
HAL Id: hal-04265528
https://hal.science/hal-04265528

Submitted on 30 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Prescient Teleoperation of Humanoid Robots
Luigi Penco, Jean-Baptiste Mouret, Serena Ivaldi

To cite this version:
Luigi Penco, Jean-Baptiste Mouret, Serena Ivaldi. Prescient Teleoperation of Humanoid Robots.
2023 IEEE RAS International Conference on Humanoid Robots, Dec 2023, Austin, United States.
�10.1109/Humanoids57100.2023.10375166�. �hal-04265528�

https://hal.science/hal-04265528
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Prescient Teleoperation of Humanoid Robots

Luigi Penco1, Jean-Baptiste Mouret2 and Serena Ivaldi2

Abstract— Teleoperated humanoid robots are ideally suited
to act as human avatars in remote environments. Unfortunately,
their deployment is hindered by the communication delays
between the human input and the video feedback from the
robot. Here, we introduce a direct teleoperation system in
which the operator receives a synchronized video feed of real
images, even when the communication channel imposes a 1 to
2-second delay. Our key idea is to leverage machine learning
to allow the robot to execute commands before the operator
performs them, so that the operator receives a delayed video
stream that is almost indistinguishable from real-time feedback.
In our experiments, the iCub humanoid robot (32 degrees of
freedom) was successfully controlled to perform several whole-
body manipulation tasks, including reaching different targets,
picking up an object, and moving a box. This new technique
may enable real-life avatars on long-range radio networks, from
remote maintenance to space missions.

I. INTRODUCTION

Teleoperated robots have the potential to replace humans
in numerous hazardous scenarios, ranging from contaminated
environments to outer space. For such robots to be effective,
they must possess both intuitive controls and high versatility,
enabling operators to adapt to various situations. Humanoid
robots are among the most promising solutions to meet
these challenges, as they offer the capability for bimanual
manipulation, walking, crawling, or climbing, while also
being inherently intuitive for human teleoperation due to
their similar physical structure.

Substantial progress in whole-body control and motion
capture now makes it possible to map a whole-body motion
of a human to a robot, despite the difference in physical con-
straints and dynamics [1]–[5]. This whole-body direct teleop-
eration approach allows the operator to control the robot cre-
atively, quickly, and intuitively, and has been demonstrated
in several lab experiments [1] and even competitions (e.g.,
ANA Avatar Xprize) [4].

Whole-body direct teleoperation becomes impractical in
the presence of delays because operators rely on visual
feedback from the robot to adapt and adjust their com-
mands. Unfortunately, delays are inherent to many of the
most promising applications of teleoperated humanoids. For

*This work was supported by the European Union H2020 and HE
Research and Innovation Programs under GA No. 731540, No. 101070596
(projects AnDy, euROBIN), the DGA grants “humanoı̈de résilient” and
ATOR, and the Inria “ADT” wbCub/wbTorque. Experiments were performed
in the Creativ’Lab facilities, supported by the CPER Sciarat and CyberEn-
treprise.

1Luigi Penco is with the Florida Institute for Human and Machine
Cognition. lpenco@ihmc.org

2Jean-Baptiste Mouret and Serena Ivaldi are with Inria
Nancy — Grand Est, CNRS and Université of Lorraine.
{jean-baptiste.mouret,serena.ivaldi}@inria.fr

Motion predictor

D
elayed

 co
m

m
u

n
icatio

n

future
commands

delayed
commands

delayed
feedback

visual
feedback

sy
nc
hr
on
ize
d

𝜏
f 𝜏

f

𝜏+𝜏
f b𝜏+𝜏

f b

Fig. 1. Concept of prescient teleoperation. The robot executes the
commands before it receives them thanks to a data-driven predictor. In
this example, the robot drops a box onto a table before the human
commands it to open its arms. When the predictions are accurate, by
anticipating both the forward delay τf and the backward delay τb, the
visual feedback appears to be synchronized with the operator. The robot
sends two video streams, which are both displayed in the virtual reality
headset: an internal view, from the head of the robot, and an external view.
Video: https://youtu.be/ HnQw3ZZ3T8.

example, the roundtrip delay is approximately 0.81s when
teleoperating a robot on Earth from the International Space
Station [6], and it can be as long as 2.6 seconds with a
laser communication link between the Earth and the Moon
[7]. The DARPA Robotics Challenge [8] set the average
delay to 1 second (with a maximum of 30 seconds), and
the NASA Space Challenge [9] set it to 10 seconds (with a
maximum of 20 seconds). These delays significantly impact
the performance of the operator and limit the use of direct
teleoperation in many real-life scenarios.

Here, we introduce a novel concept of direct teleoper-
ation, where the operator receives a synchronized video
feed of real images from the remote system (robot and
environment/system cameras), even when the communication
channel introduces a delay of 1 to 2 seconds. Our key idea
is that if the robot executes the desired movement before the
operator performs it, then the operator will observe a delayed
video feed that will be almost indistinguishable from a real-
time feed (Fig. 1). At each time-step, the robot analyses the
data received from the operator, measures the communication
time, estimates the communication time required to send
the video feedback, and predicts the operator’s most likely
motions in the upcoming seconds. This prediction makes it
possible to execute the command with enough anticipation
so that the user receives a video feed that corresponds to the
past motion of the robot but that aligns with the present time
for the operator. We refer to this prediction-based feedback
scheme as prescient teleoperation.

https://youtu.be/_HnQw3ZZ3T8

training

robot
cameras

teleoperation
robot

controller

motion
anticipation

teleoperated
robot

ProMPs
modulation

ProMPs
update

motion
recognition

communication
channel

human
operator

motion
retargeting

ProMPs
learning

demo robot
trajectories

motion
retargeting

human
demonstrations

delay

delay
compensation

delay

jitter
bu�er

(1) (2) (3)

(4) (5)

(6)

(7)
(8)

Fig. 2. Flowchart of the prescient teleoperation system. During the training phase, (1) the human operator teleoperates the robot without any significant
delay (local network), and performs a variety of tasks. The retargeted human motions represent the robot trajectories demonstrations (2) that are later used
to train the Probabilistic Movement Primitives (ProMPs). A ProMP is learned for every task (3). When teleoperating the robot in a non-ideal network, the
ProMPs are used to predict the robot movement: (4) the system recognizes the current task, i.e. it identifies the most likely ProMP; (5) it estimates the speed
of the teleoperated motion and (6) updates the selected ProMPs according to the delayed observed via-points; (7) it compensates for the delay by selecting
the trajectory of the posterior ProMPs at the right timestep. This ensures synchronization between the user’s movements and what they observe from the
remote cameras on the robot’s side. The resulting trajectories are then tracked by the whole-body controller (8), which calculates the joint commands for
the robot.

This paper describes the system and presents several
experiments to show the contribution of the different com-
ponents, in terms of prediction, delay compensation, and
tracking error. More details and additional figures, not in-
cluded in the manuscript for space limits, are reported in the
supplementary material available online1. A video showing
prescient teleoperation with the humanoid robot iCub is
available online2.

II. PREVIOUS WORK

The initial studies with teleoperated robot manipulators
and delays [10] suggested that users often adopt a “move-
and-wait” strategy to avoid overcompensating for delayed
perceived errors. However, subsequent experiments demon-
strated that this strategy is ineffective even with time delays
of approximately 0.3 seconds [11].

Due to the challenges posed by delays, many teleoperation
systems focused on supervised autonomy. In this approach,
the operator provides high-level goals, such as selecting an
object on a screen and pressing a button to grasp it, and
the robot autonomously carries out the motions to fulfill
the goals [3], [5], [12]–[14]. This method requires careful
planning, making it difficult to spontaneously generate new
behaviors for new goals or adapt to changes. Moreover, the
division of goals into discrete operations often results in
reduced teleoperation speed and fluidity: the operator must
select an operation, wait for its completion, and then activate
the next one, resulting in a sequential process.

In direct teleoperation, most research on delays focused
on designing a stable control loop for systems that provide
haptic feedback, specifically in multilateral teleoperation [6],
[15]–[19]. This line of work does not compensate for the
delays; instead, it mitigates the instability issues arising
from delayed force feedback. The operator still experiences

1https://hal.science/hal-04166800/document
2https://youtu.be/_HnQw3ZZ3T8

delayed feedback and must move cautiously. To account for
potential operator errors, impedance controllers are typically
used by the robot [6], [20].

The challenge of delays in visual feedback during di-
rect teleoperation is currently addressed through the use
of predictive displays [21]–[24]. These displays present a
non-delayed simulation of the robot and its environment.
However, due to the inherent limitations of 3D modeling,
disparities between the actual environment and the simulated
one are unavoidable. This is particularly critical in unstruc-
tured scenarios, such as remote planets or damaged buildings,
where mission-specific models are typically unavailable.
Another related approach is the use of predictor displays,
where the predicted trajectory of the system is overlaid on the
visual feedback, simulated or not. This enables the operator
to anticipate and better cope with delays [19], but human
operators are charged with high cognitive load and can only
tolerate moderate delays.

III. PRESCIENT TELEOPERATION

Fig. 2 describes the overall system. In prescient teleoper-
ation, the primary concern revolves around determining how
Cartesian and joint commands should be executed by the
robot in order to effectively compensate for the delays.

A. Delay Estimation

To determine the amount of anticipation required for the
commands, the robot needs to calculate the round-trip delay,
which consists of a forward delay τf (t) in the communica-
tion from the operator to the robot and a backward delay
τb(t) between the robot and the operator: τ(t) = τf (t) +
τb(t). Each one-way delay consists of two components: a
deterministic component primarily caused by transmission
and propagation time, and a stochastic component [25], often
referred to as “jitter”. We denote by τf,D the deterministic

https://hal.science/hal-04166800/document
https://youtu.be/_HnQw3ZZ3T8

part of τf and by τf,S the stochastic part:

τf (t) = τf,D + τf,S (1)
τb(t) = τb,D + τb,S (2)

The robot computes the forward delay, including both
the deterministic and stochastic components, by utilizing
timestamps attached to the packets sent by the operator
and clocks synchronized through NTP [26]. While the robot
cannot predict the exact time required for a packet to
reach the operator before transmission, it can obtain the
average backward delay by querying the operator’s station.
However, it remains unaware of the stochastic portion of
the backward delay until the packet is sent. To overcome
this challenge, we adopt an upper-bound approach: video
streaming systems incorporate a “jitter buffer” [27], [28]
that accumulates, reorders, and, if necessary, discards video
packets within a specific time window. When the buffer is
set to a constant size, it effectively converts the stochastic
delay into a deterministic upper bound delay. As a result,
the robot only needs to be aware of the jitter buffer size
and the deterministic backward delay to determine when the
current frame will be displayed on the operator’s computer.

B. Delay Compensation with Predictor Anticipation

To operate with delays, the system predicts the most likely
future trajectories at each time step based on the commands
received from the operator so far (for instance, the 3D
trajectories of the hands). More formally, given a predictor
of future trajectories P (·), the commands sent up to time
step t over a history of length n, and a retargeting function3

R(·) that transforms the operator inputs x to robot inputs y
(e.g., apply scaling factors), the predictor P (·) predicts the
next k time steps:

yt+1, · · · , yt+k = P (R(xt−n), · · · , R(xt)) (3)

At time-step t, the robot executes the command qt that
corresponds to the future input at time-step ⌊t+ τf + τ̂b⌉
using is whole-body controller WB(·):

qt = WB(y⌊t+τf+τ̂b⌉) (4)

where ⌊τ⌉ denotes the nearest integer.
Numerous generic machine learning techniques have been

proposed to predict the future of time-series, especially
with neural networks [29], [30]. Nevertheless, the robotics
community has long focused on regression techniques based
on the concept of motion primitives, which are particularly
suited for robot trajectories. Our system is based on Prob-
abilistic Movement Primitives (ProMPs) [31]. They repre-
sent trajectories as probability distributions, making them
well-suited for capturing the variability observed in human
demonstrations as motion primitives. Another advantage of
working with distributions is that the properties of motion
primitives can be translated into operations from probability
theory [31]. In particular, our system utilizes the conditioning

3In this work, we predict the retargeted values, but we could have
equivalently predicted the input value and retargeted the prediction.

operator of ProMPs to adapt predictions based on incoming
observations. This allows us to update the prediction, referred
to as the posterior, for the ongoing movement at each time
step, using the learned model of the associated primitive
as the prior. In other words, ProMPs predict the mean
trajectory of prior demonstrations when no conditioning data
is available, but when data, e.g., as observations of the current
movement, is present, they update the prediction to resemble
the most likely trajectories from the training set.

At time-step t, a point ξt of a single trajectory is computed
using a weight vector w ∈ Rm and a vector of Gaussian basis
functions Φ, assuming a trajectory noise variance ϵξ:

ξt = Φtw + ϵξ (5)

where the vector Φt ∈ Rm corresponds to the m normalized
radial basis functions evaluated at time t (see [31] or Ap-
pendix IV-A). Let us denote by Σξ is the observation noise
variance. The probability of observing a trajectory y given
the weight vector w is:

p(y|w) =
∏
t

N (ξt|Φtw,Σξ), (6)

To learn a ProMP for a given task (a set of demon-
strations), we fit each demonstration (i.e., find w) to this
representation using ridge regression [31]. Then, we fit the
distribution of weight vectors p(w), assuming they follow a
normal distribution N (µw,Σw).

The trajectory distribution p(y) is obtained by marginal-
izing out the weight vector w, i.e.

p(y) =

∫
p(y|w)p(w)dw. (7)

Since a whole-body trajectory is represented by N trajec-
tories (x, y, z position of the center of mass, of the hands,
etc.), we learn a ProMP for each of the N trajectories. These
ProMPs all together encode a task, which means that each
task is associated with a set of ProMPs. More details on our
implementation are reported in the Supplementary Materials.

To enable online prediction, ProMPs are learned from
demonstrations for each task (e.g., one to take a box, one
to release it, one to push a bottle, etc.). During the offline
training phase, an operator teleoperates the robot in a local
network, which we consider to be an approximation of an
ideal network without any delay. For each motion, we record
the trajectories of the center of mass ground projection, the
waist height, the hand Cartesian positions, the arms posture
(shoulder rotation, elbow flexion, forearm rotation), the neck
posture (flexion and rotation) and the torso posture (flexion,
rotation and abduction). A ProMP is learned for each of these
trajectories. Hence, the robot knows a set of ProMPs for each
task.

For inference (prediction), we identify the task k̂ by
computing the distance to the mean of each ProMP [32]:

k̂ = arg min
k∈[1:K]

[N∑
n=1

∑
t∈Tobs

|yn(t−τf (t))−Φn,t−τf (t)µn,wk
|
]
,

(8)

prediction
delayed trajectory

adjusted control ref. trajectory

prediction
control ref. trajectory*
last control ref.

delayed
phase

synchronized
 phase

A

B

x
rig

ht
 h

an
d

[m
]

x
rig

ht
 h

an
d

[m
]

0.3

0.2

0.1

0.0

0.3

0.2

0.1

0.0

transition
phase

prediction for round-trip delay compensationCprediction as reconstruction of the delayed signal

t [s]
0.0 1.5 3.0 4.5

D

t [s]
0.0 1.5 3.0 4.5

adjustment of round-trip delay compensated traj.

delayed trajectory
non-delayed trajectory

delayed observations

prediction for forward delay compensation

Fig. 3. Round-trip delay compensation. Given the past delayed obser-
vations, the robot produces at each time a prediction (µ̂wk) of the current
command. To compensate for the delays, the right sample (orange dot) from
the prediction has to be selected as a reference for the robot controller at each
time. (A) The sample corresponding to the last received observation is an
estimate of the delayed command. (B) By knowing the forward delay τf (t),
a sample from the prediction can be selected to achieve a synchronization
between the operator’s movement and the robot movements. (C) By knowing
the forward τf (t) and backward delay τb(t), the robot can select the right
sample from its prediction so as to achieve a synchronization between
the operator’s movement and the feedback from the robot side. (D) A
policy blending arbitrates the delayed observations with the samples selected
from the prediction, which guarantees a smooth transition from delayed to
compensated teleoperation.

where K is the number of tasks in the dataset and Tobs =
{t1, ..., tnobs

} is the set of timesteps associated to the nobs

early observations. To account for different motion speeds,
we additionally search for the best time-modulation by gener-
ating variants of each ProMP with different time-modulation
values (see [32] or Appendix IV-D). This enables us to also
predict the most likely duration of the current motion for the
predicted task.

To predict the remaining of the trajectory, we condition
the ProMP on the past trajectory using Bayes’ theorem [31],
[32], which “fine-tunes” the prediction to the actual data
(instead of simply following the mean of the ProMP):

p(wk̂|x
∗
t) ∝ N (y∗

t |Φα̂twk̂,Σ
∗
y)p(wk̂). (9)

Details on the operations can be found in the literature [31],
[32].

When the robot has not received enough data to recognize
the ProMP, it executes the delayed command. Once the
ProMP is recognized, the robot transitions from delayed
commands to compensated commands using a blending tech-
nique typical of shared autonomy approaches4 [33] (Fig. 3).

C. Whole-body controller
The whole-body motion of the robot is defined by the

following trajectories: center of mass ground projection,

4More details can be found in the supplementary materials.

TABLE I
DATASETS USED TO TRAIN AND TEST PRESCIENT TELEOPERATION.

Dataset Multiple Tasks
Bottle reaching
TOTAL Bottle on table Bottle on box

#training 12 6 6
#testing 20 10 10

Box pick & place
TOTAL Picking Placing

#training 42 18 24
#testing 21 9 12

Dataset Obstacles — Bottle on table with different obstacles
#training 6
#testing 9

Dataset Goals — Bottle on table at different positions
#training 7
#testing 10

See Supplementary Material, Fig. S1, S2, S3 and S4 for illustrations of the datasets.

Fig. 4. Tasks performed by the robot during the experiments (dataset
“Multiple tasks”). In the first scenario (4 left images), the robot is
teleoperated to reach a bottle at different locations and in different ways; in
the second scenario (2 right images), the robot has to pick up a box from
different locations and then placing it in another location.

waist height, hands Cartesian positions, and the joint postures
of the arms postures, neck, and torso. These trajectories,
denoted by ŷ, are either the delayed retargeted human
motions or the delay-compensation trajectories generated by
the prediction algorithm. ŷ are input to the whole-body con-
troller, formulated as a constrained quadratic programming
problem [38]:

arg min
q̇

∑
i wifi +

∑
j wjgj +Cq̇

fi = ||Jiq̇ − ẋi||2
gj = ||q̇j − q̇r

j ||2
subject to Jq̇ = ẋ

Aq̇ ≤ b

(10)

where q are the joints positions (and robot commands); wi

are the weights of the position tasks fi; ẋi = ˙̂yi are the
reference velocities for body link i; Ji is the Jacobian matrix
for body link i; wj the weights for the postural tasks gj ;
q̇r
j = ˙̂yj are the reference joint velocities for joints j; Cq̇

is a regularization term to avoid singularities. The equality
constraints include the center of mass x position and the feet
poses. The inequality constraints contain the traditional robot
joint velocity bounds and zero moment point bounds, that is
the ZMP is constrained to stay inside the support polygon.
More details on the controller are reported in [2].

IV. EXPERIMENTS

We implemented this system with the humanoid robot
iCub [34], which has 32 degrees of freedom (excluding
the hands and eyes) and is position-controlled. The whole-
body motion of the operator is measured with a motion

 R
M

S
er

ro
r r

ig
ht

 h
an

d
po

si
tio

n
[c

m
]

prediction error on trajectories (Dataset Goals)

prediction error on trajectories (Dataset Obstacles)

prediction error on trajectories (Dataset Multiple Tasks*)

0

2

1

3

4

5

6

7

8

9

10

11

no obs recognition 1/4 motion 1/2 motion complete motion

*considering only the task “Bottle on table”

Fig. 5. Comparison of the prediction error on different datasets. The
RMS of the error is computed based on the 10 testing trajectories of the
task of reaching the bottle on the table in the dataset Multiple Tasks, the
testing trajectories from the dataset Obstacles, and the dataset Goals (see
Table I). The bold line represents the mean RMS error. The transparent
region around it represents the maximum and minimum of the error. The
prediction error is computed as the Euclidean distance between the predicted
trajectory and the reference trajectory. The plot reports the error given by
the mean trajectories of the ProMPs learned from the demonstrations, from
the prediction updated after observing the first portion of motion used to
infer the task, after observing a fourth of the motion, after observing half
of the motion, and after observing the whole motion.

capture suit (Xsens MVN), which provides both joint angles
and Cartesian positions of the operator’s body parts. The
robot’s whole-body controller is implemented in the Open-
SOT framework and uses the QP solver qpOASES [40]. It
runs at 100 Hz, which is also the frequency of the motor
commands. The values of the weights wi, wj were optimized
using the procedure in [2].

We considered several teleoperation scenarios, which re-
sulted in three different experiments and datasets (Table I),
each divided into training and testing sets. All the datasets
are variants of two tasks: reaching a bottle (scenario 1, Fig.
4) and manipulating a box with both hands (scenario 2).
The test trajectories of the first dataset consist of various
repetitions of these tasks, capturing the inherent movement
variability of the operator. The second dataset, called Ob-
stacles, features the same scenarios as in the first dataset,
but the test trajectories involve different ways of reaching
a bottle while avoiding obstacles. These obstacles were not
considered during training, allowing the robot to adapt its
task execution to different environments. The third dataset,
called Goals, focuses on reaching a bottle placed at different
positions. The test trajectories correspond to positions that
were not used for training. All datasets and associated plots
are available in the supplementary materials.

To facilitate result reproducibility and minimize time-
consuming experiments, we used the real robot only for the
Multiple Tasks dataset (Fig. 4). For the other two datasets,
we utilized an accurate dynamic simulation. It is important
to note that the real and simulated robots employ the same
whole-body controller and follow the same joint trajectories.
These trajectories are “played” in an open-loop manner,
whether in simulation or on the robot.

Experiment 1: Evaluation of the predicted trajectories

Using testing data from the Multiple Tasks dataset, we
initially evaluated the predictive capabilities of conditioned
ProMPs in forecasting the future motion of the operator,
independently of any consideration for teleoperation (Fig. 5).
The results demonstrate that the prediction error decreases
over time as more observations become available to update
the prediction. For Cartesian trajectories (e.g., hands), the
error reduces to approximately 0.5 cm after observing half
of the motion (more detail in Supplementary Material, Table
S1). Similarly, notable improvement is observed in the pos-
tural trajectories. These results highlight that continuously
updating the prediction allows the operator to influence the
predicted motion so that it matches better their intentions. Put
differently, the system is not simply recognizing the motions
and then executing the mean of the learned demonstrations:
it is accurately predicting the future trajectories given the
data received so far and is adapting to a specific trajectory.
We obtained similar errors with the other datasets (Fig. 5).

Experiment 2: Prescient teleoperation

We conducted evaluations of the system on the iCub robot,
considering a mean time-varying round-trip delay of 1.5
seconds. This delay consisted of a stochastic forward delay,
following a normal distribution with a mean of 750ms, a
standard deviation of 100ms, and a constant backward delay
of 750ms (Fig. 6).

To assess the quality of compensation, we compared the
compensated trajectory to the non-delayed trajectory for 20
testing motions in the bottle-reaching scenario of the Multi-
ple Tasks dataset, as well as for 21 testing motions in the box
handling scenario of the same dataset (see Supplementary
Material, Table S2). In the box handling scenario, the results
demonstrate that the error for all considered references
(especially the hands) is approximately 1cm or less with
compensation, whereas, without compensation, the error is
roughly three times higher (around 3cm for the hands). Sim-
ilarly, in the bottle reaching task, the compensated trajectory
exhibits an error of approximately 1 to 1.4cm for the hands,
compared to an error of about 4cm for the hands and 1cm
for the center of mass when no compensation is applied.
The angular errors exhibit a similar trend. While an error of
around 1cm is often acceptable to accomplish a task, such
as grasping an object, an error of 3 to 4cm significantly
increases the likelihood of missing the object, in addition to
causing the operator frustration and disorientation.

We also evaluated the performance of the compensation
as the communication delay increases (Fig. 7). To do this,
we compared the compensated trajectory to the non-delayed
trajectory, for the right hand, in the task of reaching the bottle
on the table of the dataset Multiple Tasks (Supplementary
Material, Fig. S1). During the synchronization, the error is
roughly proportional to the delay (Fig. 3), which adds up to
the prediction errors. In this case, we observed a mean error
of approximately 2.5cm for a 1-second delay, but over 10cm
for a 3-second delay, primarily because the transition time
constitutes a significant portion of a short trajectory (30%

overlay

]dar[selgna tnioj osrot

rig
ht

 a
rm

 jo
in

t a
ng

le
s

[r
ad

]]
m[noitisop tsia

w/
moc

rig
ht

 h
an

d
po

si
tio

n
[m

] overlay

overlay

overlay

com x

com y

waist z

pitch

roll

yaw

shoulder yaw

elbow

wrist prosup

x

y

z

delayed trajectory

non-delayed trajectory

compensated trajectory

delayed
feedbackoperator

ideal feedback
 (no delay)

compensated
 feedback

 delayed
feedbackoperator

ideal feedback
 (no delay)

compensated
 feedback

similar hand positions similar posture

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.2

0.0

-0.2

0.4

0.6

0.8

1.0

1.2

500

750

1000

t [s]
0 1 2 3 4 5 6 7

t [s]
0 1 2 3 4 5 6 7

t [s]
0 1 2 3 4 5 6 7

t [s]
0 1 2 3 4 5 6 7

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.2

0.6

de
la

y
[m

s]

compensated trajectory (t+ +)

non-delayed trajectory (ideal network) (t)

delayed trajectory (no compensation) (t-)

b f

f b

f

Fig. 6. Teleoperation with compensation of a mean round-trip delay of 1.5s. The robot is picking up a box in front of it at mid-height. The
forward delay follows a normal distribution with 750ms as mean and 100ms as standard deviation, while the backward delay is 750ms (top). After the
synchronization time (first 2 seconds), the compensated trajectory anticipates the delayed trajectory by τb + τf to take into account both the delay from
the operator to the robot and from the robot to the operator, this is why the robot anticipates more than the non-delayed trajectory. Once we shift all the
trajectories to compare them (“overlay”), the commands (delayed trajectories) and the compensated trajectories align very well, which shows that the robot
executes the right trajectory but shifted in time to anticipate the motion.

for a 3-second delay and a 10-second trajectory). Excluding
the synchronization time, the results reveal that the compen-
sated tracking error is below 2cm for delays around 0.5s,
approximately 2.5cm for delays around 1.5s, and increases
to about 5cm for delays of 3s and 4s. Qualitatively, the
system becomes challenging to use for the operator with
a delay exceeding 2 seconds, resulting in an average error
of approximately 3cm after the transition and approximately
7cm when considering the transition. We recorded similar
tracking errors with the other datasets (Fig. 7b).

Experiments 3: Conforming the teleoperation to the intended
motion

Humans can often perform a task in many ways because
they are highly redundant. For example, when picking up
a box, an operator can choose to bend their back without
utilizing their legs, bend their legs while minimizing back

movements, or adopt any combination in between. Ideally,
the robot should execute tasks in the preferred manner of
the operator. To explicitly explore this motion adaptation,
we teleoperated the robot in simulation to reach a bottle
placed on a table using three different approaches during
the training phase, dataset “Obstacles”). During testing, we
assessed the effectiveness of our compensation approach for
the same task but with different obstacles present. As with
the previous dataset, the prediction steadily improves as more
observations become available, increasingly aligning with
the observed operator commands. The results show that the
position error is comparable (if higher, only by about half
a centimeter) to the error from the bottle-reaching scenario,
where the same obstacles were used for both training and
testing.

R
M

S
e

rr
o

r
ri

g
h

t
h

an
d

 p
o

si
ti

o
n

 [c
m

]

Average delay

tracking error of compensated trajectories after transition (Dataset Multiple Tasks*)

tracking error of compensated trajectories with transition (Dataset Multiple Tasks*)

tracking error of non-compensated trajectories (Dataset Multiple Tasks*)

0.0 0.5 1.0 1.5 2.5 3.0 3.5 4.02.0

0

5

10

15

20

25

30

R
M

S
e

rr
o

r
ri

g
h

t
h

an
d

 p
o

si
ti

o
n

 [c
m

]

Average delay

tracking error of compensated trajectories after transition (Dataset Goals)

tracking error of compensated trajectories after transition (Dataset Obstacles)

tracking error of compensated trajectories after transition (Dataset Multiple Tasks*)

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

5

6

7

8

*considering only the task “Bottle on table”

a.
Tracking
error
for
compensated
and
non-compensated
trajectories
(dataset
Multiple
tasks)

b.
Tracking
error
for
compensated
trajectories:
all
test
sets

t=2s

Fig. 7. Scalability of the delay compensation with respect to increasing time delays. a. Tracking error of the compensated trajectories for
the right-hand position with respect to the non-delayed ones compared to the tracking error of the corresponding non-compensated (delayed)
trajectories with respect to the same non-delayed ones. The tracking error of the compensated trajectories is considered both including the transition
from the delayed phase to the synchronization phase (Fig. 3), which adds a non-compensable error, and without transition. The RMS of the error is
computed from the 10 testing motions of the task of reaching the bottle on the table from dataset Multiple Tasks and its mean value is reported as a
bold line. The transparent region around it, represents the maximum and minimum of the error. The tracking error is computed as the Euclidean distance
between the evaluated trajectory and the reference trajectory. The compensated trajectories are temporally realigned with the non-delayed trajectories for
computing the error, which is evaluated with different round-trip delays τ(t): 0s, around 0.5s, 1s, 1.5s, 2s, 3s and 4s. The time-varying forward delay
follows a normal distribution with mean τf = τ/2 and standard deviation equal to 2

15
τf . The backward delay is set equal to τf . b. Tracking error of

the compensated trajectories for the right-hand position compared with the non-delayed ones (after the transition phase) for all the datasets.

Experiment 4: Conforming the teleoperation to new goals

In many scenarios, the operator may need to perform
motions that the system was not specifically trained for. To
investigate this challenge, we assessed how the robot adapts
to new object locations. For this purpose, we utilized the
third dataset (dataset “Goals”) and teleoperated the robot in
simulation to reach a bottle positioned on a table at various
locations. We then tested the approach by reaching the same
bottle but at different positions. As one would expect, the
prediction is less accurate compared to the previous datasets
where the goal position remains constant. However, the error
decreases to approximately 1cm after observing half of the
motion (Fig. 5). When teleoperating the robot with a mean
delay of 1.5s, the average tracking error on the hand position
is 4cm (Fig. 7b), which is approximately a centimeter higher
than the error with a 2-second delay in datasets where the
bottle remains in the same position for both training and
testing. The operator found it challenging to teleoperate the
robot with such compensation errors. However, the approach
can still be used effectively with novel goals for lower delays,
typically between 0.5s and 1s, where similar accuracy to the
other datasets is often achieved (Fig. 7b).

V. CONCLUSION AND DISCUSSION

Whole-body teleoperation offers an intuitive and flexible
approach to operate humanoid robots exploiting their entire
body, as long as the operator can rely on synchronized

feedback. Through our use of machine learning to anticipate
operator commands, we have demonstrated the ability to
compensate for delays ranging from 1 to 2 seconds, which
are typically observed in round-trip communication times
between Earth and space [6] and across continents on the
Internet [35].

While we utilized ProMPs as our chosen method for
predicting future motions, other data-driven techniques for
trajectory or time-series prediction, such as LSTM [36], [37],
could also be employed. However, these alternatives may
require more training data and could potentially result in
less smooth movements. In essence, the concept of prescient
teleoperation can be implemented using any predictor, in-
cluding neural networks, and the system’s performance will
improve with more accurate and advanced predictors.

All the experiments described in this study were conducted
by an experienced user who is familiar with the teleoperation
system and iCub. While novice users may not possess the
same level of proficiency with the proposed system, it is
unlikely that they would be entrusted with operating an
expensive humanoid robot in a high-stakes mission, such as
intervention in a damaged chemical plant or a remote lunar
base. Just as drone pilots undergo rigorous training before
their first mission, we expect that future humanoid operators
will undergo extensive training as well. For this reason,
in this work, we did not compare novice and expert user
performance and we did not conduct a user study on usability

in general. In future work, we will conduct user studies to
examine the impact of prediction and delay compensation
on human cognition, behavior, and performance, to explore
the requirements and limits of how experienced users can
effectively utilize a prescient teleoperation system in real-
world scenarios.

SUPPLEMENTARY MATERIAL

Supplementary Material are available online at https:
//hal.science/hal-04166800/document. They
include more experiments and details about the methods.

REFERENCES

[1] L. Penco et al., “Robust real-time whole-body motion retargeting
from human to humanoid,” in IEEE-RAS International Conference on
Humanoid Robots (Humanoids), 2018, pp. 425–432.

[2] L. Penco, E. M. Hoffman, V. Modugno, W. Gomes, J. Mouret, and
S. Ivaldi, “Learning robust task priorities and gains for control of
redundant robots,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 2626–2633, 2020.

[3] M. Zucker, S. Joo, M. X. Grey, C. Rasmussen, E. Huang, M. Stilman,
and A. Bobick, “A general-purpose system for teleoperation of the
drc-hubo humanoid robot,” Journal of Field Robotics, vol. 32, no. 3,
pp. 336–351, 2015.

[4] S. Dafarra, K. Darvish, R. Grieco, G. Milani, U. Pattacini, L. Rapetti,
G. Romualdi, M. Salvi, A. Scalzo, I. Sorrentino, et al., “icub3 avatar
system,” arXiv preprint arXiv:2203.06972, 2022.

[5] K. Darvish, L. Penco, J. Ramos, R. Cisneros, J. Pratt, E. Yoshida,
S. Ivaldi, and D. Pucci, “Teleoperation of humanoid robots: A survey,”
IEEE Transactions on Robotics, 2023.

[6] M. Panzirsch et al., “Exploring planet geology through force-feedback
telemanipulation from orbit,” Science Robotics, vol. 7, no. 65, p.
eabl6307, 2022.

[7] D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek,
F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview
and results of the lunar laser communication demonstration,” in Free-
Space Laser Communication and Atmospheric Propagation XXVI, vol.
8971. SPIE, 2014, pp. 213–223.

[8] C. Atkeson et al., What Happened at the DARPA Robotics Challenge
Finals. Springer Tracts in Advanced Robotics, 2018, pp. 667–684.

[9] “National aeronautics and space administration (nasa)-centennial chal-
lenges program-space robotics challenge phase 2,” https://t.ly/t10-t.

[10] W. R. Ferrell, “Remote manipulation with transmission delay,” IEEE
Trans. on Human Factors in Electron., vol. 6, no. 1, pp. 24–32, 1965.

[11] W. R. Ferrell and T. B. Sheridan, “Supervisory control of remote
manipulation,” IEEE Spectrum, vol. 4, no. 10, pp. 81–88, 1967.

[12] M. Stilman, K. Nishiwaki, and S. Kagami, “Humanoid teleoperation
for whole body manipulation,” in IEEE ICRA, 2008.

[13] B. Omarali, B. Denoun, K. Althoefer, L. Jamone, M. Valle, and
I. Farkhatdinov, “Virtual reality based telerobotics framework with
depth cameras,” in IEEE International Conference on Robot and
Human Interactive Communication (RO-MAN), 2020.

[14] A. Naceri, D. Mazzanti, J. Bimbo, Y. T. Tefera, D. Prattichizzo,
D. G. Caldwell, L. S. Mattos, and N. Deshpande, “The Vicarios
virtual reality interface for remote robotic teleoperation,” Journal of
Intelligent & Robotic Systems, vol. 101, no. 4, pp. 1–16, 2021.

[15] J.-H. Ryu, D.-S. Kwon, and B. Hannaford, “Stable teleoperation with
time-domain passivity control,” IEEE Transactions on robotics and
automation, vol. 20, no. 2, pp. 365–373, 2004.

[16] M. Panzirsch, H. Singh, T. Krüger, C. Ott, and A. Albu-Schäffer, “Safe
interactions and kinesthetic feedback in high performance Earth-to-
Moon teleoperation,” in IEEE Aerospace Conference, 2020.

[17] J. Artigas, R. Balachandran, C. Riecke, M. Stelzer, B. Weber, J.-H.
Ryu, and A. Albu-Schaeffer, “Kontur-2: force-feedback teleoperation
from the international space station,” in IEEE ICRA, 2016.

[18] N. Lii et al., “The robot as an avatar or co-worker? an investigation
of the different teleoperation modalities through the KONTUR-2
and METERON SUPVIS Justin space telerobotic missions,” in Int.
Astronautical Cong., 2018.

[19] T. B. Sheridan, “Space teleoperation through time delay: Review and
prognosis,” IEEE Trans. on Robotics and Automation, vol. 9, no. 5,
pp. 592–606, 1993.

[20] P. Evrard, N. Mansard, O. Stasse, A. Kheddar, T. Schauß, C. Weber,
A. Peer, and M. Buss, “Intercontinental, multimodal, wide-range tele-
cooperation using a humanoid robot,” in IEEE/RSJ IROS, 2009, pp.
5635–5640.

[21] L. Peñin, K. Matsumoto, and K. U. G. Kenkyūjo, Teleoperation with
Time Delay: A Survey and Its Use in Space Robotics. National
Aerospace Laboratory, 2002.

[22] M. Hernando and E. Gambao, Advances in Telerobotics. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, ch. Teleprograming:
Capturing the Intention of the Human Operator, pp. 303–320.

[23] A. K. Bejczy, W. S. Kim, and S. C. Venema, “The phantom robot:
predictive displays for teleoperation with time delay,” in IEEE ICRA,
1990.

[24] P. Mitra and G. Niemeyer, “Mediating time delayed teleoperation
with user suggested models: Implications and comparative study,”
in Symposium on Haptic Interfaces for Virtual Environment and
Teleoperator Systems, 2008, pp. 343–350.

[25] O. Gurewitz, I. Cidon, and M. Sidi, “One-way delay estimation us-
ing network-wide measurements,” IEEE Transactions on Information
Theory, vol. 52, no. 6, pp. 2710–2724, 2006.

[26] D. Mills, J. Martin, J. Burbank, and W. Kasch, “Network time protocol
version 4: Protocol and algorithms specification,” Internet Requests for
Comments, RFC 5905, June 2010.

[27] B. Oklander and M. Sidi, “Jitter buffer analysis,” in Proc. Int. Conf.
on Comp. Comm. Networks, ICCCN, 09 2008, pp. 1 – 6.

[28] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
transport protocol for real-time applications,” Internet Requests for
Comments, RFC Editor, STD 64, 2003.

[29] A. R. S. Parmezan, V. M. Souza, and G. E. Batista, “Evaluation of
statistical and machine learning models for time series prediction:
Identifying the state-of-the-art and the best conditions for the use of
each model,” Information sciences, vol. 484, pp. 302–337, 2019.

[30] B. Lim and S. Zohren, “Time series forecasting with deep learning: A
survey,” Philosophical Transactions of the Royal Society A., vol. 379,
pp. 20 200 209–20 200 209, 2021.

[31] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Using proba-
bilistic movement primitives in robotics,” Autonomous Robots, vol. 42,
p. 529–551, 07 2018.

[32] O. Dermy, A. Paraschos, M. Ewerton, J. Peters, F. Charpillet, and
S. Ivaldi, “Prediction of intention during interaction with iCub with
probabilistic movement primitives,” Frontiers in Robotics and AI,
vol. 4, pp. 45–45, 2017.

[33] A. D. Dragan and S. S. Srinivasa, “A policy-blending formalism
for shared control,” The International Journal of Robotics Research,
vol. 32, no. 7, pp. 790–805, 2013.

[34] L. Natale, C. Bartolozzi, D. Pucci, A. Wykowska, and G. Metta, “iCub:
The not-yet-finished story of building a robot child,” Science Robotics,
vol. 2, no. 13, p. eaaq1026, 2017.

[35] T. Høiland-Jørgensen, B. Ahlgren, P. Hurtig, and A. Brunstrom,
“Measuring latency variation in the internet,” in Proc. Int. Conf.
emerging Networking EXperim. and Techn., 2016, pp. 473–480.

[36] X. Zhao, S. Chumkamon, S. Duan, J. Rojas, and J. Pan, “Collaborative
human-robot motion generation using LSTM-RNN,” in IEEE-RAS Int.
Conf. on Humanoid Robots (Humanoids), 2018, pp. 1–9.

[37] J. Bütepage, H. Kjellström, and D. Kragic, “Anticipating many futures:
Online human motion prediction and generation for human-robot
interaction,” in IEEE ICRA, 2018.

https://hal.science/hal-04166800/document
https://hal.science/hal-04166800/document
https://t.ly/t10-t

Supplementary Material

Prescient teleoperation of humanoid robots
Accepted at IEEE HUMANOIDS 2023

Luigi Penco1, Jean-Baptiste Mouret2 and Serena Ivaldi2

1Luigi Penco is with the Florida Institute for Human and Machine Cognition. lpenco@ihmc.org
2Jean-Baptiste Mouret and Serena Ivaldi are with Inria Nancy — Grand Est, CNRS and Université of Lorraine.

{jean-baptiste.mouret,serena.ivaldi}@inria.fr

Overall, our prescient whole-body teleoperation system
relies on the following components (Fig. 2):

• a whole-body controller based on quadratic optimiza-
tion;

• a dataset of whole-body trajectories retargeted from
human motions;

• a set of ProMPs that can predict future trajectories given
observations;

• a computation of the round-trip delay to select the
appropriate commands from the prediction, so that the
robot anticipates both the operator-to-robot and the
robot-to-operator delays;

• a blending to keep the trajectory smooth, at the start of
a trajectory or in case of changes of delays;

• a video streaming system that uses a jitter buffer to cope
with the stochastic part of the backward delay.

APPENDIX I
HUMANOID ROBOT AND WHOLE-BODY CONTROLLER

A. The iCub humanoid robot

iCub [34] is a research-grade open-source humanoid robot
designed by the Italian Institute of Technology (IIT) to exper-
iment with embodied artificial intelligence. It measures 104
cm in height and weighs 22 kg, which roughly corresponds
to the body dimensions of a five-year-old child. iCub has
53 actuated degrees of freedom: 7 in each arm, 9 in each
hand (3 for the thumb, 2 for the index, 2 for the middle
finger, 1 for the coupled ring and little finger, 1 for the
adduction/abduction), 6 in the head (3 for the neck and 3
for the cameras), 3 in the torso/waist, 6 in each leg. In this
work, we do not use the fingers of the hands and we do not
move the eyes, therefore we control 32 degrees of freedom.
The head has stereo cameras in a swivel mounting in the
corresponding location of the human eye sockets. iCub is
also equipped with six 6-axial force/torque (F/T) sensors in
the upper arms, legs and feet, an IMU in the head, and a
distributed tactile skin.

B. Whole-body controller

The whole-body motion of the robot is defined by the fol-
lowing trajectories: center of mass ground projection, waist
height, hands positions, arms postures, neck posture, torso
posture, which are either given by the delayed retargeted
human motion, or generated by the delay compensation

algorithm during the execution of the main task. Each sample
of each of these trajectories represents a control reference ŷ.
Given ŷ, the robot commands q are generated by solving the
redundant inverse kinematics, which can be formulated as a
constrained quadratic programming problem with equality
and inequality constraints [2], [38]:

arg min
q̇

∑
i wifi +

∑
j wjgj +Cq̇

fi = ||Jiq̇ − ẋi||2
gj = ||q̇j − q̇r

j ||2
subject to Jq̇ = ẋ

Aq̇ ≤ b

(S1)

The cost function consists of terms fi with relative weight
wi concerning the pose of a specific body link i, where Ji

is the Jacobian matrix for body link i and ẋi = ˙̂yi are the
reference velocities for body link i. Additionally terms gj
with relative weight wj concern the posture of certain joints
j, where q̇r

j = ˙̂yj are the reference joint velocities for joints
j. Cq̇ is a regularization term used to get a unique solution
and avoid singularities, where C is a linear cost vector.

In our implementation, we considered in the terms fi the
hand positions with wi = 1 and the waist height with wi =
0.65. Instead, the terms gj include the head posture with
wj = 1 and the torso posture with wj = 0.72, the elbow
and wrist postures with wj = 0.11. We computed optimal
priorities with a multi-objective stochastic optimization that
was run in simulation [2]. More details about the whole-body
controller can be found in [2].

The equality constraints correspond to the highest priority
task, which should be solved exactly. In our implementation,
these include the center of mass x position and the feet poses.
The inequality constraints contain the robot joint velocity
bounds and zero moment point bounds, which is constrained
to stay inside the support polygon.

Our controller is based on the OpenSOT framework [40]
and the qpOASES quadratic programming solver [42].

This controller is run at 100 Hz, which is also the
frequency of the motor commands.

C. Motion retargeting

The captured human information cannot be directly used
as a reference for the humanoid, due to differences in
kinematics (e.g. joint limits, body dimensions) and dynamics
(e.g. mass distribution) between the human and the robot.

TABLE S1
PREDICTION ERROR AFTER OBSERVING DIFFERENT PORTIONS OF THE COMMANDED TRAJECTORIES (DATASET MULTIPLE TASKS). WE

EVALUATED THE DIFFERENCE BETWEEN THE ACTUAL TRAJECTORY (COMMANDS RETARGETED FROM THE OPERATOR) AND THE PREDICTED

TRAJECTORY FOR THE 20 TESTING MOTIONS FROM THE BOTTLE REACHING SCENARIO (FIG. S1) AND THE 21 TESTING MOTIONS FROM THE BOX

HANDLING SCENARIO (FIG. S2). TO UNDERSTAND THE INFLUENCE OF THE CONDITIONING OF THE PROMPS, WE COMPUTED THE MEAN ERROR BY

FOLLOWING THE MEAN OF THE PROMP SELECTED BY HAND (‘NO OBS’), AFTER THE INITIAL RECOGNITION (’RECOGNITION’) THAT TAKES ABOUT

1S, AFTER A FOURTH OF THE MOTION (1/4 MOTION) AND AFTER HALF OF THE MOTION (1/2 MOTION). THANKS TO THE CONDITIONING, WHEN MORE

DATA IS USED, THE PREDICTION IS MORE ACCURATE, WHICH MEANS THAT THE PREDICTION IS ADJUSTED TO SUIT THE PARTICULAR MOTIONS OF

THE OPERATOR (THAT IS, THE ROBOT DOES NOT SIMPLY FOLLOW THE MEAN TRAJECTORY ONCE IT HAS RECOGNIZED IT). EXAMPLES OF PREDICTED

TRAJECTORIES ARE DISPLAYED IN FIG. S1 AND FIG. S2.

Box handling Bottle reaching
Trajectory RMS error [rad] RMS error [rad]

no obs recognition 1/4 motion 1/2 motion no obs recognition 1/4 motion 1/2 motion

head yaw 0.112±0.049 0.080±0.028 0.045±0.012 0.012±0.009 0.083±0.038 0.040±0.015 0.023±0.011 0.010±0.008
torso pitch 0.155±0.064 0.120±0.046 0.054±0.030 0.018±0.008 0.103±0.056 0.061±0.022 0.044±0.015 0.019±0.008
torso roll 0.119±0.049 0.103±0.038 0.055±0.028 0.017±0.008 0.082±0.042 0.054±0.016 0.032±0.010 0.016±0.008
torso yaw 0.168±0.053 0.136±0.049 0.079±0.032 0.049±0.019 0.088±0.046 0.065±0.039 0.049±0.023 0.033±0.018

r. should. yaw 0.164±0.059 0.109±0.050 0.053±0.019 0.040±0.011 0.172±0.059 0.114±0.056 0.055±0.024 0.027±0.011
r. elbow 0.169±0.072 0.146±0.038 0.097±0.032 0.033±0.010 0.220±0.083 0.097±0.032 0.065±0.017 0.034±0.011

r. wrist pros. 0.113±0.049 0.092±0.022 0.043±0.012 0.026±0.008 0.124±0.052 0.071±0.022 0.048±0.016 0.021±0.008
RMS error [cm] RMS error [cm]

no obs recognition 1/4 motion 1/2 motion no obs recognition 1/4 motion 1/2 motion

r. hand x 3.76±0.91 2.10±0.48 1.57±0.49 0.78±0.12 3.54.±0.88 1.62±0.65 0.61±0.33 0.48±0.14
r. hand y 3.55±0.93 1.91±0.40 0.97±0.32 0.52±0.10 3.71±0.89 2.02±0.48 0.89±0.19 0.35±0.11
r. hand z 2.98±0.91 2.34±0.83 1.22±0.27 0.66±0.19 2.71±0.80 1.99±0.79 0.77±0.29 0.50±0.13

com x 2.40±0.76 0.98±0.26 0.57±0.21 0.23±0.14 0.78±0.53 0.39±0.22 0.29±0.12 0.12±0.10
com y 1.12±0.55 0.58±0.26 0.29±0.18 0.20±0.13 0.80±0.44 0.52±0.29 0.29±0.12 0.11±0.10
waist z 3.53±1.04 2.74±0.93 1.68±0.57 0.65±0.22 0.95±0.36 0.65±0.22 0.39±0.19 0.28±0.14

Hence, motion retargeting is employed to map the human
information into feasible reference trajectories for the robot.
For transferring the translational movements of the end-
effectors we used a fixed scaling factor (0.4). For transferring
postures, the joint angles of the human joints are manually
identified and mapped to the corresponding joints of the robot
[1]. The instantaneous reference value of the robot is then
computed as:

∆qiR = q0R + (qiH − q0H) (S2)

where q is the vector of current joint positions, ∆q is the
vector of joint variations with respect to the initial posture,
the indices 0 and i refer to measurements at an initial
time and at time i, and the subindices H and R indicate
measurements on human and robot, respectively. The same
applies to the Cartesian positions of the end-effectors.

For the center of mass, the normalized offset-based recon-
struction is used [1]. We consider the ground projection of
the human center of mass pg

com. Its position with respect to
the left foot is projected onto the line connecting the two feet.
The result is then normalized to obtain an offset o ∈ [0, 1]

o =
(pg

com − pg
lFoot) · (p

g
rFoot − pg

lFoot)

|| pg
rFoot − pg

lFoot ||2

where pg
lFoot and pg

rFoot are the ground projections of the
left and right foot respectively. When the human is in a
symmetric pose, the offset o has a value around 0.5 and when
the human stands on a single foot, it is either 0 (left foot) or
1 (right foot). The robot center of mass ground projection is
then reconstructed on the line connecting its feet by means
of this offset value. To also retarget changes of the center
of mass that are not on the line connecting the feet, we

can apply the same concept while considering the maximum
backward and forward center of mass displacement in the
orthogonal direction of the line connecting the feet as done
in [1].

APPENDIX II
DATASETS

To train our method, we teleoperated the robot in an ideal
network without any delay and recorded the corresponding
robot motion. Every demonstration contains several Carte-
sian and postural trajectories that determine the whole-body
motion (Fig. S2): the center of mass ground projection, the
waist height, the hand positions, the arms posture (shoulder
rotation, elbow flexion, forearm rotation), the neck posture
(flexion and rotation) and the torso posture (flexion, rotation
and abduction). We record the retargeted trajectories, that is
the reference trajectories for the whole-body controller of the
robot.

We used three different datasets (Table I), each one
divided into a training set and a test set. The first dataset
(Dataset Multiple Tasks) is designed to test how well the
robot recognizes tasks and deals with the intrinsic variability
of the operator’s movements. This is the dataset used to
perform the experiments on the real robot. The second one
(Dataset Obstacles) is designed to evaluate the approach with
unexpected obstacles. The third dataset (Dataset Goals) is
designed to evaluate the approach with novel goal positions.

The datasets are available online at https://doi.
org/10.5281/zenodo.5913573.

https://doi.org/10.5281/zenodo.5913573
https://doi.org/10.5281/zenodo.5913573

A. Dataset Multiple Tasks

This dataset covers two scenarios: reaching a bottle with
the right hand (Fig. S1 and handling a box (Fig. S2).

The bottle task consists of demonstrations of 2 distinct
whole-body reaching primitives: one primitive is for reaching
the bottle on the table, the other one is for reaching the bottle
on the top of the box. For each primitive, we recorded 6
repetitions of the task for training, for a total of 12 training
whole-body demonstrations with an average duration of 6.1s.
Every demonstration provided by the human operator is
different, since it is not possible to exactly reproduce the
same whole-body movement twice; to further increase the
variance of the demonstrated movements, in 3 repetitions
out of the 6, an obstacle was placed in between the robot
and the bottle. To assess the quality of the predictions, 10
different testing repetitions were recorded for each of the
two primitives; 5 with the obstacle in between the robot
and the bottle, and 5 without any obstacle, for a total of
20 motions. In this dataset, the obstacles are at the same
positions in both the training set and the testing set (see the
dataset “Obstacles” below).

The second scenario consists of demonstrations of 7
distinct whole-body box handling primitives: 3 for picking
up the box — from a low position, from a mid-height and
from the table; 4 for placing the box at a specific location
— on the floor, on the table, inside a container, or in a
person’s hands. For each primitive, we recorded 6 different
repetitions for training, for a total of 42 training whole-body
demonstrations, with an average duration of 7.2 s for the
pick-up motions and of 5.8 s for the box-placing motions.
For the test set, 3 new different repetitions of the 7 motions
were recorded, for a total of 21 testing motions.

B. Dataset Obstacles

The training set is composed of 6 demonstrations of bottle
reaching motions with 3 different locations of an obstacle
(Fig. S3): 2 repetitions without obstacles, 2 with an obstacle
in between the robot and the bottle, and 2 with a different
obstacle. The average duration of the demonstrations is 6.9s.
The test set consists of motions for the same task but with
obstacles at different locations (Fig. S3b): 3 repetitions for
each of the 3 distinct scenarios with different obstacles.

C. Dataset Goals

The training set is composed of 7 demonstrations of bottle
reaching motions (Fig. S4), with the goal located in 7 dif-
ferent positions. The average duration of the demonstrations
is 6.1s. The test set consists of motions reaching the same
bottle but at 10 different locations (Fig. S4b).

APPENDIX III
DELAYED TELEOPERATION

A. Hardware and communication setup

The human motion is captured by the Xsens MVN system
[44], which considers a human model comprising 66 degrees
of freedom (corresponding to 22 spherical joints). The user
teleoperating the robot is equipped with the wearable motion

capture suit MVN Link, consisting of a Lycra suit with 17
inertial measurement units (IMUs) and a wireless data link
transmitting at a frequency of 240Hz. Our compensation
method receives the delayed data from the motion capture
system at 100Hz and transmits to the robot controller at
50Hz.

The user teleoperating the robot is also equipped with a
VR Oculus headset. Through the headset, the operator can
visualize the delayed images from both an external camera
at the robot side, as a third-person view of the teleoperated
robot, and the robot cameras, for a first-person immersive
experience. The communication protocol employed by the
network is UDP with a bandwidth of 3Mbps. The forward
delay is artificially generated, using the standard way to delay
packets in Linux with the “netem” scheduling policy, which
is based on the “iproute2” set of tools [45].

The images from the cameras at the robot side are delayed
by using the open-source application Kinovea [46], which
allows the user to set a constant delay for the streaming of
the video. The resulting delayed streaming is projected onto
the VR headset through the application Virtual Desktop [47].

B. Delay generation

The round-trip delay τ(t) at time-step t is divided into a
forward τf (t) (operator to robot) and a backward delay τb(t)
(robot to operator):

τ(t) = τf (t) + τb(t)

Each one-way delay is composed of two parts, one deter-
ministic and one stochastic [25]. The deterministic compo-
nent corresponds to the transmission and propagation delays.
It does not change when all the transmitted packets have
the same format and size and use the same physical link
[25]. The stochastic part, often called the “jitter”, is mainly
associated with the queueing delay [49] and varies from
packet to packet, even when the packets have the same size
and format.

If we denote by τf,D the deterministic part of τf and by
τf,S the stochastic part:

τf (t) = τf,D + τf,S (S3)
τb(t) = τb,D + τb,S (S4)

In our experiments, we generate a forward delay that
follows a normal distribution:

τf (t) = τf,D +N
(
0, στf

)
For both simulations and real experiments, we set the

deterministic part of the forward delay τf,D between 100ms
to 1s (depending on the experiment, see the captions of each
figure) and the jitter στf to 2

15τf,D, which is in line with
what the jitter usually represents [50].

τf,D ∈ [100, 1000] (depending on the experiment)(S5)

στf =
2

15
τf,D (S6)

For the stochastic part of the backward delay, we as-
sume that the robot uses a video streaming software that
implements a jitter buffer (sections “Delay estimation by
the robot” and “Jitter buffer”), which is the case of all the
modern video streaming systems. If we set the jitter buffer
length to d, then this buffer adds an additional deterministic
delay of d: all the packets that arrive before d seconds
are re-ordered and packets that are not arrived are dropped
(dropping a few frames has little consequence for a state-of-
the-art video codec). As a consequence, from the operator’s
perspective, the backward delay is constant. This is why,
for both simulations and real experiments, we generate a
constant backward delay:

τb(t) = τb,D(t) (S7)

For simplicity, we set τb(t) = τf,D in all our experiments,
but nothing in our system requires these two delays to be
equal; in particular, it would be equivalent to set τb(t) =
τb,D(t) +K with K any constant delay caused by the jitter
buffer.

C. Delay estimation by the robot
We assume that the clocks of the robot and of the computer

of the operator are synchronized. In our real experiments,
we synchronize the clock using the NTP system [26], which
is the standard Unix protocol for time synchronization. The
two clocks typically differ from less than 1ms on a local
network [52]. Alternatively, GPS receivers can provide a
highly accurate and absolute clock reference with an error
of a few nano-seconds [52].

We add a time-stamp to each of the packets sent by the
operator, which makes it possible for the robot to compute
the forward delay τf (t) (this includes both the deterministic
and stochastic part) when a packet is received at time t :

τf (t) = clockrobot(t)− timestampoperator(t) (S8)

Please note that this does not assume that the delay follows
a normal distribution. If necessary, the robot can re-order
the packets according to the time-stamps to condition the
trajectory predictions.

While the robot needs an estimate of the backward delay,
it cannot know in advance the stochastic part before sending
it. Our approach is to rely on the jitter buffer (section “Jitter
buffer”) implemented in the video streaming system to make
the backward delay deterministic: if we set the jitter buffer
length to d s on the operator receiving side, then we know
that the delay caused by the jitter will be exactly equal to d.

In our experiment, we therefore assume that the backward
delay is known and constant (100 ms, 250ms, etc. depending
on the experiments). To keep the implementation simple and
easy to reproduce, we assumed that the deterministic back-
ward delay was always equal to the deterministic forward
delay (a reasonable assumption given that the same link
is used for both directions) and that the stochastic part is
negligible (because we chose to not add any jitter on the
backward delay in the robot experiment, see the Jitter buffer
section below):

τb(t) = τf (t) = τf,D(t) (S9)
τb,S(t) = 0 (S10)

In a deployed setup, the robot would benefit from a better
estimate of the average backward delay (the deterministic
part) and the length of the jitter buffer. To do so, most video
streaming systems use the RTCP protocol [28] to get out-of-
band statistics and control information for a video streaming
session that follows the RTP protocol [54]. This data would
need to be sent periodically from the operator’s computer to
the robot so that the robot knows both d and τb,D (which
are not expected to change at high speed). Alternatively, a
custom system can be designed by using time-stamps on the
image packets to gather statistics about the delay.

D. Jitter buffer

The jitter buffer is the component of a video streaming
system [27], [55] that re-orders packets if they are delayed
by less than the length of the buffer and drops packets that are
too late. Much work has been dedicated to adapt its length
automatically [27]: if it is too small, then the video is jittery,
but if it is too large, delays are added, which is detrimental
to the user (in particular during video calls). In our system,
we assume that the length is fixed and known to the robot,
for simplicity.

We did not implement a jitter buffer because we wanted to
avoid modifying the video streaming system: reordering or
dropping packets would require a considerable expertise in
the internals of both the encodings (e.g., MP4) and the video
streaming software. Instead, we consider that video stream-
ing with delay and jitter is a problem that is well solved by
all the current video streaming systems, as experienced by
the million of users who watch videos online on smartphones
with non-ideal connections.

To summarize, from the point of view of our system, the
jitter buffer results in an additional but deterministic delay.
However, we assume that the robot knows the value of this
additional delay as well as the deterministic part of the delay.

APPENDIX IV
PROBABILISTC MOTION PRIMITIVES (PROMPS) FOR

PRESCIENT TELEOPERATION

A. Definition of Probabilist Motion Primitives

A ProMP [31] is a probabilistic model for representing
a trajectory distribution. The movement primitive repre-
sentation models the time-varying mean and variance of
the trajectories and is based on basis functions. A single
trajectory is represented by a weight vector w ∈ Rm. The
probability of observing a trajectory y given the underlying
weight vector is given as a linear basis function model

ξt = Φtw + ϵξ, (S11)

p(y|w) =
∏
t

N (ξt|Φtw,Σξ), (S12)

where Σξ is the observation noise variance, ϵξ ∼ N (0,Σξ)
is the trajectory noise. The matrix Φt ∈ Rm corresponds to

the m normalized radial basis functions evaluated at time t,
with

ϕc(t) =
exp

(
− 1

2

(
t− c−1

m−1

)2)
∑m

c=1 exp
(
− 1

2

(
t− c−1

m−1

)2) , (S13)

where the variable c ∈ {1, 2, ...,m} specifies the center of
each basis function. The distribution p(w;θ) over the weight
vector w is Gaussian, with parameters θ = {µw,Σw}
specifying the mean and the variance of w. The trajectory
distribution p(y;θ) is obtained by marginalizing out the
weight vector w, i.e.

p(y,θ) =

∫
p(y|w)p(w;θ)dw. (S14)

B. Learning ProMPs from demonstrations

The demonstrations are trajectories retargeted from the hu-
man. These are recorded in an ”offline phase”, while the user
teleoperates the robot within a local network (approximately
without delays) to perform a variety of tasks. Since the
duration of each recorded trajectory may be different, a phase
variable υ ∈ [0, 1] is introduced to decouple the movement
from the time signal, obtaining a common representation in
terms of primitives that is duration independent [32]. For
each task, the modulated trajectories ξi(υ) are then used
to learn a ProMP. The parameters θ = {µw,Σw} of the
ProMP are estimated by using a simple maximum likelihood
estimation algorithm. For each demonstration i, we compute
the weights with linear ridge regression, i.e.

wi =
(
Φ⊤

υ Φυ + λ
)−1

Φ⊤
υ ξi(υ), (S15)

where the ridge factor λ is generally set to a very small
value, typically λ = 10−12 as in our case, as larger values
degrade the estimation of the trajectory distribution. Assum-
ing Normal distributions p(w) ∼ N (µw,Σw), the mean µw

and covariance Σw can be computed from the samples wi:

µw =
1

D

D∑
i=1

wi, Σw =
1

D

D∑
i=1

(wi − µw)(wi − µw)⊤,

(S16)
where D is the number of demonstrations. Since a whole-
body trajectory is represented by N trajectories (x, y, z
position of the center of mass, of the hands, etc.), we learn
a ProMP for each of the N trajectories. These ProMPs all
together encode the same task k.

C. Recognizing the category of motion

Each learned k-th set of N ProMPs encodes different
whole-body trajectories to accomplish a given task like
picking up a box or squatting. To recognize to which set k
the current teleoperated motion belongs to, we can minimize
the distance between the first nobs delayed observations and
the mean of the N ProMPs of a group k, as done in [32]:

k̂ = arg min
k∈[1:K]

[N∑
n=1

∑
t∈Tobs

|yn(t−τf (t))−Φn,t−τf (t)µn,wk
|
]
,

(S17)

where K is the number of tasks in the dataset and Tobs =
{t1, ..., tnobs

} is the set of timesteps associated to the nobs

early observations. While computing k̂, the ProMPs are
modulated to have a duration equal to the mean duration of
the demonstrations. The recognition (S17) starts whenever a
motion is detected, i.e. the derivative of the observed end-
effector trajectories exceeds a given threshold. The distance
in (S17) is continuously computed after having identified
the current motion. In this way, we can verify that the
observations do not diverge from the demonstrations (exceed
by a given threshold the demonstrated variance), in which
case a gradual switch to delayed teleoperation is performed.

D. Time-modulation of the ProMPs

During motion recognition, we assumed that the duration
of the observed trajectories is equal to the mean duration
of the demonstrated trajectories, which might not be true.
To match as closely as possible the exact speed at which the
movement is being executed by the human operator, we have
to estimate the actual trajectory duration. More specifically,
we want to find the time modulation α, that maps the actual
duration of a given (observed) trajectory to the mean duration
of the associated demonstrated trajectories.

During the learning step, for each k-th set of ProMPs
we record the set of α parameters associated to the demon-
strations: Sαk = {α1, ..., αn}. Then, from this set, we can
estimate which α better fits the current movement speed.
We considered the best α̂ to be the one that minimizes the
difference between the observed trajectory and the predicted
trajectory for the first nobs datapoints:

α̂ = arg min
α∈Sαk̂

{ ∑
t∈Tobs

|y(t− τf (t))− Φα(t−τf (t))µwk̂
|
}
.

(S18)

E. Updating the posterior distribution of the ProMPs

Once the k̂-th most likely set of ProMPs and their duration
has been identified, we continuously update their posterior
distribution to take into account the observations that arrive at
the robot side. Each ProMP has to be conditioned to reach
a certain observed state y∗

t . The conditioning for a given
observation x∗

t = {y∗
t ,Σ

∗
y} (with Σ∗

y being the accuracy
of the desired observation) is performed by applying Bayes
theorem

p(wk̂|x
∗
t) ∝ N (y∗

t |Φα̂twk̂,Σ
∗
y)p(wk̂). (S19)

The conditional distribution of p(wk̂|x
∗
t) is Gaussian with

mean and variance

µ̂wk̂
= µwk̂

+L
(
y∗
t −Φ⊤

α̂tµwk̂

)
, (S20)

Σ̂wk̂
= Σwk̂

−LΦ⊤
α̂tΣwk̂

, (S21)

where

L = Σwk̂
Φα̂t

(
Σ∗

y +Φ⊤
α̂tΣwk̂

Φα̂t

)−1
. (S22)

Given the delay in the transmitted data τf (t), we can
compute the timestep t∗ at which the ProMP has to be

conditioned to a certain observation x∗
t :

t∗ = t− τf (t)− t0. (S23)

where t0 is the starting time of the current motion.

F. Motion anticipation

The references for the robot controller are generated at
each time based on the updated ProMPs’ mean trajectories
µ̂wk̂

. For a given ProMP, the sample µ̂wk̂
(t∗) corresponding

to the last conditioned observation, is a reconstruction of the
past retargeted human input

µ̂wk̂
(t∗) = ŷ(t− τf (t)). (S24)

The sample µ̂w(t
∗ + τf (t)) is an estimate of the current

retargeted human input

µ̂wk̂
(t∗ + τf (t)) = ŷ(t), (S25)

and can be used to synchronize the human movement with
that of the robot, compensating only the forward delay (see
Fig. 2). In our case, we want to synchronize the motion of
the human operator with what is seen from the robot side,
thus compensating for both the forward and backward delays.
To do so, we select the sample µ̂w(t

∗ + τf (t) + τ̂b(t)) as a
control reference, which corresponds to a future prediction
of the retargeted human movements:

µ̂wk̂
(t∗ + τf (t) + τ̂b(t)) = ŷ(t+ τ̂b(t)). (S26)

The remaining samples [µ̂wk̂
(t∗+τf (t)+τ̂b(t)+1), µ̂wk̂

(t∗+
τf (t) + τ̂b(t) + 2), ...] are also given to the controller. They
are used as control references if a new reference cannot be
computed in the next control step due to packet losses or
jitter.

After generating a first prediction, the transition from de-
layed to predicted references can be discontinuous (Fig. ??).
To smoothen the transition, a policy blending arbitrates the
delayed received references y(t − τf (t)) and the predicted
ones ŷ(t+τ̂b(t)|t−τf (t)), determining the adjusted reference
(Fig. ??):

ŷ′(t+ τ̂b(t)|t− τf) = (1− β)yd + βyp, (S27)

where yd = y(t − τf (t)), yp = ŷ(t + τ̂b(t)|t − τf (t)),
β = {β0, ..., βn, ..., βN}⊤ with βn ∈]0, 1[

βn =
1

1 + e−12(i
∆yn

− 1
2)
, (S28)

i = {0, 1, ...,∆yn} and ∆yn is the initial difference be-
tween a delayed reference and the corresponding prediction
expressed in mm (for Cartesian trajectories) or deg × 10−1

(for postural trajectories).

G. Teleoperation under unexpected circumstances

If something unexpected happens, or if the operator sud-
denly changes their mind about what to do and the ongoing
motion cannot be completed or is significantly altered, the
prescient teleoperation is transitioned back to the delayed
teleoperation. The transition from predicted to delayed refer-
ences is triggered whenever the distance between the current

observation and learned mean exceeds a given threshold ∆σ ,
which in the experiments was fixed equal to the learned
variance plus 5cm and considered for each of the x, y, z
trajectories of the hands. Since the transition can be discon-
tinuous, a policy blending arbitrates the last predicted sample
ŷ(tlast+ τ̂b(tlast)|tlast− τf (tlast)) and the delayed received
references y(t− τf (t)):

ŷ′(t+ τ̂b(t)|t− τf) = (1− β)Yp + βyd, (S29)

where yd = y(t − τf (t)), Yp = ŷ(tlast + τ̂b(tlast)|tlast −
τf (tlast)), β = {β0, ..., βn, ..., βN}⊤ with βn defined as in
(S28).

H. Comparison between ProMPs and LSTM
We implemented a LSTM (Long Short Term Memory

network) [59] using the Pytorch library [60]. This LSTM
predicts the next k time-steps given the previous k time-steps.
To keep the network small, the trajectories are sub-sampled
from 100Hz to 10Hz, so that 10 time-steps correspond to
1 second of motion. For instance, to predict the next 2
seconds of motions, the LSTM has 20 inputs and 20 outputs.
The network has 10 hidden nodes (preliminary experiments
showed that increasing this number did not have any quali-
tative effect on the predictions). It is trained with the Adam
optimizer using mini-batches of size 16, for 100 epochs (our
experiments show that this is enough to reach the minimum
loss), and the Mean Squared loss function. To account for the
stochasticity of the initialization and the stochastic gradient
descent, 10 LSTMs are trained with different seeds.

Like with ProMPs, one LSTM is trained for each dimen-
sion of the prediction (e.g., a LSTM for the x-coordinate of
the left hand, another one for the y-coordinate, etc.); however,
contrary to ProMPs, the whole “Multi tasks” training set is
used to train each LSTM. A different set of LSTMs is trained
for 1-second prediction (Fig. S6) and 2-second prediction
(Fig. S7). The LSTMs that were trained for 2 seconds could
have been used to predict 1-second ahead, but at the risk
of being lower-performing than a network specialized in 1-
second predictions.

For this comparison, the ProMPs are conditioned at each
time-step with all the points since the beginning of the
trajectory, and the ProMP is queried to predict the value
at t + 2 seconds(or t + 1s). As an additional baseline, the
“delayed” trajectory is the operator’s trajectory shifted in
time by either one or two seconds, which corresponds to
what the robot would do if there were no compensation.

For a particular trajectory T and a particular dimension D
(e.g., x-position of the hand), the prediction error is the sum
of the differences between the prediction and the recorded
trajectory:

eT,D =
1

N

i=N∑
i=1

∣∣∣x(pred)
i − x

(gt)
i

∣∣∣ (S30)

where N is the number of points in the trajectory, x(pred)
i

the prediction and x
(gt)
i the point of the trajectory performed

by the operator at time-step i (unknown to the robot at this
time-step).

APPENDIX V
SOURCE CODE

The code of the ProMP library is available at
https://doi.org/10.5281/zenodo.7438257
and on https://github.com/hucebot/promp.
The comparison between ProMP and LSTM
is available as a python notebook at https:
//doi.org/10.5281/zenodo.7441367 and on
https://github.com/hucebot/lstm_vs_promp
(this code relies on the ProMP library).

REFERENCES

[38] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” The
International Journal of Robotics Research, vol. 33, no. 7, pp. 1006–
1028, 2014.

[39] L. Penco, E. M. Hoffman, V. Modugno, W. Gomes, J. Mouret, and
S. Ivaldi, “Learning robust task priorities and gains for control of
redundant robots,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 2626–2633, 2020.

[40] A. Rocchi, E. M. Hoffman, D. G. Caldwell, and N. G. Tsagarakis,
“Opensot: a whole-body control library for the compliant humanoid
robot coman,” in IEEE ICRA, 2015, pp. 6248–6253.

[41] L. Natale, C. Bartolozzi, D. Pucci, A. Wykowska, and G. Metta, “iCub:
The not-yet-finished story of building a robot child,” Science Robotics,
vol. 2, no. 13, p. eaaq1026, 2017.

[42] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl,
“qpOASES: A parametric active-set algorithm for quadratic program-
ming,” Mathematical Programming Computation, vol. 6, no. 4, pp.
327–363, 2014.

[43] L. Penco et al., “Robust real-time whole-body motion retargeting
from human to humanoid,” in IEEE-RAS International Conference on
Humanoid Robots (Humanoids), 2018, pp. 425–432.

[44] D. Roetenberg, H. Luinge, and P. Slycke, “Xsens mvn: Full 6dof
human motion tracking using miniature inertial sensors,” Xsens Motion
Technol. BV Tech. Rep., vol. 3, 01 2009.

[45] T. L. Foundation, “Iproute2.” [Online]. Available: https://wiki.
linuxfoundation.org/networking/iproute2

[46] “Kinovea. A microscope for your videos,” https://www.kinovea.org/.
[47] “Virtual Desktop. Your PC in VR,” https://www.vrdesktop.net/.
[48] O. Gurewitz, I. Cidon, and M. Sidi, “One-way delay estimation us-

ing network-wide measurements,” IEEE Transactions on Information
Theory, vol. 52, no. 6, pp. 2710–2724, 2006.

[49] M. Garetto and D. Towsley, “Modeling, simulation and measurements
of queuing delay under long-tail internet traffic,” in Proceedings of the
2003 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, ser. SIGMETRICS ’03. New
York, NY, USA: Association for Computing Machinery, 2003, pp.
47–57. [Online]. Available: https://doi.org/10.1145/781027.781034

[50] A. Alharbi, A. Bahnasse, and M. Talea, “A comparison of voip
performance evaluation on different environments over vpn multipoint
network,” International Journal of Computer Science and Network
Security, vol. 17, pp. 123–128, 05 2017.

[51] D. Mills, J. Martin, J. Burbank, and W. Kasch, “Network time protocol
version 4: Protocol and algorithms specification,” Internet Requests for
Comments, RFC 5905, June 2010.

[52] D. Veitch, S. Babu, and A. Pàsztor, “Robust synchronization of
software clocks across the internet,” in Proceedings of the 4th ACM
SIGCOMM Conference on Internet Measurement, ser. IMC ’04.
New York, NY, USA: Association for Computing Machinery, 2004,
p. 219–232. [Online]. Available: https://doi.org/10.1145/1028788.
1028817

[53] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
transport protocol for real-time applications,” Internet Requests for
Comments, RFC Editor, STD 64, 2003.

[54] J. Ott, S. Wenger, N. Sato, C. Burmeister, and J. Rey, “Extended RTP
profile for real-time transport control protocol (RTCP)-based feedback
(RTP/AVPF),” RFC, vol. 4585, pp. 1–51, 2006.

[55] M. Claypool and J. Tanner, “The effects of jitter on the peceptual
quality of video,” in Proceedings of the seventh ACM international
conference on Multimedia (Part 2), 1999, pp. 115–118.

[56] B. Oklander and M. Sidi, “Jitter buffer analysis,” in Proc. Int. Conf.
on Comp. Comm. Networks, ICCCN, 09 2008, pp. 1 – 6.

[57] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Using proba-
bilistic movement primitives in robotics,” Autonomous Robots, vol. 42,
p. 529–551, 07 2018.

[58] O. Dermy, A. Paraschos, M. Ewerton, J. Peters, F. Charpillet, and
S. Ivaldi, “Prediction of intention during interaction with iCub with
probabilistic movement primitives,” Frontiers in Robotics and AI,
vol. 4, pp. 45–45, 2017.

[59] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[60] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances
in neural information processing systems, vol. 32, 2019.

https://doi.org/10.5281/zenodo.7438257
https://github.com/hucebot/promp
https://doi.org/10.5281/zenodo.7441367
https://doi.org/10.5281/zenodo.7441367
https://github.com/hucebot/lstm_vs_promp
https://wiki.linuxfoundation.org/networking/iproute2
https://wiki.linuxfoundation.org/networking/iproute2
https://www.kinovea.org/
https://www.vrdesktop.net/
https://doi.org/10.1145/781027.781034
https://doi.org/10.1145/1028788.1028817
https://doi.org/10.1145/1028788.1028817

com x
com y
waist z

pitch
roll
yaw

shoulder yaw
elbow
wrist prosup

shoulder yaw
elbow
wrist prosup

x
y
z

pitch
yaw

demonstrations
ProMP mean
ProMP std dev

0 0.5 1

0 0.5 1

0 0.5 1 0 0.5 1 0 0.5 1

0 0.5 1
phase

0 0.5 1

co
m

/w
ai

st
 p

os
iti

on
 [m

]
he

ad
 jo

in
t a

ng
le

s
[r

ad
]

to
rs

o
jo

in
t a

ng
le

s
[r

ad
]

]dar[selgna tnioj
mra thgir

]
m[noitisop dnah thgir

]
m[noitisop dnah tfel

]dar[selgna tnioj
mra tfel

phase

phase

phase phase phase

phase

0.2

0.1

0.0

-0.1

-0.2

-0.3

-0.4

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.2

0.0

-0.2

0.4

0.6

0.8

1.0

1.2

-0.4

1.4

0.2

0.0

-0.2

0.4

0.6

0.8

1.0

1.2

-0.4

0.0

0.1

0.2

0.3

0.4

0.5

x
y
z

com x
com y
waist z

pitch
roll
yaw

shoulder yaw
elbow
wrist prosup

x
y
z

shoulder yaw
elbow
wrist prosup

x
y
z

pitch
yaw

0 0.5 1

0 0.5 1

0 0.5 1 0 0.5 1 0 0.5 1

0 0.5 1
phase

0 0.5 1

co
m

/w
ai

st
 p

os
iti

on
 [m

]
he

ad
 jo

in
t a

ng
le

s
[r

ad
]

to
rs

o
jo

in
t a

ng
le

s
[r

ad
]

]dar[selgna tnioj
mra thgir

]
m[noitisop dnah thgir

]
m[noitisop dnah tfel

]dar[selgna tnioj
mra tfel

phase

phase

phase phase phase

phase

0.2

0.1

0.0

-0.1

-0.2

-0.3

-0.4

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.2

0.0

-0.2

0.4

0.6

0.8

1.0

1.2

-0.4

1.4

0.2

0.0

-0.2

0.4

0.6

0.8

1.0

1.2

-0.4

0.0

0.1

0.2

0.3

0.4

0.5

test trajectories
demonstrations std dev

a. Reaching a bottle (training set), datatset Multiple Tasks

b. Reaching a bottle (test set), datatset Multiple Tasks

Fig. S1. Dataset “Multiple Tasks”, scenario reaching a bottle on the table. a. Training trajectories and learned ProMPs. The whole-body motion
of the teleoperated robot is obtained by following the reference trajectories retargeted from the human. We learned a ProMP for each of these trajectories,
given 6 demonstrations in a local network without any delay (3 with an obstacle in between the robot and the bottle, and 3 without). b. Test trajectories.
The test trajectories are different and additional repetitions of the training motions. For the task of reaching a bottle 10 different repetitions were recorded
(5 with an obstacle in between the robot and the bottle, and 5 without).

com x
com y
waist z

pitch
roll
yaw

shoulder yaw
elbow
wrist prosup x

y
z

shoulder yaw
elbow
wrist prosup

x
y
z

pitch
yaw

demonstrations
ProMP mean
ProMP std dev

he
ad

 jo
in

t a
ng

le
s

[r
ad

]
to

rs
o

jo
in

t a
ng

le
s

[r
ad

]

le
ft

 a
rm

 jo
in

t a
ng

le
s

[r
ad

]

co
m

/w
ai

st
 p

os
iti

on
 [m

]

rig
ht

 h
an

d
po

si
tio

n
[m

]

le
ft

 h
an

d
po

si
tio

n
[m

]

phase

phasephasephasephase

phase

phase
0 0.5 1

0 0.5 1

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

0 0.5 1

0.2

0.1

0.0

-0.1

-0.2

-0.3

-0.4

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.2

0.0

-0.2

0.4

0.6

0.8

1.0

1.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.2
0.0

-0.2

0.4
0.6
0.8
1.0
1.2

-0.4

com x
com y
waist z

pitch
roll
yaw

shoulder yaw
elbow
wrist prosup

x
y
z

shoulder yaw
elbow
wrist prosup

x
y
z

pitch
yaw

test trajectories
demonstrations std dev0 0.5 1

phase

0 0.5 1
phase

0 0.5 1
phase

0 0.5 1
phase

0 0.5 1
phase

0 0.5 1
phase

0 0.5 1
phase

co
m

/w
ai

st
 p

os
iti

on
 [m

]
he

ad
 jo

in
t a

ng
le

s
[r

ad
]

to
rs

o
jo

in
t a

ng
le

s
[r

ad
]

rig
ht

 a
rm

 jo
in

t a
ng

le
s

[r
ad

]
rig

ht
 h

an
d

po
si

tio
n

[m
]

le
ft

 h
an

d
po

si
tio

n
[m

]
le

ft
 a

rm
 jo

in
t a

ng
le

s
[r

ad
]

0.2

0.1

0.0

-0.1

-0.2

-0.3

-0.4

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.2

0.0

-0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.1

0.2

0.3

0.4

0.5

0.2

0.0

-0.2

0.4

0.6

0.8

1.0

1.2

-0.4

b. Picking up a box (test set), datatset Multiple Tasks

a. Picking up a box (training set), datatset Multiple Tasks

Fig. S2. Dataset “Multiple Tasks”, scenario picking up a box at a low position. a. Training trajectories and learned ProMPs. For each of the
6 demonstrations, the motion of the operator is first “retargeted” to the robot using the whole-body controller (ignoring delays). The trajectories of each
body/joint of the robot is then recorded. From this set of demonstrations (thin lines), a ProMP is fitted for each trajectory; this ProMP is represented here
as a thick line (the mean) and a light zone (the standard deviation). The computed mean is a smooth trajectory that averages all the demonstrations and
the standard deviation captures the variability of the demonstrations. b. Test trajectories. The test trajectories are different and additional repetitions of
the training motions. For the tasks of picking up a box 3 different repetitions were recorded.

pitch
roll
yaw

x
y
z

demonstrations

ProMP mean
ProMP std dev

shoul. yaw
elbow
wrist pros.

goal
obstacle

0 0.5 1
phase

0 0.5 1
phase

0 0.5 1
phase

to
rs

o
 jo

in
t

an
g

le
s

[r
ad

]

ri
g

h
t

ar
m

 jo
in

t
an

g
le

s
[r

ad
]

ri
g

h
t

h
an

d
 p

o
si

ti
o

n
 [m

]

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.2

0.2

0.0

-0.2

0.4

0.6

0.8

1.0

1.2

-0.4

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

pitch
roll
yaw

x
y
z

shoul. yaw
elbow
wrist pros.

0 0.5 1
phase

0 0.5 1
phase

0 0.5 1
phase

to
rs

o
 jo

in
t

an
g

le
s

[r
ad

]

ri
g

h
t

ar
m

 jo
in

t
an

g
le

s
[r

ad
]

ri
g

h
t

h
an

d
 p

o
si

ti
o

n
 [m

]

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.2

0.2

0.0

-0.2

0.4

0.6

0.8

1.0

1.2

-0.4

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

test trajectories

demonstrations std dev

goal
obstacle

a.
Conforming
to
the
intended
motion
(training
set)

b.
Conforming
to the
intended
motion
(testing
set)

c.
Conforming
to
the
intended
motion
(results
round-trip
delay
=
1.5
s)

actual trajectory

compensated trajectory

learned mean and std dev

*temporally realigned with the non-delayed (actual retargeted) trajectory for comparison purposes

pitch

roll

yawelbow

shoulder yaw

wrsit prosup

x

z

y

to
rs

o
 jo

in
t

an
g

le
s

[r
ad

]

ri
g

h
t

ar
m

 jo
in

t
an

g
le

s
[r

ad
]

ri
g

h
t

h
an

d
 p

o
si

ti
o

n
 [m

]

0 1 2 3 4 5 6
t [s]

70 1 2 3 4 5 6
t [s]

7 0 1 2 3 4 5 6
t [s]

7

0 1 2 3 4 5 6
t [s]

7

0 1 2 3 4 5 6
t [s]

70 1 2 3 4 5 6
t [s]

7

0 1 2 3 4 5 6
t [s]

70 1 2 3 4 5 6
t [s]

7

0 1 2 3 4 5 6
t [s]

7

0.2

0.0

-0.2

0.4

0.6

0.8

1.0

1.2

-0.4
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.2

ri
g

h
t

h
an

d
 p

o
si

ti
o

n
 [m

]

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

ri
g

h
t

h
an

d
 p

o
si

ti
o

n
 [m

]

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

ri
g

h
t

ar
m

 jo
in

t
an

g
le

s
[r

ad
]

0.2

0.0

-0.2

0.4

0.6

0.8

1.0

1.2

-0.4

ri
g

h
t

ar
m

 jo
in

t
an

g
le

s
[r

ad
]

0.2

0.0

-0.2

0.4

0.6

0.8

1.0

1.2

-0.4

to
rs

o
 jo

in
t

an
g

le
s

[r
ad

]

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.2

to
rs

o
 jo

in
t

an
g

le
s

[r
ad

]

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.2

*

Fig. S3. Dataset “Obstacles”: Conforming the teleoperation to the intended motion. a. Training trajectories and learned ProMPs. The most
relevant learned ProMPs and the associated demonstrations are reported. The 6 demonstrations (2 without obstacles, 2 with an obstacle in between the
robot and the bottle and other 2 with a different obstacle) have been recorded while teleoperating the robot in simulation, in a local network without any
delay. b. Test trajectories. The 9 test trajectories are different from those used for training and consist of 3 repetitions of the bottle reaching motion for
each of the 3 distinct simulated scenarios with different obstacles, illustrated on the left. c. Results: comparison between the compensated trajectory
and the ideal (non-delayed) trajectory with a mean round-trip delay of 1.5s. On the top row, there is an unexpected obstacle (a small box) to avoid
and the operator approaches the object by the right; on the second row, the obstacle in front of the robot is different; on the bottom row, there is the
same obstacle from the top row with in addition a large obstacle on the right of the robot, which forces the operator to move the hand in between the
two obstacles. These situations were not in the training set. After the initial recognition period, our approach makes the robot follow the specific way the
human is performing the task despite the delay, and even if the robot is asked to perform the task in a way that has not been demonstrated before (but
included in the distribution of the demonstrations). This is not the same as following the mean of previously demonstrated motions (here, the dashed line)
or letting the robot replicate previously demonstrated motions. The non-delayed trajectories are some of the test trajectories from panel b, where the robot
has to reach the bottle on the table in the presence of different obstacles that were not considered during the training.

pitch
roll
yaw

demonstrations

ProMP mean
ProMP std dev

shoul. yaw
elbow
wrist pros.

bottles
training bottles

0 0.5 1
phase

0 0.5 1
phase

0 0.5 1
phase

to
rs

o
 jo

in
t

an
g

le
s

[r
ad

]

ri
g

h
t

ar
m

 jo
in

t
an

g
le

s
[r

ad
]

ri
g

h
t

h
an

d
 p

o
si

ti
o

n
 [m

]

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.2

0.2

0.0

-0.2

0.4

0.6

0.8

1.0

1.2

-0.4

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.2

-0.3

0.6

x
y
z

considered reaching locations

pitch
roll
yaw

shoul. yaw
elbow
wrist pros.

bottles
testing bottles

0 0.5 1
phase

0 0.5 1
phase

0 0.5 1
phase

to
rs

o
 jo

in
t

an
g

le
s

[r
ad

]

ri
g

h
t

ar
m

 jo
in

t
an

g
le

s
[r

ad
]

ri
g

h
t

h
an

d
 p

o
si

ti
o

n
 [m

]

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.2

0.2

0.0

-0.2

0.4

0.6

0.8

1.0

-0.4

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.2

-0.3

0.6

x
y
z

considered reaching locations

test trajectories

demonstrations std dev

-0.6

a.
Conforming
to
new
goals
(training
set)

b.
Conforming
to new
goals
(testing
set)

c.
Conforming
to
new
goals
(results
round-trip
delay
=
1.5
s)

actual trajectory

compensated trajectory

learned mean and std dev

60 1 2 3 4 5
t [s]

60 1 2 3 4 5
t [s]

60 1 2 3 4 5
t [s]

to
rs

o
 jo

in
t

an
g

le
s

[r
ad

]

ri
g

h
t

ar
m

 jo
in

t
an

g
le

s
[r

ad
]

ri
g

h
t

h
an

d
 p

o
si

ti
o

n
 [m

]

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.2

0.2

0.0

-0.2

0.4

0.6

0.8

1.0

-0.4
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.2
-0.3

0.6

-0.6

60 1 2 3 4 5
t [s]

60 1 2 3 4 5
t [s]

60 1 2 3 4 5
t [s]

to
rs

o
 jo

in
t

an
g

le
s

[r
ad

]

ri
g

h
t

ar
m

 jo
in

t
an

g
le

s
[r

ad
]

ri
g

h
t

h
an

d
 p

o
si

ti
o

n
 [m

]

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.2

0.2

0.0

-0.2

0.4

0.6

0.8

1.0

-0.4
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.2

-0.3

0.6

-0.6

60 1 2 3 4 5
t [s]

60 1 2 3 4 5
t [s]

60 1 2 3 4 5
t [s]

to
rs

o
 jo

in
t

an
g

le
s

[r
ad

]

ri
g

h
t

ar
m

 jo
in

t
an

g
le

s
[r

ad
]

ri
g

h
t

h
an

d
 p

o
si

ti
o

n
 [m

]

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.2

0.2

0.0

-0.2

0.4

0.6

0.8

1.0

-0.4
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.2

-0.3

0.6

-0.6

pitch

roll

yaw

elbow

shoulder yaw

wrist prosup

x

z

y

*temporally realigned with the non-delayed (actual retargeted) trajectory for comparison purposes

*

Fig. S4. Dataset “Goals”: Conforming the teleoperation to new goals. a. Training trajectories and learned ProMPs. The most relevant learned
ProMPs and the associated demonstrations are reported. The 7 demonstrations have been recorded while teleoperating the robot in simulation, in a local
network without any delay. The different bottle locations are illustrated on the left. b. Test trajectories. The 10 test trajectories are different from those
used for training. The different bottle locations are illustrated on the left. c. Results: comparison between the compensated trajectory and the ideal
(non-delayed) trajectory with a mean round-trip delay of 1.5s. The bottles are located on the table in different positions that were not in the training
set (but included in the distribution of the demonstrations). The non-delayed trajectories are some of the test trajectories from panel b, where the robot has
to reach the bottle on the table in the presence of different obstacles that were not considered during the training.

Fig. S6. Prediction for LSTM and ProMP, 1 second ahead. a. Prediction error, 1-s horizon. The plot shows the average difference between the
point predicted 1 second ahead (100 time-steps) and the ground truth (Methods), for each degree coordinate of each hand, for each trajectory of the dataset
“Multiple tasks” (Methods). The box extends from the lower to upper quartile values of the data, with a line at the median. For the LSTM, the 10 replicates
of the learning process (with different seeds) are considered as independent data (i.e., the variance of the prediction error comes both from the different
trajectories and the different seeds). The “Delayed” trajectory corresponds to the original trajectory delayed by 1 second, that is, to what the robot would
have done without any prediction system. All comparisons are statistically significant (p < 10−6, Mann-Whitney U-test). b-d. Examples of predicted
trajectories.

Fig. S7. Prediction for LSTM and ProMP, 2 seconds ahead. a. Prediction error, 2-s horizon. The plot shows the average difference between the
point predicted 2 seconds ahead (200 time-steps) and the ground truth (Methods), for each degree coordinate of each hand, for each trajectory of the
dataset “Multiple tasks” (Methods). The box extends from the lower to upper quartile values of the data, with a line at the median. For the LSTM, the
10 replicates of the learning process (with different seeds) are considered as independent data (i.e., the variance of the prediction error comes both from
the different trajectories and the different seeds). The “Delayed” trajectory corresponds to the original trajectory delayed by 2 seconds, that is, to what the
robot would have done without any prediction system. All comparisons are statistically significant (p < 10−6, Mann-Whitney U-test). All comparisons
are statistically significant (p < 10−6, Mann-Whitney U-test). b-d. Examples of predicted trajectories.

TABLE S2
DIFFERENCE (ROOT MEAN SQUARE ERROR) WITH THE NON-DELAYED TRAJECTORIES, FOR BOTH THE COMPENSATED AND THE

NON-COMPENSATED (DELAYED) TRAJECTORIES (AVERAGE DELAY: 1.5 S) THE ERROR IS COMPUTED FOR THE 20 TESTING MOTIONS FROM THE

BOTTLE REACHING SCENARIO OF THE DATASET MULTIPLE TASKS (FIG. S1), AND FOR THE 21 TESTING MOTIONS FROM THE BOX HANDLING

SCENARIO OF THE DATASET MULTIPLE TASKS (FIG. S2). THE TIME-VARYING FORWARD FOLLOWS A NORMAL DISTRIBUTION WITH 750MS AS MEAN

AND 100MS AS STANDARD DEVIATION. THE BACKWARD DELAY IS SET EQUAL TO 750MS.

Box handling Bottle reaching
RMS error [rad] RMS error [rad]

compensation no compensation compensation no compensation

head yaw 0.024±0.011 0.035±0.012 0.013±0.007 0.021±0.011
torso pitch 0.045±0.020 0.136±0.064 0.027±0.012 0.041±0.019
torso roll 0.022±0.011 0.089±0.038 0.015±0.008 0.020±0.010
torso yaw 0.069±0.028 0.129±0.055 0.019±0.009 0.032±0.011

r. shoulder yaw 0.071±0.025 0.145±0.051 0.065±0.018 0.221±0.092
r. elbow 0.062±0.020 0.171±0.067 0.096±0.030 0.194±0.071

r. wrist prosup. 0.025±0.007 0.077±0.033 0.054±0.012 0.091±0.041

RMS error [cm] RMS error [cm]
compensation no compensation compensation no compensation

r. hand x 1.02±0.31 2.95±1.12 1.29±0.33 4.97±1.46
r. hand y 0.90±0.26 3.36±1.21 1.21±0.31 4.33±1.17
r. hand z 0.96±0.30 2.96±0.75 1.11±0.25 4.15±1.13

com x 0.90±0.13 1.24±0.36 0.33±0.07 1.01±0.20
com y 0.79±0.11 1.06±0.39 0.24±0.06 1.01±0.32
waist z 0.88±0.14 2.02±1.22 0.22±0.07 0.61±0.09

	Introduction
	Previous work
	Prescient Teleoperation
	Delay Estimation
	Delay Compensation with Predictor Anticipation
	Whole-body controller

	Experiments
	Conclusion and discussion
	References
	Appendix I: Humanoid robot and whole-body controller
	The iCub humanoid robot
	Whole-body controller
	Motion retargeting

	Appendix II: Datasets
	Dataset Multiple Tasks
	Dataset Obstacles
	Dataset Goals

	Appendix III: Delayed Teleoperation
	Hardware and communication setup
	Delay generation
	Delay estimation by the robot
	Jitter buffer

	Appendix IV: Probabilistc Motion Primitives (ProMPs) for prescient teleoperation
	Definition of Probabilist Motion Primitives
	Learning ProMPs from demonstrations
	Recognizing the category of motion
	Time-modulation of the ProMPs
	Updating the posterior distribution of the ProMPs
	Motion anticipation
	Teleoperation under unexpected circumstances
	Comparison between ProMPs and LSTM

	Appendix V: Source code
	References

