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From Temporal-evolving to Spatial-fixing: A Keypoints-based Learning
Paradigm for Visual Robotic Manipulation

Kevin Riou1§, Kaiwen Dong2§, Kevin Subrin1, Yanjing Sun2, and Patrick Le Callet1

Abstract— The current learning pipelines for robotics ma-
nipulation infer movement primitives sequentially along the
temporal-evolving axis, which can result in an accumulation
of prediction errors and subsequently cause the visual observa-
tions to fall out of the training distribution. This paper proposes
a novel hierarchical behavior cloning approach which tries
to dissociate standard behaviour cloning (BC) pipeline to two
stages. The intuition of this approach is to eliminate accumu-
lation errors using a fixed spatial representation. At first stage,
a high-level planner will be employed to translate the initial
observation of the scene into task-specific spatial waypoints.
Then, a low-level robotic path planner takes over the task of
guiding the robot by executing a set of pre-defined elementary
movements or actions known as primitives, with the goal of
reaching the previously predicted waypoints. Our hierarchical
keypoints-based paradigm aims to simplify existing temporal-
evolving approach to a more simple way: directly spatialize
the whole sequential primitives as a set of 8D waypoints only
from the very first observation. Plentiful experiments demon-
strate that our paradigm can achieve comparable results with
Reinforcement Learning (RL) and outperforms existing offline
BC approaches, with only a single-shot inference from the
initial observation. Code and models are available at : https:
//github.com/KevinRiou22/spatial-fixing-il

I. INTRODUCTION

Robotic Manipulation Learning, i.e., the ability for a robot
to learn various manipulation skills from large-scale human-
labeled datasets or interaction experiences, is a crucial ap-
proach for an autonomous system. Two paradigms are well-
studied for developing this approach: reinforcement learn-
ing (RL) and behavior cloning (BC). Although impressive
progress has been achieved in endowing robot to learn skills
in visual rich scenarios, reinforcement learning is notorious
for difficult training and time-consuming. This is because the
requirement of huge amount of environment interactions and
the challenges of reward function definition, which is imprac-
tical and even infeasible in some cases. Behavior cloning can
effectively alleviate this issue in an offline training manner,
but it still encounters the problem of accumulated error aris-
ing from sequential prediction. With this temporal-evolving
setting, actions need to be inferred after each observation
(up to 376 actions taken for a simple cube lifting action
in RLBench[6]), which is inefficient, especially for edge-
devices. Additionally, the worsening accumulated error can
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Fig. 1: From (a) to (d): crucial waypoints for task of ”put
rubbish in bin”.

lead to out-of-distribution observations, which exacerbates
the accumulated error in a vicious cycle.

To alleviate aforementioned issues, we propose a hierar-
chical keypoints-based learning paradigm which simplifies
the movement primitives as a set of waypoints by encoding
the fixed spatial configuration of the entire scene. Our
paradigm is made of two stages: (1) A high-level trajectory
planner that predicts the minimal sequence of key waypoints
for executing the task from multi-view RGB images, given
only the first observation of the scene. (2) An off-the-
shelf robotic path planner, that can reach the waypoints
proposed by the trajectory planner. Our paradigm benefits
from a fixed spatial encoding from the initial observation,
which eliminates the possibility of error accumulation and
enables single-shot inference. Last but not least, it should be
noted that conventional BC paradigms used for vision-based
robotic manipulation learning demand that the demonstra-
tions be gathered from the robot’s viewpoint in order to avoid
observation distributional shifts between training and infer-
ence. To obtain such demonstrations, typical methods involve
teleoperating the robot [15] or manually moving the robot
[8], which can be both impractical and time-consuming. In
contrast, our approach allows for the manipulating agent to
shift between the collection of demonstrations and the actual
inference time, as long as the agent is not visible in the initial
scene observation. Our contributions can be summarized as
following the points:

• A high-level trajectory planner is proposed that encodes
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Fig. 2: Overview of our keypoints-based manipulation learning paradigm: The input is 4 independent images from different
views with resolution of 256× 256. An image embedding module is built to extract 2d waypoints representation in a latent
space. Consequently, the latent representation will be sent into our proposed Multi-view Fusion Transformer (MFT) module
to obtain the 8D waypoints prediction in 3D space, which can be used as the reference for following path planner. The whole
framework will be trained in an end-to-end way. And the the success rate will be evacuated under RLbench simulation.

spatial configuration and high-level plan strategy. Con-
sequently, low-level planning is delegated to established
reliable robotics solutions.

• Under the hypothesis of fixed spatial configuration, we
predict the motion primitives for the entire execution
sequence directly based on the initial observation of
the scene. This eliminates the accumulating prediction
errors along the task execution, since all actions are
predicted at once rather than in a temporal-evolving
way.

• The research includes an adapted manipulation dataset
that is specifically designed for predicting waypoint
sequences, along with tools for assessing the trained
model’s efficacy. These resources are built upon the
RLBench simulation.

II. RELATED WORKS
In this section, we will revise primary knowledge from

three aspects of Visual Robotic Manipulation: Reinforcement
Learning (RL), behaviour cloning (BC) and keypoint-based
manipulation learning.

A. Reinforcement Learning (RL) for manipulation tasks.
Online Reinforcement Learning highly relies on iterative

interactions between agent and environment, which is im-
practical in real-life scenarios due to expensive or dangerous
experience collection. The success of Deep Neural Network
(DNNs) has promoted the advent of offline Reinforcement
Learning for large-scale data representation. Kumar et al.
[12] proposed a practical algorithm to reduce error ac-
cumulation when training from offline data. Ebert et al.

[3] presented a model-based reinforcement learning method
centered around prediction of raw sensory observation by
taking use of prediction in the context of robotic manipula-
tion. However, both online and offline approaches focus on
learning a direct mapping from environment states to robot
actions, which means (1) they are not purpose-aware and
(2) they have to learn primitive skills that roboticists can
easily solve using off-the-shelf solutions. Primitive based
Reinforcement learning is an augmentation for standard
Reinforcement Learning with a predefined library of behav-
ior primitives learnt from data, which is more robust and
reusable for alleviating the generalization challenge. Strudel
et al. [18] designed a sample efficient pipeline to learn
robust RL policies confined with primitive skills. Nasiriany
et al.[16] introduced a Deep Reinforcement Learning (DRL)
framework which utilized predefined hierarchical primitive
skills, to narrow the exploration space of DRL. Dalal et
al. [1] manually coded primitives with arguments that are
learned by RL policy, leading to a better adaptability for the
considered tasks.

B. Behavior cloning for manipulation tasks learning.

Benefit from the promising development of Deep Neural
Network (DNN) over the past decade, the effectiveness
of data-driven learning methods have been proved over
many visual sensory applications[20]. Behavior cloning is
a straightforward imitation learning method that utilizes the
representation capability of DNNs to map the expert’s actions
to the agent’s observations using abundant data. It does not
require the agent to interact with the environment during



training, making it a simple approach. However, behavior
cloning suffers from several limitations, such as not being
purpose-aware, having to learn primitive skills that can be
easily solved using off-the-shelf solutions, and well-known
error accumulation during task execution. To overcome these
issues, researchers have developed an alternative approach
called Hierarchical Behavior cloning (HBC), which involves
a high-level model that learns intermediate goals and a low-
level model that predicts sequences of actions to reach sub-
goals, as demonstrated in studies such as [24], [2], [23].
HBC uses an end-to-end framework that significantly reduces
the error accumulation and enhances purpose-awareness.
Nevertheless, HBC still needs to learn some primitive skills
that roboticists can easily solve using off-the-shelf solutions.

C. Keypoint-based manipulation learning

As a task-relevant context on object, keypoints of ob-
ject surface come with a significant importance for Visual
Robotic Manipulation (VRM). With the progressive devel-
opment of object keypoint discovery approaches [20], [14],
[11], [21], many manipulation learning methods have been
proposed to leverage keypoints-based context for geometry
and semantic representations. But most of these methods
leverage keypoints as a bridge for facilitating the transfer
of manipulation skills between demonstrators and imitators.
Gao et al.[4] decomposition robotic manipulation task into
keypoints constrain representation and control policies se-
lection, which allows the successful reproductions across
various tasks. Yang et al. [25] utilized keypoints detector to
represent the similarity between a human demonstration and
robot execution, then maximized it by Bayesian optimization.
Wada et al. [22] represent 6D pose of objects in voxels to
improve multi-object reasoning in cluttered scenes. Kulkarni
et al. [11] proposed a unsupervised keypoints discovery
network, then apply the learned object keypoints as state
input that related to policy explorations over Reinforcement
Learning (RL) settings.

III. BACKGROUND

A. Behavior Cloning for Visual Robotic Manipulation

Behavior Cloning (BC) refers to a supervised learning
approaches used to learn sensorimotor policies from offline
data. BC only requires pairs of sensory observations, e.g.,
images, associated to expert actions. Given access to an
expert agent, we can build a BC dataset, D = {(oi, ai)}Ni=1,
where oi are sensory observations, and ai = π∗ (oi) are
the respective actions taken by the expert π∗. When using
BC for robotic manipulation, actions are usually described
as the Cartesian-position of next gripper Tool Center
Point (TCP) and Quaternion-orientation, in the scene, also
associated with the gripper state, e.g. opening amount,
ai = (xtcp, ytcp, ztcp, q1tcp , q2tcp , q3tcp , q4tcp , Grip.State).
Typical solutions to acquire such expert actions consist of
robot teleoperating by human, robot behavior hard-coding
with omniscient knowledge in simulation, expert RL policy
training using hard-coded reward function as well as huge
amount of simulation trials.

When considering visual robotic manipulation, the ob-
servations are limited to raw images of the environment
oi = {Ivi }

V
v=1, where Ivi represents the image from view

v in a multi-view configuration. The goal of a BC algorithm
is to learn a policy π, parameterised by θ, that produce
similar actions to the expert π∗ when provided with the
same observation oi. Optimal parameters θ∗ are found by
minimizing the BC loss l :

θ∗ = argmin
θ

∑
i

l (π (oi; θ) , ai)

At inference phase, the trained policy is used to sequentially
predict actions from observations to execute the target task.

B. Limitations
BC is used to solve a sequential decision problem, where

future observations depend on previous actions. At training
phase, it violates the i.i.d. assumption made in statistical
learning. Moreover, at inference phase, errors of the action
predictions accumulate along the task execution, which leads
to a distributional shift between training and inference ob-
servations, which subsequently results in out-of-distribution
prediction.

To alleviate this problem, hierarchical algorithms has been
proposed to decompose trajectories of manipulation task into
sub-trajectories that mostly consisted in existing off-the-shelf
robotics primitives, e.g. ”reaching” and ”grasping”. However,
both traditional BC and RL still have to learn by themselves
to accomplish the target tasks.

IV. APPROACH
Instead of considering (observation, action) tuples to train

our model, we format the dataset as a set of trajectories,
D = {Ti}Ni=1, in which each trajectory can be represented
as T = {(ot, at)}Tt=1.

We can then further decompose a task as sequence, T ′ =
{(om, wpm)}Mm=1 ,M << T made of a few waypoints wpm
that can be sequentially reached using off-the-shelf robotics
primitives. Fig. 1 illustrates the observation associated to 4
waypoints which define a ”cube lifting” task.

Given these statements, we designed a model that can di-
rectly predict such set of waypoints from the first observation
of the scene. In this scenario, the training dataset D can
be formatted as a set of tasks Ti =

(
oi0, {wpi0, ..., wpiM}

)
,

where the few waypoints needed to accomplish the task must
be directly predicted from o0. This approach benefits from
several advantages. First, the sequential decision making
problem solved by traditional BC or RL approaches is
changed to a one-step prediction problem, where the whole
trajectory is predicted from initial observation of the scene,
which eliminates both accumulation error during inference
and the violation of the i.i.d. assumption during the training
phase. Secondly, the trained model focuses on understanding
the high level structure, i.e. the purpose of the task, while
sub-trajectories prediction is remained for existing and more
robust robotics primitives.

This section details the framework proposed to solve the
one-step trajectory prediction problem mentioned above.



A. Overall framework description

Fig.2 describes the whole proposed framework. The frame-
work is made of two main components: (1)The deep learning
model, predicting waypoints from a multi-view images of
the initial observation, denoted as Multi-View Fusion Trans-
former (MFT) in Fig.2; (2)A path planner, that can drive the
robot to the predicted waypoints.

The waypoints prediction framework can be divided
in two parts: (1)The image processing part aims to
inherently learn to locate the waypoints in the 2D
images; (2)The 2D-to-8D projection part that learns to
map the muli-view 2D information extracted by the
the image processing part to actual 8D robot poses
(xtcp, ytcp, ztcp, q1tcp , q2tcp , q3tcp , q4tcp , Grip.State) that
can be understood by the robotics path planner. The whole
framework is trained end-to-end from ground truth 8D
waypoints recovered from expert demonstrations. The
method used to choose and extract the waypoints from the
demonstrations is detailed in section V-A.

B. Framework details

The architectural choices for the framework parts were
guided by the actual functions they had to satisfy. The
aim of the image embedding module is to extract pertinent
characteristics from various individual views. These features
are later fused by the 2D-to-8D projection model to recover
the final 8D waypoints. Furthermore, we can state that
the image embedding module aims to extract information
about the 8D waypoints projected in various 2D views.
The 2D-to-8D projection module can be interpreted as a
sophisticated learned triangulation method that projects 2D
spatial information into the 3D scene space.

1) Image Embedding: We took inspiration from a cutting-
edge deep learning architecture for 2D human pose estima-
tion, called HRNet [20], to develop our image embedding
module. HRNet has the capability of generating feature
maps with high spatial resolution as well as rich semantic
information. This combination is critical for learning manip-
ulation tasks, particularly those involving small objects, as
it provides a comprehensive understanding of the objects in
the scene. In this work, we employ the HRNet-W32 [20]
architecture as the feature extraction backbone, which will
consequently generate M-channels feature maps for each
view in 2D space.

2) MFT: Our Multi-view Fusion Transformer (MFT) is a
simple Transformer-based network which aims to encode the
latent waypoints features in 2D space, to 8D waypoints in 3D
space, as shown in 3. Firstly, the latent feature map of each
view is flattened to M 1-D tensor, which are then fed into
a multi-layer perceptron (MLP) to obtain implicit features
for 8D waypoints. The shape of these features is M × 16,
where M is then number of waypoints, and 16 is the latent
dimension of the features. After the pre-embedding step,
the generated features from each view are processed using
our proposed MFT module, which includes learnable spatial
embedding. Subsequently, four implicit vectors are produced
after passing through a residual MLP layer, followed by
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Fig. 3: Framework of our MFT module. A high-level implicit
representation with shape of M × 16 will be obtained
from the latent 2D waypoints feature map through a flat-
ten operation and MLP layers, prior to its transmission to
MFT. Subsequently, these implicit representations will be
mapped into vectors with same shape of input through a
pre-embedding and a residual MLP layer. Taking generated
multi-view vectors as input, our 4 branches cross-transformer
will enable the interaction among multi-views features. Be-
sides, a residual connection is also used to alleviate the
gradient vanishing.

four transformer blocks in parallel, with a cross-connection
configuration[13]. The residual connection is also utilized
in this block to moderate gradient vanishing. Finally, the
resulting outputs are concatenated and passed through MLP
layers to generate the final output.

3) Training details: The whole framework is trained end-
to-end to minimize the following supervised loss.

L =

N∑
i=1

1

M

M∑
m=1

(
wi

m − wi∗

m

)2

, where
{
wi

m

}M

m=1
= π

(
oi0; θ

)
. π represents the framework

that predicts M waypoints from the initial observation of
the scene o0; wi

m and wi∗

m represent respectively the m-th
predicted and ground-truth waypoints for the i-th trajectory
in the training dataset.

4) Path Planning: As we conducted our experi-
ments in RLBench [6] simulation, we used the in-
tegrated ’ABS EE POSE PLAN WORLD FRAME’ path
planer, which can drive the robot TCP to a specified absolute
position and with the specified orientation in the world
frame. This path planner relies on the Open Motion Planning
Library [19] combined with a feedback-control loop. The
gripper control is also integrated to the path planer and is
discretized to either ’open gripper’ or ’close gripper’. The
planning always operates in two steps, (1) driving the robot
TCP to the desired position, and (2) updating the gripper



Trash. Reach Grill PickLift Unplug MoneyOut
M 4 1 5 4 3 4
Tmax 564 83 399 460 343 306
Tmin 117 22 108 103 97 162

TABLE I: Number of waypoints (M ) vs min and max
total number of steps (respectively Tmax and Tmin) when
using RLbench demonstration generator. The tasks Trash.,
Reach, Grill, PickLift, Unplug and MoneyOut correspond
to RLBench tasks considered in our experiments, respec-
tively ’put rubbish in bin’, ’reach target’, ’meat off grill’,
’pick and lift’, ’unplug charger’ and ’take money out safe’.

state.

V. RESULTS

A. Simulation

We conducted our experiments using RLBench [6] sim-
ulation because (1) it provides a multi-camera working
environment, (2) it gives access to a wide variety of tasks,
and most importantly, (3) within the simulation, an automatic
task demonstration generator is integrated. This generator
utilizes sets of pre-defined waypoints for each available task
to create custom waypoint-based datasets that can be used for
further analysis and training. As a result, we propose a tool
that can generate datasets specifically tailored to the novel
paradigm proposed in this work using RLBench. The gen-
erated datasets comprise demonstrations of tasks, consisting
of initial observations of the scene, and their corresponding
”ground truth” sequences of 8D waypoints necessary for
successfully completing the respective tasks. As illustrated
in Table I, the automatic demonstration generator provides
almost two orders of magnitude more steps than the number
of waypoints that are actually needed to accomplish the task.

The state of the simulation is also saved for each generated
demonstration, so that the tasks can be later replayed with the
exact same scene configuration. By leveraging this feature,
an evaluation of the trained framework can be executed
in three steps. (1) A part of the generated dataset is kept
apart for evaluation during the framework training. (2) Once
the training is done, the evaluation data are inferred by
the trained model, which will predict waypoint sequences
corresponding to the evaluation examples. (3) Simulation is
iteratively loaded with scene configurations that correspond
to the evaluation data. The predicted waypoints generated
from these configurations are then utilized by the path
planner in an attempt to accomplish the assigned tasks. A
success rate can be computed over the evaluation data by
reporting the number of successful examples over the total
number of examples.

B. Is our approach competitive with existing solutions for
visual-robotic-manipulation learning ?

To compare our approach to existing robotic manipulation
learning solutions, we referred to James et al. [7], who ran
two sets of experiments in their work. In the first set of
experiments, they compared common imitation learning and

reinforcement learning methods , including ARM [5], BC,
SAC+AE [26], DAC[9], SQIL [17] and DRQ [10], and their
baseline, C2F-ARM, [7] , on a set of tasks that can be solved
from the front camera only. In a second set of experiments,
they evaluated ARM [5] and C2F-ARM [7] on tasks that
require more than one camera to be achievable.

ARM, C2F-ARM, SAC+AE, DAC, SQIL and DrQ are
RL-based approaches, which means they require thousands
of interactions with the environment to learn a task. James
et al. [7] provided all baselines, including RL ones, with
100 demonstrations for each task, except for their C2F-
ARM baseline, which was provided with 10 demonstrations.
However, they used a data augmentation method to extend
their data. Since we didn’t use data augmentation strategies
in our case, we provide our model with 300 demonstrations.
However, in section VI, we discuss how our paradigm allows
considerably more efficient data collection than previous
imitation learning paradigms.

As a proof of concept, we selected, (i) two tasks in the
first set of experiments, to validate the performances of our
framework compared to a wide range of robot manipulation
learning methods, and (ii) two tasks in the second set of
experiments to validate that our approach can compete with
existing multi-view approaches.

We point out that in both sets, the authors had access to
both RGB and depth information from the considered cam-
eras, while our method learns to recover depth information
from RGB images only, using our multi-view fusion module.
For this reason, our framework always considers the four
cameras placed around the scene in the simulation, namely
’front’, ’overhead’, ’over-shoulder-right’ and ’over-shoulder-
left’ cameras, but only accesses RGB information.

Note that in section V-D, we discuss two additional tasks
that we tried but actually partially failed to train.
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Fig. 4: Our training results compared with [7] learning curves
on monocular setting.

Fig. 4 shows the results for the first set of experiments.
It highlights that our method (1) outperforms traditional BC
by a large margin and (2) slightly outperforms mean results
of the best state-of-the-art RL based approach, C2F-ARM,
on tasks where the manipulated objects can be seen from all
view points on the initial observation of the scene. Other RL



approaches were already outperformed by C2F-ARM, and
by extension we outperform them as well.
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Fig. 5 shows the results for the second set of experiments.
It highlights that our method can still compete with C2F-
ARM when they also access multiple views.

C. Does the one-shot waypoints prediction help reduce error
accumulation during task execution?

Section V-B reports evaluation results of various baselines,
but the differences among them can be attributed to several
factors. Firstly, C2F-ARM, our model, and other existing
baselines employ different networks for observation repre-
sentation. Secondly, while our model predicts waypoints,
other approaches predict the gripper pose of the next step.
Finally, our model predicts the entire trajectory configura-
tion at once, whereas other approaches rely on sequential
decision-making, which can result in prediction errors and
observation distribution shifts.

To isolate the impact of error accumulation and associated
observation distribution shift on the same tasks studied in
section V-B, we trained a behavior cloning model to predict
the next waypoint sequentially from low-dim observations.
This model has access to the 6D poses of each object in
the scene, enabling it to infer ground-truth object positions
directly without relying on a vision model to process images
of the scene. While the model predicts waypoints like our
approach, it can still be affected by prediction errors and ob-
servation distribution shifts due to its sequential predictions.

The results of the waypoint-based behavior cloning trained
from Ground Truth 6D objects poses and our framework
are compared in Table II. This table displays both the
training loss and success rate outcomes. To gain a better
understanding of how the training results impact the success
rate on model deployment, we separated the training loss into
three losses: The ”Train Pose” loss, which concentrates on
the first three dimensions of the 8D waypoints, corresponding
to the position of the robot TCP. The ”Train Quat” loss
focuses on the orientation of the TCP, while the ”Train Grip”
loss is concerned with the gripper state.

TABLE II: Evaluation of the distribution shift between
training and inference.

Trash. Grill. Unplug PickLift MoneyOut

Behavior Cloning From 3D Ground Truth

Train Pose 3e10−5 3e10−4 3e10−5 3.5e10−4 1e10−5

Train Quat. 3e10−4 4.6e10−3 5e10−5 5.2e10−2 4e10−5

Train Grip. 6.3e10−3 1.4e10−3 2.8e10−3 5e10−6 1.5e10−2

Success rate 0 100 70 0.8 0.8

Ours

Train Pose 1.6e10−2 9.5e10−3 8.6e10−3 5.7e10−2 1.3e10−2

Train Quat. 2.3e10−2 2.2e10−2 2.4e10−2 0.53 4.3e10−2

Train Grip. 1.7e10−3 2.7e10−3 1.3e10−3 2.2e10−3 3.9e10−3

Success Rate 96 90 72 − 46

Compared to our approach, the behavior cloning model
trained from object poses has significantly lower ”Train
Pose” and ”Train Quat” losses. Without any observation
distribution shift between training and inference, or predic-
tion error accumulation, the behavior cloning model should
be much more accurate than our framework, and, by ex-
tension, should achieve a better success rate. However, our
framework can produce similar or superior success rates. In
shorter, despite the behavior cloning approach shows better
prediction performances during training, the final success
rate is affected by error accumulation during task execution,
which is not the case with our framework. The exception
is the ’pick and lift’ task, which our model failed to grasp.
For the ’put rubbish in bin’ task, which completely fails,
we noticed that the behavior cloning model was trapped in
the neighborhood of the first waypoint, while never actually
reaching this waypoint. This was an out-of-distribution case
for the trained model

D. Failure cases

This section highlights the current limitations of
our framework. Fig.6 points out mitigated results on
take money out task, while Fig.7 highlights that typical fail-
ure case for our framework is caused by critical occlusions
on the initial observation of the scene.

take_money_out_safe

100

80

60

40

20

0

46

0 1 2 3 4 5 6 7

1e3steps

A
v

er
a

g
e
 R

e
tu

r
n

C
2

F
-A

R
M

A
R

M
O

U
R

S

Fig. 6: Moderate results compared with [7] learning curves.
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Fig. 7: Visualization of initial observation of the scene in
failure vs in success cases on take money out task.

VI. CONCLUSION

Although impressive progress has been made, RL and
standard BC still facing some intrinsic flaws, e.g. huge
amount of interaction for RL and accumulation error for BC.
In this work, we proposed an offline hierarchical behavior
cloning paradigm, with motivation of eliminating accumula-
tion errors using a fixed spatial representation. Two stages
are combined in our framework. Firstly, a keypoints-based
high-level planner is employed to represent the fixed spatial
configuration only from the very initial observation, with
the form of task-relevant waypoints. Secondly, a low-level
robotic path planner is used to guide the robot by reaching
predicted waypoints. Extensive experiment illustrated that
our method can achieve similar performance with RL ap-
proaches, and outperforms existing BC approaches in some
task, with only inference the initial observation. However,
since all the trajectory waypoints are predicted before the
task execution, the proposed architecture is mostly suitable
for static scenes.
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