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Abstract In this work, we describe a new self-calibration algorithm in
the case of 3D cone-beam geometry with sources on a plane parallel to
the detector plane. This algorithm is hybrid, so it combines data con-
sistency conditions (DCCs) and the partial knowledge on the pattern
of the calibration cage. We explain how we build this algorithm with
the modelling of calibration markers by Diracs and the generalization
of existing DCCs for this geometry to distributions. This new method
can work with truncated projections if the marker projections are not
truncated. With this hybrid approach, we build an analytical self-
calibration algorithm based on DCCs, robust to projection truncations.
We show numerical experiments.

1 Introduction

In the recent work [1] a hybrid approach to calibrate a cone-
beam system was proposed. This method combines data
consistency conditions (DCCs), special equations on projec-
tion data, and detected anatomical markers. We continued
the development of similar methods and presented hybrid
methods in 2D fan-beam geometry and 3D cone-beam geom-
etry, both with sources on a line, see [2, 3]. In our approaches
we modelled the calibration markers by Dirac distributions
and exploited DCCs on distributions. Compared with [1], our
calibration algorithms with such DCCs are analytical, thus
we don’t need to solve numerical optimization procedures.
Moreover, because we use DCCs only on markers, the projec-
tion data may be truncated. Only the marker projections must
be non-truncated. Thus, moment conditions of DCCs on
the set of Diracs yields the extension of existing calibration
procedures based on DCCs to truncated projections.
In [4] DCCs for functions were proposed for the 3D cone-
beam with sources on a plane parallel to the detector plane. In
this work, we show that the generalisation of these DCCs to
distributions helps to overcome difficulties in the construction
of the analytical calibration procedure for this geometry and
allows the hybrid geometric self-calibration with truncated
data.

2 Calibration problem

3D divergent X-ray systems lead to the cone-beam projection
data defined by the following transform:

Definition 2.1. The cone-beam transform of the function f
of compact support describing an object is

D f (⃗sλ , ζ⃗ ) :=
∫ +∞

0
f (⃗sλ + lζ⃗ )dl, (1)

Figure 1: The cone-beam geometry with sources on a plane paral-
lel to the detector.

where λ ∈ R is the trajectory parameter of the source s⃗λ ∈
R3 and the (usually unit) vector ζ⃗ is the direction of the
integration line.

For the cone-beam transform with sources on a plane parallel
to the detector, we work with the geometry presented in the
Figure 1, see also [4]. Here we have sources moving in a
plane parallel to the detector plane: the source trajectory
is s⃗λ = (λ1,λ2,0)T , the detector is in x3 = D, the non-unit
direction of the integration line ζ⃗ = (u,v,D)T − (λ1,λ2,0)T ,
u and v are parameters of the detector. In this case we can
rewrite our data as:

Definition 2.2. The cone-beam transform with sources on a
plane parallel to the detector plane of a function f of compact
support between the source plane x3 = 0 and the detector
plane x3 = D is

D f (λ1,λ2,u,v) :=
∫ +∞

0
f (λ1+l(u−λ1),λ2+l(v−λ2), lD)dl.

(2)

We can denote the cone-beam transform for fixed λ1 and λ2
with Dλ1,λ2 f (u,v) :=D f (λ1,λ2,u,v) for f with support in
Y3 = R2 × (D1,D2), 0 < D1 < D2 < D. Then we consider
Dλ1,λ2 f as a function of two variables.
Suppose that we work with a lattice of u,v, but the system is
moving. So, we don’t know exactly:

• source positions λ1i and λ2i for P projections, i∈ [[0,P−
1]],

• detector shifts ui, vi for each source position i.
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Figure 2: The 3D cone-beam geometry with sources on a plane
with the calibration cage of two groups of 8 parallel sticks each.

We know mi(u,v), where mi(u,v) =Dλ1i,λ2i f (u−ui,v− vi).
We need to estimate the geometric calibration parameters
λ1i, λ2i, ui, vi, i ∈ [[0,P− 1]]. We want to do it with the
specific calibration cage presented in the Figure 2. So, we
add some calibration object with unknown position. We want
to use DCCs on projections of this object to perform the full
analytical calibration.
Our task can be separated into two independent tasks to find
the couple of λ1i and ui for the first task with the help of the
first part of the calibration cage (8 vertical sticks) and λ2i and
vi for the second task with the second part of the calibration
cage (8 horizontal sticks).
We place these sticks as close as possible to the detector
and two groups of sticks are separated such that it’s possible
to select one horizontal detector line for the vertical sticks
and one vertical detector line for horizontal sticks containing
only projections of one part of our calibration cage. Thus,
it’s possible to work separately with the projection of vertical
sticks for one fixed detector line and the projection of hori-
zontal sticks for another fixed detector column. So, we can
say that we need to select two appropriate detector lines (one
horizontal and one vertical) for the current source position or
two oblique planes (one horizontal Hoblique and one vertical
Voblique) passing through each detector line and the current
source position. Let us consider the intersection of sticks
with one selected oblique plane and points of the calibration
cage in this intersection as Dirac distributions.
For each group of 8 sticks we have a known pattern, the same
as we used in our previous works [2, 3]. Let us consider
only the first vertical group of sticks (the same can be written
for the second group). Each subgroup of 4 sticks belongs to
one plane. Let us use the superscript l = a or l = b for each
group of 4 sticks. We have more unknowns in our calibration
problem:

• the first 4 sticks are in the unknown plane x3 =Ca
3 , the

second 4 sticks are in the unknown plane x3 =Cb
3 ,

• we suppose that sticks are perpendicular to the x1-axis,
then points in the intersection of sticks and the fixed
oblique plane Hoblique are ca

11 = pa − k1L, ca
21 = pa −L,

ca
31 = pa + L, ca

41 = pa + k1L, cb
11 = pb − k2L, cb

21 =

pb − k3L, cb
31 = pb + k3L, cb

41 = pb + k2L, where pa, pb
are unknown and define the x1-position of the center of
mass of each subgroup, L, k1 > 0, k2 > 0, k3 > 0 are
known; we also assume that D is known.

Thus, by knowing the abscissas ql
i j (i ∈ [[0,P−1]], j ∈ [[1,4]],

l ∈ {a,b}), the detected projections of the stick intersections
with the oblique plane Hoblique, for one fixed detector line and
some parameters of the pattern of the calibration cage (see
previous paragraph), we want to identify the geometrical cal-
ibration parameters λ1i, ui, i ∈ [[0,P−1]], and the unknown
position of the calibration cage pa, pb, Ca

3 , Cb
3 . With es-

sentially the same procedure (see the next section), but the
vertical oblique plane and 8 horizontal sticks, we identify λ2i,
vi, i ∈ [[0,P−1]], pc, pd , Cc

3, Cd
3 .

3 Hybrid solution

The mathematical theory of the cone-beam transform on
distributions with sources on a plane parallel to the detector
allowed to build the similar hybrid algorithm that we used in
our previous works [2, 3], see section 4.

Let us define ra =
D−Ca

3
Ca

3
, rb =

D−Cb
3

Cb
3

. It was possible to derive
analytical formulas to calibrate with DCCs in this case (for
the first task, the similar algorithm can be constructed for the
second task):

1. ra and rb can be uniquely estimated from{
∑

4
j=1(q

a
i j)

2 = (1+ ra)
2(2+2k2

1)L
2 +Ka(i)

∑
4
j=1(q

b
i j)

2 = (1+ rb)
2(2k2

2 +2k2
3)L

2 +Kb(i),
(3)

where

Kl(i) =
1
4

[
4

∑
j=1

ql
0 j

]2

+2∆M̃l
1(i)

4

∑
j=1

ql
0 j +4[∆M̃l

1(i)]
2,

∆M̃l
1(i) =

1
4

(
4

∑
j=1

ql
i j −

4

∑
j=1

ql
0 j

)
,

and then we can deduce Ca
3 and Cb

3 from ra and rb,

2. pa and pb can be estimated from

4

∑
j=1

ql
0 j = (1+ rl)4pl, l ∈ {a,b}, (4)

3. from the linear system

ui −λ1irl = ∆M̃l
1(i) (5)

we compute ui and λ1i for each projection: (5) gives us
2 equations with 2 unknowns, since l ∈ {a,b}.
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4 Mathematical basis

In this section we describe the theory that we built and used
in the derivation of our algorithm. Firstly, we generalize
the definition of the cone-beam transform from the second
section to distributions. Then we provide the generalization
of known DCCs given in [4] to distributions.
Definition. Denote for any open set ΩN ⊂ RN the spaces of
compactly supported smooth functions D(ΩN), the spaces
of smooth functions E (ΩN), N ∈ {2,3}. Then D ′(ΩN) and
E ′(ΩN) state for the sets of corresponding distributions.
We need to define the dual operator D∗

λ1,λ2
of Dλ1,λ2 . For

f ∈ D(R3) and φ ∈ E (R2):

(Dλ1,λ2 f ,φ) =
∫
R2

Dλ1,λ2 f (u,v)φ(u,v)dudv

=
∫
R2

∫ +∞

0
f (λ1+l(u−λ1),λ2+l(v−λ2), lD)dlφ(u,v)dudv

=
1
D

∫
R2

∫ +∞

0
f
(

λ1 +
t3
D
(u−λ1),λ2 +

t3
D
(v−λ2), t3

)
dt3

×φ(u,v)dudv =
∫ +∞

0

∫
R2

f (t1, t2, t3)

×φ

(
Dt1 −λ1(D− t3)

t3
,
Dt2 −λ2(D− t3)

t3

)
D
t2
3

dt1dt2dt3

= ⟨ f ,D∗
λ1,λ2

φ⟩, (6)

where (·, ·) is the scalar product in L2(R2), ⟨·, ·⟩ is the scalar
product in L2(Y3), we used the change of variables t3 = lD,
dl = dt3

D ; t1 = λ1 +
t3
D(u−λ1), du = D

t3
dt1; t2 = λ2 +

t3
D(v−

λ2), dv = D
t3

dt2.
We can define the dual operator for functions from E (R2):

D∗
λ1,λ2

φ (⃗x) :=
D
x2

3
φ

(
Dx1 −λ1(D− x3)

x3
,
Dx2 −λ2(D− x3)

x3

)
.

(7)

Definition 4.1. The cone-beam transform on a plane at fixed
λ1 and λ2 of a compactly supported distribution f ∈ E ′(Y3)
is a distribution from E ′(R2) defined by the dual equality

(Dλ1,λ2 f ,φ) = ⟨ f ,D∗
λ1,λ2

φ⟩ (8)

with the dual operator from (7).

Since we model the intersection at c⃗ of a projection line with
an opaque stick by a Dirac distribution δ⃗c, then

(Dλ1,λ2 δ⃗c(u,v),φ(u,v)) = ⟨δ⃗c(⃗x),D∗
λ1,λ2

φ (⃗x)⟩

=

〈
δ⃗c(⃗x),

D
x2

3
φ

(
Dx1 −λ1(D− x3)

x3
,
Dx2 −λ2(D− x3)

x3

)〉
=

D
c2

3
φ

(
Dc1 −λ1(D− c3)

c3
,
Dc2 −λ2(D− c3)

c3

)
=

D
c2

3
δc̃(φ),

where c̃ =
(

Dc1 −λ1(D− c3)

c3
,
Dc2 −λ2(D− c3)

c3

)
. (9)

It’s easy to see that c̃ is the perspective projection of c⃗ in the
geometry of Dλ1,λ2 .
For the sum of Diracs f = ∑

n
j=1 δ⃗c j

Dλ1,λ2 f =
n

∑
j=1

D
c j

2
3

δc̃ j ,

c̃ j =

(
Dc j1 −λ1(D− c j3)

c j3
,
Dc j2 −λ2(D− c j3)

c j3

)
. (10)

DCCs. The DCCs for functions from [4] state:

Theorem 4.1. Define

Jk(λ1,λ2,U,V ) =
∫ +∞

−∞

g(λ1,λ2,u,v)(uU +vV )kdudv (11)

for all k = 0,1,2, ... Then Jk(λ1,λ2,U,V ) =
Pk(U,V,−λ1U − λ2V ), Pk(U,V,W ) is a homogeneous
polynomial of degree k and g(λ1,λ2, ·, ·) has a compact
support for all (λ1,λ2) if and only if g =D f with compactly
supported f in z > 0.

We can generalize the necessary part of these DCCs to distri-
butions of compact support:

Theorem 4.2. If f ∈ E ′(Y3), gλ1,λ2 = Dλ1,λ2 f is the cone-
beam transform on a plane of f for fixed λ1, λ2, then:

1. gλ1,λ2 ∈ E ′(R2),

2. for k = 0,1,2, . . . we have the moment conditions:

(gλ1,λ2(u,v),(uU + vV )k) = Pk(U,V,−λ1U −λ2V ),
(12)

where Pk(U,V,W ) is a homogeneous polynomial of
degree k.

Proof. Let us prove here the moment conditions that we plan
to use. Obviously (u,v) 7−→ (uU + vV )k ∈ E (R2), then

(Dλ1,λ2 f (u,v),(uU+vV )k)= ⟨ f (⃗x),D∗
λ1,λ2

((uU+vV )k)(⃗x)⟩

=

〈
f (⃗x),

D
x2

3

(
Dx1 −λ1(D− x3)

x3
U +

Dx2 −λ2(D− x3)

x3
V
)k
〉

=

〈
f (⃗x),

D
xk+2

3

(Dx1U +Dx2V +(D− x3)(−λ1U −λ2V ))k

〉

=

〈
f (⃗x),

D
xk+2

3
∑
i, j,l

i+ j+l=k

k!
i! j!l!

(Dx1U)i(Dx2V ) j

×((D− x3)(−λ1U −λ2V ))l
〉
= ∑

i, j,l
i+ j+l=k

k!
i! j!l!

U iV j

× (−λ1U −λ2V )l

〈
f (⃗x),

D
xk+2

3

(Dx1)
i(Dx2)

j(D− x3)
l

〉
= Pk(U,V,−λ1U −λ2V ).
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Non-uniqueness of the solution. Let fM,⃗t (⃗x) := f (Mx⃗+ t⃗)

with M =

1 0 −(u′+λ ′
1)/D

0 1 −(v′+λ ′
2)/D

0 0 1

 and t⃗ =(λ ′
1,λ

′
2,0)

T , then

it can be shown for functions

D fM,⃗t(λ1,λ2,u,v) =D f (λ1 +λ
′
1,λ2 +λ

′
2,u−u′,v− v′).

(13)
It can be generalized to distributions f = δ⃗c ∈ E ′(Y3). Let us
define fM,⃗t ∈ E ′(Y3) as ⟨ fM,⃗t (⃗x),φ (⃗x)⟩ = ⟨ f (⃗x),φ(M−1(⃗x−

t⃗)⟩, where M−1 =

1 0 (u′+λ ′
1)/D

0 1 (v′+λ ′
2)/D

0 0 1

, thus M−1(⃗x −

t⃗) =

x1 −λ ′
1 +

u′+λ ′
1

D x3

x2 −λ ′
2 +

v′+λ ′
2

D x3
x3

. Then (δ⃗c)M,⃗t is the distribution

δM−1 (⃗c−⃗t) ∈ E ′(Y3). Then it’s easy to show

(Dλ1,λ2 (δ⃗c)M,⃗t (u,v),φ(u,v)) =

= (Dλ1+λ ′
1,λ2+λ ′

2
δ⃗c(u−u′,v− v′),φ(u,v)). (14)

If we shift the detector by u′, v′ and the source positions by
−λ ′

1, −λ ′
2, then there exists another object with the same pro-

jection data from the original source and detector positions.
Thus, the source positions cannot be identified better than up
to a global shift (idem for the detector shifts) from the data
only.
Derivation of the algorithm. If we write projection data as

ml
i(u,v) =Dλ1i,λ2i f l(u−ui,v− vi), (15)

f l = ∑
4
j=1 δ⃗c l

j
, then from the moments of order 1 of the

type Ml
1(i) = (ml

i(u,v),u) and moments of order 2 of the
type Ml

2(i) = (ml
i(u,v),u

2) we can derive formulas (3), (4),
(5). Note that along with the direct calculation of mo-
ments for (15), we used that we can compute the same mo-
ments with the detected points ql

i j as Ml
1(i) = D

(C l
3)

2 ∑
4
j=1 ql

i j,

Ml
2(i) = D

(C l
3)

2 ∑
4
j=1(q

l
i j)

2.

5 Numerical results

For numerical simulations we launched our algorithm twice:
for the first part of the calibration task to find λ1i, ui and for
the second task to find λ2i, vi. All values of parameters are
given in cm:

1. The known parameters of the calibration cage pattern:
L = 0.4, k1 = 3, k2 = 1, k3 = 2. We used the same
pattern for the group of vertical sticks and for the group
of horizontal sticks.

2. The true positions of sticks: pa = 5, pb = 8.2, pc = 4,
pd = 7.2, Ca

3 = 8, Cb
3 = 9.5, Cc

3 = 8, Cd
3 = 9.5.

3. The true calibration parameters: we randomly selected
P = 30 values for source positions in [0,10] and fixed
λ10 = 0. We chose the grid on u ∈ [0,10] with the sam-
pling step 0.01. The detector jitters ui were generated
as random uniform noise on the interval [−0.05,0.05),
u0 = 0. The same was done for the sets of λ2i, vi.

4. The source-detector distance is fixed D = 10.

Noise
level

Noise
std

MAE for
λ1iλ1iλ1i, λ2iλ2iλ2i

MAE for
uiuiui, vivivi

MAE for
plplpl

MAE for
C l

3C l
3C l
3

0% 0 3.86E−13 9.67E−14 6.50E−14 7.65E−14
10% 0.001 1.80E −2 3.79E −3 3.26E −3 4.42E −3
50% 0.005 1.02E −1 2.08E −2 1.66E −2 2.25E −2
100% 0.01 1.89E −1 3.76E −2 2.82E −2 4.37E −2
200% 0.02 3.87E −1 7.97E −2 6.47E −2 8.91E −2

Table 1: Mean absolute errors (MAE) for calibration parameters
and positions of the markers; all errors are in cm.

In the Table 1 we present the results of our calibration algo-
rithm from two oblique planes. To simulate detection errors,
we added to ql

i j realisations of the Gaussian noise N(0,σ),
σ = 0.01 ·nl, where nl is the noise level, 0.01 is the pixel size
of the initial image.

6 Conclusion

We have presented a hybrid approach to calibrate cone-beam
projections with sources on a plane parallel to the detector
with a marker set of partially known geometry and DCCs
generalized to compactly supported distributions. We used
DCCs on geometric projections of the spherical markers.
Thus, DCCs can be computed if projections of the marker
set are non-truncated (the rest of the object can be truncated).
This is the main advantage of the approach. One disadvantage
of our method is the placement of the calibration cage: it has
to be parallel to the source and detector planes. Moreover, we
see in the Table 1 that our algorithm is sensitive to detection
errors. This method requires further numerical simulations
and comparisons with other self-calibration methods.
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