσ,M
x·z, n) also works as the original algorithm of Eval:

- Output′(σ, ekσ,M
x·z, n)→ (x · z) mod n:

This algorithm runs Output(σ, ekσ,M
x·z, n)→ (x · z) mod n

Conditioned on Eval satisfying the correctness property of HSS (Definition 2), algorithm ExtEval also

works correctly and on input (σ, ekσ,Mσ, (I
(1)
σ , . . . , I

(ρ)
σ), P) outputs z · P (x(1), . . . , x(ρ)).

ut

C New Variants of HSS from DCR

In this section we provide instantiations for the three new variants of HSS introduced in Section 4
under the DCR assumption, therefore proving Theorem 2 and Theorem 2. In fact, our goal is to
show that the HSS scheme introduced by Orlandi, Scholl, and Yakoubov in [37] that supports the
class of RMS programs and works under the DCR assumption satisfies the properties of all our three
definitions. First, we recall the following lemma due to [37], where they introduce a distributed discrete
logarithm algorithm for a subset of Z∗N2 , where N = pq for λ-bit primes p and q.

Lemma 5. There exists an algorithm DDLogN (g) for which the following holds: Let g0, g1 ∈ Z∗N2 ,
such that g0 = g1(1 + N)x(mod N2). If z0 = DDLogN (g0) and z1 = DDLogN (g1), then z0 − z1 =
x(mod N).

More precisely, DDLogN (g) works as follows:

• DDLogN (g)
- Write g = h+ h′N , where h, h′ < N , using the division algorithm.
- Output z = h′h−1 mod N .

We now recall the HSS construction of [37] based on circular-secure Paillier encryption (descrip-
tion A.1). The input space of the scheme is ZN for a Blum integer N = pq.

Construction 4 (HSS from Paillier, [37]). Let 2−κ be the correctness error. Let N = pq be a
Blum integer. Let P be the set of programs supported by the scheme, and Bmsg be the magnitude
bound of programs in P. We require that Bmsg = N/2κ. Let BG = (BG.KeyGen,BG.Enc,BG.Dec) be
the circular-secure Paillier encryption as in Description A.1.

• Setup(1λ):
- Run (BG.pk,BG.sk) ← BG.KeyGen(1λ), and parse them as BG.pk = (N,g, ĝ), and BG.sk =

d = (d(0), . . . , d(`−1)).

- Sample 〈1〉0 as a random element of [2κ], and set 〈1〉1 := 〈1〉0 − 1 mod N .

- For each i ∈ [`], set
〈
d(i)
〉
0

to be a random element of [2κ], and set
〈
d(i)
〉
1

:=
〈
d(i)
〉
0
−

d(i) mod N .

- For i ∈ [`], compute D(i) ← BG.Enc(BG.pk, d(i)).

- Sample a PRF key kprf for a PRF F that outputs values in ZN .

- Set and output pk = (BG.pk, D(0), . . . , D(`−1)), and
ekσ = (kprf , 〈1〉σ ,

〈
d(0)

〉
σ
, . . . ,

〈
d(`−1)

〉
σ
) for each σ ∈ {0, 1}.

• Input(pk, x)
- Parse pk = (BG.pk, D(0), . . . , D(`−1)), and BG.pk = (g, ĝ), and D(i) = (c(i), ĉ(i)) for i ∈ [`].

- Compute X ← BG.Enc(BG.pk, x).

- For i ∈ [`], compute X(i) ← (gr
′
i · (c(i))x, ĝr′i · (ĉ(i))x), where r′i

$←− ZN .

- Set I = (X,X(0), . . . , X(`−1)), and output (I0 = I, I1 = I).

• Eval(σ, ekσ, (I(0), . . . , I(n)), P)
This function is divided into the following sub-modules:
• ConvertInput(σ, ekσ, Ix = (X,X(0), . . . , X(`−1)))

- Set M1
σ = (〈1〉σ ,

〈
d(0)

〉
σ
, . . . ,

〈
d(`−1)

〉
σ
) for σ ∈ {0, 1}.

- Compute Mx
σ ← Mult(σ, ekσ, I

x,M1
σ).

• Add(σ, ekσ,M
x
σ,M

y
σ)

- Parse Mx
σ = (〈x〉σ ,

〈
xd(0)

〉
σ
, . . . ,

〈
xd(`−1)

〉
σ
), and

My
σ = (〈y〉σ ,

〈
yd(0)

〉
σ
, . . . ,

〈
yd(`−1)

〉
σ
).

- Compute 〈z〉σ = 〈x〉σ + 〈y〉σ, and
〈
zd(i)

〉
σ

=
〈
xd(i)

〉
σ

+
〈
yd(i)

〉
σ

for i ∈ [`].

- Output Mz
σ = (〈z〉σ ,

〈
zd(0)

〉
σ
, . . . ,

〈
zd(`−1)

〉
σ
).

• Mult(σ, ekσ, I
x,My

σ)
- Parse Ix = (X,X(0), . . . , X(`−1)) and

My
σ = (〈y〉σ ,

〈
yd(0)

〉
σ
, . . . ,

〈
yd(`−1)

〉
σ
).

- Parse X = (c0, . . . , c`−1, ĉ), and X(i) = (c
(i)
0 , . . . , c

(i)
`−1, ĉ

(i)) for i ∈ [`].

- Compute 〈z〉σ = DDLogN (ct′σ) (mod N) + Fkprf (id), where

ct′σ = (ĉ)〈y〉σ ·

(
`−1∏
i=0

c
−〈yd(i)〉

σ
i

)
(mod N2)

- For j ∈ [`] compute
〈
zd(j)

〉
σ

= DDLogN
(
ct′σ,j

)
(mod N) + Fkprf (id),

where

ct′σ,j = (ĉ(j))〈y〉σ ·

(
`−1∏
i=0

(c
(j)
i)−〈yd

(i)〉
σ

)
(mod N2)

- Output Mz
σ = (〈z〉σ ,

〈
zd(0)

〉
σ
, . . . ,

〈
zd(`−1)

〉
σ
).

• Output(σ, ekσ,M
z
σ, nout)

- Parse Mz
σ = (〈z〉σ ,

〈
zd(0)

〉
σ
, . . . ,

〈
zd(`−1)

〉
σ
).

- Output 〈z〉σ (mod nout).

HSS Following the RMS Template from DCR. We show that construction 4 satisfies definition 4.

Proof. We show how the MemGen algorithm of the template work in this construction. One can see
that the other algorithms of the HSS construction exactly follow the template. We define the memory
generation algorithm as follows:

• MemGen(σ, ekσ, x)→ Mx
σ

• If x = 1, do:
- Parse ekσ = (kprf , 〈1〉σ ,

〈
d(0)

〉
σ
, . . . ,

〈
d(`−1)

〉
σ
).

- Output M1
σ = (〈1〉σ ,

〈
d(0)

〉
σ
, . . . ,

〈
d(`−1)

〉
σ
).

• Else, do:
- Run (Ix0 , I

x
1)← Input(pk, x).

- Run Mx
σ ← ConvertInput(σ, ekσ, I

x
σ).

- Output Mx
σ.

It is easy to see that the outputs of this algorithm are additively homomorphic. This follows from
the fact that for any x 6= 1 ∈ I, this algorithm uses the Input and Eval.ConvertInput algorithms to
generate the memory values. Thus, if the HSS scheme works correctly, the generated memory values
are intrinsically homomorphic. More specifically, for an input z ∈ I, the memory value Mz

σ is of the
form Mz

σ = (〈z〉σ ,
〈
zd(0)

〉
σ
, . . . ,

〈
zd(`−1)

〉
σ
). Furthermore, when x = 1, this algorithm outputs a valid

share for the vector (1, d(0), . . . , d(`−1)).
ut

HSS with Simulatable Memory Values from DCR. We show that Construction 4 satisfies
Definition 5.

Proof. Regarding Definition 5, we need to show that there exist two algorithms Sim0 and Sim1 that
simulate the output of MemGen. We define them as follows:

• Sim0(1λ)→ M0

- Sample a random vector (t, t0, . . . , t`−1)
$←− [2κ ·N]`+1.

- Output M0 = (t, t0, . . . , t`−1).

• Sim1(M, z, (ek0, ek1))→ M1

- Parse ekσ = (〈1〉σ ,
〈
d(0)

〉
σ
, . . . ,

〈
d(`−1)

〉
σ
) for both σ ∈ {0, 1}.

- For i ∈ [`] reconstruct d(i) =
〈
d(i)
〉
0
−
〈
d(i)
〉
1

mod N .

- Compute and output M1 = M0 − (z, zd(0), . . . , zd(`−1)).

We prove the following two properties regarding the simulation algorithms:

Simulation Correctness. For any z ∈ ZN , it holds that

M0 −M1 = (z, zd(0), . . . , zd(`−1)),

where M0 ← Sim0(1λ), and M1 ← Sim1(M, z, (ek0, ek1)). Therefore, the simulated memory values of z
are correctly formed as subtractive shares of vector
(z, zd(0), . . . , zd(`−1)). Thus, they are valid shares. This guarantees the correctness of multiplication

between this values and real input values, and finally the correctness of ExtEval in Lemma 1 when
Mσ is simulated.

Simulation Security. We need to prove that for any x ∈ I, it holds that

(z,M0) ≈s (z,M1),

where M1 ← Sim1(M0, z, (ek0, ek1)), and M0 ← Sim0(1λ).
Note that M1 = M0 − (z, zd(0), . . . , zd(`−1)), where each element of M0 is chosen uniformly from
Z2κN . Also, in a fixed vector (z, zd(0), . . . , zd(`−1)), x and each zd(i) for i ∈ [`] are elements of ZN .
Therefore, the distribution of each element of M1 is within the statistical distance 2−κ of the uniform
distribution over Z2κN which is the distribution of M0.

ut

Staged HSS from DCR. We prove that assuming the hardness of DCR, Construction 4 satisfies
Definition 6.

Proof. We explicitly define four algorithms (Input0, Input1) and (Eval0,Eval1) according to Definition 6.
We define the four algorithms as follows:

• Input0(pp)→ (I0, aux)

- Parse pp = (BG.pk, D(0), . . . , D(`−1)), and BG.pk = (N,g, ĝ).

- Sample r
$←− ZN and compute ctind = gr.

- For i ∈ [`] do:

∗ Sample ri
$←− ZN .

∗ Compute ct
(i)
ind = gri .

- Set I0 = (ctind, ct
(0)
ind , . . . , ct

(`−1)
ind).

- Set aux = (gr, ĝr, {gri}i∈[`], {ĝri}i∈[`]).
- Output (I0, aux).

• Input1(pp, x, aux, (ek0, ek1))→ I1

- Parse pp = (BG.pk, D(0), . . . , D(`−1)), BG.pk = (N,g, ĝ), aux = (gr, ĝr, {gri}i∈[`], {ĝri}i∈[`]),
and ekσ = (kprf ,

〈
d(0)

〉
σ
, . . . ,

〈
d(`−1)

〉
σ
) for σ ∈ {0, 1}.

- Compute ct = (gr, ĝr · (1 +N)x).

- For i ∈ [`] do
∗ Reconstruct d(i) =

〈
d(i)
〉
0
−
〈
d(i)
〉
1

mod N .

∗ Compute ct(i) = (gri , ĝri · (1 +N)xd
(i)

).

- Output I1 = (ct, ct(0), . . . , ct(`−1)).

• Eval0(ek0, (I
(1)

0 , . . . , I
(ρ)

0), P)→ M0

• ConvertInput0(ek0, Ix) //same as in Eval

- Parse ek0 = (〈1〉0 ,
〈
d(0)

〉
0
, . . . ,

〈
d(`−1)

〉
0
).

- Set M1
0 = (〈1〉0 ,

〈
d(0)

〉
0
, . . . ,

〈
d(`−1)

〉
0
).

- Compute Mx
0 ← Mult0(ek0, I0,M

1
0).

• Add0(ek0,M
x
0 ,M

y
0) //same as in Eval

- Parse Mx
0 = (〈x〉0 ,

〈
xd(0)

〉
0
, . . . ,

〈
xd(`−1)

〉
0
), and

My
0 = (〈y〉0 ,

〈
yd(0)

〉
0
, . . . ,

〈
yd(`−1)

〉
0
).

- Compute 〈z〉0 = 〈x〉0 + 〈y〉0, and
〈
zd(i)

〉
0

=
〈
xd(i)

〉
0

+
〈
yd(i)

〉
0

for i ∈ [`].

- Output Mz
0 = (〈z〉0 ,

〈
zd(0)

〉
0
, . . . ,

〈
zd(`−1)

〉
0
).

• Mult0(ek0, I
x

0 ,M
y
0)

- Parse I
x

0 = (ctind, ct
(0)
ind , . . . , ct

(`−1)
ind), and

My
0 = (〈y〉0 ,

〈
yd(0)

〉
0
, . . . ,

〈
yd(`−1)

〉
0
).

- Parse ctind = (c0, . . . , c`−1), and ct
(i)
ind = (c

(i)
0 , . . . , c

(i)
`−1) for i ∈ [`].

- Compute 〈z〉0 = DDLogN (ct′)(mod N) + Fkprf (id), where

ct′ =

`−1∏
i=0

(ci)
−〈yd(i)〉

0(mod N2).

- For j ∈ [`], compute
〈
zd(j)

〉
0

= DDLogN (ct′j)(mod N) + Fkprf (id), where

ct′j =

`−1∏
i=0

(c
(j)
i)−〈yd

(i)〉
0(mod N2).

- Output Mz
0 = (〈z〉0 ,

〈
zd(0)

〉
0
, . . . ,

〈
zd(`−1)

〉
0
).

• Eval1(ek1, (I
(1)

1 , . . . , I
(ρ)

1), (x(1), . . . , x(ρ)), P)→ M1

• ConvertInput1(ek1, Ix, x) //same as in Eval

- Parse ek1 = (〈1〉1 ,
〈
d(0)

〉
1
, . . . ,

〈
d(`−1)

〉
1
).

- Set M1
1 = (〈1〉1 ,

〈
d(0)

〉
1
, . . . ,

〈
d(`−1)

〉
1
).

- Compute Mx
1 ← Mult1(ek1, I1,M

1
1, x).

• Add1(ek1,M
x
1 ,M

y
1) //same as in Eval

- Parse Mx
1 = (〈x〉1 ,

〈
xd(0)

〉
1
, . . . ,

〈
xd(`−1)

〉
1
), and

My
1 = (〈y〉1 ,

〈
yd(0)

〉
1
, . . . ,

〈
yd(`−1)

〉
1
).

- Compute 〈z〉1 = 〈x〉1 + 〈y〉1, and
〈
zd(i)

〉
1

=
〈
xd(i)

〉
1

+
〈
yd(i)

〉
1

for i ∈ [`].

- Output Mz
1 = (〈z〉1 ,

〈
zd(0)

〉
1
, . . . ,

〈
zd(`−1)

〉
1
).

• Mult1(ek0, I
x

0 ,M
y
0, y)

- Parse I
x

1 = (ct, ct(0), . . . , ct(`−1)), and
My

1 = (〈y〉1 ,
〈
yd(0)

〉
1
, . . . ,

〈
yd(`−1)

〉
1
).

- Parse ct = (c0, . . . , c`−1, ĉ), and ct(i) = (c
(i)
0 , . . . , c

(i)
`−1, ĉ

(i)) for i ∈ [`].

- Compute 〈z〉1 = DDLogN (ct′)(mod N) + Fkprf (id), where

ct′ = (ĉ)y ·
`−1∏
i=0

(ci)
−〈yd(i)〉

1(mod N2).

- For j ∈ [`], compute
〈
zd(j)

〉
1

= DDLogN (ct′j)(mod N) + Fkprf (id), where

ct′j = (ĉ(j))y ·
`−1∏
i=0

(c
(j)
i)−〈yd

(i)〉
1(mod N2).

- Output Mz
1 = (〈z〉1 ,

〈
zd(0)

〉
1
, . . . ,

〈
zd(`−1)

〉
1
).

Correctness. We show that a memory value My
σ outputted by Evalσ is in fact party σ’s subtractive

share of vector (y, yd(0), . . . , yd(`−1)), thus it’s valid. This guarantees the correctness of ExtEval
algorithm when given as input a staged memory value and a vector of original input values.

Since the new evaluation algorithms Eval0 and Eval1 work the same as the original evaluation
algorithm Eval except for the multiplication instruction, we briefly prove the correctness of multiplica-
tion in the following. Let x, y ∈ I be any two arbitrary input values. We show that

Pr [z0 − z1 = xy] ≥ 1− negl(λ),

and

Pr
[
(zd(i))0 − (zd(i))1 = xyd(i)

]
≥ 1− negl(λ),

for all i ∈ [`], where
Mz

0 =
(
z0, (zd

(0))0, . . . , (zd
(`−1))0

)
← Mult0(ek0, I

x

0 ,M
y
0),

Mz
1 =

(
z1, (zd

(0))1, . . . , (zd
(`−1))1

)
← Mult1(ek1, I

x

1 ,M
y
1, y),

(I
b

0, auxb)← Input0(pk) for b ∈ {x, y},
I
b

1 ← Input1(pk, b, auxb), for b ∈ {x, y},
My

0 ← ConvertInput0(ek0, I0
y
),

My
1 ← ConvertInput1(ek1, I1

y
, y), and

(pk, (ek0, ek1))← Setup(1λ).

Regarding how Mult0 and Mult1 works, it holds that zb = DDLogN (ct′b), for b ∈ {0, 1}. Thus, by
Lemma 5, it’s enough to prove that ct′0 · ct′1 = (1 +N)xy. We have

ct′0 · ct′1 =

`−1∏
i=0

(ci)
−〈yd(i)〉

0 · (ĉ)y ·
`−1∏
i=0

(ci)
−〈yd(i)〉

1

= (ĉ)y ·
∏̀
i=1

(ci)
−yd(i)

= (1 +N)xy ·
∏̀
i=1

(ci)
yd(i) ·

∏̀
i=1

(ci)
−yd(i)

= (1 +N)xy(mod N2).

The equation ct
′(j)
0 · ct

′(j)
1 = (1 +N)xyd

(j)

for all j ∈ [`] is proved similarly.

Security. Outputs of the Input1 algorithm are in fact in the same form as the Input algorithm.
More precisely, they are both Paillier encryptions of the vector (x, xd(0), . . . , xd(`−1)), where d is the
secret key of the encryption scheme. Therefore, they are computationally indistinguishable.

ut

D Proofs of CPRF Generic Constructions

In this section we prove that our transformations from homomorphic secret sharing to constrained
pseudorandom functions for inner-product and NC1 constraints satisfy the correctness and security
properties of a CPRF.

D.1 CPRF for Inner-Product from HSS (Proof of Theorem 3)

We now prove correctness and security of Construction 1, starting with correctness.

Correctness. The idea of the scheme is to choose a random key k for the PRF F , and use HSS to
compute shares of 〈x, z〉 ·Fk(x), respectively owned by the master key owner and the constrained key
owner. It is easy to verify that if HSS is correct (with simulated memory values) and if 〈x, z〉, the two
shares form substractive shares of 〈x, z〉 · Fk(x) = 0 and therefore both evaluations match.

Pseudorandomness. Let us now prove selective security of our construction. The proof relies on a
sequence of hybrid games. Let A denote a 1-key selective adversary against the pseudorandomness
of the above construction. Selective security plays an important role as one needs to rely on the
knowledge of the constraint z to answer evaluation oracle queries appropriately in the early stage of
the proof.

Hybrid H0: This is the standard CPRF security game where the challenge is answered with the
real PRF evaluation.

Hybrid H1: In this first hybrid game, we only change the definition of the evaluation oracle.
Since we are in the selective setting, the challenger knows the constraint z before answering any
evaluation query. Therefore, it can compute the constrained key ckz from the start. When asked for
an evaluation query on input x, the challenger replies to it by computing y1 ← CEval(pp, ckz,x) and
returning y1 + 〈x, z〉 · Fk(x). The adversary’s view remains identical to its view in H0 by correctness
of HSS, therefore these two hybrid games are perfectly indistinguishable.

Hybrid H2: In this second hybrid game, we simply switch the memory value sampled via Sim1

in the constrained secret key to memory value sampled from Sim0. It is immediate that H1 and H2

are indistinguishable thanks to simulation security of the HSS.
Hybrid H3: We now remove the information about k in the constrained evaluation key as follows:

instead of defining (I0, I1) ← Input(pk, k), we set (I0, I1) ← Input(pk, 0)13. A PRF key k
$← K is still

sampled by the challenger, and evaluation (and challenge) queries are still answered on input x by
having the challenger computing y1 ← CEval(pp, ckz,x) and returning y1 + 〈x, z〉 · Fk(x).

By HSS security (for σ = 1), we claim that H2 and H3 are computationally indistinguishable.
Suppose that an adversary A could distinguish between these two hybrids, we construct an adversary
B against HSS security as follows: B first samples a key k

$← K and submits message (k, 0) to its HSS
challenger. It gets back (pk, ek1, I1) where I1 is the second half of Input(k) or Input(0), depending on
whether k or 0 was encoded by the challenger. Then, B computes the constrained key ckz as in the
previous game, by sampling memory values using Sim0(1λ). It answers A’s evaluation (and challenge)
queries by computing y1 ← CEval(pp, ckz,x) and returning y1 + 〈x, z〉 · Fk(x). When A halts with
some output b′, so does B. It is clear that B simulates either H2 or H3, depending on whether it was
given an encoding of k or of 0, which results in our claim.

Hybrid H4: In this hybrid, the challenger replies to the challenge query by returning a uniformly
random value from Zn. Since the adversary’s view does no longer contain any information about the
PRF key k, the value of Fk(x) is computationally indistinguishable from a random element of Y due
to the security of the PRF. We also required Y to be such that F is pseudorandom on Zn. Therefore,
hybrids H3 and H4 are computationally indistinguishable thanks to the security of the underlying
PRF. Note that here that we only rely on Find-then-Guess security for the underlying PRF (See
Definition 10).

The rest of the proof proceeds by reversing the sequence of hybrid games while leaving the challenge
query answered by a uniformly random value.

Constraint-Hiding. We finally prove that our construction is also constraint-hiding. The proof
essentially follows the same line as the proof of pseudorandomness except that one deviates at H4.
Notice that in H3 already, the only place where z plays a role in the adversary’s view is in the
evaluations, since the constrained key is sampled using Sim0 after H2.

Now, the hybrid game H4 for the constraint-hiding proof does the following: rather than using
Find-then-Guess security and changing only the evaluation of the challenge (which no longer exists in
the constraint-hiding security game), we use standard PRF security to replace answers to evaluation
queries of the form y1 + 〈x, z〉 · Fk(x) by values y1 + 〈x, z〉 · f(x) where f is a truly random function
(sampled lazily). This changes evaluation at points x such that 〈x, z〉 6= 0 to uniformly random (and
independent) values, in particular these values are independent of the constraint z. One can then
switch the constraint z to z′ easily, since the pair of constraints is required to satisfy 〈x, z〉 6= 0 if and
only if 〈x, z′〉 6= 0 for all evaluation queries x.

This concludes the proof of Theorem 3. ut

D.2 CPRF for NC1 from HSS (Proof of Theorem 4)

We now prove correctness and pseudorandomness of the construction.

13 By 0 we mean any fixed key, e.g. 0λ if K = {0, 1}λ.

Correctness. The proof of correctness is roughly the same as for Construction 1 and directly follows
from correctness properties of the underlying staged HSS scheme. The output of Eval(pp,msk, x) and
CEval(pp, ckC , x) on an input x form substractive shares of U(C, x) · Fk(x) = C(x) · Fk(x). When
C(x) = 0, correctness of the staged HSS scheme guarantees that the outputs of evaluation and
constrained evaluation algorithms form substractive shares of 0, thus they are equal.

Pseudorandomness. Here again, the proof follows a similar strategy as in the case of inner-product
constraints. The goal is to remove the dependency to k the underlying PRF key in the constrained
key such that the term C(x∗) · Fk(x∗) makes the challenge pseudorandom (since x∗ is required to
satisfy C(x∗) = 1). We proceed via a sequence of hybrid games.

Hybrid H0: This is the standard CPRF security game where the challenge is answered with the
real PRF evaluation.

Hybrid H1: In this first hybrid game, we only change the definition of the evaluation oracle.
Since we are in the selective setting, the challenger knows the constraint C before answering any
evaluation query. Therefore, it can compute the constrained key ckC from the start. When asked for
an evaluation query on input x, the challenger now replies to it by computing y1 ← CEval(pp, ckC , x)
and returning y1 + C(x) · Fk(x). The adversary’s view remains identical to its view in H0 by the
correctness of HSS, therefore these two hybrid games are perfectly indistinguishable.

Hybrid H2: In this second hybrid game, instead of sampling the constrained key elements I
(i)

1

as I
(i)

1 ← Input1(pk, Ci, aux(i), (ek0, ek1)) for i ∈ [z], we replace each of these values by Input(pk, Ci).
Computational indistinguishability between these two hybrid games follows from the staged-security
of HSS.

Hybrid H3: We now remove the information about k in the constrained evaluation key as follows:
instead of defining (I0, I1)← Input(pk, k), we set (I0, I1)← Input(pk, 0)14. The PRF key k

$← K is still
sampled by the challenger, and evaluation (and challenge) queries are still answered on input by
having the challenger computing y1 ← CEval(pp, ckC , x) and returning y1 + C(x) · Fk(x).

By HSS security (for σ = 1) and correctness of the HSS evaluation, we claim that H2 and H3

are computationally indistinguishable. Suppose that an adversary A could distinguish between these
two hybrids, we construct an adversary B against HSS security as follows: B first samples a key
k

$← K and submits message (k, 0) to its HSS challenger. It gets back (pk, ek1, I1) where I1 is the
right-hand part of Input(k) or Input(0). Then, B computes the constrained key ckC as described in
H2. It answers A’s evaluation (and challenge) queries x by computing y1 ← CEval(pp, ckC , x) and
returning y1 +C(x) ·Fk(x). When A halts with some output b′, so does B. It is clear that B simulates
either H2 or H3, depending on whether it was given an encoding of k or of 0, which results in our
claim.

Hybrid H4: In this hybrid, the challenger now replies to the challenge query x∗ by returning
a uniformly random value of Y. Since the adversary’s view does no longer contain any information
about the PRF key k, then Fk(x∗) can be replaced by a random value of Y. Also, since x∗ must
satisfy C(x∗) = 1, then y1 + C(x) · Fk(x) = y1 + Fk(x), which is computationally indistinguishable
from a random element of Y. Therefore, hybrids H3 and H4 are computationally indistinguishable
thanks to the security of the underlying PRF. Note that here that we only rely on Find-then-Guess
security for the underlying PRF.

The rest of the proof proceeds by reversing the sequence of hybrid games while leaving the challenge
query answered by a uniformly random value. ut

E Proofs of MPC Applications of Staged-HSS

E.1 Secure Computation with Precomputable Silent Preprocessing – Proofs

Proof of Lemma 2 (Additive HSS shares can be made pseudorandom).

Proof. Let F : K × S → Y be a pseudorandom function with an input space S. Given a HSS scheme
HSS = (Setup, Input,Eval) with additive reconstruction, we can define HSS′ = (Setup′, Input′,Eval′) as
follows:

14 By 0 we mean any fixed key, e.g. 0λ if K = {0, 1}λ.

– HSS′.Setup(1λ) :

1. (ẽk0, ẽk1)← HSS.Setup(1λ).

2. kprf
$← K.

3. For σ ∈ {0, 1},
set ekσ := (ẽkσ, kprf).

4. Output (ek0, ek1).

– HSS′.Input(pk, x) := HSS.Input(pk, x).

– HSS′.Eval(σ, ekσ, Iσ, P, id):

1. Parse ekσ as (ẽkσ, kprf).

2. yσ ← HSS.Eval(σ, ẽkσ, Iσ, P)
3. Output yσ + Fkprf (id).

In other words, during the Setup, we additionally sample a PRF master key which is added to
the evaluation keys of both parties. The evaluation algorithm Eval then uses these PRF keys to mask
the output shares. We also assume that each evaluation instruction is assigned a unique identifier id.
The PRF’s input space S should contain the space of these identifiers. The modified scheme, HSS′,
inherits correctness (via additive reconstruction) from HSS as both parties use the same mask Fkprf (id)
for each instruction.

ut

Proof of Theorem 5 (Precomputable PCF for OLE Correlations from HSS).

Proof. We show that (PCF.Gen,PCF.Eval) in Construction 3 is a precomputable and programmable
PCF.

Pseudorandom OLE-Correlated Outputs. We prove that the joint distribution of outputs of
the PCF.Eval algorithm is indistinguishable from the outputs of an OLE correlation (as required in
Figure 6). Let A be an adversary in the experiment Exppr

A,N,σ,1, and consider the following sequence
of hybrid games:

Hybrid H0: This is the Experiment Exppr
A,N,σ,1, where A receives outputs of the PCF.Eval algo-

rithm. As a reminder, here, the view of A view consists of(
x(i),

(
F
k
(0)
prf

(x(i)), y
(i)
0

)
,
(
F
k
(1)
prf

(x(i)), y
(i)
1

))
i∈[N(λ)]

.

Hybrid H1: In this game, for each x(i) ∈ {0, 1}n(λ), we first compute y
(i)
0 ← PCF.Eval(0, k0, x

(i)),

and compute y
(i)
1 as y

(i)
1 = y

(i)
0 − Fk(0)prf

(x(i)) · F
k
(1)
prf

(x(i)). The adversary’s view remains identical to

its view in H0 by the correctness of the HSS scheme, therefore these two hybrid games are perfectly
indistinguishable.

Hybrid H2: In this game, for each x(i) ∈ {0, 1}n(λ), we first sample a random value y
(i)
0

$← Y,

and then compute y
(i)
1 in the same way as in Hybrid H1. Assuming the HSS outputs are individually

pseudorandom, H1 and H2 are computationally indistinguishable.

Hybrid H3: Finally, since the view of A is independent of the PRF keys k
(0)
prf , and k

(1)
prf , we can

replace the value of these PRFs by random values from Y. More specifically, in this game, for each

x(i) ∈ {0, 1}n(λ), we first sample three random values y
(i)
0 , a(i), b(i)

$← Y, and then compute y
(i)
1 as

y
(i)
1 = y

(i)
0 − a(i) · b(i), and output ((a(i), y

(i)
0), (b(i), y

(i)
1)). Hybrids H2 and H3 are computationally

indistinguishable thanks to the security of the underlying PRF.

Note that Hybrid H3 is the same as Experiment Exppr
A,N,σ,0. Thus we proved that the two

experiments are computationally indistinguishable.

Security. Let A be an adversary in the experiment Expsec
A,N,σ,0, and consider the following sequence

of hybrid games:

Hybrid H0: This is the Experiment Expsec
A,N,σ,0, where A receives outputs of the PCF.Eval algo-

rithm. As a reminder, here, the view of A view consists of(
1λ, σ, kσ, (x

(i), y
(i)
1−σ)i∈[N(λ)]

)
.

Hybrid H1: In this game, for each x(i) ∈ {0, 1}n(λ), we first compute y
(i)
σ ← PCF.Eval(σ, kσ, x

(i)),

and compute y
(i)
1−σ as

y
(i)
1−σ =

(
F
k
(1−σ)
prf

(x(i)), y(i)σ + (−1)1−σ · F
k
(0)
prf

(x(i)) · F
k
(1)
prf

(x(i))
)
,

where the PRF keys k
(0)
prf and k

(1)
prf are parts of the generated keys k0 and k1. Note that the adversary’s

view remains identical to its view in H0 by the correctness of the HSS scheme, therefore H0 and H1

are perfectly indistinguishable.

Next, we move to the following hybrid when σ = 0.

Hybrid H(σ=0)
2 : In this game, instead of running (k0, k1) ← PCF.Gen(1λ), we only generate k0 by

running k0 ← PCF.Gen0(1λ). Subsequently, for an input x(i), we compute y
(i)
1 as y

(i)
1 = (a(i), y

(i)
0 −

F
k
(0)
prf

· a(i)), where a(i)
$← Y.

HybridsH(σ=0)
2 andH1 are computationally indistinguishable thanks to the security of the underlying

PRF. Observe that the view of the adversary in this hybrid is identical to Experiment Expsec
A,N,σ=0,1.

Therefore, we showed that the two security experiments are computationally indistinguishable when
σ = 0.

When σ = 1, we consider the following hybrid as the game after H1.

Hybrid H(σ=1)
2 : In this game, we remove the information of k

(0)
prf from k1. More specifically, we first

parse (k0, k1)← PCF.Gen as (k0, aux)← PCF.Gen0(1λ), and k1 ← PCF.Gen1(1λ, k0, aux). This change
does not affect the view of the adversary.

Next, when running (k0, aux)← PCF.Gen0(1λ), instead of computing (I0, I1)← Input(pk, k
(0)
prf), we

set (I0, I1)← Input(pk, 0)15. As a result, the key k1 does not contain any information about k
(0)
prf . The

PRF key k
(0)
prf

$← K is still sampled, and y0 is computed and returned in the same way as in Hybrid

H1. By the security of HSS (for σ = 1), H(σ=1)
2 and H1 are computationally indistinguishable.

Hybrid H(σ=1)
3 : In this game, for an input x(i), similarly toH(σ=1)

2 , we first run y
(i)
1 ← PCF.Eval(1,

k1, x
(i)), but afterwards, we compute and output y

(i)
0 as y

(i)
0 = (a(i), y

(i)
1 +F

k
(0)
prf

·a(i)), where a(i)
$← Y.

Hybrids H(σ=1)
3 and H(σ=1)

3 are computationally indistinguishable thanks to the security of the
underlying PRF. Observe that the view of the adversary in this hybrid is identical to Experiment
Expsec
A,N,σ=1,1. Therefore, we showed that the two security experiments are computationally indistingui-

shable when σ = 1.

Programmability. We introduce an algorithm Genp that satisfies properties required in Definition 15,
namely, indistinguishability, programmability, and security. Consider the algorithm Genp which, on
input (1λ; ρ0, ρ1), runs exactly as Gen, but with the following difference:

- It uses its additional inputs (ρ0, ρ1) in the following manner: Instead of sampling “k
(0)
prf

$← K”, it

sets “k
(0)
prf ← ρ0”, and instead of sampling “k

(1)
prf

$← K” it sets “k
(1)
prf ← ρ1”.

It immediately follows that

{(k0, k1) : (k0, k1)← PCF.Gen(1λ)} ≈c
{(k0, k1) : (ρ0, ρ1)← $, (k0, k1)← PCF.Genp(1

λ; ρ0, ρ1)} .

Thus, the indistinguishability holds.

Programmability follows from inspection if we define f0 := F and f1 := F (where F is the PRF
used in Construction 3).

15 By 0 we mean any fixed key, e.g. 0λ if K = {0, 1}λ.

Now we prove the security. Recall that we need to show for any σ ∈ {0, 1}, the following two
distributions are computationally indistinguishable:

{(kσ, (ρ0, ρ1)) : (ρ0, ρ1)← $, (k0, k1)← PCF.Genp(1
λ; ρ0, ρ1)} ≈c

{(kσ, {ρσ, ρ̃}) : (ρ0, ρ1, ρ̃)← $, (k0, k1)← PCF.Genp(1
λ; ρ0, ρ1)},

We differentiate between the following two cases:

- σ = 0: In this case, k0 contains no information about k
(1)
prf when they are output by PCF.Gen.

Thus, k0 contains no information about ρ1 in Genp, so it can be replaced by a random value in
the view of an adversary. This implies the security for this case.

- σ = 1: In this case, we show that the two distributions are computationally indistinguishable
by the security of the underlying HSS scheme. More specifically, recall that k1 = (ek1, I1, I1, ρ1),
where (I0, I1) ← HSS.Input(HSS.pk, ρ0), and all the other elements of the tuple are independent
of ρ0. By the security of HSS, we can alternatively compute (I0, I1) ← HSS.Input(HSS.pk, 0) and
therefore, remove the information of ρ0 from k1, so it can be replaced by a random value in the
view of an adversary. This implies the security for this case.

This concludes the proof of Theorem 5.
ut

E.2 Sublinear Secure Computation with One-Sided Statistical Security – Proofs

Proof of Lemma 3.

Proof. First observe that if the PRF F (·, ·) and C have logarithmic depth then fα,cin can indeed be
expressed as an RMS program, and we cause the PRF from [36]. The required amount of communica-
tion follows from inspection of the protocol, and we are left to prove security. Let A be a semi-honest,
static adversary that interacts with parties Alice and Bob running protocol ΠC in the FHSS

update-hybrid
model. We need to construct a simulator Sim such that no environment Z can distinguish with
non-negligible probability whether it is interacting with A and parties running ΠC in the FHSS

update-
hybrid model, or with Sim and FSFE(C). Because the adversary is static, we can assume that the
set of corrupted parties is fixed before the start of the protocol, and we can consider the cases of a
corrupted Alice and a corrupted Bob separately.

– Perfect security against a corrupted Alice. Alice receives no messages (from Bob or FHSS
update)

in the real execution, therefore a simulator can trivially perfectly simulate the joint view of Z
and A in the execution of ΠC .

– Computational security against a corrupted Bob. Consider the simulator Sim which is
given as input the corrupted Bob’s input x1 ∈ Fn1 , runs an internal copy of A, and acts as
follows:
• Simulating the communication with Z: Every input value that Sim receives from Z

is written on A’s input tape (as if coming from A’s environment), and every output value
written by A on its output tape is copied to Sim’s own output tape (to be read by Z).
• Simulating the protocol’s execution:

1. Sim sends (input, 1, x1) to FSFE(C) and waits to receive y′1.

2. Sim samples K
$← {0, 1}λ, (pk, ek0, ek1) ← HSS.Setup(1λ), (I0, aux) ← HSS.Input0(pk),

(I0, I1)← HSS.Input(1λ,K), α
$← {0, 1}λ.

3. Sim sets cin ← F (K,α).
4. Sim computes I1 ← staged-HSS.Share(pk, x1, aux).
5. Sim computes M1 ← HSS.Eval(ek1, I1, F (·, α)).
6. Sim sets rout ← HSS.Eval′(ek1, (M1, I1), fα,cin)− y′1.
7. Sim writes (ek1, I1, cin, α, rout) on A’s input tape (as if Alice sent it to Bob).
8. Sim proceeds with the execution of A until the latter writes (input, x1) on its output

tape (the message from Bob to FHSS
update), at which point it writes (HSS.pk, I1) on A’s input

tape (as if sent to Bob by FHSS
update).

Observe that the difference in the joint view of Z and A in the real and ideal worlds boils down
to how cin and rout are defined. However, because in the ideal world y′1 is uniformly distributed
and independent from the coins of Sim, rout is uniformly distributed in the ideal world. Further,
because there is no entropy in the single outgoing message of Bob (the message (input, 1, x1)
he sends to FOLE), the internal coins of Bob are irrelevant in the joint view of Z and A. Let
(x0, x1) ∈ Fn0 × Fn1 . From what precedes, it suffices to show that the distributions of outputs of
the following probability experiments are computationally indistinguishable:

RealView(1λ, x0, x1) :

K
$← {0, 1}λ

α
$← {0, 1}λ

cin ← x0 + F (K,α)
(pk, ek0, ek1)← HSS.Setup(1λ)
(I0, aux)← HSS.Input0(pk)
(I0, I1)← HSS.Input(1λ,K)
I1 ← staged-HSS.Share(pk, x1, aux)

rout
$← Fm

Output (ek1, I1, cin, α, rout, x1, pk, I1)

IdealView(1λ, x1) :

K
$← {0, 1}λ

α
$← {0, 1}λ

cin ← F (K,α)
(pk, ek0, ek1)← HSS.Setup(1λ)
(I0, aux)← HSS.Input0(pk)
(I0, I1)← HSS.Input(1λ,K)
I1 ← staged-HSS.Share(pk, x1, aux)

rout
$← Fm

Output (ek1, I1, cin, α, rout, x1, pk, I1)

To that end, consider the following experiments (which differ with the above only in the law
of (I0, I1)):

HybridReal(1λ, x0, x1) :

K
$← {0, 1}λ

α
$← {0, 1}λ

cin ← x0 + F (K,α)
(pk, ek0, ek1)← HSS.Setup(1λ)
(I0, aux)← HSS.Input0(pk)
(I0, I1)← HSS.Input(1λ, 0λ)
I1 ← staged-HSS.Share(pk, x1, aux)

rout
$← Fm

Output (ek1, I1, cin, α, rout, x1, pk, I1)

HybridIdeal(1λ, x1) :

K
$← {0, 1}λ

α
$← {0, 1}λ

cin ← F (K,α)
(pk, ek0, ek1)← HSS.Setup(1λ)
(I0, aux)← HSS.Input0(pk)
(I0, I1)← HSS.Input(1λ, 0λ)
I1 ← staged-HSS.Share(pk, x1, aux)

rout
$← Fm

Output (ek1, I1, cin, α, rout, x1, pk, I1)

Let AReal
x0,x1

be a PPT adversary which distinguishes between the real view {RealView(1λ, x0, x1)}
and {HybridReal(1λ, x0, x1)} with probability εReal. By the security of HSS, for every PPT adversa-
ries A,A′, and any bit σ ∈ {0, 1}:∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


b′ = b :

(K0,K1, state)← A(1λ)

(pk, (ek0, ek1))← Setup(1λ)

b
$←− {0, 1}

(I0, I1)← Input(Kb)

b′ ← A′ (state, pk, ekσ, Iσ)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ) .

Considering the following PPT algorithms Ax0
and A′x1

proves that εReal must be negligible:

• Ax0
(1λ): K

$← {0, 1}λ; α
$← {0, 1}λ; state← (x0 + F (K,α), α); Output (K, 0λ, state).

• A′x1
(state, pk, ek1, I1): (I0, aux)← HSS.Input0(pk);

I1 ← staged-HSS.Share(pk, x1, aux); rout
$← {0, 1}λ;

Output AReal
x0,x1

(ek1, I1, state.first, state.second, rout, x1, pk, I1).

Therefore {RealView(1λ, x0, x1)}
c
≈ {HybridReal(1λ, x0, x1)}, and similarly {IdealView(1λ, x1)}

c
≈

{HybridIdeal(1λ, x1)}. Finally, because all other random variables than cin are independent of K
(both in HybridReal(1λ, x0, x1) and in HybridIdeal(1λ, x1)), we can conclude using a straightforward
reduction to the security of the PRF F (·, ·) that the two distributions {HybridReal(1λ, x0, x1)}
and {HybridIdeal(1λ, x1)} are computationally indistinguishable. Wrapping up, this implies that
the joint view of Z and A is indistinguishable in the real and ideal worlds.

ut

Proof of Lemma 4.

Proof. Set `(λ) = Θ(λ) (and therefore s = O(1)) such that `(λ) ≥ 3
2λ. Sending N requires 2`(λ)

bits of communication, h requires 4`(λ), ctind and ~c require O(`(λ) · n1). We now analyse security.
Let A be a semi-honest, static adversary that interacts with parties Alice and Bob running protocol
ΠC in the FHSS

update-hybrid model. We need to construct a simulator Sim such that no environment
Z can distinguish with non-negligible probability whether it is interacting with A and ΠC in the
FHSS

update-hybrid model, or with Sim and FSFE(C). Because the adversary is static, we can assume that
the set of corrupted parties is fixed before the start of the protocol, and we can consider the cases of
a corrupted Alice and a corrupted Bob separately.

– Perfect security against a corrupted Alice. Alice receives no messages from Bob in the
real execution and the single message Alice receives from FOLE is a uniformly random value in
(F2λ)t·(s+1), so it is easy to see that joint view of Z and A in the execution of ΠHSS

update can be
simulated perfectly.

– Perfect security against a corrupted Bob. Consider the simulator Sim which is given as
input the corrupted Bob’s input x1 ∈ (F2λ)n1 , internally runs a copy of A, and acts as follows:
• Simulating the communication with Z: Every input value that Sim receives from Z

is written on A’s input tape (as if coming from A’s environment), and every output value
written by A on its output tape is copied to Sim’s own output tape (to be read by Z).
• Simulating the protocol’s execution:

1. Sim sends (input, x1) to FSFE(C) and waits to receive (HSS.pk, I1 = (ctind, ctdep)).
2. Parse HSS.pk = (pkPaillierEG, D

(0), . . . , D(s−1)) and recover N from pkPaillierEG.

3. Parse ctdep = (ct
(i,j)
dep)(i,j)∈[t]×[s+1]

4. Sim writes (N, pkPaillierEG, ctind) on A’s input tape (as if sent by Alice to Bob).

5. Sample ~y(1) = (y
(1)
(i,j))(i,j)∈[t]×[s+1]

$← (F2λ)[t]×[s+1]

6. For (i, j) ∈ [t]× [s+ 1], set c(i,j) ← ct
(i,j)
dep · (1 +N)−y

(1)
i,j .

7. Sim proceeds with the execution of A until the latter writes (input, 1, x1) on its output
tape (the message from Bob to FOLE), at which point it writes ~y(1) on A’s input tape (as
if sent to Bob by FOLE).

8. Sim writes ~c on A’s input tape (as if sent by Alice to Bob).
If follows from inspection that this simulation is perfect.

ut

	Constrained Pseudorandom Functions from Homomorphic Secret Sharing
	Introduction
	Our Contributions

	Technical Overview
	General Strategy
	CPRF from HSS with Simulatable Memory Shares
	Handling more Constraints via Staged HSS
	Applications of Staged HSS to Secure Computation

	Preliminaries
	Homomorphic Secret Sharing and Extensions
	Homomorphic Secret Sharing
	HSS following the RMS Template
	Extended Evaluation and Simulatable Memory Values
	Staged Homomorphic Secret Sharing

	Constrained Pseudorandom Functions
	CPRF for Inner-Product from HSS
	CPRF for NC1 from HSS

	Applications to Secure Multiparty Computation
	Sublinear Computation with One-Sided Statistical Security

	Additional Definitions
	Decision Composite Residuosity Assumption
	Pseudorandom Functions (PRFs)
	Pseudorandom Correlation Function
	Universal Composability

	Proof of Lemma 1
	New Variants of HSS from DCR
	Proofs of CPRF Generic Constructions
	CPRF for Inner-Product from HSS (Proof of Theorem 3)
	CPRF for NC1 from HSS (Proof of Theorem 4)

	Proofs of MPC Applications of Staged-HSS
	Secure Computation with Precomputable Silent Preprocessing – Proofs
	Sublinear Secure Computation with One-Sided Statistical Security – Proofs

