

Genome-wide measurement of DNA replication fork directionality and quantification of DNA replication initiation and termination with Okazaki fragment sequencing

Xia Wu, Yaqun Liu, Yves D'aubenton-Carafa, Claude Thermes, Olivier Hyrien, Chun-Long Chen, Nataliya Petryk

▶ To cite this version:

Xia Wu, Yaqun Liu, Yves D'aubenton-Carafa, Claude Thermes, Olivier Hyrien, et al.. Genome-wide measurement of DNA replication fork directionality and quantification of DNA replication initiation and termination with Okazaki fragment sequencing. Nature Protocols, 2023, 18 (4), pp.1260-1295. 10.1038/s41596-022-00793-5. hal-04265334

HAL Id: hal-04265334 https://hal.science/hal-04265334v1

Submitted on 31 Oct 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

https://doi.org/10.1038/s41596-022-00793-5

Genome-wide measurement of DNA replication fork directionality and quantification of DNA replication initiation and termination with Okazaki fragment sequencing

Xia Wu^{®1,7}, Yaqun Liu^{®2,7}, Yves d'Aubenton-Carafa³, Claude Thermes^{®3}, Olivier Hyrien^{®4⊠}, Chun-Long Chen^{®2⊠} and Nataliya Petryk^{5,6⊠}

Studying the dynamics of genome replication in mammalian cells has been historically challenging. To reveal the location of replication initiation and termination in the human genome, we developed Okazaki fragment sequencing (OK-seq), a quantitative approach based on the isolation and strand-specific sequencing of Okazaki fragments, the lagging strand replication intermediates. OK-seq quantitates the proportion of leftward- and rightward-oriented forks at every genomic locus and reveals the location and efficiency of replication initiation and termination events. Here we provide the detailed experimental procedures for performing OK-seq in unperturbed cultured human cells and budding yeast and the bioinformatics pipelines for data processing and computation of replication fork directionality. Furthermore, we present the analytical approach based on a hidden Markov model, which allows automated detection of ascending, descending and flat replication fork directionality segments revealing the zones of replication initiation, termination and unidirectional fork movement across the entire genome. These tools are essential for the accurate interpretation of human and yeast replication programs. The experiments and the data processing can be accomplished within 6 d. Besides revealing the genome replication program in fine detail, OK-seq has been instrumental in numerous studies unravelling mechanisms of genome stability, epigenome maintenance and genome evolution.

Introduction

DNA fiber autoradiographic studies of mammalian cells showed long ago that eukaryotic DNA replication origins are spaced at 20–400 kb intervals and fire at different times in S phase¹. However, mapping origins in metazoan cells has been historically challenging, due to the lack of workable genetic assays and the difficulties in purifying sufficient amounts of intact DNA replication initiation intermediates (for reviews, see refs. ^{2–4}).

In the pre-genomic era, early studies of the highly amplified Chinese Hamster Ovary DHFR locus identified a few specific initiation sites downstream of the DHFR gene. However, more extensive studies demonstrated that replication could initiate at any of a large number of sites over a broad (55 kb) zone downstream of the gene, at a global rate lower than one initiation event per cell cycle, even in cells with only a single copy of the locus². Depending on the technique(s) used to purify initiation intermediates from cell populations, site-specific or dispersed initiation was also reported at a few other model loci³. Direct visualization of replication fork progression at the single DNA molecule level using DNA combing⁵ or single molecule analysis of replicated DNA⁶ revealed broad (3–100 kb) initiation zones (IZs), although site-specific origins were also reported⁷. It was unclear whether these variable results reflected the true genomic diversity of replication origins or different technical biases. The advent of DNA microarrays and high-throughput sequencing has allowed much broader and more systematic scrutiny of origins. Crucially, different pictures were obtained depending on the

¹Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. ²Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, Paris, France. ³Institute for Integrative Biology of the Cell (12BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France. ⁴Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, Inserm, Université PSL, Paris, France. ⁵Epigenetics & Cell Fate CNRS UMR7216 Université Paris-Cité, Paris, France. ⁶Present address: Institut Gustave Roussy, Université Paris-Saclay CNRS UMR9019, Genome Stability and Cancers, Villejuif, France. ⁷These authors contributed equally: Xia Wu; Yaqun Liu. ^{Se}e-mail: olivier.hyrien@bio.ens.psl.eu; chunlong.chen@curie.fr; nataliya.petryk@gustaveroussy.fr

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

technique used to purify initiation intermediates. Small nascent strands (SNS) synthesized at origins were purified by size selection, followed by λ -exonuclease digestion of the contaminating broken DNA strands lacking a protecting 5' RNA primer (λ -SNS)^{8,9}, or by briefly labeling newly synthesized DNA with 5-bromo-2'-deoxyuridine (BrdU) or digoxigenin-dUTP, followed by size selection and immunoprecipitation^{10–12}. Replication bubble-containing restriction fragments were purified by trapping in gelling agarose and electrophoretic elimination of bubble-devoid fragments^{13,14}. These independent approaches to purify initiation intermediates often gave poorly concordant origin locations. Furthermore, SNS tended to highlight site-specific origins whereas bubbles revealed broad IZs. Lastly, no information about fork progression and termination could be obtained by these approaches.

Replication timing (RT) and replication fork directionality (RFD) profiling are orthogonal approaches to study DNA replication. They do not depend on isolating initiation intermediates but on analysis of the replication behaviours of all investigated loci. In Repli-seq, after pulse labeling with BrdU for 30–120 min, S-phase cells are sorted by FACS into two to six fractions based on total DNA content. Next, BrdU-DNA is immunoprecipitated and hybridized to microarrays or sequenced, allowing to generate global replication timing profiles^{15,16}. In a recent improvement called high-resolution Repli-seq, up to 16 fractions of S-phase cells were used¹⁷. A second approach for measuring replication timing is based on assaying DNA copy number by sequencing sorted S and G1 cells, or even unsorted asynchronously proliferating cells¹⁸. Importantly, Repli-seq and copy number profile-based methods are highly consistent with each other and extremely reproducible between laboratories¹⁹. They identify peaks and valleys of early- and late-replicating DNA, respectively, but unlike in yeast, their spatial and temporal resolution (~2 h and ~100 kb, respectively) is insufficient to precisely map origins in mammals. In high-resolution Repli-seq, however, the resolution was improved to 50 kb, allowing the identification of some isolated IZs¹⁷.

Genome-wide RFD profiles were first obtained by analysis of nucleotide strand compositional asymmetries defined as the skew S = (G - C)/(G + C) + (T - A)/(T + A) (i.e., the relative excess of G over C and T over A on a single DNA strand), following the seminal observation that S sign abruptly changes at bacterial origins and termini²⁰. Analysis of mammalian genomes revealed ~1,000 abrupt S upshifts similar to those at bacterial origins, separated by megabase-sized segments of progressive S decrease, tracing N-shaped domains of S (refs. ^{21,22}). S accumulates during evolution due to mutational asymmetries between the leading and lagging strands²³. S amplitude and sign, therefore, reflect the average fork direction in the germline. Comparison with replication timing profiles of somatic cells corroborated that replication progresses from the borders to the centers of N domains, suggesting developmental and evolutionary conservation of these replication patterns^{24–26}. However, many more origins than S upshifts were found in mammalian genomes; the missing origins must therefore be flexible enough or located within regions frequently rearranged to leave no evolutionary stable imprint on S profiles. Furthermore, the resolution was limited to ~20 kb and analysis of gene-rich regions was complicated by the added effect of transcription-associated mutational asymmetries²⁷. These limitations called for a genome-wide, direct experimental determination of RFD at high resolution in mammalian genomes, which was first achieved by sequencing of purified Okazaki fragments²⁸.

Development and overview of OK-seq

At the replication fork, the leading strand is replicated continuously whereas the lagging strand is 81 synthesized discontinuously, in the form of ~200 nt RNA-primed fragments (Okazaki fragments) that 82 grow in the direction opposite to fork progression. Okazaki fragments are joined together one after 83 another to build an elongating lagging strand. Okazaki fragments mapping to the Watson and Crick 84 strands are generated by leftward- (L) and rightward- (R) moving forks, respectively (Fig. 1a). 85 Therefore, strand-oriented sequencing of Okazaki fragments isolated from a cell population reveals 86 the proportions of R and L forks at any locus, allowing quantitative analyses of replication fork 87 initiation, progression and termination. Isolation and sequencing of Okazaki fragments were first 88 achieved in ligase- and checkpoint-deficient mutants of Saccharomyces cerevisiae, which allowed 89 continued DNA synthesis despite the accumulation of unligated Okazaki fragments behind the 90 forks^{29,30}. We independently developed a procedure for isolating and sequencing Okazaki fragments 91 from mammalian cells that did not require the introduction of such mutations. In this method, 92 asynchronously growing cells are briefly pulsed with 5-ethynyl-deoxyuridine (EdU) to label newly 93 synthesized DNA, total DNA is denatured and fractionated by size, and the <200 nt EdU-labeled 94

PROTOCOL

Fig. 1 Detection of replication initiation and termination events by OK-seq. a, Okazaki fragment strandedness indicates the direction of ongoing replication forks. Watson strand Okazaki fragments (red) are generated from leftward-oriented forks. Crick strand Okazaki fragments (blue) are generated from rightward-oriented forks. RFD, the population-averaged fork directionality is computed as a proportion of reads from Crick and Watson strands. **b**, The RFD profile reflects the location, nature and efficiency of replication initiation. Site-specific initiation (left and center) results in an abrupt positive shift of RFD whereas IZ results in a progressive positive shift of RFD (right) (IZ). The amplitude of the RFD shift reflects the initiation efficiency. **c**, Negative shifts of RFD reflect the sites and zones of predominant fork merging (termination zones).

single DNA strands are click-labeled with biotin, captured on streptavidin beads and ligated to 95 sequencing adapters. This procedure was dubbed Okazaki fragment sequencing (OK-seq)²⁸ (Fig. 2). 96 The RFD (RFD = R - L) profiles thus obtained had a high resolution (~1 kb for human cells and 97 ~50 bp for yeast) and were informative. RFD at position x is mathematically linked to the mean 98 replication timing (MRT) and to the speed of forks (ν), such that dMRT/dx = RFD/ ν (refs. ^{25,26}). In 99 other words, steep MRT slopes correspond to unidirectionally replicating regions, flat MRT zones are 100 replicated equally in both directions, and intermediate MRT slopes are replicated by unequal pro-101 portions of R and L forks. Indeed, the human OK-seq RFD profiles were found to be extremely 102 consistent with RFD profiles derived from skew and MRT data, but had higher resolution. In yeast, 103 RFD upshifts, where fork direction switches from L to R, span 1 kb or less, identifying site-specific 104 origins (Figs. 1b and 3b) at locations highly consistent with previous origin mapping studies^{30,31}; 105 see below for details). However, a completely different RFD pattern is observed along the human 106 genome²⁸. Most loci show a mixture of R and L forks, and changes in RFD are progressive rather than 107 abrupt, spanning tens or hundreds of kb (Figs. 1b and 3a). These results imply an extensive cell-to-108 cell variability in replication patterns. An automated procedure based on a hidden Markov model 109 (HMM)^{28,32} was developed to objectively detect ascending, descending and flat RFD segments across 110 the entire genome. Extended flat segments with extreme RFD values (close to ± 1), which reveal 111

Fig. 2 | Experimental workflow and data processing pipelines of OK-seq. a, Illustration of the key experimental steps. Unreplicated DNA is in black and the replicated DNA strands are in red and in blue. Watson and Crick strand Okazaki fragments are shown as red and blue arrows; EdU (violet dots), biotin (red dots), streptavidin magnetic beads (black) and double-stranded adapters (grav and vellow), b, Flowchart representing the data analysis pipeline. OKseqHMM allows to split Watson and Crick strand reads and to compute the RFD values at defined bin sizes. Further, the automated detection of zones of replication initiation, termination and unidirectional fork movement is achieved by segmentation of the RFD profile into upward, downward and flat segments by HMM. The OKseqOEM tool computes OEM at different genomic scales. Average plot allows creating the heatmaps and linear plots to explore RFD patterns around genomic features of interest.

> unidirectionally replicating regions, only cover 5-10% of the genome. Segments of ascending RFD, 112 where fork direction progressively shifts from L to R (IZs), typically span 10-100 kb. They reveal 113 4,000–10,000 IZs that support a low and homogeneous rate of initiations over their entire length. The 114 amplitude of the shift reveals the global efficiency of each zone (i.e., the fraction of molecular copies 115 which support an initiation event), which ranges from <10% to >90%. Abrupt upshifts such as those 116 found at yeast origins are extremely rare. Descending RFD segments between consecutive IZs reveal 117 extended (10-1,000 kb) zones of replication termination (TZs), even broader than the IZs. Finally, 118 extended segments of null RFD reveal randomly replicating regions, mostly in late-replicating 119 heterochromatin²⁸. 120

> Importantly, when OK-seq was adapted to purify EdU-labeled Okazaki fragments from S. cere-121 visiae, very similar profiles to those reported for ligase- and checkpoint-deficient S. cerevisiae mutants 122 were obtained, consistent with the site-specific nature of yeast origins³¹. Therefore, the much broader 123 RFD upshifts observed in mammalian genomes reflect the different biology of yeast and mammalian 124

PROTOCO

Fig. 3 | Representative results for OK-seq. Okazaki fragment Watson stand (red) and Crick strand (blue) read counts, RFD computed in 1 kb windows and OEM at indicated scales. IZs (yellow) and termination zones (teal blue), flat segments of unidirectional replication (pink), detected by OKseqHMM. Panel **a** shows data for HeLa cells²⁸ and panel **b** shows data for yeast S. cerevisiae³¹

> cells and not an inability of OK-seq to reveal abrupt RFD upshifts, characteristic of site-specific origins (Figs. 1 and 3).

Given the cell-to-cell variability and dispersed nature of replication initiation and termination events, particularly in mammalian cells, caution is required to interpret changes in RFD along the profiles. Strictly speaking, the Δ RFD between two genomic positions is equal to twice the difference 129 between the number of initiation and termination events in the considered interval. For example, a 130 segment across which the RFD continuously decreases from +1.0 to -1.0 may simply be invaded by 131 outer forks that merge at variable positions, resulting in a single, delocalized termination event 132

126 127 128

NATURE PROTOCOLS

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

(Fig. 1c). However, a similar decreasing RFD segment may also arise if one internal, delocalized 133 initiation event emits two diverging forks that meet at random positions with the two outer invading 134 forks, resulting in two delocalized termination events. More generally, scenarios, where multiple 135 delocalized initiation events take place between outer invading forks, can result in a decreasing RFD 136 pattern. Similarly, an ascending RFD segment may in principle arise from multiple delocalized 137 initiation events resulting in the net emission of outward-oriented forks. However, ascending RFD 138 segments are markedly smaller than descending ones, so the scenario with at most one initiation 139 event and no termination event, as first demonstrated for the DHFR IZ², is by far the most likely 140 explanation. Single-molecule replication analyses of the budding yeast genome³¹ and two chicken 141 chromosome fragile sites³³ recently confirmed that a minor fraction of initiation and termination 142 events occur in negative and positive RFD slopes, respectively. In addition, recent high-throughput 143 single-molecule optical replication mapping (ORM) of early initiation events of human cells³⁴ also 144 confirmed that a minor fraction of early initiation events occurs in negative RFD slopes as well as 145 within late randomly replicating regions. Therefore, the positive or negative slope of an RFD segment 146 reveals whether initiation or termination predominates, but a mixture of both, on different molecules 147 or on the same molecule, cannot be excluded. Given that the number of ascending RFD segments in 148 mammalian cells (4,000–10,000) is lower than the estimated number of initiation events per S phase 149 (20,000-50,000) and that most IZs support at most one initiation event per cell cycle, the simplest 150 model to reconcile these numbers is that many initiation and termination events occur within TZs 151 and null RFD regions but in a manner that is too dispersed to leave an imprint on population RFD 152 profiles. Such dispersed events can be detected only by single-molecule techniques^{31,33,34} 153

Applications of OK-seq

OK-seq was used to obtain high-resolution, genome-wide RFD profiles of many types of cultured cancer and immortalized metazoan cells^{28,33,35–38} and even in primary cells^{35,39}. With the continuing development of novel origin mapping techniques, it should be noted that OK-seq IZs have been recently confirmed by EdU-seq HU³⁹, by high-resolution Repli-seq¹⁷ and by ORM³⁴.

The HMM automated analysis of the RFD slope presented here allowed mapping of IZs and TZs and measuring of their efficiencies²⁸. Alternatively, IZs and TZs can be automatically detected in OK-seq profiles by wavelet-transform analysis⁴⁰. IZs often abut active genes but are not transcribed, consistent with reports that licensed origins are eliminated from transcribed genes^{2,41-44}. Due to the different strengths of the 5' and 3' IZs, however, active genes tend to be replicated in the same direction as transcription, although the RFD tends to invert over long active genes such that their 3' end is often replicated in the direction opposite to transcription^{45,46}.

IZs remote from active genes fire later than gene-bordering IZs. Finally, the HMM model can also detect extended segments of null RFD corresponding to randomly replicating heterochromatin and extended segments of high RFD corresponding to unidirectionally replicating regions²⁸. A detailed analysis of RFD profile variability between multiple cell lines has been reported³⁵.

Besides replication program characterization of normal and cancer cells^{28,35,36,39} and of cells 170 subjected to replication stress³⁷, OK-seq has become very useful in a broad range of genomic studies. 171 First, the inability to initiate replication within transcribed genes has been proposed as a mechanism 172 for causing DNA breaks at common chromosomal fragile sites harboring long genes due to delayed 173 replication^{46–48}. The identification of unidirectionally replicated regions by OK-seq, combined with 174 MRT analysis, allowed to predict chromosomal fragile sites genome-wide⁴⁶. Second, the high prob-175 ability of initiating replication between active genes in early-replicating domains was confirmed by 176 EdU-seq HU³⁹. Third, OK-seq data have been used to compare the density of MCM proteins, which 177 mark potential replication origins, to the probability of initiation along the genome. The lack of 178 initiation within transcribed genes was explained by a depletion of MCM proteins within gene bodies. 179 However, ascending and descending RFD segments of similar replication timing and transcription 180 status did not show different MCM densities, suggesting that additional factors to MCM density act 181 to determine the probability of initiation along the genome⁴⁰. Fourth, OK-seq data revealed that 182 active genes tend to replicate codirectionally with transcription²⁸. Later studies employing OK-seq 183 data further revealed that head-on, but not codirectional, collisions between replication and tran-184 scription lead to the accumulation of potentially deleterious RNA-DNA hybrids (R-loops)⁴⁹, that 185 replication stress markers accumulate at transcription termination sites, where forks progress head-on 186 to transcription, but not at transcription start sites, where forks progress codirectionally with tran-187 scription⁴⁵ and that numerous factors, such as topoisomerase 1 (refs. ^{45,50}), the SAMHD1 188

200

201

202

223

224

225

226

227

228

229

230

231

232

233

ribonuclease⁵¹ and the SWI/SNF chromatin remodeling complex⁵² process R-loops and help resolve 189 transcription-replication conflicts. Fifth, mapping RFD by OK-seq has contributed to revealing that 190 leading and lagging strands are prone to different mutational rates across evolution and during cancer 191 transformation, and have helped to deconvolve the strand-asymmetrical production of mismatches 192 by leading- and lagging-strand DNA polymerases from their strand-asymmetrical removal by mis-193 match repair^{28,53-56}. OK-seq data have also contributed to reveal the strand-biased integration pre-194 ferences of LINE-1 retrotransposons^{57,58}. Sixth, combining OK-seq with strand-specific profiling of 195 replicated chromatin demonstrated that inheritance of parental modified histones proceeds by dis-196 tinct mechanisms at the leading and the lagging strands^{36,38}, and combining OK-seq with the analysis 197 of postreplicative DNA methylation maintenance revealed that nascent leading and lagging strands 198 acquire DNA methylation with slightly different kinetics⁵⁹. 199

In sum, OK-seq is a quantitative method to reveal the genome replication dynamics and the impact of DNA replication on genome and epigenome function and evolution.

Comparison with other methods

Other direct and indirect methods for measuring replication directionality have been developed by 203 different groups. As discussed above, nucleotide compositional skew analysis^{21,22} and spatial deri-204 vation of MRT profiles^{25,26} gave RFD profiles highly consistent with, but at lower resolution than 205 OK-seq²⁸. The enrichment of Okazaki fragments for direct sequencing was first achieved in S. 206 cerevisiae through ligase and checkpoint inactivation²⁹. While yeast RFD profiles obtained by this 207 method and by OK-seq are extremely similar³¹, the ligase-inactivation approach predominantly 208 enriches for mature Okazaki fragments while the EdU-mediated purification enriches for growing 209 Okazaki fragments, which is important to keep in mind when analysing Okazaki fragment processing 210 and nucleosome phasing. 211

Recent indirect methods to map RFD are based on the fact that the leading (Pol ε) and lagging 212 (Pols α and δ) strand replicative polymerases incorporate ribonucleotides into genomic DNA at 213 different rates. Ribonucleotide excision repair mutants are viable, and polymerase mutants that 214 incorporate ribonucleotides at higher rates than wild-type have been obtained. Four methods (dubbed 215 EmRiboSeq⁶⁰, Pu-Seq⁶¹, HydEn-Seq⁶² and Ribose-Seq⁶³) were reported to determine the genome-216 wide distribution of embedded ribonucleotides, and infer RFD, across the genome of ribonucleotide 217 excision repair and polymerase mutants in S. cerevisiae and S. pombe. They also identified regions in 218 which ribonucleotide incorporation deviates from lagging/leading strand expectations, such as at 219 replication origins, which were proposed to result from leading strand initiation by Pol δ followed by 220 an exchange with Pol ε^{61} , and at termini, suggesting a reciprocal switch from Pol ε to Pol δ^{64} . A recent 221 preprint reported the extension of Pu-seq to human cells⁶⁵. 222

A new method for strand-specific sequencing of SNS revealed that SNS are distributed with a sharp strand-specific asymmetry around the peak summits⁶⁶. This finding is surprising as, during origin firing, SNS are expected to grow in both directions by leading and lagging strand synthesis from two forks.

Novel methods for mapping DNA breaks were reported to indirectly reveal RFD, suggesting that the frequency and/or kinetics of nick repair is distinct between the leading and lagging strands. The GLOE-seq method, which maps single-strand breaks in a strand-specific manner, also provided high-resolution RFD profiles in mammalian and yeast cells. GLOE-seq uses a reduced input cell number compared with OK-seq, yet it requires ligase inactivation⁶⁷. A conceptually similar method that differs in library preparation strategy, TrAEL-seq, allows to map the 3' ends of double-strand breaks and provides RFD information⁶⁸.

Recently, the population-averaged RFD profiles were assembled from the replication profiles of long single DNA molecules obtained by DNA combing in chicken cells³³, ORM based on Bionano high-throughput imaging in human cells³⁴ and nanopore sequencing in yeast cells (FORK-seq)³¹, and all were in excellent agreement with OK-seq RFD profiles. In yeast cells, nanopore sequencing is now a faster and easier method than OK-seq to obtain RFD profiles, but in metazoan cells, the throughput of nanopore sequencing is still limiting.

Although the OK-seq approach is now well established, so far, there was no available bioinformatics protocol to fully explore the data. A recently published *Nature Protocols* paper⁶⁹ provided an approach to profile RFD around aggregate genomic features (such as transcription start sites), but no method to call IZ and TZ. Here we provide a complete protocol for using an R-based toolkit, OKseqHMM (https://github.com/CL-CHEN-Lab/OK-Seq), to process and analyse OK-seq data, 244

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

288

along the genomes of different species (human, mouse and yeast)³². Following the current protocol, we can (1) visualize high-resolution RFD profiles (1 kb for human/mouse cells and 50 bp for yeast) 246 and detect the IZs and TZs by using a four-state HMM, (2) calculate the origin efficiency metric (OEM)³⁰ and visualize RFD changes at different scales, and (3) visualize the RFD and OEM profiles 248 over genomic features of interest. This toolkit provides a useful resource for the broad scientific 249 community working on DNA replication, genomic instability and epigenetics. 250

Limitations

One limitation of OK-seq is that, as any cell population method, it averages cell-to-cell variability. As with other next-generation sequencing (NGS)-based replication origin mapping approaches, rare events cannot be directly seen. Although cell-to-cell variability remains visible since most loci show a mixture of R and L forks, dispersed initiation and termination events may go undetected even if they represent the majority of events. For example, long segments of null RFD can only be explained by random initiation and termination, but the density of these events cannot be measured. The change in RFD across a segment is equal to twice the difference between the number of initiation and termination events within the segment⁷⁰. Therefore, a minority of termination events may occur within ascending RFD segments. Similarly, a minority of initiation events may occur within descending RFD segments. Only single-molecule methods may directly reveal these events^{31,33,71}. The OK-seq results thus led us to propose that replication of mammalian genomes combines predominant initiation within 'master' IZs detected as ascending RFD segments, with more dispersed, less efficient initiation elsewhere.

OK-seq relies on metabolic labeling with nucleotide analogs (EdU) and we anticipate that it may be used in any proliferating cells or even model organisms able to efficiently uptake EdU. OK-seq requires a significant amount of starting material since the half-life of Okazaki fragments is very short. Furthermore, the library preparation step may benefit from future improvements, for example, inspired from singlestranded library preparation from ancient genomes⁷², although optimization will be required.

Expertise needed to implement OK-seq

OK-seq requires strong skills in molecular and cell biology. The protocols are accessible to most molecular biology laboratories and rely on common laboratory equipment. Bioinformatic analysis with prebuilt pipelines requires strong computational skills and experience with R.

Experimental design

Here we present some critical considerations and the key steps of the experimental and analytical workflows of OK-seq (Fig. 2).

Cell culture and starting cell number

Since we purify Okazaki fragments from unperturbed asynchronously growing cells, the amount of 278 fragments is expected to be tiny, around hundreds of picograms per million asynchronous cells. 279 Therefore, Okazaki fragment isolation requires a large number of input cells $(3-10 \times 10^8)$. This 280 requires setting up large-scale cell cultures, which needs to be carefully planned. Cell numbers may be 281 optimized depending on genome size and a fraction of cells in S phase. For example, a lympho-282 blastoid cell line of nearly normal karyotype with ~20% of cells in S phase (GM06990) required 283 $8-10 \times 10^8$ cells per biological replicate, whereas hyperploid cancer cell lines with 30–35% of cells in S 284 phase, such as HeLa or K562, required 3×10^8 cells per replicate. Cell cultures should be split 1 or 2 d 285 before the experiment, to ensure small colonies and uniform EdU labeling. For each experiment, two 286 independent biological replicates are desired. 287

EdU labeling and cell harvesting

In this step, newly synthesized DNA strands are briefly labeled with ethynyl-containing nucleotide 289 EdU^{73} . The Okazaki fragments are transient, with a half-life shorter than 10 s, and are immediately 290 ligated to the elongating nascent lagging strands^{74,75}. We set the EdU pulse for 2 min because it was 291 easy to keep consistent between experiments at a comfortable working pace. Yet, in theory, the pulse 292 could be shortened since thymidine analogs are almost instantly assimilated. In contrast, longer 293 pulses will increase the proportion of nascent labeled DNA of higher molecular weight that could 294 contaminate the Okazaki fragment preparation. In any case, the duration of the pulse needs to be 295 precisely controlled and stopped abruptly by adding ice-cold PBS. It is, therefore, preferable to treat a 296

small number of dishes (two or three) at the same time. Option A of this section explains how to label and harvest adherent cells (HeLa), and option B explains how to treat the cells growing in suspension (Epstein-Barr virus-immortalized lymphoblastoid GM06690). For labeling, we have also previously used a cytidine analog EdC^{76} , which in HeLa cells gave an identical result to EdU^{28} . However, the use of EdC has limitations, as EdC assimilation efficiency varies in different cell types and depends on cytidine deaminase activity^{77,78}.

Nucleic acid extraction

Nucleic acids are extracted with the proteinase K/phenol-chloroform method⁷⁹, which allows inexpensive milligram-scale preparation of pure high-molecular-weight genomic DNA. At this step, it is critical to avoid pipetting and vortexing to minimize DNA breakage and potential contamination of Okazaki fragment preparation with fragments of elongating nascent strands. After ethanol precipitation, we typically leave the DNA pellet in TE buffer for 3-7 d at 4 °C to allow it to dissolve without pipetting. We omit RNAse A digestion and use intracellular RNAs as molecular cargo during subsequent purification steps.

Size fractionation and recovery of small single-stranded fragments

To release Okazaki fragments, genomic DNA is heat denatured and size-fractionated on neutral 312 linear 5–30% sucrose gradients⁸⁰. The number of required gradients (typically six to ten) depends on 313 the starting cell number; we fractionate <500 μ g of genomic DNA per gradient (from 1 \times 10⁸ to 1.5 \times 314 10⁸ of starting cells). Sucrose gradients are unstable and should be handled with care during pre-315 paration. After overnight centrifugation, the small fragments (<250 nt) contained in the upper 316 fractions of gradients are collected, concentrated and purified. 317

Biotinylation by click reaction

For isolation of EdU-labeled replicated DNA, EdU is coupled with biotin-TEG-azide in a click reaction (copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry)⁸¹⁻⁸³. Afterward, 320 cellular RNAs, including the RNA portions of Okazaki fragments are hydrolyzed with alkali and 5' 321 extremities of DNA fragments are phosphorylated with T4 PNK. 322

Sequencing adapter ligation and streptavidin capture of biotinylated fragments

In OK-seq, it is critical to prepare strand-oriented libraries from single-stranded DNA with minimal 324 technical bias, to achieve uniform coverage of reads over the genome. In library preparation, double-325 stranded DNA ligation with T4 DNA ligase is used since it has lower sequence preference compared 326 to single-stranded DNA ligation⁸⁴. Two different double-stranded adapters with a single-stranded 327 random hexanucleotide overhang are hybridized to the ends of the purified fragments. To reduce self-328 complementary interactions of the 5' adapter (A1) and 3' adapter (A2), the standard Illumina 329 sequence of 5' adapter was shortened by five bases⁸⁵. To prevent self-ligation, adapter A2 contains 3'-330 terminal dideoxy-modifications (Table 1). After the ligation step, the library fragments containing 331 nascent biotinylated molecules are captured with streptavidin-coated magnetic beads. We perform an 332 additional step of hybridization and ligation of adapters on beads to increase the chance of successful recovery of Okazaki fragments into the library. Each step is followed by stringent high-salt washes to 334 remove the nonspecifically bound DNA molecules and unligated adapters. 335

Library amplification and sequencing

Libraries are amplified by PCR with indexing primers (Table 1). The template library fragments remain attached to the beads during PCR and may be recovered, washed and reused for an additional 338 round of amplification. In our hands, this additional amplification step resulted in a much higher yield of the final amplified library with nearly identical library complexity, without a strong increase 340 in PCR duplicates²⁸. PCR products containing >30 bp inserts are size-selected and eluted from 341 agarose gels. Illumina sequencing is performed following standard protocols but replacing the sequencing primer of the first read by the shortened primer⁸⁵.

Data processing

The raw sequencing data (fastq files) need to be preprocessed and aligned to a reference genome using 345 standard bioinformatics procedures. With this protocol, we could obtain high-quality RFD profiles 346 and call replication initiation and termination zones with as few as 50 millions of deduplicated 347 uniquely mapped reads in the human genome^{32,35}. In our toolkit, the first function (OKseqHMM) 348

PROTOCO

301 302

297

298

299

300

303 304

305

306

307 308 309

310

311

318 319

323

333

339

342 343

344

Table 1 Oligor	Table 1 Oligonucleotides used in the study			
Oligo name	Sequences (5' to 3')			
A1 _{top} (R1)	ACACTCTTTCCCTACACGACGCTCTTCC			
A1 _{bottom}	NNNNNGGAAGAGCGTCGTGTAGGGAAAGAGTGT			
A2 _{top}	[Phos]-AGATCGGAAGAGCACACGTCTGAACTCCAGTCA[ddC]			
A2 _{bottom}	TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNN[ddC]			
PEM_1.0	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCC			
TruSeq_Index 1	CAAGCAGAAGACGGCATACGAGATcgtgatGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT			
TruSeq_Index 2	CAAGCAGAAGACGGCATACGAGATacatcgGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT			
TruSeq_Index 3	CAAGCAGAAGACGGCATACGAGATgcctaaGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT			
TruSeq_Index 4	CAAGCAGAAGACGGCATACGAGATtggtcaGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT			
TruSeq_Index 5	CAAGCAGAAGACGGCATACGAGATcactgtGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT			
TruSeq _Index 6	CAAGCAGAAGACGGCATACGAGATattggcGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT			
TruSeq_Index 7	CAAGCAGAAGACGGCATACGAGATtcaagtGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT			
TruSeq_Index 8	CAAGCAGAAGACGGCATACGAGATctgatcGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT			

automatically detects whether the input-aligned sequencing data are single-end or paired-end reads, 349 then splits reads into Watson and Crick strands and calculates the RFD values within adjacent 350 windows (by default 1 kb) along the reference genome; $RFD = \frac{C-W}{C+W}$, where C and W correspond to 351 the number of reads mapped on the Crick and the Watson strands respectively. Next, an HMM 352 algorithm allows segmentation of the RFD profile into upward, downward and flat segments to 353 predict the location of initiation, termination and unidirectional fork movement zones respectively. 354 The second function of the tool kit, OKseqOEM, uses the Watson and Crick strand-aligned reads to compute the OEM at multiple scales defined by the user; $OEM = \frac{W_L}{W_L + C_L} - \frac{W_R}{W_R + C_R}$ (where W_L and W_R are the numbers of reads in the left and right quadrants of the Watson strand, while C_L and C_R refer 355 356 357 to the read numbers in the left and right quadrants of the Crick strand). Finally, the function 358 AveragePlot generates average metagene profiles and heatmaps to analyze the distribution of RFD 359 360 Q10 and OEM around genomic features of interest.

Materials

Biological materials	362
▲ CRITICAL For the yeast <i>S. cerevisiae</i> , please refer to Supplementary Protocol 1.	₃₆₃ Q11
Human cell lines	364
• HeLa (clone MRL2, a kind gift from Dr. Olivier Bensaude, IBENS)	365
• Immortalized lymphoblasts GM06990 (Coriell Institute, RRID: CVCL_9587) ! CAUTION The cell lines	366
used in your research should be checked regularly to ensure they are authentic and mycoplasma-free.	367 Q12
▲ CRITICAL Use the appropriate medium and supplements for the cell type of interest.	368
Reagents	369
Cell culture reagents for HeLa cells	370
• DMEM (Gibco, cat. no. 31966-021)	371
• Fetal bovine serum (FBS; Sigma-Aldrich, cat. no. F2442)	372
• Penicillin-streptomycin, 10,000 U/mL (Gibco, cat. no. 15140-122) !CAUTION Irritant upon contact	373
with skin. Wear gloves and a lab coat.	374
• Trypsin-EDTA, 0.25% (Gibco, cat. no. 25200-056)	375
Cell culture reagents for GM06990	376
• 1× PBS (Thermo Fisher, cat. no. 14200083)	377
• 2-Mercaptoethanol (Sigma, cat. no. M6250) ! CAUTION Toxic if swallowed or if inhaled. It may cause	378
skin irritation. Work under a chemical hood and wear gloves and a lab coat when handling.	379
• FBS (Sigma-Aldrich, cat. no. F2442)	380
• Penicillin-streptomycin, 10,000 U/mL (Gibco, cat. no. 15140-122) !CAUTION Irritant upon contact	381
with skin. Wear gloves and a lab coat.	382
• RPMI1640 (Thermo Fisher, cat. no. 61870127)	383

Common reagents

mental design')

disposable gloves.

• 5 M betaine (Sigma-Aldrich, cat. no. B0300-5VL)

• 50% PEG8000 (Jena Bioscience, cat. no. CSS-256)

irritant. Wear disposable gloves when handling.

wearing a lab coat and disposable gloves.

• AMPure beads (Beckman, cat. no. A63881)

-20 °C and avoid multiple freeze-thaw cycles.

• Biotin-TEG azide (Berry & Associates, cat. no. BT1085)

hood while wearing a lab coat and disposable gloves.

• 5-Ethynyl-deoxy-uridine (Jena Bioscience, cat. no. CLK-N001-25)

a chemical hood and wear gloves and a lab coat when handling.

• Agilent High Sensitivity DNA Kit (Agilent, cat. no. 5067-4626)

PROTOCO

384 385 • (Optional) 5-ethynyl-2'-deoxycytidine (EdC; Jena Bioscience, cat. no. CLK-N003-10) (see 'Experi-386 387 388 389 • Absolute ethanol (Sigma-Aldrich, cat. no. 1117272500) !CAUTION Ethanol is flammable and an 390 391 • Acetic acid (Sigma-Aldrich, cat. no. 33209) ! CAUTION Flammable, volatile and irritative. Work under 392 393 394 • Ammonium acetate (VWR, cat. no. 21200.297) !CAUTION Work under a chemical hood while 395 396 397 • ATP, 100 mM (Thermo Fisher, cat. no. R0441) ▲ CRITICAL Aliguot into 20–50 µL aliguots, store at 398 399 400 • Bromophenol blue (Sigma-Aldrich, cat. no. 32712-5G) !CAUTION Work wearing a lab coat and 401 402 • Chloroform (VWR, cat. no. BDH83627.400) ! CAUTION Toxic and corrosive. Work under a chemical 403 404 • Copper (II) sulfate (CuSO₄; Jena Bioscience, cat. no. CLK-MI004-50) **! CAUTION** Is irritant to the skin 405 406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

429

430

431

432

433

434

435

- and eyes and is toxic if swallowed. Work wearing a lab coat and disposable gloves. • Dimethyl sulfoxide (DMSO; Sigma-Aldrich, cat. no. D2650) !CAUTION DMSO is harmful to the skin and is combustible. Work wearing a lab coat and disposable gloves.
- Distilled deionized water (ddH₂O) or UltraPure DNase/RNase-Free Distilled Water (Thermo Fisher, cat. no. 10977035)
- dNTPs, 10 mM each (Thermo Fisher, cat. no. R0192) ▲ CRITICAL Prepare 5–10 µL aliquots, store at -20 °C and avoid freeze-thawing.
- Dynabeads MyOne streptavidin T1 (Thermo Fisher, cat. no. 65601)
- EB buffer (Qiagen, cat. no. 19086)
- EDTA Ultrapure, 0.5 M, pH 8.0 (Life Technologies, cat. no. 15575-038) !CAUTION Toxic if swallowed. Work wearing a lab coat and disposable gloves.
- Gel loading buffer II, 2×, for urea PAGE (Thermo Fisher, cat. no. AM8546G) !CAUTION Contains formamide and is toxic. Work under a chemical hood while wearing a lab coat and disposable gloves.
- Gel loading dye, purple, 6×, for PAGE and agarose gels (NEB, cat. no. B7024s)
- KAPA HiFi HotStart DNA Polymerase (Roche, cat. no. 07958889001)
- Low molecular weight DNA ladder (NEB, cat. no. N3233S)
- MinElute Gel extraction Kit (Qiagen, cat. no. 29604)
- MinElute PCR Purification Kit (Qiagen, cat. no. 28004)
- 1× PBS (Thermo Fisher, cat. no. 14200083)
- 10× PBS (Thermo Fisher, cat. no. 70011044)
- Phenol chloroform isoamyl alcohol, 25:25:1 (Thermo Fisher, cat. no. 15593-049) !CAUTION Toxic 426 and corrosive. Work under a chemical hood while wearing a lab coat and disposable gloves. 427 • Potassium acetate (CH₃COOK; Calbiochem, cat. no. 529553) 428
- Primers for sequencing adapters and library construction (common supplier, Table 1)
- Proteinase K (Roche, cat. no. 3115879001)
- Qubit dsDNA BR Assay Kit, 2-1,000 ng/µl (Thermo Fisher, cat. no. Q32853)
- Qubit ssDNA HS Assay Kit, 0.05-100 ng/µl (Thermo Fisher, cat. no. Q10212)
- Small fragments agarose (Eurogentec, cat. no. EP-0020-10)
- Sodium acetate (Merck, cat. no. 1.06268.0250).
- Sodium ascorbate (Jena Bioscience, cat. no. CLK-MI005-50)
- Sodium chloride (NaCl; Sigma-Aldrich, cat. no. \$7653)
- Sodium dodecyl sulfate (SDS) solution 20% (wt/vol) (Sigma-Aldrich, cat. no. 05030-500ML-F) 437 **!CAUTION** SDS is corrosive to the skin and a respiratory irritant. Work wearing a lab coat and 438 disposable gloves. Thoroughly wash with water skin or eyes exposed to this chemical. 439
- Sodium hydroxide (NaOH; Sigma-Aldrich, cat. no. 1.06469.1000) !CAUTION NaOH is corrosive. 440 Wear gloves and a lab coat when handling. 441

PROTOCOL

• Sucrose (Sigma-Aldrich, cat. no. 1.07687.5000)	442
• SYBR Gold Nucleic Acid Gel Stain, 10,000× concentrate in DMSO (Thermo Fisher, cat. no. S11494)	443
! CAUTION Is a potential cancer hazard. Work wearing a lab coat and disposable gloves.	444
• SYBR Green I Nucleic Acid Gel Stain 10,000× (Thermo Fisher, cat. no. S7585) !CAUTION Is a	445
potential cancer hazard. Work wearing a lab coat and disposable gloves	446
• T4 DNA ligase (Thermo Fisher, cat. no. EL0014) ▲ CRITICAL Aliquot the ligase buffer into 20–50 µL	447
aliquots. Store at -20 °C and avoid exceeding three freeze-thaw cycles.	448
• T4 polynucleotide kinase, T4 PNK (Thermo Fisher, cat. no. EK0031)	449
• TAE buffer (Thermo Fisher, cat. no. 15558026)	450
• Taq DNA polymerase (NEB, cat. no. M0273)	451
• TBE buffer (Thermo Fisher, cat. no. B52) ! CAUTION Harmful if swallowed or inhaled. Work wearing	452
a lab coat and disposable gloves.	453
• TBE gels, 10% (Thermo Fisher, cat. no. EC62752BOX) !CAUTION Acrylamide is a potential cancer	454
hazard. Work wearing a lab coat and disposable gloves.	455
• TBE-urea gels, 10% (Thermo Fisher, cat. no. EC68752BOX) !CAUTION Acrylamide is a potential	456
cancer hazard. Work wearing a lab coat and disposable gloves.	457
• Tris-HCl buffer, 1 M, pH 7.5 (Thermo Fisher Scientific, cat. no. 15567027)	458
• Tris-HCl buffer, 1 M, pH 8.0 (Thermo Fisher Scientific, cat. no. 15568025)	459
• Tris (3-hydroxypropyl-triazolyl methyl) amine (THPTA; Sigma-Aldrich, cat. no. 762342) ! CAUTION -	460
Skin and eye irritant. Work wearing a lab coat and disposable gloves.	461
• Triton X-100, molecular-biology grade (Sigma-Aldrich, cat. no. T8787-100ml) !CAUTION Skin and	462
eye irritant. Work wearing a lab coat and disposable gloves.	463
• Tween 20 (Sigma-Aldrich, cat. no. P1379)	464
• HiSeq 3000/4000 SBS Kit, 50 cycles (Illumina, cat. no. FC-410-1001)	465
Fallinment	166

- F	n	111	n	m	P	n	t
	ч	u	Р		-	••	•

Equipment	400
• 0.2 mL PCR tube (Eppendorf, cat. no. 0030124332)	467
• 1.5 mL Eppendorf tube (Eppendorf, cat. no. 33290)	468
• 2100 Bioanalyzer Instrument (Agilent, cat. no. G2939BA)	469
• Allegra 64R High-Speed Centrifuge (Beckman, 367588) with fixed angle rotor JLA-10.500 (Beckman,	470
cat. no. 369681)	471
• Amicon Ultra-15 centrifugal filter unit (Millipore, cat. no. UFC901024)	472
• ART wide bore filtered pipette tips, 1 mL (Thermo Fisher, cat. no. 2079G)	473
• Beckman Coulter 25 × 89 mm ultraclean tube (Beckman, cat. no. 344058)	474
• Benchtop centrifuge, refrigerated fixed angle rotor (Eppendorf, model no. 5424R)	475
• Benchtop centrifuge, swing bucket (Eppendorf, model no. 5910)	476
• Blades (Sigma-Aldrich, cat. no. Z290947)	477
• Cell culture incubator, 37 °C, 5% CO ₂	478
• Cell scrapers (Duscher, cat. no. 010155)	479
• Counting chambers: KOVA Glasstic Slide 10 with Counting Grids (KOVA International, cat. no.	480
87144) (alternatively a hemacytometer or cell counter can be used)	481
• Dark Reader Non-UV Transilluminator (Clare Chemical, cat. no. DR-22A)	482
• Falcon tissue culture dishes 150 mm (VWR, cat. no. 25383-103)	483
• Falcon Petri flasks 175 cm ² (Corning, cat. no. 353112)	484
• Falcon conical tubes 50 ml Cellstar (Greiner Bio-One, cat. no. 227-261)	485
• Falcon conical tubes 15 ml Cellstar (Greiner Bio-One, cat. no. 188-271)	486
• 500 mL centrifuge bottles (Beckman, cat. no. 361691)	487
• DiaMag Rotator (Diagenode, cat. no. B05000001)	488
• DNA LoBind Tubes, 1.5 mL (Eppendorf, cat. no. 022431021)	489
• DynaMag-2 Magnet (Thermo Fisher, cat. no. 12321D)	490
• Eppendorf ThermoMixer C (Eppendorf, cat. no. EP5382000023)	491
• Evaporator (Eppendorf, model no. 5301)	492
• Glass Pasteur pipettes (VWR, cat. no. 14673-043; clean and autoclaved)	493
• Gradient maker (Hoefer, cat. no. SG50) or Gradient Master (Biocomp, cat. no. 108)	494
• Electrophoresis system, vertical (Hoefer, model no. SE260-10A-1.5)	495
• Electrophoresis system, horizontal (Bio-Rad, model no. Sub-Cell Model 96)	496
• HiSeq 3000 System (Illumina, cat. no. SY-401-3001) or equivalent	497

• HiSeq 3000 System (Illumina, cat. no. SY-401-3001) or equivalent

PROTOCOL

• Integra Biosciences Pipetboy Accu 2 Pipette Controller (Fisher Scientific, cat. no. 10798252)	498
• Laminar flow hood (ESCO, Model No. LVG-4AG-F8)	499
• Safe Imager 2.0 Blue-Light Transilluminator (ThermoFisher, cat. no. G6600)	500
• Phase lock gel light 50 mL (5 Prime, cat. no. 713-2539) or MaXtract High-Density 50 mL (Qiagen, cat.	501
no. 129073) or equivalent	502
• 50 mL plastic pipettes (Corning, cat. no. 07-200-17)	503
• 25 mL plastic pipettes (Corning, cat. No. 07-200-15)	504
• 10 mL plastic pipettes (Corning, cat. no. 07-200-12)	505
• ProFlex PCR System (Thermo Fisher, cat. no. 4484073)	506
• Qubit 4 fluorometer (Thermo Fisher, cat. no. Q33238)	507
• Qubit assay tubes (Thermo Fisher, cat. no. Q32856)	508
• Sorenson low-binding aerosol barrier tips, MicroGuard G, maximum volume 10 µL (Sigma-Aldrich,	509
cat. no. 2/193/4)	510
• Sorenson low-binding aerosol barrier tips, MultiGuard, maximum volume 200 µL (Sigma-Aldrich, cat.	511 512
• Sorenson low-binding aerosol barrier tips. MultiGuard, maximum volume 20 µL (Sigma-Aldrich, cat.	513
no. Z719412)	514
• Sorenson low-binding aerosol barrier tips, MultiGuard, maximum volume 100 µL (Sigma-Aldrich, cat.	515
no. Z719463)	516
• Micro Bio-spin columns P30 (Bio-Rad, cat. no. 732-6250)	517
• Optima XE-100-IVD Ultracentrifuge (Beckman, part no. A99836) with swinging rotor SW28	518
(Beckman, part no. 369650) or SW32 (Beckman, part no. 342207)	519
• Vortex-Genie 2 (Scientific Industries, cat. no. SI-A256)	520
• 250 mL glass beaker, clean and autoclaved (Fisher Scientific, cat. no. FB101250)	521
• 600 mL glass beaker, clean and autoclaved (Fisher Scientific, cat. no. FB101600)	522
Software	523
 deepTools (https://deeptools.readthedocs.io/en/develop/index.html)⁸⁶ 	524
• IGV (https://software.broadinstitute.org/software/igv/) ⁸⁷	525
• OKseqHMM (https://github.com/CL-CHEN-Lab/OK-Seq)	526
• R (https://www.r-project.org/) ⁸⁸	527
• R package 'HMM' ⁸⁹	528
• R package 'Rsamtools' ⁹⁰	529
• R package 'GenomicAlignments'	530
• RStudio ⁹²	531
• wigToBigWig (http://hgdownload.soe.ucsc.edu/admin/exe/)	532
Reagent setup	533
▲ CRITICAL For the common stock solutions, please refer to standard molecular biology recipes ⁷⁹ and	534
http://cshprotocols.cshlp.org/site/recipes/nav_s.dtl.	535
DMEM-serum medium for Hela cells	536
mix 500 mL of DMEM medium with 50 mL of FBS and 5 mL of 100× penicilin–streptomycin. The	537
medium can be stored at 4°C for up to 2 weeks. Prewarm to 57°C in a water bath before use.	538
RPMI 1640-serum medium for GM06990 cells	539
Mix 500 mL of RPMI medium with 75 mL of FBS, 5 mL of 100× penicillin–streptomycin, and 3.5 μ L	540
of β -mercaptoethanol. The medium can be stored at 4 °C for up to 2 weeks. Prewarm to 37 °C in a	541
water bath before use.	542
100 mM biotin-TEG azide	543
Add 0.562 mL of DMSO to a vial containing 25 mg of biotin-TEG azide. Mix by vortexing until	544
dissolved. Quick spin and store at 4 °C for up to 1 year.	545
100 mM CuSO	
Add 6.27 mL of ddH Ω to a vial containing 100 mg of Ω (Ω). Aliquot 500 μ L par tube and store at	546
4 °C for up to 1 year	547
	240

549

550

554

555

556

594

595

596

626

627

628

629

631

632

636

637

1 M sodium ascorbate

Add 1.01 mL of ddH_2O to a vial containing 200 mg of sodium ascorbate. Mix by vortexing until dissolved. Quick spin and store at -20 °C for up to 1 year. \blacktriangle CRITICAL Discard the solution if it has turned yellow and prepare a fresh one. 553

20 mM EdU

Dissolve 25 mg in 4.956 mL of DMSO. Aliquot and store at -20 °C for up to 1 year.

2 × BWT

Prepare following the recipe listed below. Store at room temperature (RT, 22 °C) for up to 6 months.

Reagent	Final	Stock	Volume (mL) for 50 mL
Tris-HCl pH 7.5	10 mM	1 M	0.5
EDTA pH 8.0	1 mM	0.5 M	0.1
NaCl	2 M	5 M	20
Tween 20	0.1% (vol/vol)	10% (vol/vol)	0.5
ddH ₂ O			Up to 50 mL

1× BWT

Mix 25 mL of $2 \times$ BWT with 25 mL of ddH₂O. Store at RT for up to 6 months.

ΤE

Prepare following the recipe listed below. Store at RT for up to 6 months.

Reagent	Final	Stock	Volume (mL) for 50 mL
Tris-HCl pH 8.0	10 mM	1 M	0.5
EDTA pH 8.0 ddH ₂ O	1 mM	0.5 M	0.1 Up to 50 mL

500 mM THPTA

Add 460.3 μ L of ddH₂O to a vial containing 100 mg of THPTA. Mix by vortexing until dissolved. Quick spin and store at 4 °C for up to 1 year.

80% (vol/vol) ethanol

Mix 8 mL of absolute ethanol with 2 mL of ddH_2O . \blacktriangle CRITICAL Prepare freshly each time.

AMPure XP beads

Aliquot the bead solution in 2 ml tubes and store at 4 °C. ▲ CRITICAL The AMPure XP beads need to be equilibrated at RT (≥22 °C) for at least 30 min before use. 635

DNA lysis buffer

Prepare following the recipe listed below. Autoclave and store at RT for up to 1 year.

1 0				645
Reagent	Final	Stock	Volume (mL) for 500 mL	650
Tris-HCl pH 8.0	10 mM	1 M	5 mL	654
EDTA pH 8.0	25 mM	0.5 M	25 mL	658
NaCl	100 mM	5 M	10 mL	662
ddH ₂ O			Up to 500 mL	667

EB buffer

Mix 0.5 mL of 1 M Tris-HCl pH 8.0 with 49.5 mL of ddH_2O . EB buffer can be stored at RT for up to 671 6 months. 672

5% (wt/vol) TEN-sucrose buffer

Prepare following the recipe listed below. Autoclave and store at RT for up to 6 months.

Reagent	Final	Stock	Volume (mL) for 1 L
Tris-HCl pH 8.0	10 mM	1 M	10 mL
EDTA pH 8.0	1 mM	0.5 M	2 mL
NaCl	100 mM	5 M	20 mL
Sucrose	5% (wt/vol)	50% (wt/vol)	100 mL
ddH ₂ O			Up to 1,000 mL

30% (wt/vol) TEN-sucrose buffer

Prepare following the recipe. Add several crystals of bromophenol blue. Autoclave and store at RT for up to 6 months.

Reagent	Final	Stock	Volume (mL) for 1 L
Tris-HCl pH 8.0	10 mM	1 M	10 mL
EDTA pH 8.0	1 mM	0.5 M	2 mL
NaCl	100 mM	5 M	20 mL
Sucrose	30% (wt/vol)	50% (wt/vol)	600 mL
ddH ₂ O			Up to 1,000 mL

▲ CRITICAL The bromophenol blue is optional but is very useful for gradient visualization.

1× TE-Tween

Prepare following the recipe. Store at RT for up to 1 year.

Reagent	Final	Stock	Volume (mL) for 50 mL
Tris-HCl pH 8.5	10 mM	1 M	0.5
Tween 20	0.05% (vol/vol)	10% (vol/vol)	0.25
EDTA	1 mM	0.5 M	0.1
ddH ₂ O			Up to 50 mL

Oligonucleotides

Order the primers listed in Table 1 from a standard lab supplier. Adapters should contain the indicated modifications and be ordered in HPLC-grade, PCR primers can be ordered in a standard purification grade. Dissolve the oligonucleotides in EB buffer to the final concertation of 100 μ M. Prepare working solutions of PCR primers by further diluting with nuclease-free H₂O to 10 μ M. Store at -20 °C for up to 2 years. **CRITICAL** The index sequences in the TruSeq Primers (lowercased) can be substituted with any other index sequences. Dual indexing can be included in the primer sequences if desired.

Procedure

Cell culture, EdU labeling and cell harvesting

Timing 2-7 d for cell culture, 2 h for labeling and harvesting.

- 1 Follow option A for adherent cells (HeLa) and option B for suspension cells GM06990. ▲ CRITICAL For the yeast *S. cerevisiae*, please refer to Supplementary Protocol 1.
 - (A) Cell culture, EdU labeling and harvesting of adherent cells (HeLa)(i) Culture adherent HeLa cells in 15 cm dishes with 20 mL of DMEM-serum medium.

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

826

827

828

829

830

<u>8</u>32

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

(ii) Seed 4×10^6 cells per dish and grow them for ~48 h at 37 °C, 5% CO₂ to reach 70-80% confluency. Prepare enough plates to harvest at least 300 million cells per replicate (~20 of 150 mm plates for HeLa cells). 804

▲ **CRITICAL STEP** Respect the optimal cell culturing conditions to maintain exponential cell growth.

▲ **CRITICAL STEP** The cell number may need to be optimized depending on the fraction of cells undergoing S phase in the population and the cell ploidy. For the details, see 'Experimental design'.

(iii) Transfer 10 mL of the medium from the plate with a 10 mL pipette to a 50 mL tube and add 20 μ L of 20 mM EdU stock solution. Mix and pour the EdU-containing medium back to the plate. The final EdU concentration in the plate is 20 μ M. Return the plates to the incubator for exactly 2 min.

▲ **CRITICAL STEP** To keep the labeling time consistent between the plates, the EdUcontaining medium has to be added and removed exactly in the same order and at a fixed time interval (30 s to 1 min) between plates. For convenience, we do not recommend handling more than two or three plates at the same time.

- (iv) Remove the plates from the incubator. Immediately aspirate the medium and add 10 mL of ice-cold 1× PBS to stop the labeling. Store the plates at 4 °C until all plates are processed.
- (v) Scrape the plates with a clean cell scraper and transfer the cell suspension to 50 mL conical centrifuge tubes chilled on ice. Rinse each plate with 5–10 mL of ice-cold 1× PBS, and combine the suspension in the same 50 mL conical tubes. Centrifuge for 10 min at 4 °C, 300g and discard the supernatant.

PAUSE POINT Cell pellets can be snap-frozen in liquid nitrogen and stored at -80 °C for up to 1 year.

- (B) Cell culture, EdU labeling and harvesting of suspension cells (B-lymphoblasts GM06990) ▲ CRITICAL STEP Lymphoblastoid cells make clumpy colonies at the bottom of the flasks. To maintain healthy cultures, resuspend the clumpy colonies during passaging to achieve a singlecell suspension between the passages.
 - (i) Culture cells in 175 cm² flasks with 50 mL of RPMI1640-serum medium at 0.8–1 million cells per milliliter.
 - (ii) Seed 2-2.5 × 10⁷ cells in a 175 cm² flask with 100 mL of medium and incubate for ~48 h at 37 °C, 5% CO₂ to reach 0.8–1 million per milliliter. Keep the flasks upright during incubation. Prepare enough flasks to harvest at least 800 million cells per replicate (eight to ten flasks of 175 cm² for GM06990 cells).
 - (iii) Carefully remove 80 mL of medium from the top of the flask using a pipette without disturbing cell clumps formed at the bottom of the flask. Save 20 mL of the medium in a 50 mL conical tube.

▲ CRITICAL STEP This step allows reducing the volume of the labeling medium. Lymphoblastoid cells form clumpy colonies on the bottom of the flask and the excess medium can be removed by aspirating from the top. For cell types growing in spinning flasks, cells can be centrifuged before the labeling and resuspended in a smaller volume of prewarmed medium.

- (iv) Add 40 μ L of 20 mM EdU stock solution to the 20 mL of medium. Mix and pour the EdUcontaining medium back into the flask containing 20 mL of cell suspension. The final EdU concentration is 20 μ M. Incubate flasks in the cell culture incubator at 37 °C for exactly 2 min.
- (v) Immediately immerse the flasks in an ice-cold water bath and add 40 ml of ice-cold $1 \times PBS$ and 250 µL of 0.5 M EDTA and mix well by shaking by hand, to stop the labeling. Store the flasks in the ice-cold water bath until all flasks are processed.

▲ **CRITICAL STEP** Respect the exact labeling time and immediately cool the flasks to quickly terminate the labeling.

- (vi) Transfer cells to 50 mL Falcon tubes and centrifuge for 10 min at 4 °C, 300g. Discard the supernatant.
- (vii) Resuspend all the pellets with 20 mL ice-cold 1× PBS in one 50 mL Falcon tube. Centrifuge at 300g for 10 min at 4 °C. Discard supernatant.

PAUSE POINT Cell pellets can be snap-frozen in liquid nitrogen and stored at -80 °C for up to 1 year. 863

SCL

Extraction of genomic DNA O Timing 2 h with overnight incubation	864
▲ CRITICAL For S. cerevisiae cells, follow the 'Extraction of genomic DNA' section in Supplementary	865
Protocol 1.	866
2 Thaw the cell pellets from Step 1A(v) or 1B(vii) on ice.	867
3 Resuspend cells in Lysis buffer to 1 million cells per milliter. Distribute 10 mL aliquots of cell	868
suspension to 50 mL Falcon tubes. Place the tubes on a rack at RT.	869
CRITICAL STEP Gently resuspend cells by pipetting up and down with a 10 mL pipet to minimize	870
cell rupture and DNA shearing. A homogeneous cell suspension is necessary to ensure complete	871
lysis and optimal DNA extraction.	872
4 Add 250 µL of 20% (wt/vol) SDS to the cell suspension. The final SDS concentration is 0.5%	873
(wt/vol) Tightly close the cap and mix by gently inverting the tubes five to ten times	874
CPITICAL STEP. Keen the tubes at RT during SDS addition. Invert the tubes gently to minimize	074
DNA brooks	075
5 Add 50 uL of proteiness K 20 mg/mL to the cell lysets. The final concentration of proteiness K is	870
Add 50 µL of proteinase K 20 mg/mL to the centrysate. The mini concentration of proteinase K is	8//
0.1 mg/mL. Close the cap and mix by gently inverting the tube.	878
A CRITICAL SIEP At this stage, the lysates will appear very viscous.	879
6 Incubate the tubes at 42 °C for 4 h or overnight (16 h).	880
A CRITICAL STEP After cell lysis is complete, the solution should appear homogeneous and	881
transparent.	882
? IROUBLESHOOTING	883
7 In a chemical hood, add to each tube 10 mL of phenol–chloroform isoamyl alcohol mix solution	884
pre-equilibrated at RT. Tightly close the cap and mix gently by inverting the tube until obtaining an	885
entirely homogeneous mixture.	886
CRITICAL STEP Bring the phenol-chloroform isoamyl alcohol solution to RT in advance.	887
CRITICAL STEP Gently invert the tubes to allow the liquid to move between the cap and the	888
bottom. Due to the high viscosity of the DNA solution, this step may require up to 10 min.	889
!CAUTION Perform the DNA extraction inside a chemical hood. Wear a lab coat and disposable	890
gloves.	891
8 Centrifuge a 50 mL MaXtract High-Density tube at 1,500g at RT for 2 min, and pour the mixture	892
from Step 7 into the tube.	893
9 Centrifuge for 4 min at 1,500g at RT with a swing rotor. This will separate the aqueous solution	894
containing DNA while the organic phase will remain locked under the solid MaXtract gel phase.	895
▲ CRITICAL STEP Use of MaXtract High-Density tubes (or equivalent) is strongly recommended	896
for achieving high-quality DNA preparation.	897
10 In a chemical hood, add to each tube 10 mL of phenol-chloroform-isoamyl alcohol mix. Tightly	898
close the cap and mix gently by inverting the tube until full homogenization is achieved.	899
CRITICAL STEP Ensure that the organic fraction from Step 9 remains locked under the MaXtract	900
gel phase during this step.	901
11 Centrifuge for 4 min at 1 500g at RT. This will senarate the aqueous solution containing DNA while	902
the organic phenol phase will remain locked under the solid MaXtract gel phase	903
CRITICAL STEP If the aqueous phase after this step is not clear perform an additional phenol-	904
chloroform extraction by repeating Steps 7-9	005
12 In the chemical hood, add to each tube 10 mL of chloroform. Tightly close the cap and mix gently.	006
by inverting the tube until full homogenization is achieved. Centrifuge for 4 min at 1 500g at PT	900
by inverting the tube until full homogenization is achieved. Centilitige for 4 min at 1,500g at K1.	907
15 Transfer the upper aqueous phase containing genomic DIVA from an tubes by pouring into a clean	908
200 IIIL glass beaker.	909
A Add 2 mL of 7.5 M companying southt new sold 10 mL of busts and min contraction waste.	910
14 Add 2 mL of 7.5 M ammonium acetate per each 10 mL of lysate and mix gently with a Pasteur	911
pipelle.	912
15 Add 25 mL of absolute ethanol per each 10 mL of lysate and swirl gently with the same glass	913
Pasteur pipette until the DNA precipitates.	914
16 Spool the precipitated DNA fibers with the Pasteur pipette and carefully transfer all the DNA	915
precipitate into a clean 200 mL glass beaker containing 100 mL of 75% (vol/vol) of ethanol. Leave	916
the DNA precipitate immersed for \sim 3–5 min. Repeat this step twice.	917
▲ CRITICAL STEP It may be convenient to recover the DNA precipitate using two Pasteur pipettes	918
as chopsticks.	919
17 Place the DNA precipitate with the Pasteur pipettes inside a new 15 mL Falcon tube.	920

NATURE PROTOCOLS

18 Remove any residual ethanol with a pipette fitted with a 1 mL tip.

 Transfer the DNA precipitate to a new 15 mL tube and add 6 mL of TE.
 922

 ▲ CRITICAL STEP Ensure the entire DNA precipitate is dipped in TE buffer. Do not pipette.
 923

 Leave the tube open for 30 min at 37 °C in a dry oven to allow the evaporation of residual ethanol.
 924

Leave the tube open for 30 min at 37 °C in a dry oven to allow the evaporation of residual ethanol.
Remove the Pasteur pipette and close the cap.

■ **PAUSE POINT** Store the DNA solution at 4 °C for at least 3–7 d to allow the complete dissolution of the DNA precipitate. Dissolved DNA can be stored for up to 1 month at 4 °C.

Size fractionation of denatured genomic DNA on neutral sucrose gradients Timing 3.5 h of handling and 17 h of centrifugation

▲ **CRITICAL** As the centrifugation lasts 17 h, it is convenient to start this step in the late afternoon. 22 Incubate the DNA solution from Step 21 at 37 °C for 1 h to diminish the viscosity.

- 23 Measure the DNA concentration with Qubit ds DNA BR Kit according to the manufacturer's protocol. Typically, a yield of ~2-3 mg of total DNA is expected.
 ? TROUBLESHOOTING
- 24 Split the volume into six equal aliquots of ~1-1.2 mL into 1.5 mL tubes using a 1 mL wide-bore tip.
 ▲ CRITICAL STEP If the yield of total DNA is higher than 3 mg, it is recommended to scale up the number of aliquots and gradient centrifugations accordingly.
 ▲ CRITICAL STEP The DNA solution is viscous and hard to pipette at this stage. Pipette slowly with a 1 mL wide-bore tip to minimize DNA shearing.
- 25 Prepare six linear sucrose gradients in Beckman Coulter Ultra clear tubes 25 × 89 mm by mixing 18 mL of 5% (wt/vol) TEN-sucrose and 18 mL of 30% (wt/vol) TEN-sucrose using a gradient master and following the gradient manufacturer's instructions (program 'Long_Sucr_05-30% _wv_1St' for SW32 rotor).
- 26 Place each tube containing the gradients in a centrifuge tube adapter (Beckman Ultra-high-speed centrifuge, Rotor SW28 or SW32) and keep them undisturbed.
 ▲ CRITICAL STEP Due to the bromophenol blue in 30% TEN-sucrose, a gradient of blue shade from the bottom to the top should be visible in the tube. If the blue gradient is not visible, discard the tube. Both Hoefer SG50 Gradient Maker and Gradient Master (Rotor: SW28; Program: Long_Sucr_05-30%_wv_1St) result in similar and acceptable size fractionation. We prefer Gradient Master as up to six highly uniform gradients can be simultaneously prepared within 15 min. Handle the gradients with care.
- 27 Heat DNA aliquots from Step 24 for 5 min at 94 °C to denature double-stranded DNA and chill immediately in an ice-cold water bath for 10 min.
- 28 Very carefully layer one aliquot of DNA from Step 27 on the surface of one gradient from Step 26 using a wide-bore tip. Load all gradients the same way.
- Adjust the weight of the tubes (with adapter) at symmetric positions on the rotor (1 and 4; 2 and 5; 3 and 6). Balance the weight by adding the necessary amount of 5% TEN-sucrose to achieve the exact (≤0.1 g) weight balance. Pipette slowly drop by drop along the inner wall of the tube.
 ▲ CRITICAL STEP Any minor imbalance may lead to the tube or the rotor breaking.
 ▲ CRITICAL STEP Proceed immediately to the next step to avoid diffusion of the gradient.

Carefully close the caps, attach the adapters to the SW28/SW32 rotor and insert the rotor inside of the Beckman ultracentrifuge. Spin under vacuum for 17 h at 26,000 rpm at 20 °C, with acceleration and deceleration speed set on 'High'.

CRITICAL STEP Keep an eye on the centrifuge for ~15 min after the program starts to display that the desired centrifuge speed has been achieved.

- 31 The next day once the centrifugation is finished, switch off the vacuum and open the lid.
- 32 Carefully transfer the adapters with the tubes to the rack. Open the adapter lids carefully. ▲ **CRITICAL STEP** Before collecting fractions, check the tube integrity. If the tube was broken during centrifugation the gradient should be discarded.
- 33 Number 18 15 mL Falcon tubes from 1 to 18.
- 34 Start collecting 1 mL fractions with a 1 mL wide-bore tip from the top of each gradient by slowly aspirating from the surface of the gradient. Combine fractions of the same order from all six gradients into a single 15 mL tube.

▲ CRITICAL STEP To collect the fractions, place a wide-bore tip vertically against the gradient surface and pipette slowly. Only pipette up from the surface of the gradient and never pipette down. ▲ CRITICAL STEP Usually the top eight 1 mL fractions contain DNA fragments of the desired size

PROTO

NATURE PROTOCOLS

Box 1 | Quality control of DNA size fractionation - Timing 1 h

Procedure

- 1 Mix 10 µL of each gradient fraction from fraction 2 to 10 with 10 µL gel loading buffer II in a 1.5 mL tube.
- 2 Heat the tubes at 94 °C for 5 min.
- Chill the tubes on ice for 5 min. 3
- Set up a TBE-urea gel (10%, 1 mm, Thermo Fisher) on the vertical electrophoresis system with 1× TBE buffer. Flush carefully each well with 1× 4 TBF buffer
- Prewarm the gel by running empty for 10 min at 400 V. Quick spin the samples and load the entire volume to the wells. 5
- Run at 180 V until the bromophenol blue reaches the bottom of the gel (usually 30-40 min).
- Stain the gel by immersing in 20 mL of freshly prepared 1× Sybr Gold stain in TBE. Visualize at a UV transilluminator. 8
- 10 Determine the gradient fractions containing the fragments of interest (\leq 250 nt).
- CRITICAL STEP The DNA size is increasing in the fractions from top to bottom. The tRNA and 5S rRNA serves as internal size markers. Typically, fractions 1-8 are combined to collect Okazaki fragments.
- ▲ CRITICAL STEP The quality control of gradient fractionation may also be assessed using 3% (wt/vol) TBE-agarose gels.

[Box 1 Figure legend] Quality control for DNA size fractionation. Representative electrophoresis in 10% urea PAGE. 2-10, second to tenth 1 mL gradient fractions; LMW, NEB low-molecular-weight marker.

(≤250 nt), but we suggest collecting more fractions to check the size distribution and linearity of the gradient fractionation (Box 1).

CRITICAL STEP Observe the color of the fractions. As bromophenol blue distributes to the dense sucrose solution, the top fractions should be lighter, and the bottom fractions should appear progressively more colored.

CRITICAL STEP If wide-bore tips are not available, cut the tips of 1 mL tips with clean scissors. Make sure the cut end is smooth and flat.

PAUSE POINT The fractions can be stored at 4 °C for 1–3 d or at –20 °C for up to 6 months.

- Pool the fractions from Step 34 containing fragments smaller than 200-250 nt (typically the first one to eight fractions).
- 36 Concentrate the pooled fractions (48-80 mL) on a Millipore Amicon Ultra Centrifugal Filter, 15 mL, 10K. Add 15 ml of fractions to a centrifuging filter and centrifuge at 4,000g at RT for 10-15 min.
- Discard the flowthrough and load the next 15 ml of the sample to the filter. Repeat centrifugations 37 until the entire volume of fractions is concentrated to ~300 µL.

991

992

NATURE PROTOCOLS

38 Buffer exchange by adding 5 ml of ultrapure water and centrifuge at 4,000*g* for 10 min. Discard the flowthrough. Repeat two more times.

39 Transfer the concentrated solution from the filter (~300 μL) to a new 1.5 mL tube. Measure the volume carefully with the pipette tip and note it on the tube. **■ PAUSE POINT** The concentrated fractions can be stored at -20 °C for 2 weeks.

? TROUBLESHOOTING

Click biotinylation Timing 2 h

40 Add the following reagents in the specified order to the tubes containing purified gradient fractions 1002 from Step 39. 1004

Reagent	Volume (µL)	Final
DNA	≤375 μL	
10× Click-it buffer (or 10× PBS pH 7.4)	50 µL	1×
100 mM biotin-TEG-azide	5 μL	1 mM
500 mM THPTA	10 µL	10 mM
100 mM CuSO ₄	10 µL	2 mM
100 mM sodium ascorbate	50 µL	10 mM
ddH ₂ O	Up to 500 μL	

CRITICAL STEP If the volume of the concentrated fractions from Step 39 is >375 μ L, scale up the volumes of all reagents accordingly.

CRITICAL STEP The THPTA and $CuSO_4$ should be premixed and added in a single pipetting step.

41 Mix by pipetting with a low-binding tip, quick spin and incubate the click reaction for 45 min in a thermoblock at 25 °C without mixing.

▲ **CRITICAL STEP** Use freshly prepared sodium ascorbate.

- 42 Quick spin and split the reaction into two equal aliquots of 250 μ L in two 1.5 mL Eppendorf tubes. Add 750 μ L of absolute ethanol to each tube to precipitate DNA, close the caps and mix by inverting.
- 43 Chill the tubes at -80 °C for 15 min.
- 44 Spin for 30 min at ≥15,000g at 4 °C and decant the supernatant.
 ▲ CRITICAL STEP The pellet can appear blue or brownish, probably due to the copper residue, which does not interfere with the experiment.
- 45 Add 500 μL of 75% (vol/vol) ethanol to the pellet, spin for 5 min at full speed at 4 °C. Decant the supernatant.
- 46 Quick spin and carefully remove the residual ethanol with a 200 μL tip without disturbing the pellet. Keep the tube open and air dry briefly (usually 2–5 min).
- 47 Dissolve each pellet in 45 μl of nuclease-free water and combine into a single 1.5 mL tube.

RNA Hydrolysis Timing 20 min

- 48 Add 10 μL 2.5 M NaOH into the 90 μL DNA from Step 47 to a final concentration of 250 mM, mix by pipetting, quick spin and incubate for 30 min at 37 °C
- 49 Quick spin and add 10 μ L 2.5 M acetic acid to neutralize the pH and mix by pipetting.
- 50 Purify the DNA with 2× Bio-Rad Micro Biospin P-30 columns according to the manufacturer's 100 instructions.
- 51 Combine the purified flowthrough from the two columns in one 1.5 mL tube.
 - 2 Measure the volume of the solution using a 200 µL pipette tip. Place the tube on ice. ▲ CRITICAL STEP Usually 120–150 µL DNA solution is recovered after purification.

DNA phosphorylation and precipitation Timing 1.5 h

53 Set up the phosphorylation reaction by adding the following reagents to the tubes containing purified DNA from Step 52. Mix by pipetting with a low-binding tip, quick spin, and incubate at 37 °C for 20 min.
 1073

993

1001

1040

1041

Final

1×

1 mM

0.2 U/µL

1078
1083
1087
1090
1093
1096
1099 1103 1103 1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114

1115

1116

1117

1124

1169 1170

1171

1173

▲ CRITICAL STEP If the volume of the DNA from Step 52 is >117 µL, scale up the volumes of all reagents accordingly.

Volume (µL)

Up to 150 µL

<117 uL

15 µL

15 µL

3 µL

- ▲ CRITICAL STEP Use a fresh aliquot of ATP and avoid freezing-thawing cycles.
- Incubate the tubes for 10 min at 75 °C to inactivate the T4 PNK enzyme. 54
- 55 Quickly spin the tubes and chill on ice.

Reagent

10 mM ATP

10× T4 PNK buffer A

T4 PNK (10 U/μL)

DNA

ddH₂O

- 56 To precipitate DNA, add 15 μ L of 3 M sodium acetate (pH 5.2) and 415 μ L of -20 °C chilled 1 absolute ethanol, mix by inverting. Incubate for 15 min at -80 °C. 1
- 57 Centrifuge for 20 min at 4 °C \geq 17,000g. Discard the supernatant.
- 58 Wash the pellet by adding 500 µL of 75% (vol/vol) ethanol without disturbing the pellet.
- 59 Centrifuge for 2 min at 4 °C \geq 17,000g. Discard the supernatant.
- Quick spin and remove all residual ethanol without disturbing the pellet. 60
- 61 Leave the tube open for 5 min to allow the residual ethanol to evaporate.
- 62 Dissolve the pellet in 20 μL of nuclease-free water and transfer to a 200 μL PCR tube. Place the tube 1118 on ice. 1119

CRITICAL STEP If the solution appears very viscous, add 60 μ L of nuclease-free water to the DNA 1120 solution and transfer it to a 0.5 mL PCR tube. Scale up the volumes of all subsequent Steps 63-65 1121 accordingly. 1123

Hybridization and ligation of adapters, round 1 Timing 30 min to overnight

▲ CRITICAL For instructions on reannealing the adapters, see Box 2. Avoid the freeze-thaw cycles for 1125 the reannealed adapters. 1126

63 Set up the reaction by adding the following reagents sequentially to the tube containing the purified 1127 phosphorylated DNA from Step 62. Use adapters reannealed as outlined in Box 2. Mix by pipetting 1128 and perform a quick spin. 1129 1136

Volume (µL)
20 µL
2 μL
2 µL

64 Incubate in a thermocycler using the following program:

Step	Тетр	Time
Hybridization	65 °C	10 min 11
	16 °C	5 min 11

Take the tubes out of the thermocycler. Set up the ligation reaction by adding the following reagents to the tube:

Reagent	Volume (µL)	Final
10× T4 ligase buffer	4 μL	1×
50% PEG 8000 (wt/vol)	4 μL	5%
5 M betaine	4 μL	0.5 M
T4 DNA ligase 5 U/μL	4 µL	0.5 U/µl

Box 2 | Adapter preparation

Procedure

CRITICAL To obtain double-stranded adapters A1 and A2 with single-stranded random hexamer overhangs, anneal the Adapter oligonucleotide 'top' with the adapter oligonucleotide 'bottom'.

- 1 Dissolve the adapter oligomers (Table 1) to 100 μ M with nuclease-free H₂O and vortex to achieve complete dissolution.
- 2 Prepare two 200 μ L PCR tubes labeled A1 and A2 for adapter 1 and adapter 2, respectively.
- 3 Assemble each adapter reannealing reaction in a PCR tube on ice by adding in the following order:

Reagent	A1	A2	Volume (µL)
Top strand 100 μM Bottom strand 100 μM NaCl 5M Water	A1 _{top} (R1) A1 _{bottom}	A2 _{top} A2 _{bottom}	20 μL 20 μL 0.5 μL 9.5 μL

4 Mix well by pipetting, quick spin and place the hybridization reactions in a thermal cycler: cool down from 94 °C to 16 °C at 0.1 °C/s.

5 Chill on ice and aliquot the annealed adapters into 5 μL aliquots.
 PAUSE POINT Keep at -20 °C for up to 6 months. Avoid thaw-freezing to preserve the phosphorylation modifications on the oligomers.

		1200
	▲ CRITICAL STEP Thaw on ice a fresh aliquot of 10× T4 ligase buffer. Avoid freeze-thawing the	1201
	aliquots.	1202
66	Mix by pipetting, quick spin and incubate at 16 °C in a thermocycler for 16 h.	1203
	▲ CRITICAL STEP The incubation can last overnight.	1205
Str	entavidin canture of hiotinylated library fragments Timing 1 h	1206
67	Vortex gently the stock of MyOne T1 strentavidin Dynabeads	1200
68	Pipette 20 µL of the bead suspension into a 1.5 mL low-binding tube. Capture the beads by placing	1207
00	the tube on the magnet for 1 min.	1200
69	Remove and discard the supernatant with a 200 µL filter tip.	1210
70	Remove the tube from the magnet and wash the beads by adding 200 uL of 1× BWT buffer, and mix	1211
	by pipetting.	1212
71	Place the tube on the magnet to pellet the beads. Incubate for 1 min or until all the beads are	1213
	captured on the magnet.	1214
72	Carefully remove and discard the supernatant with a 200 µL filter tip without disturbing the beads.	1215
73	Repeat Steps 70-72 two more times.	1216
74	Remove the tube from the magnet and resuspend the beads in 40 μ L of 2× BWT buffer.	1217
75	Add 40 μ l of the bead suspension from Step 74 into the tube containing the ligation reaction from	1218
	Step 66. Mix by pipetting with a low-binding tip.	1219
76	Incubate the tube on a rotating platform at 20 rpm for 20 min at RT.	1220
	CRITICAL STEP Resuspend the beads by gently flicking the tube every 5 min. Because of the small	1221
	volume, sideways rotation of the tube is preferred rather than inversion.	1222
77	Spin the tube briefly in a microcentrifuge and place the tube on the magnet to capture the beads.	1223
	Transfer the supernatant to a new 1.5 mL tube labeled 'Supernatant 1' and keep it at -20 °C for the	1224
	library construction quality control (Box 3)	1225
78	Remove the tubes with the beads from the magnet, wash the beads by adding 200 μ L of 1× BWT.	1226
	Mix by pipetting with a 200 μ L low-binding filter tip and transfer to a new 1.5 mL low-binding tube.	1227
79	Place the tube on the magnet to capture the beads. Incubate until the liquid is clear. Remove and	1228
0.0	discard the supernatant with a 200 μ L tip.	1229
80	Repeat $1 \times BWT$ washing twice (Steps 78–79) without transferring the beads to a new tube.	1230
81	Remove the tube from the magnet and wash the beads by adding 200 μ I 1× 1E + 0.05% (vol/vol)	1231
01	I ween 20 and mix.	1232
02 02	Capture the beaus on the magnet and remove the supernatant with a 200 µL pipette tip.	1233
03 81	Remove the tube from the magnet and wash the heads by adding of 200 µL of ddU Ω . Mix by	1234
04	Nervous the true from the magnet and wash the beaus by adding of 200 μ L of ddfr ₂ O. Mix by	1235
	pipeunig.	1230

PROT

- Capture the beads on the magnet and remove the supernatant with a 200 µL tip.
- Resuspend the beads in 10 μ L ddH₂O and transfer the entire volume to a new 200 μ L PCR tube. Place on ice and proceed immediately to the next step.

Ligation of adapters, round 2 Timing 4 h to overnight

Set up the second-round ligation reaction by adding the following reagents:

Reagent	Volume (µL)	1345 1251
Library bead suspension (Step 86)	10 µL	1253
40 mM adapter A1 (Table 1 and Box 2)	1 μL	1255
40 mM adapter A2 (Table 1 and Box 2)	1 µL	1258
		1259

Mix by pipetting, quick spin and incubate in a thermocycler with the following program:

Step	Temperature	Time	1272
Hybridization	65 °C	10 min	1275
	16 °C	5 min	1279
			1280

Take the tubes out of the thermocycler. Add the following reagents to the tube:

			1289
Reagent	Volume (µL)	Final	1383 1293
10× T4 ligase buffer	2 μL	1×	1296
50% PEG 8000 (wt/vol)	2 μL	5%	1299
5 M betaine	2 μL	0.5 M	1302
T4 DNA ligase 5 U/μL	2 μL	0.5 U/µL	1306

Mix by pipetting and quick spin. Incubate at 16 °C in a thermocycler for ≥ 2 h or overnight.

Prepare 10 μ L of fresh ligation mix by mixing the following reagents in a tube on ice:

Reagent	Volume (µL)
ddH ₂ O	7 μL
10× T4 ligase buffer	1 μL
10 mM ATP	1 μL
T4 DNA ligase 5 U/μL	1 µL

- Take the tube (Step 90) from the thermocycler, quick spin and capture the beads with the magnet.
- Remove 10 µL of the supernatant without touching the bead pellet. Label the supernatant as Supernatant 2' and keep it at -20 °C for the quality control of library construction (Box 3).
- Take the tube off the magnet and add 10 μ L of the fresh ligation mix from Step 91. Mix by pipetting and quick spin. Incubate in the thermocycler for 1 h at 16 °C.
- Capture the beads on the magnet. Carefully remove the supernatant without disturbing the beads.
- Remove the tubes from the magnet, add wash by adding 200 μ L of 1× BWT. Mix thoroughly by pipetting with a 200 µL low-binding filter tip and transfer the bead suspension to a new 1.5 mL lowbinding tube.
- Capture the beads on the magnet. Remove and discard the supernatant with a 200 μ L tip.
- Repeat washing Steps 96–97 four more times without transferring the beads to a new tube.
- Remove the tube from the magnet and wash the beads by adding 200 μ L 1× TE + 0.05% (vol/vol) Tween 20 and mix by pipetting.
- 100 Capture the beads on the magnet and remove the supernatant with a 200 μ L tip. Repeat Step 99 once.

NATURE PROTOCOLS

- 101 Remove the tube from the magnet, and wash the beads with 200 μ L of nuclease-free water.
- 102 Capture the beads on the magnet and remove the supernatant with a 200 μ L tip.
- 103 Resuspend the beads in 20 μL of EB and proceed to the quality control of library construction 1349 (Box 3).

PAUSE POINT The bead-bound library can be stored at -20 °C for up to 6 months.

Okazaki fragment library amplification Timing 1.5 h

104 Prepare the library amplification reaction in a low-binding 200 µL PCR tube as follows:

Component	Stock	Volume	Final
PEM1 (Table 1)	10 µM	1 μL	0.2 μM
Truseq_Index with the desired barcode (Table 1)	10 µM	1 μL	0.2 μΜ
KAPA HiFi Fidelity Buffer	5 ×	10 µL	1×
Bead suspension (Step 103)		5-10 μL	
KAPA dNTP Mix	10 mM	1.5 μL	0.3 mM
Taq Kapa HiFi Hotstart Polymerase	1 U/μL	0.5 μL	0.1 U/μL
H ₂ O		Up to 50 µL	

Box 3 | Quality control of library construction

Procedure

1 Assemble four amplification reactions in 4 PCR tubes on ice as follows:

Component	Stock	Volume	Final
PEM1 (Table 1)	10 µM	0.2 µL	0.1 μΜ
Truseq_Index (Table 1)	10 µM	0.2 µL	0.1 μΜ
Taq DNA polymerase buffer	10×	2 µL	1×
Template		1 μL	
dNTP Mix	10 mM	0.4 µL	0.2 mM
Taq DNA polymerase	5 U/µL	0.2 µL	0.05 U/µL
H ₂ O		Up to 20 µL	

2 Add 1 μ L of the following templates to each PCR reaction tube: (1) 1 μ l of nuclease-free H₂O (negative control); (2) 1 μ L of the bead suspension with bound adapter-ligated library (Step 103); (3) 0.2 μ L of ligation supernatant 1 (Step 77) plus 0.8 μ L nuclease-free H₂O; (4) 1 μ L ligation supernatant 2 (Step 93).

3 Amplify using the following cycling protocol:

Step	Temp	Duration	Cycles
Initial denaturation	98 °C	45 s	1
Denaturation	98 °C	15 s	25-30
Annealing	60 °C	30 s	
Extension	72 °C	30 s	
Final extension	72 °C	1 min	1
Hold	4 °C	00	

4 Prepare a 10% TBE PAGE gel.

5 Mix 10 μ L of PCR product (Step 3) with 2 μ L of 6× purple loading dye, and load the mix into the gel. Run the gel until the bromophenol blue reaches the bottom of the gel.

6 Stain the gel by immersing in 20 mL of freshly prepared 1× SybrGold for 5 min.

7 Visualize at a UV transilluminator and compare the lanes.

▲ CRITICAL STEP In the PCR reaction run with the bead-bound adapter-ligated library (lane 2), the 128 bp band corresponds to the self-ligated adapter dimers and the smear above contains the library with inserts. As an indicator of a successful library, the dimer band has to be visible but less prominent than the library smear. In PCR reactions run with the supernatants 1 and 2, no or very little smear above 128 bp is observed (lanes 3 and 4).

NATURE PROTOCOLS | www.nature.com/nprot

1347

PROTOCOL

Box 3| (continued)

[Box 3 Figure legend] Quality control for the library construction. Representative electrophoresis in 10% TBE PAGE. 'LMW', NEB low molecular weight marker. 'H₂O', PCR reaction run without template (negative control). 'Beads', PCR reaction run with the bead-bound library. 'Sup 1' and 'Sup2', PCR reactions run with supernatants 1 and 2.

105 Incubate the PCR reaction in a thermocycler with the following program:

			1408	
Step	Temp	Duration	Cycles	1401
Initial denaturation	98 °C	45 s	1	1417
Denaturation	98 °C	15 s	10	1421
Annealing	60 °C	30 s		1425
Extension	72 °C	30 s		1429
Final extension	72 °C	1 min	1	1433
Hold	4 °C	00		1438 1439

▲ **CRITICAL STEP** To minimize the generation of PCR duplicates, we do not recommend to exceed 12 amplification cycles. Usually, a ten-cycle library amplification synthesizes enough material for QC and sequencing.

- 106 Take out the tubes from the thermocycler, quick spin and place on the magnet to collect the beads.
- 107 Transfer the supernatant containing the amplified library into a new 1.5 mL low-binding tube1445without disturbing the beads.1446
- 108 Wash the streptavidin beads with 200 μ L of EB + 0.05% (vol/vol) Tween 20 and resuspend in 20 μ L1447of EB. Store at -20 °C for up to 1 year. These beads can be reused for an additional round of library1448amplification.1449

▲ CRITICAL STEP Okazaki fragment library amplification (Steps 104–107) can be performed once 1450

1400 1402

1440

1441

1442

1443

	more using the same beads as a template. Typically, this second amplification increases the final library yield without affecting the library complexity.	1451
	PALISE POINT The heads can be stored at -20 °C for up to 1 year and the PCR product could be	1452
	stored at 4 °C for 72 h or at -20 °C for up to 6 months.	1455
F	Post-amplification clean-up 🔴 Timing 1 h	1456
1	09 Take the stock of AMPure XP beads out of the fridge 30 min in advance.	1457
1	10 Perform cleanup of the PCR product (Step 107) by adding 75 µL of AMPure XP bead suspension	1458
	(bead ratio 1.5×).	1459
1	11 Vortex thoroughly. Incubate at RT for 10 min to bind DNA to the beads.	1460
1	12 Capture the beads on the magnet. Carefully remove and discard the supernatant with a 200 μ L	1461
	filter tip.	1462
]	13 Keeping the tubes on the magnet, wash the beads by adding 200 μ L of freshly prepared 80%	1463
	(vol/vol) ethanol and incubate at R1 for at least 30 s. Carefully remove and discard the supernatant	1464
1	With a 200 μ L filter tip.	1465
1	A CPITICAL STEP. Do not overdry the beads as it will be difficult to alute the DNA	1466
1	CRITICAL STEP Do not overally the beads as it will be difficult to ende the DNA.	1467
1	16 Incubate the open tubes in a thermomixer for 5 min at 37 °C to elute DNA. Cover the thermomixer	1460
	with a clean lid or a piece of aluminum foil to protect the tubes from dust	1470
1	17 Capture the beads on the magnet.	1471
1	18 Transfer 10 uL of the supernatant (containing the library) to a 1.5 mL low-binding tube without	1472
	taking any beads.	1473
	PAUSE POINT The purified library can be stored at 4 °C overnight or -20 °C for up to 1 year.	1475
9	Size selection on agarose gel 🛑 Timing 2 h	1476
	CRITICAL Size selection is a critical step for optimal sequencing results.	1477
1	19 Prepare a 4% (wt/vol) agarose gel (15 cm × 15 cm) in 1× TAE buffer.	1478
	CRITICAL STEP The electrophoresis tank should be rinsed with deionized water in advance, and	1479
	fresh $1 \times$ TAE buffer should be used for electrophoresis.	1480
1	20 Mix 10 μ L eluted DNA (Step 118) with 2 μ L 6× purple gel loading dye and 1 μ L SYBR Green I	1481
	$(100\times)$, and load the mix into the gel. Load a DNA ladder ranging between 20 bp and 1,000 bp (e.g.,	1482
	NEB low molecular weight ladder, or equivalent).	1483
1	21 Run the gel until bromophenol blue reaches ³ / ₄ of the gel length.	1484
]	22 Visualize the gel on a non-UV light transilluminator and cut the bands between 150 bp and 400 bp	1485
	with a clean blade.	1486
	• CRITICAL STEP Do not use UV light as it damages DNA and may impact the sequencing quality.	1487
	A CRITICAL STEP A gap should be visible between the primer dimer (128 bp) and the shortest library fragments (125, 140 hp). Do not touch the 128 hp hand with the blade so it may load to	1488
	ildrary fragments (135-140 bp). Do not fouch the 128 bp band with the blade as it may lead to	1489
1	23 Purify the DNA from the gel with the Oiggen Minelute Gel extraction kit according to the	1490
1	manufacturer's manual but dissolve the agarose block at RT with gentle shaking instead of heating	1491
	at 50 °C. Elute DNA with 10 µJ. EB buffer and proceed to the quality control of the library size	1493
	selection (Box 4)	1494
	PAUSE POINT The size-selected and purified library could be stored at -20 °C for up to 1 year.	1496
		1497
	? TROUBLESHOOTING	1498
9	Sequencing 🛑 Timing variable	1499
1	24 Prepare the library pool and dilution according to Illumina protocols.	1500
	25 Perform Illumina sequencing. During the run setup, load the custom sequencing primer for read 1	1501
	(Primer A1 _{top} (R1), Table 1).	1502
	▲ CRITICAL STEP Since the A1 adapter is shortened by 5 bp, the custom read 1 sequencing primer	1503
	$(A1_{top}$ (R1), Table 1) must be loaded to the flowcell (following standard Illumina recommenda-	1504
	tions). Indicate to the sequencer program that a custom primer for read 1 was used before starting	1505
	to run the program.	1507

Box 4 | Quality control of the library size selection

Procedure

- 1 Measure the library concentration of the size-selected and purified libraries using a Qubit dsDNA HS Kit following the manufacturer's recommendations. Typically, the library concertation ranges between 0.4 ng/µL and 2 ng/µL.
- 2 Check the fragment size distribution by running 1 µL on an Agilent Bioanalyzer High Sensitivity DNA Chip. A typical size-selected library ranges between 145 bp and 250 bp.

? TROUBLESHOOTING

[Box 4 Figure legend] Quality control for library size selection. Representative profile of OK-seq libraries obtained by Agilent Bioanalyzer. An average library size of 145-250 bp is expected.

Data processing Timing variable

▲ **CRITICAL** Data processing typically takes ~12 h (tested with a classical desktop configuration: 3.5 GHz Intel Core i5 CPU with four cores for iMAC and 16 Go DDR4 2400 MHZ speed memory; for a dataset of ~300 million total reads).

126 Prepare/download the aligned sequencing data in .bam files.

▲ **CRITICAL STEP** The current protocol starts from the aligned data, which can be processed following standard procedures and are frequently provided by sequencing facilities. Briefly, the raw sequencing data (.fastq) need to be preprocessed into genome-aligned files with the following major steps: fastqc⁹³ for checking the quality of reads, cutadapt⁹⁴/Trim Galore⁹⁵/Trimmomatic⁹⁶ for trimming adapters and low-quality reads, BWA⁹⁷/Bowtie2⁹⁸ for read alignment, then Picard^{99,100} for marking and deleting the duplicates, samtools⁹⁰ for sorting and indexing the aligned files.

127 Download the OKseqHMM toolkit from https://github.com/CL-CHEN-Lab/OK-Seq containing the necessary R scripts for the following analysis steps.

▲ **CRITICAL STEP** The toolkit will count read matrices from aligned .bam files and calculate and output RFD and OEM profiles for a primary visualization (e.g., with IGV).

The R package OkseqHMM generates replication IZs (upward transitions of RFD profile), TZs (downward transitions of RFD profile), and two intermediate states (flat RFD profiles of low and high values, regions of leftward and rightward unidirectional replication, respectively) (MEP_L_fig3Fig. 3). 1526

Generating the output files for visualization of RFD profile and IZ/TZ calling by a fourstate HMM

▲ CRITICAL Besides the aligned .bam files with the corresponding indexed file (.bai), the OKseqHMM 1529 function requires the annotation coordinates for all chromosomes and their lengths. 1530

 128 Download the annotation file containing all chromosomes and their lengths from the UCSC server
 1531

 (e.g., hg19.chr.sizes.txt for human hg19): ftp://hgdownload.cse.ucsc.edu/goldenPath/.
 1533

 The program identifies automatically if the input.bam file is paired-end or single-end sequencing
 1534

data, then splits the mapped reads within the bar file into Watson (W) and Crick (C) strands, respectively, and calculates the read coverage and RFD along the reference genome. The bin size (with bin size parameter) can be defined by users depending on the data coverage and genome

1508 1509 1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1523

1527

1541

1542 1544

1573

1574

1575 1576

1577

1586

1587

1592

size, and based on our experience, a 1 kb bin size is recommended for OK-seq data of human/ mouse cells, and 50 bp bin size is recommended for budding yeast data. After downloading the R scripts from GitHub, run this command line in the terminal:

source("PATH/OKseqHMM.R")

▲ CRITICAL STEP Before executing this function, make sure that R and the necessary R packages HMM, Rsamtools and Genomic Alignments are installed in your R working environment. Then you can either use the command line as a source ('PATH/OKSeqHMM.R'), in which the PATH provides the PATH in your computer to the downloaded R package 'OKseqHMM.R', or you can load the package directly into RStudio.

▲ **CRITICAL STEP** Make sure that the chromosome coordinates within the .bam file match the ones provided in the chromosome annotation file. Different sources of the reference genome having slightly different chromosome names may cause an error (e.g., sometimes '1-22, MT' is used in the .bam file while in the annotation file it is 'chr1-chr22, chrM' if you use the UCSC annotation). 1550

- 129 Run OKseqHMM with the following options: 1554 • For the human data: 1555 1556 OKseqHMM(bamfile = "my.bam", thresh = 10, chrsizes = "hg19.chr.si-1557 ze.txt", binSize=1000, winS=15, fileOut = "my hmm")) 1558 1559 • For the yeast data: 1560 1561 OKseqHMM(bamfile = "my.bam", thresh = 1, chrsizes = " sacCer3.chrom.-1562 sizes.txt", binSize=50, winS=15, fileOut = "my hmm")) 1563 1564 'My.bam' is your input path of the .bam file; 1567 'thresh' is the threshold to eliminate the low read coverage bins; 1568 'chrsizes' is your path linked with the annotation file containing the length of each 1569 chromosome; 1570 'binSize' is the adjacent bin size in bp to calculate the read coverage and RFD; 1571 'winS' is the smoothing window size for the HMM calling; 1572
 - 'fileOut' is the path of storage as well as the prefix of the name for your output files. ▲ CRITICAL STEP Bin size may need to be adjusted relative to the genome size of the analyzed species and the coverages of your data.

? TROUBLESHOOTING

- After executing the OKseqHMM shown above, this function will automatically generate a series of output files including:
 - Two .bam files, and their corresponding index .bai files, for the reads generated from the Watson and Crick strands, respectively 1581
 - Two bedgraph files containing RFD values in the adjacent windows defined by 'binSize' and 1582 in the smoothed windows defined by 'winS' (' RFD.bedgraph') 1583
 - log file ('_log.txt') that records all of the parameters you use and also the default setting 1584 information 1585
 - HMM result in a text file ('_HMM.txt') that records all of the global optimal hidden states calculated by the HMM Viterbi algorithm
 - HMM result in a text file ('_HMMpropa.txt') that records all of the previous state positions that caused the maximum local probability of a state by the HMM posterior algorithm 1589
 - Eight text files recording the genomic positions (.bed) and the corresponding probabilities (.txt) 1590 for the final identified optimal states: 1591
 - '_HMMsegments_IZ.bed/txt' contains the replication IZ calling result
 - '_HMMsegments_TZ.bed/txt' contains the replication termination zone calling result 1593
 - '_HMMsegments_highFlatZone.bed/txt' and '_HMMsegments_LowFlatZo- 1594 ne.bed/txt' are the results of two intermediate flat states (constant RFD transition regions)
 ▲ CRITICAL STEP RFD bedgraph files can be visualized directly in a genomic browser, e.g., IGV⁸⁷. 1596
 ▲ CRITICAL STEP You can also further transform the bedgraphs into bigwig by the UCSC tool 1597

PROTOCOL

Box 5 | Additional parameters of the OKseqHMM toolkit

To run the OKseqHMM function, one needs to predefine the initial start probabilities for the four states of HMM ('D' is downward state, 'L' is low-flat state, 'H' is high-flat state, 'U' is upward state) and fivr observation symbols ('sym'), including the transition matrix ('ptrans') containing the probabilities that the four states transit from one to another (e.g., the first four values in 'ptrans' matrix show that the transition probabilities of state 'U' turn into states 'U', 'H', 'L' and 'D', respectively), the emission probability matrix ('pern') between states and observations (the emission probability represents how likely RFD transitions between adjacent windows of a given region are to match a hidden state, e.g., the first five values in 'pern' matrix show that the emission probabilities of state 'D' are emitted from the five observations, respectively), and the five quantiles of RFD ('quant') as follows:

st=c("D", "L", "H", "U"), sym=c("V", "W", "X", "Y", "Z"), pstart=rep(1/4, 4),

pem=t(matrix(c(0.383886256, 0.255924171, 0.170616114, 0.113744076, 0.075829384,

.10,.20,.40,.20,.10,

.10,.20,.40,.20,.10,

0.022222222, 0.033333333, 0.0666666667, 0.211111111, 0.6666666667),

ncol=4)),

ptrans=t(matrix(c(0.9999,0.000020,0,0.000080,

0,0.999,0,0.001,

0.001,0,0.999,0,

0.000080,0,0.000020,0.9999),

ncol=4)).

quant=c(-1, -0.0082058939609862, -0.00141890249101162, 0.00103088286465956, 0.00800467305420799, 1))

These parameters and probabilities were validated with the OK-seq dataset of HeLa cells²⁸. We have successfully applied them to different human, mouse and yeast OK-seq datasets, which all got satisfactory results with these presetting parameters. Therefore, the users should be able to use these default settings without modifications. However, users could modify these parameters to optimize the results for their dataset, for example, on the basis of the distribution of deltaRFD per chromosome of the corresponding dataset, one can adjust the 'quant' parameter as well as 'ptrans' and 'pem'.

bedGraphToBigWig (http://hgdownload.soe.ucsc.edu/admin/exe/) to get binary compressed files by	1598
running the command line in Shen.	1600
bedGraphToBigWig in.bedGraph chrom.sizes out.bw	1601
	1603
▲ CRITICAL STEP Additional details about the parameters are listed in Box 5.	1604
Generating the output files for visualization of the RFD transitions	1605
▲ CRITICAL The OKseqOEM function allows investigating the local origin efficiency metrics (i.e.,	1606
deltaRFD) ³⁰ at multiple scales.	1607
131 Download the R script 'OKseqOEM.R' from GitHub and run this command line in the terminal:	1608
	1609
source("PATH/OKseqOEM.R")	1610
	1612
Use the following options:	1613
• For the human data:	1614
	1615
OKseqOEM(bamInF="path_to_bam_Forward_strand", bamInR="path_to_bam_	1616
Reverse_strand", chrsizes="hg19.chr.size.txt", fileOut="path/name_	1617
of_my_OEM",binSize=1000, binList=c(1,10,20,50,100,250,500,1000))	1618
	1619
• For the yeast data:	1620
	1621
OKseqOEM(bamInF="path_to_bam_Forward_strand", bamInR="path_to_bam_	1622
Reverse_strand", chrsizes="sacCer3.chrom.sizes.txt", fileOut="path/	1623
name_of_my_OEM",	1624
	1625

PROTOCOL

'bamInF' and 'bamInR' are the paths to the two .bam files of the Watson and Crick strand, respectively, generated by the OKseqHMM function.

'chrsizes' is the path to the annotation coordinates containing chromosome length information 'fileOut' is the path of storage as well as the prefix of the name given by the user (e.g., ~/Desktop/Okseq_results/my_HMM) for the output file.

'binsize' is to define the adjacent bin size in bp to calculate the read coverage for RFD
'binList' is to define a series of window sizes as different visualization scales that you would like
to output the OEM results (e.g., for yeast, you will get OEM files at 50 bp, 1 kb, 5 kb, 10 kb, 15 kb,
20 kb and 25 kb window scales if you set binsize = 50 and binList = c(1, 20, 100, 200, 300, 400,
500) by multiplying 'binsize' with each element defined in 'binList'). **? TROUBLESHOOTING**

132 After executing OKseqOEM above, this function will automatically generate a series of wiggle (.wig) files calculated by using different sliding window sizes defined by 'binList'. Convert wiggle to bigwig format by executing in Shell the UCSC tool wigToBigWig (http://hgdownload.soe.ucsc. edu/admin/exe/) for the visualization:

wigToBigWig in.wig chrom.sizes out.bw

Generating the output files for the average profile and heatmap of RFD values around genomic regions of interest

▲ CRITICAL The shell-based script 'average_profile_heatmap.sh' contains the template on how to use deepTools⁸⁶ to generate the average profile and heatmap around genomic regions of interest (e.g., around transcription start sites, transcription termination sites, within annotated genes, around IZs) by using the 'computeMatrix' and 'plotProfile'/'plotHeatmap' functions. You can use these functions to define the upstream and downstream borders and the gene body length and to modify the other parameters indicated in the script.

▲ CRITICAL Since deepTools is a Python-based tool, the Python environment should be activated from Steps 133 to 136. Make sure that you have already installed deepTools⁸⁶ and the Python environment before running the scripts. The latest Python version could cause some incompatibility issues with deepTools⁸⁶. Refer to the deepTools manual for different functions and set up the parameters (https://deeptools.readthedocs.io/en/develop/index.html).

133 Compute the matrix of values by running the following command line in the terminal or in built-in terminal of RStudio:

computeMatrix scale-regions --regionsFileName {your bed file of inter-ested regions/genes PATH e.g.codingGenes.bed} --beforeRegionStar-tLength {e.g. 10000} --afterRegionStartLength {e.g. --regionBodyLength {e.g. 20000} --binSize {e.g. 1000} --scoreFileName {RFD bigwig file PATH e.g. Hela.EdC.Combined OkaSeq.RFD.bw} --outFile-Name {e.g. "OUTPUT.matrix"} --missingDataAsZero -skipZeros

134 For obtaining the average RFD profile, run the 'plotProfile' function as follows:

```
plotProfile --matrixFile {e.g. "OUTPUT.matrix"} --outFileName {e.g. 1672
"RFD_averageProfile.stGeneLength.png"} --averageType mean --startLa-
bel {e.g. start/TSS} --endLabel {e.g. end/TTS} --plotType se 1674
```

135 For OEM, proceed following this example, which generates the matrix containing OEM values around the center of the IZ with the extension of ±100 kb in different scales (from 1 kb to 1 Mb).
 The bigwig files used in the example can be found at https://github.com/CL-CHEN-Lab/OK-Seq/
 tree/master/published_results/HeLa:

computeMatrix reference-point --regionsFileName {your IZ bed file PATH 1681
e.g. HeLa_hmm_HMMsegments_IZ.bed} --beforeRegionStartLength {e.g. 1682
100000} --afterRegionStartLength {e.g. 100000} --binSize {e.g. 1000} 1683

--scoreFileName {series of OEM bigwig file PATH 1684 e.a. 20130819CGM130726.Hela OEM 10kb.bw 20130819CGM130726.He-1685 la OEM 20kb.bw 20130819CGM130726.Hela OEM 50kb.bw 1686 20130819CGM130726.Hela OEM 100kb.bw 20130819CGM130726.He-1687 la OEM 250kb.bw 20130819CGM130726.Hela OEM 500kb.bw 1688 20130819CGM130726.Hela OEM 1Mb.bw} --outFileName {e.g. "OUTPUT.ma-1689 trix"} --missingDataAsZero --skipZeros --referencePoint center 1690 1691 1692 136 To plot the RFD profile and heatmap, use the matrix calculated by 'computeMatrix' and run 1693 'plotHeatmap': 1694 1695 plotHeatmap --matrixFile {e.g. "OUTPUT.matrix"} --outFileName {e.g. 1696 "OEM sortbyLength.png" } --whatToShow "plot, heatmap and colorbar" 1697 --refPointLabel center --samplesLabel {e.g. "HeLa 10kb" "HeLa 20kb" 1698 "HeLa 50kb" "HeLa 100kb" "HeLa 250kb" "HeLa 500kb" "HeLa 1Mb"} --sortUs-1699 ing region length --sortRegions ascend 1700 1701 1703 1704 Step 1, cell culture, EdU labeling and cell harvesting: 2–7 d of cell culture, 2 h of labeling and harvesting 1705 Steps 2-21, extraction of genomic DNA: 2 h with overnight incubation 1706 Steps 22-39, size fractionation of denatured genomic DNA on neutral sucrose gradients: 3.5 h of 1707 handling and 17 h of centrifugation 1708 Steps 40-47, click biotinylation: 2 h 1709 Steps 48-52, RNA hydrolysis: 20 min 1710 Steps 53-62, DNA phosphorylation and precipitation: 1.5 h 1711 Steps 63-66, hybridization and ligation of adapters, round 1: 30 min to overnight 1712 Steps 67-86, streptavidin capture of biotinylated library fragments: 1 h 1713 Steps 87-103, hybridization and ligation of adapters, round 2: 4 h to overnight 1714 Steps 104-108, Okazaki fragment library amplification: 1.5 h 1715 Steps 109-118, post-amplification cleanup: 1 h 1716 Steps 119-123, library size selection: 2 h 1717 Steps 124–125, sequencing: variable 1718 Steps 126-127, data processing: variable 1719 Steps 128-130, generating the output files for visualization of RFD profile and the initiation/termination 1720 zone calling by HMM: variable 1721 Steps 131-132, generating the output files for visualization of the RFD transitions: variable 1722 Steps 133-136, generating the output files for the generation of the average profile and heatmap of RFD 1723 values around the regions of interest: variable 1724

Troubleshooting

Q15

Timing

Troubleshooting advice can be found in Table 2.

Table 2 Troubleshooting table			
Step	Problem	Possible reason	Solution
6	Nonhomogeneous or nontransparent solution	Cell aggregation formed before cell lysis, and/or inadequate proteinase K treatment	Thoroughly resuspend the cells before adding SDS. Add additional proteinase K to 0.1 mg/mL, invert gently to mix well, and incubate at 42 °C for an additional 2 h
23	Incomplete DNA dissolution	Ethanol residue and/or insufficient dissolution time	Incubate opened tubes with DNA solution at 37 $^{\rm o}{\rm C}$ for 1 h. Carefully resuspend with a wide-bore tip
			Table continued

1725

NATURE PROTOCOLS

Table 2 (continued)

Step	Problem	Possible reason	Solution
39	Final volume >375 μL	Insufficient centrifugation and/or presence of polysaccharides	Spin for an additional 10 min in Step 39
123	Prominent adapter- dimer peak	Low-complexity library and/or insufficient gel size selection	Amplify the library again with the beads from Step 108 Perform a double-size selection of the library with Ampure beads, ratio 1:1.25 (if the total library amount is >10 ng)
	Smear containing libraries is absent or very weak	An insufficient number of starting cell	Increase starting cell number Use flow cytometry to ensure the cells are EdU labeled. Check the fraction of cells in S-phase and EdU-positive cells)
			For cell lines or conditions having less than 20% of cells in the S phase, increase the starting number of cells
			As a control, perform OK-seq on a well-proliferating cell line in parallel (HeLa)
129	Function execution interrupted by error	The prerequired R packages are not installed	Install all R packages and make sure all input fields are filled before execution
		Incomplete parameters	Check whether each parameter in the function has been defined with a proper value
		Inappropriate 'thresh' value	Check the statistical summary of the input mapping file to define a rational 'thresh' value
		Different annotations are used in the aligned files and 'chrsizes'	Check whether the chromosome names in your aligned files are consistent with your input annotation
		Inappropriate 'binSize'	Set a smaller 'thresh' or a larger 'binSize' if the sequencing depth is low
131	Function execution was	Incomplete setting of parameters	Complete all the required fields before execution
	interrupted by error	Inappropriate 'binSize' and 'binList'	Modify the values of 'binSize' and test the scales of 'binList' based on the data

Anticipated results

DNA size fractionation

Genomic DNA preparation from 3×10^8 to 10×10^8 human cells typically yields 2–3 mg DNA, which is then denatured and size-fractionated on 4–6× sucrose gradients. When visualizing the DNA in each 1 mL fraction, the DNA size linearly increases in the fractions from top to bottom (Box 1). Typically, Okazaki fragments (<200 nt) are present in the top 1 mL fractions 1–8. It is important to avoid contamination from the lower fractions containing high molecular weight labeled nascent replicated strands.

Library size distribution

The library fragment size should range from 150 to 300 bp. To evaluate if the library preparation is successful a PCR control can be performed. A smear >140 bp containing the library with inserts should be more prominent than the adapter dimer (at 128 bp) (Box 3). After gel size selection, ideally no or very few adapter dimers should be present (Box 4). If the dimer peak is more abundant than the smear, this is an indication of a low-complexity library, which will require repeating the size-selection step and may impact the data quality. 1736

Sequencing results

The examples of sequencing results of OK-seq in yeast and human cells are shown in Fig. 3. RFD 1743 profiles are calculated on the basis of the proportion of the read counts from the Crick and Watson 1744 genomic strands and reflect the locus-specific average fork direction (Fig. 3). HMM detection of RFD 1745 transitions identifies the initiation and termination zones. The automated approach used by OKseqHMM efficiently detects site-specific (yeast) and broad zones (human cells) of replication 1747 initiation events and the regions of predominantly unidirectional fork movement (flat segments). 1748 Applying OKseqOEM allows the assessment of local initiation efficiency at different scales (Fig. 3).

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting Summary 1751 linked to this article. 1752

1730

1731

1735

1742

1753

1756

Data availability

Published available OK-seq raw and processed datasets analyzed in this work are available in SRA: 1754 SRP065949 (HeLa cells)²⁸ and ENA: PRJEB36782 (*S. cerevisiae*)³¹. 1755

Code availability

The bioinformatics tool and all example datasets underlying this paper are available at the following 1757 GitHub page: https://github.com/CL-CHEN-Lab/OK-Seq with DOI number: https://doi.org/10.5281/ 1758 zenodo.7056979. 1759

References

1.	Huberman, J. A. & Riggs, A. D. On the mechanism of DNA replication in mammalian chromosomes. J.
•	Mol. Biol. 32, 327–341 (1968).
2.	Hamlin, J. L., Mesner, L. D. & Dijkwel, P. A. A winding road to origin discovery. <i>Chromosome Res.</i> 18, 45–61 (2010).
3.	Hyrien, O. Peaks cloaked in the mist: the landscape of mammalian replication origins. J. Cell Biol. 208, 147–160 (2015).
4.	Hulke, M. L., Massey, D. J. & Koren, A. Genomic methods for measuring DNA replication dynamics.
5.	Lebofsky, R., Heilig, R., Sonnleitner, M., Weissenbach, J. & Bensimon, A. DNA replication origin inter-
6.	ference increases the spacing between initiation events in human cells. <i>Mol. Biol. Cell</i> 17 , 5337–5345 (2006). Demczuk, A. et al. Regulation of DNA replication within the immunoglobulin heavy-chain locus during B
	cell commitment. PLoS Biol. 10, e1001360 (2012).
7.	Anglana, M., Apiou, F., Bensimon, A. & Debatisse, M. Dynamics of DNA replication in mammalian somatic
	cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 114, 385-394 (2003).
8.	Cadoret, J. C. et al. Genome-wide studies highlight indirect links between human replication origins and gene regulation. <i>Proc. Natl. Acad. Sci. USA</i> 105 , 15837–15842 (2008)
9	Beenard E et al Unraveling cell type-specific and reprogrammable human replication origin signatures
).	associated with G-quadruplex consensus motifs. <i>Nat. Struct. Mol. Biol.</i> 19 , 837–844 (2012).
10.	Karnani, N., Taylor, C. M., Malhotra, A. & Dutta, A. Genomic study of replication initiation in human
	chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection.
	Mol. Biol. Cell 21, 393–404 (2010).
11.	Mukhopadhyay, R. et al. Allele-specific genome-wide profiling in human primary erythroblasts reveal
	replication program organization. PLoS Genet. 10, e1004319 (2014).
12.	Langley, A. R., Gräf, S., Smith, J. C. & Krude, T. Genome-wide identification and characterisation of human
	DNA replication origins by initiation site sequencing (ini-seq. Nucleic Acids Res. 44, 10230–10247 (2016).
13.	Mesner, L. D. et al. Bubble-chip analysis of human origin distributions demonstrates on a genomic scale
	significant clustering into zones and significant association with transcription. Genome Res. 21, 377-389
	(2011).
14.	Mesner, L. D. et al. Bubble-seq analysis of the human genome reveals distinct chromatin-mediated
	mechanisms for regulating early- and late-firing origins. <i>Genome Res.</i> https://doi.org/10.1101/gr.155218.113 (2013).
15.	Hansen, R. S. et al. Sequencing newly replicated DNA reveals widespread plasticity in human replication
	timing. Proc. Natl Acad. Sci. USA 107, 139-144 (2010).
16.	Chen, C. L. et al. Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes Genome Res 20, 447–457 (2010)
17	Than P. A. Sasaki, T. & Gilbert, D. M. High-resolution Repli-Sea defines the temporal choreography of
17.	initiation elongation and termination of replication in mammalian cells <i>Genome Biol</i> 21 76 (2020)
18.	Koren, A. et al. Genetic variation in human DNA replication timing. <i>Cell</i> https://doi.org/10.1016/j.cell.2014.
10.	
19.	Hulke, M. L., Massey, D. J. & Koren, A. Genomic methods for measuring DNA replication dynamics.
	Chromosome Res. 28, 49–67 (2020).
20.	Lobry, J. R. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol. Biol. Evol. 13,
	660–665 (1996).
21.	Touchon, M. et al. Replication-associated strand asymmetries in mammalian genomes: toward detection of replication origins. <i>Proc. Natl Acad. Sci. USA</i> 102 , 9836–9841 (2005).
22.	Huvet, M. et al. Human gene organization driven by the coordination of replication and transcription. G_{enome} Res. 17, 1278–1285 (2007)
23	Chen C L et al Replication-associated mutational asymmetry in the human genome Mal Rial Eval 29
23.	2327 2337 (2011)
24	2527 = 2537 (2011). Audit B et al Open chromatin encoded in DNA sequence is the signature of 'master' replication origins in
<i>2</i> 4.	human cells Nucleic Acids Res 37 6064_6075 (2009)
25	Guilbaud G et al. Evidence for sequential and increasing activation of replication origins along replication
43.	timing gradients in the human genome. <i>PLoS Comput. Biol.</i> 7, e1002322 (2011).

- 26. Baker, A. et al. Replication fork polarity gradients revealed by megabase-sized U-shaped replication timing domains in human cell lines. *PLoS Comput. Biol.* **8**, e1002443 (2012).
- 27. Green, P., Ewing, B., Miller, W., Thomas, P. J. & Green, E. D. Transcription-associated mutational asymmetry in mammalian evolution. *Nat. Genet.* **33**, 514–517 (2003).
- 28. Petryk, N. et al. Replication landscape of the human genome. Nat. Commun. 7, 10208 (2016).
- Smith, D. J. & Whitehouse, I. Intrinsic coupling of lagging-strand synthesis to chromatin assembly. *Nature* 483, 434–438 (2012).
- McGuffee, S. R., Smith, D. J. & Whitehouse, I. Quantitative, genome-wide analysis of eukaryotic replication initiation and termination. *Mol. Cell* 50, 123–135 (2013).
- 31. Hennion, M. et al. FORK-seq: replication landscape of the *Saccharomyces cerevisiae* genome by nanopore sequencing. *Genome Biol.* **21**, 125 (2020).
- 32. Liu, Y., Wu, X., D'aubenton-Carafa, Y., Thermes, C. & Chen, C.-L. OKseqHMM: a genome-wide replication fork directionality analysis toolkit. Preprint at *bioRxiv* https://doi.org/10.1101/2022.01.12.476022 (2022).
- 33. Blin, M. et al. DNA molecular combing-based replication fork directionality profiling. *Nucleic Acids Res.* **49**, e69 (2021).
- 34. Wang, W. et al. Genome-wide mapping of human DNA replication by optical replication mapping supports a stochastic model of eukaryotic replication. *Mol. Cell* **81**, 2975–2988.e2976 (2021).
- 35. Wu, X. et al. Developmental and cancer-associated plasticity of DNA replication preferentially targets GC-poor, lowly expressed and late-replicating regions. *Nucleic Acids Res.* **46**, 10157–10172 (2018).
- 36. Petryk, N. et al. MCM2 promotes symmetric inheritance of modified histones during DNA replication. *Science* **361**, 1389–1392 (2018).
- 37. Chen, Y. H. et al. Transcription shapes DNA replication initiation and termination in human cells. *Nat. Struct. Mol. Biol.* **26**, 67–77 (2019).
- 38. Li, Z. et al. DNA polymerase alpha interacts with H3-H4 and facilitates the transfer of parental histones to lagging strands. *Sci. Adv.* **6**, eabb5820 (2020).
- 39. Tubbs, A. et al. Dual roles of poly(dA:dT) tracts in replication initiation and fork collapse. *Cell* **174**, 1127–1142.e1119 (2018).
- 40. Kirstein, N. et al. Human ORC/MCM density is low in active genes and correlates with replication time but does not delimit initiation zones. *eLife* https://doi.org/10.7554/eLife.62161 (2021).
- 41. Hyrien, O., Maric, C. & Méchali, M. Transition in specification of embryonic metazoan DNA replication origins. *Science* **270**, 994–997 (1995).
- 42. Dijkwel, P. A., Wang, S. & Hamlin, J. L. Initiation sites are distributed at frequent intervals in the Chinese hamster dihydrofolate reductase origin of replication but are used with very different efficiencies. *Mol. Cell Biol.* **22**, 3053–3065 (2002).
- 43. Powell, S. K. et al. Dynamic loading and redistribution of the Mcm2-7 helicase complex through the cell cycle. *EMBO J.* **34**, 531–543 (2015).
- 44. Gros, J. et al. Post-licensing specification of eukaryotic replication origins by facilitated Mcm2-7 sliding along DNA. *Mol. Cell* **60**, 797–807 (2015).
- 45. Promonet, A. et al. Topoisomerase 1 prevents replication stress at R-loop-enriched transcription termination sites. *Nat. Commun.* **11**, 3940 (2020).
- 46. Brison, O. et al. Transcription-mediated organization of the replication initiation program across large genes sets common fragile sites genome-wide. *Nat. Commun.* **10**, 5693 (2019).
- 47. Letessier, A. et al. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. *Nature* **470**, 120–123 (2011).
- 48. Le Tallec, B. et al. Common fragile site profiling in epithelial and erythroid cells reveals that most recurrent cancer deletions lie in fragile sites hosting large genes. *Cell Rep.* **4**, 420–428 (2013).
- 49. Hamperl, S., Bocek, M. J., Saldivar, J. C., Swigut, T. & Cimprich, K. A. Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses. *Cell* **170**, 774–786.e719 (2017).
- 50. Manzo, S. G. et al. DNA topoisomerase I differentially modulates R-loops across the human genome. *Genome Biol.* **19**, 100 (2018).
- 51. Park, K. et al. Aicardi–Goutières syndrome-associated gene SAMHD1 preserves genome integrity by preventing R-loop formation at transcription-replication conflict regions. *PLoS Genet.* **17**, e1009523 (2021).
- 52. Bayona-Feliu, A., Barroso, S., Muñoz, S. & Aguilera, A. The SWI/SNF chromatin remodeling complex helps resolve R-loop-mediated transcription-replication conflicts. *Nat. Genet.* **53**, 1050–1063 (2021).
- 53. Andrianova, M. A., Bazykin, G. A., Nikolaev, S. I. & Seplyarskiy, V. B. Human mismatch repair system balances mutation rates between strands by removing more mismatches from the lagging strand. *Genome Res.* **27**, 1336–1343 (2017).
- 54. Jaksik, R., Wheeler, D. A. & Kimmel, M. Detection and characterization of replication origins defined by DNA polymerase epsilon. Preprint at *bioRxiv* https://doi.org/10.1101/2021.07.27.453931 (2021).
- 55. Shi, M. J. et al. APOBEC-mediated mutagenesis as a likely cause of FGFR3 S249C mutation overrepresentation in bladder cancer. *Eur. Urol.* **76**, 9–13 (2019).
- 56. DeWeerd, R. A. et al. Prospectively defined patterns of APOBEC3A mutagenesis are prevalent in human cancers. *Cell Rep.* **38**, 110555 (2022).
- 57. Flasch, D. A. et al. Genome-wide de novo L1 retrotransposition connects endonuclease activity with 18 replication. *Cell* **177**, 837–851.e828 (2019).

PROTOCOL

- 58. Sultana, T. et al. The landscape of L1 retrotransposons in the human genome is shaped by pre-insertion sequence biases and post-insertion selection. *Mol. Cell* **74**, 555–570.e557 (2019).
- 59. Ming, X. et al. Kinetics and mechanisms of mitotic inheritance of DNA methylation and their roles in agingassociated methylome deterioration. *Cell Res.* https://doi.org/10.1038/s41422-020-0359-9 (2020).
- 60. Reijns, M. A. et al. Lagging-strand replication shapes the mutational landscape of the genome. *Nature* https://doi.org/10.1038/nature14183 (2015).
- 61. Daigaku, Y. et al. A global profile of replicative polymerase usage. *Nat. Struct. Mol. Biol.* https://doi.org/10. 1038/nsmb.2962 (2015).
- 62. Clausen, A. R. et al. Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation. *Nat. Struct. Mol. Biol.* **22**, 185–191 (2015).
- 63. Koh, K. D., Balachander, S., Hesselberth, J. R. & Storici, F. Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA. *Nat. Methods* **12**, 251–257 (2015).
- 64. Zhou, Z. X., Lujan, S. A., Burkholder, A. B., Garbacz, M. A. & Kunkel, T. A. Roles for DNA polymerase δ in initiating and terminating leading strand DNA replication. *Nat. Commun.* **10**, 3992 (2019).
- 65. Koyanagi, E. et al. Global landscape of replicative DNA polymerase usage in the human genome. Preprint at *bioRxiv* https://doi.org/10.1101/2021.11.14.468503 (2021).
- 66. Pratto, F. et al. Meiotic recombination mirrors patterns of germline replication in mice and humans. *Cell* **184**, 4251–4267.e4220 (2021).
- 67. Sriramachandran, A. M. et al. Genome-wide nucleotide-resolution mapping of DNA replication patterns, single-strand breaks, and lesions by GLOE-seq. *Mol. Cell* **78**, 975–985 e977 (2020).
- 68. Kara, N., Krueger, F., Rugg-Gunn, P. & Houseley, J., https://doi.org/10.1101/2020.08.10.243931 (2020).
- 69. Kit Leng Lui, S. et al. Monitoring genome-wide replication fork directionality by Okazaki fragment sequencing in mammalian cells. *Nat. Protoc.* 16, 1193–1218 (2021).
- 70. Audit, B. et al. Multiscale analysis of genome-wide replication timing profiles using a wavelet-based signal-processing algorithm. *Nat. Protoc.* **8**, 98–110 (2013).
- 71. Muller, C. A. et al. Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads. *Nat. Methods* **16**, 429–436 (2019).
- 72. Gansauge, M. T. et al. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase. *Nucleic Acids Res.* **45**, e79 (2017).
- 73. Salic, A. & Mitchison, T. J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. *Proc. Natl Acad. Sci. USA* **105**, 2415–2420 (2008).
- 74. Burgers, P. M. J. & Kunkel, T. A. Eukaryotic DNA replication fork. *Annu. Rev. Biochem.* 86, 417–438 (2017).
- 75. DePamphilis, M. L. Genome Duplication. (Garland Science/Taylor & Francis Group, New York, 2010).
- Qu, D. et al. 5-Ethynyl-2'-deoxycytidine as a new agent for DNA labeling: detection of proliferating cells. Anal. Biochem. 417, 112–121 (2011).
- 77. Ligasova, A. et al. Dr Jekyll and Mr Hyde: a strange case of 5-ethynyl-2'-deoxyuridine and 5-ethynyl-2'- deoxycytidine. *Open Biol.* **6**, 150172 (2016).
- Manska, S., Octaviano, R. & Rossetto, C. C. 5-Ethynyl-2'-deoxycytidine and 5-ethynyl-2'-deoxyuridine are differentially incorporated in cells infected with HSV-1, HCMV, and KSHV viruses. J. Biol. Chem. 295, 5871–5890 (2020).
- 79. Green, M. R. & Sambrook, J. *Molecular Cloning: A Laboratory Manual.* 4. edn (Cold Spring Harbor Laboratory Press, 2012).
- 80. Giacca, M., Pelizon, C. & Falaschi, A. Mapping replication origins by quantifying relative abundance of nascent DNA strands using competitive polymerase chain reaction. *Methods* **13**, 301–312 (1997).
- Tornoe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).
- 82. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. *Angew. Chem. Int. Ed.* **41**, 2596–2599 (2002).
- 83. Presolski, S. I., Hong, V. P. & Finn, M. G. Copper-catalyzed azide-alkyne click chemistry for bioconjugation. *Curr. Protoc. Chem. Biol.* **3**, 153–162 (2011).
- 84. Kwok, C. K., Ding, Y., Sherlock, M. E., Assmann, S. M. & Bevilacqua, P. C. A hybridization-based approach for quantitative and low-bias single-stranded DNA ligation. *Anal. Biochem.* **435**, 181–186 (2013).
- 85. Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. *Science* 338, 222–226 (2012).
- Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. *Nucleic Acids Res.* 44, W160–W165 (2016).
- 87. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24-26 (2011).
- 88. Team, R. C. (2021).
- 89. Himmelmann, L. (2016).
- 90. Morgan, M., Pages, H., Obenchain, V. & Hayden, N. (2017).
- 91. Lawrence, M. et al. Software for computing and annotating genomic ranges. *PLoS Comput. Biol.* **9**, e1003118 1943 (2013).
- 92. Team, R. S. (PBC Boston, MA, 2020).

NATURE PROTOCOLS

- 93. Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. http://www. bioinformatics.babraham.ac.uk/projects/fastqc
- 94. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet. J.* https://doi.org/10.14806/ej.17.1.200 (2011).
- 95. TrimGalore https://doi.org/10.5281/zenodo.5127899
- 96. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* **30**, 2114–2120 (2014).
- 97. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* 25, 1754-1760 (2009).
- 98. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome Biol.* **10**, R25 (2009).
- 99. Picard Toolkit. 2019. Broad Institute, GitHub Repository. https://broadinstitute.github.io/picard/; Broad Institute
- 100. Ma, E., Hyrien, O. & Goldar, A. Do replication forks control late origin firing in *Saccharomyces cerevisiae*? *Nucleic Acids Res.* **40**, 2010–2019 (2011).

Acknowledgements

X.W. is supported by The Young Scientists Fund of the National Natural Science Foundation of China (grant no. 31900415). Y.L. Thanks Agence Nationale pour la Recherche (ANR) for providing her PhD fellowship. C.T., Y.D.-C., C.-L.C., O.H. and N.P. thank the ANR grant BLAN2010-161501 (REFOPOL). Work in the O.H. lab is supported by the ANR grants 18-CE45-0002 (NanoPoRep) and 19-CE12-0028 (HUDROR). Work in the C.-L.C. lab is supported by the YPI program of 1. Curie, the ATIP-Avenir program from Centre national de la recherche scientifique (CNRS) and Plan Cancer (grant number ATIP/AVENIR: N°18CT014-00); ANR grant 19-CE12-0016-02 (ReDe-FINe) and 19-CE12-0020-02 (TELOCHROM); and Institut National du Cancer (INCa) grant PLBIO19-076. N.P. is the recipient of the CNRS-INSERM ATIP-Avenir grant and YPI funding from Institute Gustave Roussy; and was supported by LabEx 'Who Am I?' ANR-11-LABX-0071; the Université de Paris IdEx ANR-18-IDEX-0001 and ANR grant 19-CE12-0030-01 (INTEGER).

Author contributions

O.H., C.-L.C. and N.P. conceived and supervised the project. N.P. developed the OK-seq method in mammalian cells; X.W. adapted the
method for yeast cells. Y.L. Y.D.-C., C.T. and C.-L.C. developed the bioinformatics approach and built the analysis pipeline. X.W., Y.L.,
O.H., C.-L.C. and N.P. wrote the manuscript with input from all authors.1971
1972

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41596-022-00793-5.

Correspondence and requests for materials should be addressed to Olivier Hyrien, Chun-Long Chen, Nataliya Petryk.

Peer review information Nature Protocols thanks Kuhulika Bhalla, Bruce Stillman and Zhiguo Zhang for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Received: 23 March 2021; Accepted: 9 November 2022;

Related links

Key references using this protocol

Petryk, N. et al. *Nat. Commun.* **7**, 10208 (2016): https://doi.org/10.1038/ncomms10208 Wu, X. et al. *Nucleic Acids Res.* **46**, 10157-10172 (2018): https://doi.org/10.1093/nar/gky797 Hennion, M. et al. *Genome Biol.* **21**, 125 (2020): https://doi.org/10.1186/s13059-020-02013-3 1946

1961

1962

1963

1964

1965

1969

1970

1974

1975

1976

1995