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This work focuses on operating room planning for elective cases by taking into account the uncertainties related to surgery times. The objective is to fix the elective cases to be achieved in each operating room during each day of the week in such a way that the overall cost incurred by this decision is minimized. A stochastic mixed integer programming model is first proposed. The latter is then approximated by a deterministic mixed integer linear program. Operating room plans generated by the stochastic vs. the deterministic approach are evaluated and compared using simulation. The obtained results show the necessity of developing stochastic approaches for operating room planning. We particularly focus on the impact of stochastic surgery times on the operating room performance and practice.

Introduction

Operating rooms are considered among the most costly hospital facilities. They can consume more than 9% of a hospital's annual budget [START_REF] Gordon | Surgical unit time review: Resource utilization and management implications[END_REF]. Effective planning and scheduling of operating rooms, for the purpose of reducing costs while maintaining good quality of care, have become one of the major priorities for healthcare institutions.

In this paper, we focus on operating room planning. The problem consists in determining the set of elective surgical cases to be achieved each day over a planning horizon of one or two weeks. This assignment problem has been extensively addressed in the literature over the past two decades. Much research has been conducted on the use of deterministic approaches [START_REF] Guinet | Operating theatre planning[END_REF]Marcon et al., 2003;Jebali et al., 2006;Fei et al., 2008;Roland et al., 2009). In most of this literature, a two-step approach has been proposed for the operating room planning and scheduling [START_REF] Guinet | Operating theatre planning[END_REF]Jebali et al., 2006;Fei et al., 2009). First, elective patients are assigned to operating rooms (referred to as "operating room planning"); then scheduled on a daily basis (referred to as "operating room scheduling"). Mixed-integer programming models have been proposed for operating room planning and scheduling. However, this problem is known to be NP-hard. That's why some recent papers have concentrated on finding good operating room plans and schedules in reasonable computing time rather than optimal ones obtained after a long time. The objective is to generate good solutions quickly for real life operating room size. Roland et al. (2009) proposed a heuristic for the operating room planning and scheduling problem based on genetic algorithm. In (Fei et al., 2009), the operating room planning problem was described as a set-partitioning integerprogramming model and it is solved by a column-generation-based heuristic (CGBH) procedure.

It is well known that significant uncertainty characterizes the operating room environment; mainly with regard to operating times, arrival of emergency patients and resource availability (Lamiri and Xie, 2007). Some recent studies (Lamiri and Xie, 2007;Hans et al., 2008;Lamiri et al. 2008a;Lamiri et al. 2008b;Lamiri et al., 2009;Mini et Yih, 2010) have taken into account the uncertainty related to the operating room environment. Lamiri and Xie (2007) addressed the issues of surgery planning with uncertain operating times and emergency surgery demand. The problem was first modelled as a stochastic integer program. Monte Carlo simulation was then used to approximate the problem by a deterministic optimization model. A heuristic solution approach based on column generation formulation was proposed. The latter was improved using local optimization heuristics. In (Lamiri et al. 2008a;Lamiri et al. 2008b;Lamiri et al., 2009), the authors dealt with operating room planning by taking into account only the uncertainty related to emergency case arrivals. This uncertainty was introduced via a random variable representing the capacity used by emergency cases in each operating room during each day of the week. In (Lamiri et al., 2008a), a stochastic mathematical programming model was proposed. Here, the stochastic model was approximated by a deterministic linear mixed integer program. The model was tested based on single operating room planning. Results have shown the gains of using a stochastic approach for operating room planning. In Lamiri et al. (2008b), the authors developed a column generation approach to solve the operating room planning. The proposed approach resulted in a near-optimal solution (within 2% of the optimum) in a short computation time for problems of practical sizes (up to 12 operating rooms). Moreover, in (Lamiri et al., 2009), several heuristic and meta-heuristic solutions (simulated annealing and taboo search) were proposed. Hans et al. (2008) considered the problem of assigning elective surgeries and sufficient planned slack to operating room days. The latter aims at minimizing overtime and preventing surgery cancellation incurred by the variability in the duration of surgical operations. However, the sum of surgery times has been assumed to be normally distributed. The proposed approach leads to freeing up a lot of operating room capacity. Beliën and Demeulemeester (2007) investigated the problem of building cyclic master surgery schedules. The objective is to minimize the expected total bed shortage. The problem was first modelled as a stochastic MIP (with stochastic surgery durations) and then solved heuristically. Min and Yih (2010) addressed the operating room planning problem while considering patient priority. When the capacity is available patients with a higher priority are selected from the waiting list and put on the schedule. At the beginning of each period, a decision on the number of patients to be scheduled is made based on the trade-off between the cost for overtime and the cost for surgery postponement. Uncertain demand and variability of surgery durations were considered. A stochastic dynamic programming model was proposed to show how the consideration of patient priority could affect the surgery scheduling policy. However, the proposed model is mono-period and didn't specify the operating room for each elective case.

Because of the increased complexity of the problems when uncertainty is taken into account, we note that researchers' attention currently remains focused on deterministic approaches (Cardoen et al., 2009). Henceforth, operating room planning continues to be a very promising and challenging research issue.

Our work falls within this setting. We address operating room planning for elective cases by taking into account the uncertainties related to surgery times. We assume that operating rooms are allocated only for elective surgery. The objective is to fix the elective cases to be achieved in each operating room during each day of the week in such a way that the overall cost incurred by this decision is minimized. We try to find the planning with the best trade-off between patientrelated costs and the expected costs of operating room utilization. Here, patient-related costs are hospitalization costs. We assume that a hospitalization date is already given to each elective patient; and the patient surgery should be performed the next day. Regarding patient satisfaction, the hospitalization date shouldn't be modified. If the patient surgery is planned for a future date, a hospitalization day cost is incurred for each additional day spent by the patient in the hospital. Therefore, the assignment of elective cases to operating rooms seeks to minimize costs incurred by overtime, undertime, as well as patients' waiting time between their hospitalization date and their operation date to improve their satisfaction and bed availability.

The main purpose of this paper is to point out the real need to develop stochastic models for operating room planning. In (Lamiri et al., 2008), the authors showed the opportunity to take into account the emergency demand in the operating room planning but didn't consider the randomness related to surgery times. In the current paper, a stochastic mixed integer programming model is first proposed. The latter is then approximated by a deterministic mixed integer linear program. Operating room plans generated by the stochastic vs. the deterministic approach are evaluated and compared using simulation. The results obtained show the necessity of developing stochastic approaches for operating room planning. We particularly focus on the impact of stochastic surgery times on the operating room performance and practice.

The remainder of this paper is organized as follows: Section 2 presents a stochastic mixed integer programming model for operating room planning. In Section 3, the proposed stochastic model is approximated by a deterministic mixed integer linear program using a Monte Carlo Sampling approach. Computational experiments and results are presented in Section 4. In conclusion, some future extensions of this work are discussed.

Problem statement

This paper considers elective surgery planning over a finite horizon of H periods (the 5 working days of the week). The assignment of elective cases to operating rooms determines the patients to be operated on during each day of the planning horizon. The operating theater is composed of S identical operating rooms. The latter are allocated only for elective surgery. N elective patients can be treated in operating rooms over the considered planning horizon. Each elective case i (i=1..N) has the following characteristics: -r i : the hospitalization date for patient i, r i +1 represents the release date for performing elective case i; -d i : the due date for performing elective case i; -p i : the operating time which includes duration of surgery, pre-surgery preparation and operating room cleaning.

Having an accurate estimate of operating time required for each surgery type is a prerequisite to an effective use of operating rooms. This emphasizes that it is essential to register surgery times, also that operating room planners must recognize that surgeries have different surgery time variability (Hans et al., 2008;Ozkarahan, 2000). However, the estimation of operating times is not an easy task because it depends on the pathology of the patient, which can only be partially known, and on the expertise of the surgeon [START_REF] Wright | Statistical modeling to predict elective surgery time[END_REF][START_REF] Dexter | Applications of information systems to operating room scheduling[END_REF]. Existing statistical studies [START_REF] Zhou | Method to assist in the scheduling of add-on surgical cases, Upper prediction bounds for surgical case durations based on the log-normal distribution[END_REF]Strum et al., 2000) have shown that log-normal distributions may approximate surgery times for a particular surgeon and surgery type. Information systems may also be used to generate average operation times. Here, the operating time for each elective case i is considered as a random variable with a known density function f pi (x), average  i and standard deviation  i . We assume that the surgery times are mutually independent.

All resources necessary for anesthetic and surgical procedures are supposed to be available in each operating room over the opening hours. The latter includes both regular opening hours and overtime. Operation assignment to operating rooms seeks to minimize overtime, undertime, as well as patients waiting time between the hospitalization date and the operation date. The objective function is converted into a cost function. [START_REF] Teil | Coûts d'une minute de bloc opératoire et Coûts d'un service d'anesthésie : quelles utilisations[END_REF] analyzed the costs of operating rooms. She showed that fixed costs are enormous compared with variable costs. Consequently, unused operating rooms incur considerable cost. Outside regular opening hours, the staff is paid for working overtime. [START_REF] Dexter | Cost implications of various operating room scheduling strategies[END_REF] claims that overtime cost is about 1.75 the regular hourly cost. Moreover, the hospitalization cost increases significantly with the number of days the patient is kept hospitalized awaiting surgery.

In the present work, the operating room planning problem is modeled as a stochastic mixed integer programming model, which is described in the following paragraph.

Notations

The A solution to the operating room planning problem is given by the following integer (0-1) variables: X isj = 1 if elective case i is assigned to operating room s on day-period j, 0 otherwise

The following intermediate positive real variables are used:

 sj : overtime of operating room s on day-period j  sj : undertime of operating room s on day-period j

Stochastic mathematical model: (P S )

)

)] ). 1 (( )) 1 ( . .(( ) ( [ 1 1 1 1 1 1 . . 1 i S s H j isj i S s isj N i S s H ri j sj sj sj sj H j d X r X j Ch Cu Co Min                       
(1) Subject to:

1 1 1      S s isj H j X ] .. 1 [ N i   (2) 0 i s j X  i r j H j S s N i        / ] .. 1 [ ], .. 1 [ ], .. 1 [ (3) i S s isj H ri j d X j       1 1 . ] .. 1 [ N i   (4) sj sj N i i isj S s HS HN p X       1 1 ] .. 1 [ ], .. 1 [ H j S s     (5) ] ) [( 1      sj N i i isj sj HN p X E  ] .. 1 [ ], .. 1 [ H j S s     (6) sj  = ] ) [( 1     sj N i i isj HN p X E ] .. 1 [ ], .. 1 [ H j S s     (7)   1 , 0  isj X ] .. 1 [ ], .. 1 [ ], .. 1 [ H j S s N i       (8) 0 ,  sj sj   ] .. 1 [ ], .. 1 [ ], .. 1 [ H j S s N i       (9)
Where E[.] is the expected value with respect to the distribution of the random value. (x) + =max {0, x} and (x) -=max{0,-x}.

The objective function (1) minimizes the cost incurred by keeping the patients in hospital waiting to be treated in the operating room, as well as undertime and overtime costs. When an elective case is not planned over the planning horizon a penalty cost is added; it is set to the maximum allowable waiting time (given by the due date for performing the elective case). Constraints (2) specify that each operation may be assigned once at most. Constraints (3) state that an operation cannot be performed before patient hospitalization. Constraints (4) ensure that the due date for each operation is respected. Constraints (5) specify that each operating room can be used only during the permitted opening time. Constraints (6) estimate the expected overtime. Constraints (7) estimate the expected undertime. Constraints (8) ensure the integrality of the variables.

Operating room planning is a NP-hard stochastic combinatorial problem (Lamiri et al., 2008). In the remainder of the paper, we present a solution approach based on a Monte Carlo sampling technique.

Solution approach

Monte Carlo sampling optimization approaches are commonly used for solving stochastic programming models. We propose here a solution approach based on one of the Monte Carlo sampling techniques: the sample average approximation. By using this approach, the stochastic model is approximated by a deterministic optimization problem and henceforth can be solved by appropriate algorithm (Ruszczynski and Shapiro, 2003).

The basic idea of this method is quite simple and intuitive. Random samples are generated and integrated in the model instead of random variables. Let us consider L independent random samples
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of the operating times. By the Law of Large Numbers, the expected value of overtime and undertime (constraints 6 and 7) of the above stochastic model can be approximated by their sample average (Shapiro, 2003). Variables  sj (expected overtime for operating room s on day-period j) and  sj (expected undertime for operating room s on day-period j) are respectively replaced by their approximations
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Then, the above stochastic problem (Ps) can be approximated by the following Sample Average Approximation problem (Pa):
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Constraints ( 11) ensure that the opening hours are respected for all the considered random samples. The other constraints are those considered in the stochastic model (Ps). The optimal solution to the approximated deterministic problem (Pa) converges with the optimal solution to the stochastic problem (Ps) as L increases (Shapiro, 2003;Lamiri et al., 2008). The obtained deterministic model can be easily transformed into a linear mixed integer program. But the deterministic problem is also NP-hard (Lamiri et Xie, 2007).

Experimentation & computational results

To solve the different mathematical models, the commercial software package IBM ILOG OPL IDE version 6.3/CPLEX 12.1 is used. The solver Cplex has been set to enable aggressive cut generation. The different experiments are performed on a PC Pentium® Dual-Core 2.00 GHz.

We consider the case of a surgical center composed of 3 operating rooms. For all operating rooms, the regular opening time is set to 480 minutes and the overtime availability to 240 minutes. The hospitalization day cost has been set to 350 euros. The overtime minute cost is set to 8.33 euros (Lamiri et al., 2008). The undertime minute cost is set to 4.76 euros. Six (6) operating room plans are constructed. The first plan is obtained while considering a deterministic approach. The duration of each elective surgery is set to its average value. The five other pla ns are determined while solving problem (Pa) for different values of L (the number of samples considered by the model). Our objective is indeed twofold: (1) validate the proposed model (Pa); (2) evaluate and compare the performance of the obtained operating room plans.

Data

50 elective cases are considered. To generate operating times, a log-normal distribution is used. For each elective case i,  i is randomly and uniformly generated from interval [30 minutes, 180 minutes] (Lamiri and Xie, 2007);  i is randomly and uniformly generated from the interval [3 minutes, 90 minutes]. Hospitalization dates (r i ) are uniformly and randomly generated from the set {0, 1, 2, 3, 4} (Jebali and Bouchriha, 2007). Due dates (d i ) are randomly generated from the set {15, 16, 17, 18, 19, 20}.

Computational results

Table 1 presents the computational results. For each operating room planning problem, the following information is provided: problem number (N°), number of samples considered (L), number of constraints (Nb. Cts.), number of variables (Nb. Var.), value of the objective function (Z) in euros, expected costs for operating room utilization (Z1) in euros, patient-related costs (Z2) in euros and the computing time (CPU) in seconds. Problem Number 1 is solved while using a deterministic approach (only one sample is considered, and operating times are set to their expected value). We can note that computing time increase with the number of samples (L) considered in the model. However, computing time remains reasonable when 30 samples are considered. This result can be confirmed while testing a model several times with the same number of samples.

The objective function comprises patient-related costs (costs incurred by patient waiting time for surgery) and expected costs for operating room utilization. Only in problems ( 5) and (6) a patientrelated cost is incurred. In problem (5) an elective case is not planned over the planning horizon. This explains the value taken by the objective function. In problem (6), one elective case is postponed for one day. In the other plans, all elective cases are planned without waiting time.

In order to evaluate the obtained operating room plans and check the convergence of the proposed sample average approximation method, we propose to use simulation with a larger number of samples (500 samples).

Table 2 presents the obtained results. For each operating room plan, the following performances are estimated: average of overtime (AOT) in minutes, average of undertime in minutes (AUT), no realization rate (NR. rate), average of costs related to operating room utilization (A_Z1) in euros, standard deviation related to operating room utilization (SD_Z1) and gap between average of operating room utilization costs obtained by the optimization model and their estimate by simulation (GAP_Z1/AZ1) in percentage. Here, we don't consider patient-related costs because they aren't concerned by simulation. The realization rate (in percentage) is calculated by dividing the number of samples where the plan cannot be realized (because of the limited permitted operating room opening hours) by the total number of samples (500). This criterion can indicate the usefulness of the method used for operating room planning mainly from practice standpoint. In (Marcon et al., 2003), the authors presented a tool to assist in negotiating between the different actors of the surgical center based on the estimation of the "risk of no realization" of the planning.

However, the proposed model was mono-period and operating room plan is constructed and followed up in such a way that the risk of no realization didn't exceed a given level. We note that all operating room plans obtained by stochastic approach have better rate of realization than the one obtained by deterministic approach. Moreover, operating room utilization and cost are better when a stochastic approach is used. When an operating room plan cannot be achieved it means that some elective cases must be probably postponed. This obviously incurs additional costs.

The gap between average of operating room utilization costs obtained by the optimization model and their estimate by simulation is given by:
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We can see that when the number of samples considered in the model increases the operating utilization cost obtained by the optimization model and simulation get closer. However, the standard deviation of operating room utilization cost remains important for all obtained operating room plans. It is quite known that Monte Carlo sampling methods can result in large error bounds and variance (Ponce-Ortega et al., 2004). Henceforth, some other approaches based on variance reduction sampling techniques (such as descriptive sampling, Latin Cube sampling, Hammersley sampling, etc.) were proposed to achieve faster convergence than the Monte Carlo sampling techniques. In further work, we will investigate improvement of the current proposed stochastic approach on this respect.

In order to reduce costs and increase patient satisfaction as well as bed availability it seems better to modify patient hospitalization date according to operating room plan (determined by the optimization model). In operating room planning, however, we suggest to maintain the same objective function.

Conclusion

In this paper, we present a stochastic mixed integer programming model for operating room planning. Average Approximation Sampling method is then used to approximate the stochastic model by a deterministic mixed integer linear program. Operating room plans generated by the stochastic vs. the deterministic approach are evaluated and compared using simulation. The obtained results point out the importance of using stochastic approaches in operating room planning. Indeed operating room plans obtained by stochastic approach have better rate of realization than the one obtained by deterministic approach. This stresses the robustness of operating room plan obtained by the stochastic approach mainly when a large number of samples is integrated in the optimization model. Moreover, operating room utilization and cost are better when a stochastic approach is used.

In further work, we will test the proposed approach for other operating room problem configurations (for example by considering larger number of operating rooms). We will also investigate improvement of the current proposed stochastic approach while considering other sampling techniques and developing heuristic solutions. Besides, further research will include the extension of the current problem formulation by integrating other resource constraints.

  : regular opening duration in minutes of operating room s on day-period j HS sj : overtime availability in minutes of operating room s on day-period j Ch: hospitalization day cost Co sj : overtime cost/minute of operating room s on day-period j Cu sj : undertime cost/minute of operating room s on day-period j

following notations are used in the paper: H: planning horizon j: time period index, j=1..H N: number of elective cases i: elective case index, i=1..N r i : hospitalization date (day) for patient i d i : due date for performing elective case i p i : time in minutes needed to perform elective case i f pi (x): density function of p i S: number of operating rooms, s: operating room index, s=1..S HN sj

Table 1

 1 Best solution found (not necessarily optimal) after the indicated computation time.

	Experimentation results						
	N°	L	Nb. Cts. Nb. Var.	Z	Z1	Z2	CPU
	1	-	484	856	9182.04	9182.04	0	1
	2	8	1114	1591	8691.54	8691.54	0	6
	3	15	1744	2326	9756.76	9756.76	0	65
	4	30	3094	3901	10137.61 10137.61	0	913
	5	100	9394	11251	17421.00 10771.00	6650	9586
	6	200	18394	21751	11119.31* 10769.31	350	9820
	(*)							

Table 2
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		Simulation results				
	N°	AOT	AUT	NR. rate	A_Z1	SD_Z1 GAP_Z1/AZ1
	1	15.65	144.59	16%	12280.25	1585.89	33.7%
	2	9.80	137.19	7.8%	11020.90	1395.92	26.8%
	3	8.45	137.58	6.6%	10880.64	1494.18	11.5%
	4	8.90	137.79	6.2%	10950.68	1475.48	8.0%
	5	8.07	142.04	5.6%	11151.06	1317.00	3.5%
	6	7.19	136.79	5.8%	10665.69	1411.04	0.9%