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Abstract. We introduce a 2-player game played on an infinite grid,
initially empty, where each player in turn chooses a vertex and colours
it. The first player aims to create some pattern from a target set, while
the second player aims to prevent it.
We study the problem of deciding which player wins, and prove that
it is undecidable. We also consider a variant where the turn order is
not alternating but given by a balanced word, and we characterise the
decidable and undecidable cases.
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1 Introduction

We introduce the Domino game which is played on an grid Zd, initially empty.
Each player, in turn, picks a vertex for Zd and a colour from a finite alphabet.
The first player A wins if some pattern from a finite target set is created, and
the second player B wins if this never happens. In particular, B wins only if the
game lasts forever.

Combinatorial games played on grids are extremely common, from chess to
go, and this game is strongly related to tic-tac-toe, gomoku, and their variants.
Studying such games on infinite grids is also a common topic – chess on an
infinite board [3,5], to give just an exemple – and brings specific computational
and game-theoretical challenges, such as deciding whether a player has a strategy
to win in finitely many moves. Even for relatively simple cases, such as tic-tac-toe
/ gomoku where the target pattern consists of n crosses in a row, it is known that
A wins for n = 5 and loses for n = 8 [1,6] on an infinite grid, the intermediate
cases being well-known open questions.

This game is also motivated by symbolic dynamics: it is a two-player version
of the classical Domino problem that consists in deciding whether it is possible
to colour an infinite grid Zd while avoiding a given set of patterns3. This problem
3 The name "Domino game" has sometimes been used for the one-player version.
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is known to be undecidable [2], so the two-player version was expected to be as
well, but this game-theoretical perspective provides new questions to explore.

Several similar games have been studied, often under names such as "Domino
game" or "tiling game": [4] is a seminal paper for tiling games in finite grids (see
[11] for a survey), and [10] and follow-up papers for infinite grids. The main
specificity of our variant is that players are not forced to play at a specific
position at each turn.

In Section 3, we prove that the Domino game problem, which consists in
deciding whether A has a winning strategy, is recursively enumerable-complete
on infinite grids for d ≥ 2, and in particular undecidable. We also show that, if A
wins, then they have a strategy to win in bounded time (which is not the case in
infinite chess, for example). In Section 4, we prove that a bounded-time variant is
decidable. In Section 5, we consider a variant where the turn order is given by a
word on {A,B}. For a given game, the set of turn order words where A wins is a
subshift, similar to the winning shift in [10]. Our main result is a characterisation
of which balanced turn orders make the Domino game problem decidable, often
because one player always wins. We conclude with some additional remarks and
open questions. Our undecidability proofs proceed by reduction to the classical
Domino problem.

Those results shed new light on why it is so difficult to determine the winner
for some concrete games, such as 6-in-a-row and 7-in-a-row tic-tac-toe.

2 Preliminaries

2.1 Subshifts

Let A be a finite set of colours called alphabet. A configuration on Zd for d > 0

is an element x ∈ AZd

. A cell is an element i ∈ Zd and a tile is a coloured cell
t ∈ i × A. A pattern p = (S, f) is given by a subset S ⊆ Zd called the support,
also denoted supp p, and a colouring f ∈ AS ; equivalently, it is a disjoint set
of tiles. The pattern is finite if S is finite, and ∅ denotes the empty pattern.
A configuration x is also a pattern (Z2, x). Given a pattern p = (S, f) and
i ∈ S, denote pi = f(i). The fact that p′ is a subpattern of p is defined in a
straightforward way.

For a set of finite patterns F , we define

XF
∆
= {x ∈ AZd

| ∀p = (S, f) ∈ F ,∀i ∈ Zd, x|i+S ̸= p}

the set of configurations where no pattern from F appears. Such a set is called
a subshift ; if F is finite it is a subshift of finite type (SFT). Patterns which have
no subpattern in F are called admissible.

Let d > 0 and E ⊂ Zd. The Domino problem on E, domino(E), is:

Input: A SFT (A,F) on Zd.
Question: Is there an admissible pattern p with supp(p) = E? In other words,

is it possible to colour E without creating a pattern in F?
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2.2 Computability

A decision problem, such as the Domino problem above, is a function I →
{0, 1} where I (the input set) is countable. The arithmetic hierarchy for decision
problems is defined inductively as follows:

– Σ0
0 and Π0

0 are the decidable problems.
– R is in Π0

n+1 if there exists S ∈ Σ0
n such that R(x)⇔ ∀y S(x, y).

– R is in Σ0
n+1 if there exists S ∈ Π0

n such that R(x)⇔ ∃y S(x, y).

For example, Σ0
1 is the class of recursively enumerable problems and the Domino

problem on Zd, d > 1, is known to be Π0
1 -complete.

We use many-one reductions to compare the computational complexity of
decision problems. We denote Q ≤ P is there exists a computable function
f : N→ N such that Q(x)⇔ P (f(x)) for all inputs x.

2.3 The Domino game

Given d > 0, a subset E ⊆ Zd, an alphabet A and a finite set of finite patterns
F , we define the two-player Domino game Γ (A,F , E).

The two players are denoted A and B. The state of the game at each turn,
called position, is given by a pattern p with supp(p) ⊂ E together with a letter
ρ ∈ {A,B} indicating whose turn it is to play. In a given position α = (p, ρ),
the current player ρ must play a move m. A move is either a pass (denoted
m = pass) or a choice of a cell i ∈ E\ supp p and a colour a ∈ A (denoted
m = (i, a)). The new position is α′ = (p′, ρ) where:

– If m = pass : p′ = p.
– If m = (i, a) : supp p′ = supp p ∪ {i}, p′i = a and p′ = p on all other cells.
– A = B and B = A (alternate play).

We write p
m−→ p′ when a move m changes a pattern p to a pattern p′.

A game starts from the position α0 = (∅, A), that is, every cell is uncoloured
and A starts. A position (p, ρ) where some pattern from F appears in p is called
final : the game ends and A wins. B wins if a final position never occurs. Therefore
a game of length ℓ ∈ N ∪ {∞} is a sequence of patterns (pt)t≤ℓ such that:

– for all t < ℓ, there is a move mt such that pt
mt−−→ pt+1;

– if t < ℓ, pt is not final;
– if ℓ <∞, either pℓ is final (A wins) or supp(p) = E.

Notice that, if E is infinite, then B wins if and only if the game never ends.

2.4 Game theory

Define inductively a position (p, ρ) to be winning for A (with value v(p, ρ)) if:

– it is a final position (and v(p, ρ) = 0), or
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– ρ = A, and there is a move p
m−→ p′ with (p′, B) winning for A (and v(p,A) =

min v(p′, B) + 1, taken over all such moves), or
– ρ = B, and for all moves p

m−→ p′, (p′, A) is winning for A (and v(p,B) =
sup v(p′, A) + 1, taken over all possible moves).

A winning position for B is a position which is not winning for A. The game
is winning for ρ ∈ {A,B} if the initial position (∅, A) is winning for ρ. If the
game is winning for A, the value of the game is the value of the initial position
which may be infinite (as is the case with chess on an infinite grid [5,3]).

A strategy is a partial function4 S : AE →M, whereM is the set of moves,
such that S(p) is legal in p. We say that player ρ applies a strategy Sρ during

a game (pt)t≤ℓ if pt
Sρ(pt)−−−−→ pt+1 for every odd t (if ρ = A), resp. every even t

(if ρ = B). A strategy Sρ is a winning strategy for player ρ if ρ wins any game
where ρ applies Sρ. It is easy to see that ρ ∈ {A,B} has a winning strategy if
and only if the initial position is a winning position for ρ.

3 Complexity of the Domino game problem

Definition 1 (The Domino game problem). Given d > 0 and E ⊂ Zd, the
Domino game problem on E, denoted dgame(E), is defined as:

Input: A SFT (A,F) on Zd.
Question: Does A have a winning strategy for the game Γ (A,F , E)?

Theorem 1. The Domino game problem on Zd, d > 1, is Σ0
1 -complete, and in

particular undecidable.

We prove this result in two parts: Propositions 1 and 2.

3.1 Membership

Proposition 1. For any d > 0, dgame(Zd) is in Σ0
1 .

This follows from:

Lemma 1. Let (A,F) be a SFT on Zd. B wins the game Γ (A,F ,Zd) if and
only if B wins the game Γ (A,F , J−n, nK2) for all n ∈ N∗.

Proof. If B has a winning strategy S for Γ (A,F ,Zd), S is also winning for
Γ (A,F , J−n, nK2) (passing when S outputs a move outside of J−n, nKd). Con-
versely, if B wins Γ (A,F , J−n, nK2) which is a finite game, B has a strongly
winning strategy Sn, that is, applying the strategy wins the game from any
winning position (not only the starting position).

To define a strategy S∞ for Γ (A,F ,Zd) as a limit point of the sequence (Sn),
since the space of possible moves Z2 ×A is not compact, we consider pass as a
point at infinity (one-point compactification). Concretely, S∞ is a limit point if
on every pattern p:
4 A strategy does not need to be defined on unreachable positions, e.g. infinite patterns.
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– S∞(p) = (i, a) only if Sn(p) = (i, a) for infinitely many n;
– S∞(p) = pass only if Sn(p) = pass for infinitely many n, or if Sn(p) contain

moves arbitrarily far from 0.

Let (pt)t≤ℓ, ℓ <∞ be the beginning of a game where B applies S∞; we show
that pℓ is not final, i.e. A cannot win. This is a finite sequence, so A played only
in J−n, nKd for some n.

The starting position p0 is winning for B in Γ (A,F , J−n, nK2), so p1 is as
well. By definition of S∞, S∞(p1) agrees with some strategy Sk(p1) with k ≥ n
when moves outside of J−n, nKd are replaced by passes. Sk is strongly winning on
J−k, kKd, so its restriction on J−n, nKd is also strongly winning, and p2 = S∞(p1)
is winning for B. Iterating this argument, we find that pℓ is winning for B, so
pℓ is not final.

Corollary 1. If the game Γ (A,F ,Zd) is winning for A, then it has a finite
game value. In fact, A does not need to play outside J−n, nKd for some n.

3.2 Hardness

Proposition 2. For any d > 0, codomino(Zd) ≤ dgame(Zd). In particular,
dgame(Zd) is Σ0

1 -hard when d > 1.

Proof. For clarity, we do the proof in Z; the strategy on Zd is obtained by
applying this strategy independently on every line. We describe a computable
tranformation that to a SFT (A,F) on Z associates a SFT (A′,F ′) such that
XF = ∅ if and only if A has a winning strategy for the game Γ (A′,F ′,Z).

Define A′ = (A2 × {←,→}) ∪ {■} (assuming that ■ /∈ A). A colour c ∈
A′\{■} is given by c = (π1(c), π2(c), π3(c)).

Let us define a notion of interpretation. Given a pattern p on the alphabet
A′, each cell i is interpreted by a set of colours ιi(p) in A defined by:

– If i ∈ supp(p) and pi ̸= ■, then π1pi ∈ ιi(p).
– If i− 1 ∈ supp(p) and pi−1 ̸= ■ and π3pi−1 =→, then π2pi−1 ∈ ιi(p).
– If i+ 1 ∈ supp(p) and pi+1 ̸= ■ and π3pi+1 =←, then π2pi+1 ∈ ιi(p).

Every cell has 0 to 3 interpretations. See Figure 1 for an example.

→
.

←
.

→
.

pi pi+1

Fig. 1. ιi(p) = {■, ■} and ιi+1(p) = {■}.

By extension, for a pattern p′ and S ⊂ Zd, define its set of interpretations
ιS(p

′) as the set of patterns p ∈ AS such that p ∈ ιS(p
′)⇔ ∀i ∈ S, pi ∈ ιi(p

′).
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Assume without loss of generality that F ⊂ AJ−n,nK for some n ∈ N∗. Let
F ′ be the set of patterns p′ ∈ A′J−n−1,n+1K such that ιJ−n,nK(p

′) ⊂ F . We show
that XF = ∅ if and only if A has a winning strategy for Γ (A′,F ′,Z).

A cell i is said to be surrounded if i−1 and i+1 are coloured. Notice that, if a
surrounded cell has no interpretation (such as the center of ■■■), A eventually
wins by playing around it until some pattern p′ of length 2n + 3 is created;
ιJ−n,nK(p

′) = ∅, so p′ ∈ F ′.

Assume that XF = ∅. We describe a strategy for A that maintains the following
invariant: every uncoloured cell has no interpretation.

First note that if A plays (i,■) and i is surrounded, A wins by the remark
above. Otherwise, B must play a tile at i ± 1 that gives an interpretation to i:
if he does not and i + 1 is not already coloured, A plays (i + 1,■). Both i and
i + 1 have no interpretation, so A is able to create a surrounded cell with no
interpretation next move and eventually wins. The other case is symmetric.

Notice that the move of B does not provide an interpretation to any un-
coloured cell, so the invariant is maintained.

The strategy of A is to always play a ■ tile to the first free cell to the right
of 0 (unless B deviates as above). Let us prove that this strategy is winning for
A. By compacity, since XF = ∅, there exists an m ∈ N such that every pattern
in Am has a sub-pattern in F . As a consequence, for any pattern M ∈ A′m+2,
all interpretations in ι(M) contain a sub-pattern in F .

When A applies that strategy during m+2 turns, some pattern p′ fromA′m+2

is created. p′ has a unique interpretation p, and p contains some subpattern
q ∈ F . Denoting Ja− n, a+ nK = supp(q), the pattern q′ = p′|Ja−n−1,a+n+1K has
a unique interpretation which is inadmissible. Therefore q′ ∈ F ′ and A wins.

Assume that XF ̸= ∅ and let x ∈ XF . We define a strategy for B based on the
following invariant: before A plays, every maximal connected set of uncoloured
cells is either infinite or of even length. This invariant is true in the starting
position (∅, A).

When A plays at (i, a), he splits a maximal connected uncoloured set in
two parts: one is even (possibly empty or infinite), the other is odd (nonempty,
possibly infinite). If the odd set is to the right, B plays the colour (xi+1, xi,←)
on the cell i+ 1, restoring the invariant. The other case is symmetric.

After B plays, every tile pi admits the interpretation xi. Since x ∈ XF ,
this gives an admissible interpretation to all patterns. This strategy is therefore
winning for B.

4 Games with bounded time

In this section, we consider a variant where the number of turns is bounded.

Theorem 2. The following problem is decidable: given (A,F , E) and T ∈ N,
does A have a strategy to win the game Γ (A,F , E) in T moves or less?
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In other words, we decide whether the game has value at most T . This cannot
be proved by brute force since there are infinitely many moves in each position;
still, the same phenomenon occurs e.g. for chess on infinite grids [3] for similar
reasons. We will see that moves that are sufficiently far from other tiles are,
in some sense, equivalent. We assume that patterns in F are connected, but
the proof can be adapted to the general case. We use the distance d(i, j) =∑d

k=1 |ik − jk| for i, j ∈ Zd.
We define a variant Γω

T (A,F , E) whose positions are given by ((pk)k≤b, ρ)
where (pk) is a finite sequence of patterns called boards and ρ is the current
player. The initial position is (∅, A), where ∅ is the empty sequence. Possible
moves are the following, where t denotes the number of the current turn:

– passing;
– adding a tile (i, a) to one of the boards pk, if d(i, supp(pk)) ≤ 2T−t;
– adding a new board pb+1 = {(0, a)}.

A position is final (and A wins) if a pattern from F appears on any board. After
turn T , B wins if the position is not final.

Lemma 2. The Domino game problem for the game Γω
T is decidable.

Proof. The number of turns is bounded and there are finitely many possible
moves at each turn.

Lemma 3. There exists a transformation Θ from partial games for Γ (A,F ,Zd)
to partial games for Γω

T (A,F ,Zd) of the same length. Furthermore, A wins Θ(g)
if and only if A wins g.

Proof. Denote g = (pt)t≤T ; we construct Θ(g) = ((pkt )k≤bt)t≤T by induction on
t. We assign a vector zk ∈ Zd to each board pk that is opened during the game
Θ(g), and the following invariants will be preserved at each t:

1. supp(pt) = ∪k≤bt(zk + supp(pkt ))
2. pt|zk+supp(pk

t )
= pkt .

3. k ̸= k′ ⇒ d(zk + supp(pkt ), zk′ + supp(pk
′

t )) > 2T−t.

If t = 0, then g and Θ(g) are the starting positions and all invariants hold.

If 0 < t ≤ T , let g = g′
m−→ pt, and define inductively Θ(g) = Θ(g′)

m′

−−→
(pkt )k≤bt as follows.

– If m = pass, then m′ = pass.
– If m = (i, a) and d(i, supp(pt−1)) > 2T−t, then m′ opens a new board pbt+1

and plays (0, a). The new board is assigned the vector zbt+1
∆
= i.

– If m = (i, a) and d(i, supp(pt−1)) ≤ 2T−t, then there is a unique k such
that d(i, zk + supp(pkt−1)) ≤ 2T−t by the first and third invariants. Then m′

consists in playing (i− zk, a) on board pkt .
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It is clear that Invariants 1 and 2 are preserved in each case. Invariant 3 is
preserved for all boards k and k′:

– if m is on board k, then by construction d(i, zk′ + supp(pk
′

t−1)) ≥ d(zk +

supp(pkt−1), zk′ +supp(pk
′

t ))− d(i, zk +supp(pkt )) > 2T−(t−1)− 2T−t = 2T−t.
– if m is on a different board, supp(pkt ) = supp(pkt−1) and supp(pk

′

t ) = supp(pk
′

t−1).

Patterns in F are assumed to be connected, and the invariants ensure that
a connected pattern appears in pT if and only if it appears in some board in
(pkT )k≤bT . Lemma 3 is proved.

Lemmas 2 and 3 imply Theorem 2, because A has a strategy to win Γ (A,F , E)
in T turns or less if and only if he wins on Γω

T (A,F , E), which is decidable.
Indeed, Θ induces a transformation of strategies so that, if a strategy S is

winning for A on Γ (A,F , E) in T turns or less, then Θ(S) is winning for A on
Γω
T (A,F , E). Conversely, from a winning strategy S′ on Γω

T (A,F , E), it is easy
to build a strategy S that is winning for A on Γ (A,F , E) in T turns or less such
that Θ(S) = S′: S is entirely determined except for the choice of the zk when
a new board is opened, which can be given arbitrary values as long as they are
far away from existing tiles.

5 Non-alternating play

We consider a variant where players do not play in alternation but according to
a turn order word s ∈ {A,B}ω. The non-alternating Domino game Γs(A,F , E)
has the same rules as the standard Domino game Γ (A,F , E), except that si is
the current player at turn i. To keep track of the current player, positions are
now given as (p, s), where p is a pattern, s0 is the current player and every move
shifts s by one letter.

For d > 0 and s ∈ {A,B}ω, the corresponding non-alternating Domino game
problem nadgames(Zd) is defined as:

Input: A SFT (A,F) on Zd.
Question: Does A have a winning strategy for the game Γs(A,F ,Zd)?

We begin with a few quick remarks.

Proposition 3. Given (A,F , E), the set of words s such that B wins the game
Γs(A,F , E) is a subshift.

Proof. If A wins on Γs(A,F , E), then the game value is finite, for the same
reason as Corollary 1. Consequently, the winning strategy of A only depends on
some prefix sJ0,tK. Let W ⊆ {A,B}∗ be the set of such prefixes on which A wins.
Notice that if w ∈W , then vw ∈W for any v ∈ {A,B}∗: starting at turn |v|+1,
A applies their winning strategy on w far away from existing tiles. Therefore B
wins if, and only if, no pattern from W appears in s.

The following result can be proved by the same method as Theorem 2.
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Proposition 4. Given d > 0 and w ∈ {A,B}∗, nadgamewBω (Zd) is decidable.

Proof. If A wins, the game has a finite value, so the problem is equivalent to
finding T ∈ N such that A wins ΓsJ0,TKBω (A,F ,Zd).

Corollary 2. If s is computable, nadgames(Zd) is recursively enumerable.

Our main result covers the case where the turn order word is balanced.

Definition 2. A word s ∈ {A,B}ω is balanced if for all i, j ∈ Z and n ∈ N, we
have |sJi,i+nK|A − |sJj,j+nK|A ∈ {−1, 0, 1}.

Balanced words are either periodic or Sturmian. They were first studied in
[8]; see [7] (Chapter 2) for a modern exposition.

Proposition 5. Let s be a balanced word. The number fA(s)
∆
= lim

n→+∞
|s0,n|A
n+1 ∈

[0, 1] exists and is called the frequency of A in s.

These games correspond to Domino games with a budget : from a budget bi,
A plays ⌊bi⌋ moves, B plays one move, and iterate with bi+1 = bi−⌊bi⌋+ fA(s)

1−fA(s) .

Theorem 3. Let s be a balanced word.
If 0 < fA(s) ≤ 1

2 , then codomino(Zd) ≤ nadgames(Zd) (and the problem is
undecidable if d ≥ 2). Otherwise, nadgames(Zd) is decidable.

The rest of this section is devoted to proving this result case by case. For
simplicity, we assume that all patterns in F are of support J0, nK.

Case fA(s) = 0. There is at most one A in s, so this follows from Proposition 4.

Case fA(s) > 1
2
. s contains a pattern AA. Since s is balanced, there is a

bound k such that the distance between consecutive occurrences of AA is at
most 2k + 1.

For c ∈ N, fix vcn(k) = c(2k + 1) (k+1)n−1
k . We prove by induction on n that

for all w ∈ An and δ > 0, A has a strategy such that, after vcn(k) turns, there
are c occurrences of w that are δ-isolated, that is, at distance δ from each other
and all other tiles. The case n = 0 is trivial.

Take δ ∈ N, w ∈ An+1 and w′ ∈ An some subpattern of w. By induction
hypothesis, there is a strategy S so that, after vc(k+1)

n (k) turns, there are c(k+1)
occurrences of w′ that are 2δ + 3-isolated. Consider the following strategy:

1. during the first v
c(k+1)
n (k) turns, apply S.

2. during the next c(2k+1) turns, when A plays, A completes each occurrence
of w′ to an occurrence of w if possible, and passes otherwise.

Since s is balanced, B plays at most ck moves during the second phase.
Since B cannot play at distance ≤ δ of two occurrences in the same move,
there are at least c occurrences of w that are still δ-isolated. This strategy took
v
c(k+1)
n (k) + c(2k + 1) = vcn+1(k) turns. This ends the induction.

A wins as long as F ̸= ∅ (which is decidable) by applying this strategy on
w ∈ F , c = 1 and δ = 1.
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Case 1
2
≥ fA(s) > 1

3
. Since fA(s) ≤ 1

2 and s is balanced, s contains at most
one occurrence of the pattern AA. For clarity, we begin with the case where this
does not occur. For a SFT (A,F), use the same reduction as in Proposition 2
(which corresponds to the case s = (AB)ω, with fA(s) =

1
2 ) to obtain (A′,F ′).

We show that A wins on Γs(A′,F ′,Zd) if and only if XF = ∅, which implies
codomino(Zd) ≤ nadgames(Zd).

When XF ̸= ∅, B wins on Γs(A′,F ′,Zd) by applying the strategy outlined
in the proof of Proposition 2 during all turns for B that come right after a turn
for A, and passing on other turns.

When XF = ∅, we show that, for all m, A has a strategy to force the con-
figuration to contain a pattern of length m with a single interpretation. This
strategy wins for A for m large enough, just as in the proof of Proposition 2.

Since 1
2 ≥ fA(s) > 1

3 , BBB does not appear in s but ABA does, and the
distance between consecutive occurrences of ABA is at most 3k + 2 for some k.

By using the same technique as in the case fA(s) >
1
2 , A forces the existence

of c isolated areas where A played n moves and B played at most n moves in
time c(3k+ 2) (k+1)n−1

k . By only playing tiles ■, A forces this pattern to have a
unique interpretation, which ends the proof.

We left the case of turn order words with a single occurrence of AA, that is,
B{0,1}(AB)∗A(AB)ω. We only give a proof sketch as this case is more tedious.

Put A′ ∆
= A11 ∪ {■}. Given a pattern p on A′, the tile at cell i "votes" for

the interpretations of all tiles at cells Ji− 5, i+5K (a ■ tile does not vote) in the
sense that the interpretation of i is the set of all colours that appear at least 4
times in the multiset {πkpi+k,j | − 5 ≤ k ≤ 5, pi+k,j ̸= ■}. Again F ′ is the set
of patterns p′ such that ιJ5,n+4K ⊂ F .

If XF = ∅, A wins by playing only ■ and forcing a large pattern with a
unique interpretation. Conversely, if XF ̸= ∅, B chooses some x ∈ XF and is
able to force the interpretation xi at every cell i, which we checked by computer
enumeration of all local strategies for A.

Case 1
3
≥ fA(s) > 0. Since s is balanced and fA(s) ≤ 1

3 , there is no occurrence
of the pattern AA and at most one occurrence of ABA. As above, we begin by
the simpler case where there is no occurrence of ABA.

We reduce the codomino problem to the problem nadgames(Zd). Let (A,F)
be a SFT. We suppose without loss of generality that patterns in F are all of
length n. Let A′ = A9 ∪ {■}.

Again, we define another notion of interpretation. Given a pattern p on A′,
each cell i is interpreted by the majority colour in the multiset {πkpi+k,j | −4 ≤
k ≤ 4, pi+k,j ̸= ■}, with some arbitrary tiebreaker. A tile have no interpretation
if all tiles in the neighbourhood are ■. Let F ′ ⊆ A′J0,n+7K be the set of patterns
p′ such that ιJ4,n+3K ⊂ F .

If XF = ∅, there exists by compacity an m such that no pattern in Am is
admissible. Therefore all patterns in A′(m+8) have a subpattern in F ′. A wins
by playing in J0,m+ 8K until a pattern from F ′ is created; notice that A plays
infinitely often since fA(s) > 0.
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If XF ̸= ∅, take x ∈ XF . We describe a strategy for B to play a majority
of the tiles in Ji − 4, i + 4K for every cell i, so B wins by choosing tiles such
that each cell i has interpretation xi. To make this clearer, we mark by a and
b the cells where A and B play, respectively, and we show that B wins the
game Γs({a, b},F2,Zd) for F2 = {w ∈ {a, b}9 | |w|a ≥ 5}. B uses the following
strategy:

– if there is an uncoloured cell next to a tile a, B plays b there;
– if there is an uncoloured cell to the left of a pattern baba, B plays a b there;
– if there is an uncoloured cell to the right of a pattern b(ba)nb for n ∈ {3, 4},

B plays b there;
– otherwise, B passes.

We can prove that the following invariants hold before A plays:

1. Every a is in a pattern bab.
2. Every aba is in a pattern bbaba or b(ba)nbb for n ∈ {3, 4}.

After a move by A, B restores the invariants in two moves with this strategy.
The pattern aa cannot appear by the first invariant. The only other problematic
pattern from F2 is ababababa, which violates the second invariant.

We left the case of words with a single occurrence of ABA. The same re-
duction works, using a neighbourhood of size 15 and A′ = A15 ∪ {■} rather
than 9. B wins the game Γs({a, b},F3,Zd) for F3 = {w ∈ A15

3 | |w|A ≥ 8} us-
ing a similar strategy. We check with a computer enumeration that the pattern
abababababababa cannot occur.

6 Remarks and open questions

Complexity of winning strategies. By Corollary 1, given a game Γ (A,F , E)
winning for A, there is a computable winning strategy for A. However, the same
is not true for B.

Take a nonempty SFT whose configurations are all uncomputable [9]. Apply
the reduction for Proposition 2 to get a game Γ (A′,F ′,Z2) where B has a
winning strategy. A can apply the (computable) strategy provided in the same
proof so that B avoids losing only if arbitrarily large admissible patterns are
constructed; that is, we compute some x ∈ XF from any winning strategy of B.
Therefore A has a computable strategy which is not winning, but beats every
computable strategy for B.

Variant without pass and Zugzwang. We consider a variant Γ ∗(A,F , E)
where players are not allowed to pass. Proposition 2 holds in this variant as the
proof does not require any player to pass, so the problem remains undecidable
on Zd for d ≥ 2. However, the proof of Proposition 1 requires B to pass.

Question 1. Is the Domino game problem without passes Σ0
1 (recursively enu-

merable)?
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A does not benefit from passing, so any winning strategy for A in Γ (A,F , E)
also wins for Γ ∗(A,F , E). When A = {0, 1} and F = {000, 111}, the position
(∅, B) is Zugzwang : B loses in Γ ∗ and wins in Γ by passing. However, can the
winner depend on the variant in the starting position (∅, A)?

Question 2. Is there a SFT such that A wins in Γ ∗(A,F , E) and loses in Γ (A,F , E)?

Conjecture 1. Let An = {0, . . . , n} and Fn = {palindromes of length 2n+ 1} ∪
{iii | i ∈ An}. Γ ∗(An,Fn,Z) is winning for A. We conjecture that Γ (An,Fn,Z)
is winning for B for n large enough.

A has a simple winning strategy for all games Γ ∗(An,Fn,Z) that we out-
line below. A also has a winning strategy for Γ (A5,F5,Z) which is much more
complicated and we do not think such strategies exist for all n.

1. On the empty position, play (0, 0).
2. If B plays (k, a) for some k > 0 (the other case is symmetric),

(a) if k − 1 contains a tile, play (−k, a).
(b) otherwise, play (k + 1, a). Next turn, play either (k − 1, a) or (k + 2, a).

If case 2(b) never occurs, then B and A fill progressively J−n, nK with a palin-
drome. Otherwise, the first time 2(b) occurs, the cell k + 2 must be uncoloured
(otherwise 2(b) would have occured earlier), so A makes a pattern aaa.

Question 3. Is there a SFT (A,F) such that Γ ∗(A,F ,Z2) is winning for A with
an infinite game value?

For such an SFT, A would have a winning strategy, but for all t ∈ N, B would
have a strategy ST to not lose before time T . This cannot happen for Γ by
Corollary 1, so this would also answer Question 2. It may be also the case that
Γ ∗(A,F ,Zd) has some countable ordinal larger than ω as a game value.

Complexity for d = 1. Since domino(Z) is decidable, Proposition 2 says
nothing for this case. The variant studied in [10], where players must play at
prescribed positions, is decidable on Z. The fact that, in our variant, players are
allowed to play arbitrarily far from other tiles makes this case more challenging.

Conjecture 2. The Domino game problem is decidable on Z.

Complexity in bounded space. Consider the Domino game problem for a
finite subset whose size is given as input:

Input: An integer n given in unary and a SFT (A,F) on Zd.
Question: Does A have a winning strategy for the game Γ (A,F , J−n, nKd)?
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A brute-force algorithm solves this problem in polynomial space. The cor-
responding Domino problem on J−n, nKd is known to be NP -complete (see the
seed-free variant of the problem TILING(n, n) in [11]), so this problem can be
shown to be NP -hard by using the same reduction as for Proposition 2. We
conjecture that the Domino game problem is strictly harder than the Domino
problem in the finite case, similarly as for other variants [4]:

Conjecture 3. The finite Domino game problem is PSPACE-complete.

Domino games on groups. SFT can be defined on other finitely generated
groups, and we can play the Domino game there as well. Proposition 1 always
holds, and Proposition 2 holds if the group has an element with infinite order,
so that every cell belongs to a copy of Z.

Non-balanced turn order. This case seems more combinatorial and difficult.
Indeed, arbitrary infinite words do not have densities, but even when they do,
we do not believe it is sufficient to determine the decidability status. Consider:

s1
∆
=

ω∏
n=1

(A(AB)n)v
1
n(n) s2

∆
=

ω∏
n=1

A(AB)n,

where v1n(n) is defined in the proof of Theorem 3, case fA(s) > 1
2 . Our classi-

fication on balanced words suggests that nadgames1(Z2) and nadgames2(Z2)
should be undecidable (fA(s1) = fA(s2) = 1

2 ). However, if F ̸= ∅, A has a
winning strategy for Γs1(A,F ,Z2) but not always for Γs2(A,F ,Z2). Indeed:

Γs1 Take m ∈ F and n = |m|. A wins on (A(AB)n)v
1
n(n) by using the strategy

outlined in the proof of Theorem 3, case fA(s) > 1
2 . By Proposition 3, A

wins on s.
Γs2 For A = {0, 1, 2, 3, 4} and F = {1234}, there is a strategy for B which

preserves the following invariant: at the end of the sequence A(AB)n−1,
among all sets {i, i+1, i+2, i+3} that can still be coloured as 1234, at most
n− 1 of them contain one tile, and none of them has two.

It follows that nadgames1(Z2) is decidable, but nadgames2(Z2) seems to
behave as in the case fA = 1

2 .
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