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ON THE 1D STOCHASTIC SCHRODINGER PRODUCT

AURELIEN DEYA

ABSTRACT. We exhibit various restrictions about the wellposedness of the Schrédinger product
t
L:z+— 71J’ eris (zs ~\Ils)ds
0
where W refers to the so-called linear solution of the stochastic Schrédinger problem. We focus more
specifically on the case where U satisfies

(0 —A)YU =B, Uy=0, teR, zeT, (0.1)

1
5
As an important consequence of our analysis, we obtain that if H is close to % (that is B is close to

where B is a white noise in space with fractional time covariance of index H >

a space-time white noise), then it is essentially impossible to treat the stochastic NLS problem
(20t — A)u = AuPul +B, wug=0, Ae{-1,1}, p,g=1, teR, z €T,

using only a first-order expansion of the solution (“u = ¥ + 27).

1. PRESENTATION OF THE PROBLEM

In this paper, we propose to point out some limitations in the analysis of the general class of non-linear

stochastic Schrodinger models
(10, — A)u = AuPu? + B, u(0,.) =0, teR, zeT, (1.1)
for fixed integers p,q > 1, A € {—1,1}, and where B is a stochastic noise.

The study of noise influence on NLS models is a recurring topic in the SPDE literature. The most
widely covered situation - by far - is that of a white noise in time with suitably colored spatial covariance.
Provided such a noise is regular enough, the solution of is expected to take values in a space of
functions (almost surely); the powerful Itd integration tools then become available, which even opens
the possibility to treat multiplicative perturbations (see e.g. [3} 7], [I5] [16] for additive-noise models, and
[1L 2, B T3] for a multiplicative noise).

In contrast with this “functional” case, we are here interested in rougher “distributional” situations -
for which literature turns out to be much more scarce. Namely, in the continuation of [IT], we will focus
on examples for which the equation can only be handled in a space of negative-order distributions, and
for which renormalization procedures are also required.

In order to implement these ideas, let us consider, throughout the analysis, the case of a white-in-
space fractional-in-time noise. Thus, for some (fixed) index H € (1,1), B is here defined as the centered
Gaussian noise with covariance given by the formula

E[B(s,x)B(t, y)] — |t — 52" 25, (1.2)

or otherwise stated: for all test-functions ¢, on R x T,

B[ oXB0)] = [ o || ot (s )i, (13)

Such a noise can be equivalently described through the expansion

B(t,z) =Y g e e, (1.4)

keZ

where the 3(")’s are independent (real-valued) fractional noises on R, with common Hurst index H > 1

Date: October 30, 2023.
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Now, it is a classical fact that the expected regularity of the solution v in (|1.1)) is prescribed by that
of the associated linear problem

(10, — AU =B, U(0,)=0, teR, z€eT. (1.5)
We will thus rely on the following preliminary lemma to identify the distributional cases of interest.

Lemma 1.1. In the above setting, the following assertions hold true.
(i) If H > 3, then for every T > 0, one has ¥ € L*([0,T] x T) almost surely.

(ii) If H < 3, then for every T > 0, one has E[H\II = 00.

2
—

The statement of item (4¢) corresponds to a slightly extended version of [IT), Proposition 2.1, item (ii)]
(take Ho = H and Hy =  therein), and it can be proved with the same arguments. As for item (i), we
have included a sketch of its proof in Section [6.1] for the sake of clarity.

Based on the result of Lemma we henceforth focus on the case where H € (%, %], that is the
situation where the solution ¥ of (1.5), and accordingly the solution u of ([L.1]), cannot be defined as
functions.

Before we describe the so-called first-order strategy at the core of our investigations, let us introduce
a few notations and spaces that will be used throughout the paper.

Notation 1.2. From now on and for the rest of the paper:
o We use the classical convention 1[gq) := —1[4,0] if a <O0.
o We fix a smooth symmetric function x : R — [0,1] such that x =1 on [—1,1] and supp(x) < [-3, 3].

e For every function f: R — R and every A € R, we denote the Fourier transform (in time) as

F(HN) = JR dx e f(z).

We denote by I, the local integration operator, that is for all f: R — R and t € R,

T () = —x(t) f ds ()1 (5) (1.6)
We also denote by I, (.,.) the Fourier kernel associated with this operator, and defined through the identity
FEHO = | T 0AFD) (1.7)

e For every function ¢ : T — R and every k € Z, we set
Pp 1= Lr dx e~ p(z) = % J:ﬂ dx e (). (1.8)

o We consider the general scale of anisotropic Besov spaces {X°, b,c € [0,1)} defined through the norm
2 . 2
& ;=f dA DY {OV? + X} F () (V)] (1.9)
c R keZ
where the notation () refers to () := (1 + [\[2)2. Also, we set X" := Xt and X, := X0,
o We denote by (2,5, P) the complete probability space which accommodates the fractional noise B under
consideration (or equivalently the one-parameter fractional noises () in (T.4))).
e For any Banach space E, we define

L™ (% E) = (| L"(% E).

p=1
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e Last but not least, we denote by B™ the (spatial) regularization of B derived from through the
formula
BW(tao)= > pMe e, (1.10)
k: (ky<2n

1.1. The first-order strategy and related questions.
Recall that we concentrate here on situations where the solution u of ([L.1]) is not expected to be a
function, so that there is no a priori interpretation of the product term uPuq.

To overcome this problem, a natural idea - which has been extensively implemented in parabolic
frameworks, as well as in [IT], 12] - is to consider some first-order expansion of the solution. We propose
to explain the details behind this approach at the level of the approximated equation first.

For B(™ defined as in (T.10), let u(™ be the (well-defined) solution of the approximated equation

(10 — A)ul™ = X (™) ()7 + BM™ 4 0,) =0, teR, zeT. (1.11)
With the notation in , and setting
9 = T, (e B™M), o™ (1) 1= B u (1), (1.12)
it is easy to check that we can (locally) recast (1.11) under the mild formulation
V™ (1) = 2™ (1) + TMPO (0 o) (8), (1.13)

where the product operator M9 is defined in Fourier coordinates by the formula
M(P:a) (v(l), oo M ’w(Q))k(t)

=> X oo ety o () () wl? (2), (1.14)
mo kiyekp 01yl
k1+u.+kp:mfl+...+€p:mfk
with

Qe i=—k>— (ki +...+ k) + (5 +... +£2). (1.15)
In light of (1.13), a natural first-order transformation of the problem simply consists in the consider-

ation of the difference process
L) . () _ ?(”),

which now satisfies the equation
2(n) (t) = IXM(IHQ) (z(n) + ?(")’ e L) 4 ?(")) (t), (1.16)
where the right-hand side can be readily expanded by multilinearity.
The whole point of this change of perspective can be roughly summed up as follows: taking the action
of the operator IXM(WJ) into account, we hope the difference-process z(™) to be sufficiently regular (and

at least more regular than ?(n) or v{™) so that the product terms in (T.16) can now make sense as n — 0,
with a suitable control in the scale X! (see (1.9)).

As a first step of this analysis, we are naturally led to examine the “deterministic” component arising
from the multilinear expansion of ([1.16)), that is the operation

z|—>IX./\/l(p’q>(z,...,z).

The wellposedness and stability of such a product in X? is classically guaranteed by the condition b > %
(see e.g. [14]). For this reason, we shall henceforth assume that b > % and thus concentrate on the
restricted scale )

{Xga be (ia ]-), cE [07 1)}
Then, when it comes to the analysis of the “stochastic” components in (1.16) (i.e., the terms involving

at least one ?(n) in the expansion of the right-hand side), the following important observation immediately
comes to mind.
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Observation. In order to guarantee the convergence of equation ([1.16)), one should at least be able to
address the following two problems:

(P1) Does the sequence of - explicit - stochastic processes
T MED () (1.17)

converge in L%~ (2; Xb) as n — oo (for b, c to be determined) ?

(P2) Does the stochastic Schrodinger product operation
L0z T MPD (29 g (1.18)

converge as a random operator from X? to X% as n — oo (for b, ¢ to be determined) ?

The two above problems (P1) and (P2) will be our guidelines in the subsequent study. However, for
a proper examination of these questions in the rough stochastic framework, the above formulations both
need to be refined, which is the purpose of the two next sections.

1.1.1. About remormalization. Owing to the pathwise irregularity of B (especially as H gets close to

%), the convergence of the process in ([1.17)) can only be achieved through a renormalization trick, as

developed in Section below. Consequently, equation (1.16)) can only be handled in a renormalized

sense.

Nevertheless, in order not to deviate from the existing SPDE literature (especially the known results
in the heat or wave settings), we shall impose this renormalization procedure to be explicit. In other
words, the transformation should only give rise to explicit renormalizing constants at the level of the
approximated equation.

In order to achieve this objective, our strategy will obey the following two rules:

(C1) We do allow the use of (natural) renormalization procedures for the explicit process
IXM(p,q) (?(”)7 o ’?(n)).
(C2) We do not allow any renormalization (and so any deformation) for the general product operation

£ s IXM(p’q) (Z, ?("), e 7?(n)).

Remark 1.3. Observe that the condition (C2) immediately rules out any “a priori deformation of the
product”, such as a Skorohod-type interpretation of the problem (see e.g. [6]), or the renormalization
trick implemented in [12] for the cubic model, namely:

(10y — A)u = <|u|2 — f |u|2>u + B, u(0,.) =®, teR, zeT.
T

It is clear indeed that the correction term §, |u|? derived from the latter transformation is not explicit,
i.e. it is not explicitly defined in terms of B.

With these considerations in mind, and following the condition (C1), we can refine the formulation of
the problem (P1) as follows:

(P1') Can the sequence of stochastic processes
Z, MP) (?(n), N ’?(n))

be suitably renormalized so as to converge in L%~ (; X?) (for b, c to be determined) ?
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1.1.2. Stochastic Schridinger product as a random operator.

Let us now go back to the formulation of the problem (P2), related to the control of the (Schrédinger)
product operation £(™ in (T.18)). Following the above condition (C2), we intend to tackle this product
operation directly, that is without any renormalization trick.

Recall that by (1.14)), one has

z:<”><z>k=zx<m2 > S ety (20 (1) - ?2’;’(t>?2;”<t>---?2;’><t)), (1.19)

m kl ..... kp 21 ..... Z
kit...+kp=ml1+.. +Zp—m k
with Qp 1.0 given by (1.15).

Based on this expression, one can morally expect the desired regularization effect (in space) to stem
from the integration (in time) of the exponential factor e'** £ in (T.19). We are thus naturally led to
decompose the expression of £(™) as a sum of a “degenerate” (Schrédinger) product operator

£ (2) =
DY Y Lo Tt R @80 0N 080 ), (1.20)
m ky,ekp £yl

Kbt b= £+ A Ly =m—k
and a “non-degenerate” (Schrodinger) product
Lﬁ’(")(z) .
(t aP YD) Y Lo, 05 (050 05 ) --?é?(t)). (L21)

m ki,...k L1y lp
ki+.. +k‘ mZ1+...+€p:m7k:

Let us now particularize the formulation of the problem (P2) to each of these two components.

As far as £ is concerned, observe that the degeneracy condition 1(q, , =0} actually offers drastic
simplifications in the expression of the product, by introducing a strong correlation between the indexes
k, k, £ (see for instance in the case p = ¢ = 1). Thanks to these simplifications, one can legitimately
hope for a direct analysis of the operator and a direct treatment of the following question:

(P2') Does the operator norm Hﬁov(”) ||X,)be converge (in L™ (£2)) as n — oo (for suitable b,c) ?

Unfortunately, due to the much higher sophistication of the non-degenerate component L£&(™) (see
Remark for a brief comparison between £#(") and £%(™) when p = ¢ = 1), the evaluation of the

random - implicitly defined - norm HEM”) || b_, o turns out to be a much more difficult task. In fact,

capturing the value of an operator norm in L(X?, X?) (or in any other distributions scale) is known to be
a rarely attainable objective in general, and this observation is all the more true in our random setting.
For this reason, we shall instead focus on the analysis of a more tractable estimate of ||£ﬁ7(n) || by xb-

In order to introduce the latter quantity, observe that £#(") can be written in Fourier coordinates as

FEME) N =2, J ) 1, O A F ) ), (1.22)

for some specific kernel IC§<”) (see the expression ([2.6]) below for a description of IC§<”) in the case p = ¢ = 1).
Now, based on this kernel formulation, it is easily checked (see Section for details) that for every
ze X é’,

I L),

Nxe < 12lxe Py, (1.23)
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where P}E? is given by

X, 2

= 3 o s o

k1,k]

3N+ 00 (K0) 4, AT, O )
(1.24)

With bound (|1.23) in mind, the - explicit - estimate ’PZEZ) is thus the quantity that will serve us
as a landmark in the analysis of £#(") and more exactly as an approximation of the operator norm
H[,ﬁ’(”) ”Xb—»X . Along this idea, let us particularize the previous control issue (P2) to £5() through the
following simplified version of the problem.

(P2") Does the quantity P( ") converge in L” () (or even in L'()) as n — oo (for suitable b, c) ?

Remark 1.4. In accordance with the developments in [I1], we consider the approximation of ||£ﬁ,(n) H XX

by 7752) as a full part of the first-order strategy here described. Note that similar kernel-based estimates
of operator norms are also extensively used in the so-called theory of random tensors developed by Deng,
Nahmod and Yue (see e.g. item (5) of Proposition 5.1 or the proof of Proposition 6.1 in [I0]).

We have included a short discussion about the sharpness of this approximation in Sections and
[6:2:2] below. In particular, it is therein shown that in the Young integration setting, the consideration of
the corresponding quantity P allows us to recover the well-known threshold value H = % for the Hurst
index.

1.2. Objective of the study.

In the case of the simplest possible nonlinearity in (i.e., p = ¢ = 1), the above-described first-
order strategy is precisely the method that was implemented - with success - in [I1], for a fractional noise
of index H > 5. In particular, the three questions (P1’), (P2’) and (P2") all received positive answers
in the latter situation.

Our aim in the present study is to show that this first-order approach is however not sufficient to cover

the whole range % < H < 1, thus advocating for more sophisticated developments in rougher situations

than those treated in [11].

This conclusion will be derived from a close examination of the challenging convergence issues (P1’),
(P2) and (P2"”). Just as in [I1], we will restrict to the most elementary nonlinearity in (1.1)), i.e.
p = q =1, keeping in mind that even stronger restrictions should apply for larger p, q.

Notation 1.5. We set from now on M := MUY (see (1.14)), and so

M, w)(t) == ek Wy, with Qo o= [k + k1 |* = |k [* = [k]* = 2Kk, (1.25)
k1
In particular, Lo, =0t = Lik=0} ok =k} and so

EO’(H)(Z)k = Z Lgk=0yo ik =k} Ix (t = 2k (t)?l(:)—k(t))’ (1.26)
k1
while
Lu’(")(z)k = Lgero Ty (t N Z eztﬂk,kl_k,Zkl (t)?;(;:)k(t)) (1.27)
k1#k

Remark 1.6. By writing £>(")(z);, = P £ (2)p, and similarly £5M)(2), = 2k L5 (2) ik, , one
immediately sees from (L.26))-(1.27) that (£°(™)(2)xk, ) morally reduces to two (time-dependent) vectors,
while (£%(™)(2)y,) consists of an almost full (time-dependent) matrix. This of course gives us an idea
of how much more sophisticated the non-degenerate operator £ with respect to £(™).
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2. MAIN RESULTS

With the above presentation of the problem in mind, we are in a position to state our main results
related to the three central questions (P1), (P2’) and (P2”). Recall that we have fixed p = ¢ = 1 for
the rest of the paper.

2.1. Problem (P1’): control of the renormalized Schrédinger product tree.

(n) n) ofn .
Let us start with the examination of the tree process Ckfo =I,.M (?( ),?( )), which we shall refer to
as the (Schrédinger) product tree in the sequel.

As we evoked it earlier, this quantity needs to be renormalized before we can study its convergence.
To this end, we will successively rely on three classical rescaling steps:

(R) A first partial space averaging
MED W) — M2 - [0

in the spirit of Bourgain’s renormalization method for the cubic NLS model (see e.g. [4], [§]).
(R’) Then a more standard space averaging:

M(?("),?("))—?WJ?(T) L MIE™ gy = M(?(n)’?(n))_?(n)J@]_J [M(?("),?(”))—?(")JE*T)]. 1)
(R”) Finally, a stochastic Wick renormalization trick:

ME™, 3 — ME™ ) - EIMET 8],

Remark 2.1. Observe that the rescaling terms in Steps (R’) and (R”) only involve reduced quantities,
i.e. quantities depending on at most two of the three parameters (¢, z,w), which can indeed be expected
from any reasonable renormalization trick.

On the other hand, the rescaling term in (R) still appeals to the “fully-dependent” quantity ?(").
However, the latter can easily be turned into a linear correction drift at the level of the approximated
equation, making it acceptable in the procedure (see [I1} Section 1.2] for details).

As a result of the three steps above, we derive the following renormalized version of the product tree:

~(n) N N

Yo (0) = T (ME™, 80 — EIME™, 8] @), (2.2)

where the renormalized product M (?(n),?(")) is defined by (2.1). Based on the expression (1.25) of M,
this renormalized product can also be written in Fourier coordinates as

ME™, 2 )(t) 1= Lgepoy D) e ra gl o), (2.3)
k1 #0

(n)
In other words, we are here dealing with the “non-degenerate” part of CRfO , i.e. the summands for which
the quantity €, does not vanish.

Our main result about this (renormalized) product tree can now be stated as follows.

1 3

Proposition 2.2. Assume that H € (5, 3]. Then the following picture holds true.

(i) For every 0 < c < i, one has

27

el P

n=1

2
<o
Xe
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(ii) For every 3+ <b<2H — i, one has

awp=[[ T ] <0

n=1

(iii) If b= 2H — %, then

B NEE

The above properties thus provide us with the exact time regularity of CYD (namely (2H — 1)—), which,
given the central role of the process in the dynamics of (1.1)), can be seen as an important result of
independent interest.

In view of our present objective, the optimal condition % <b<2H — % will be our first restriction in
the application of the first-order strategy described in Section

2.2. Problem (P2’): about the Schrodinger product operator £

Let us now turn to the issues related to the Schrédinger product operator £ starting from its
degenerate - and relatively simple - component £>(™) (see (1.26))).

Our main result about £ will actually be derived from a careful examination of the action of the
operator on suitable (Gaussian) processes. The property can be summed as follows.

Pr0p051t10n 2.3. Assume that H € (3,3) and fix be (3,1).

Ifo<c < 3 _2H, then there exists a sequence (Z™),=1 of random functions such that
supE[”Z(”) ”Xb] < oo foreveryq=>=2, and E[”EO’(")Z(") Hib] 2% 0. (2.4)
nzl c

In particular, if 0 < c < % — 2H, then for every p > 2, one has

B[ £y x| =5 o0

Proposition therefore offers a partial answer to the guideline question (P2’). In particular here, the
result gives birth to our second restriction on the spaces X? involved in the first-order analysis: namely,
one must have ¢ > % —2H.

2.3. Problem (P2”): about the Schrédinger product operator L)
As explained in the above Section [[.1.2] we only focus here on the convergence issue for the approxi-

mation P(n) of HEM") b given by the expression

o

Py =

2

d\1 AN} % 9 n
kz Jos e+ oy = 5 oy - 5 [N+ (), A (KL i A
(2.5)

where the Fourier kernel IC;H) is defined through the identity

F(chm -3 J () 1, O A F e )0

In the setting p = ¢ = 1 under consideration, it is readily checked that IC;") is in fact given by

(KE) ey A A1) = 1{k¢0}1{k1¢k}J o F (81 ) )TN, Qi =i + M1 = Xa), (2:6)
R

where the integration kernel Z, (.,.) has been introduced in ([1.7)).
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Our main result about Pé’?,

partially responding to the problem (P2"), reads as follows.

Proposition 2.4. Let H € (3,2), be (3,1) and ce (0,1).
Ifc=zb— %, then one has

E[|7>;j1>|] e

Proposition therefore points out our third (and last) restriction on the class of spaces X! suitable
for a first-order strategy: one must impose that ¢ < b — i.

2.4. Conclusion.
By gathering the constraints exhibited in Propositions 2.2] 2.3 and [2:4] we can conclude our investi-
gations about the limits of the first-order strategy for the stochastic Schrodinger problem (1.1)).

Corollary 2.5. If% < H< 19—6, then for any pair (b,c) € (%, 1) x [0,1), one has either

~(n) . .
1Y e =5 00, L9y P 0, or P2 0 in L5 (). (2.7)

,C

In particular, for % < H < %, the stochastic Schréodinger problem (L.1) cannot be treated with the

first-order strategy described in Section [1.1]

Proof. For none of the two explosions in (2.7) to happen, it is necessary that b < 2H — % (Proposition
, c> % — 2H (Proposition and c < b — i (Proposition , which can be summed up as
3 1 3

- —2H < — - <2H — -,
5 c<b 4< 1

and hence one must have H > 1—96. O

These results thus call for the development of more sophisticated methods, such as paracontrolled or

random-tensor-type strategies, in order to cover the whole range H > % for B. To be more specific,
we do not expect any possible improvement regarding the constraints on the Schrodinger product tree

(Proposition [2.2]), and we only advocate for a more sophisticated treatment of the product operation

Z IXM(””I) (z, ?(n)). These further developments could for instance be derived from a suitable “ansatz”
formulation of the problem (see [I0, Section 5.2]), which we plan to investigate in a future study.

Finally, it is worth noting that there is no hope to reach the case of a space-time white noise B through
the present renormalization method, as it can be seen from the following explosion result.

Proposition 2.6. Assume that H = %, that is B is a space-time white noise on R x T. Then, with the
notation of Section and for every b > L, it holds that

27

~(n) 2 N
B[ [ ] =
Xb
The latter property can be established with similar arguments as those in the proof of Proposition [2:2]
item (7i7). For the sake of conciseness, we prefer to leave the details as an exercise to the reader.

The rest of the paper is organized as follows. In Section [3] we focus on the analysis of the Schrodinger
product tree and on the proof of Proposition 2.2] Sections [4 and [5] are then devoted to the study of the
(stochastic) Schrodinger product operator L) Section 4| contains the proof of Proposition while
Section [5] contains the proof of Proposition [2.4] Finally, the Appendix section contains a partial proof

, as well as a discussion about the relevance of Plgnc) as an approximation of

.

of Lemma (Section

H £ Section

)”XZ?—»XC (
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3. CONVERGENCE OF THE SCHRODINGER PRODUCT TREE

We start with the study of the convergence issue for the renormalized Schrédinger product tree

~(n) ~ ~
Vi ()= T, (ME™, 9 —E[ME™. ) (] ) @), (3.1)

introduced in Section We recall in particular that the (rescaled) linear solution ?(n) has been intro-
duced in (1.12]), while the renormalized product operator M is defined in Fourier coordinates by

M (v, w)i(t) := 1gpm0y DT et Wy, with Qg = k4 kP = [k = |k = 2kky. (3.2)
k1 #0

As a preliminary step, let us point out some useful expressions and estimates for the covariance of the
process ?(n) , at the core of expression ([3.1)).

3.1. Covariance of the linear solution.

One has by definition
FEMYA) = Lyean F(Ty (7 BE)) ()

and we can use the integration kernel Z, (.,.) (see (L.7)) to express this quantity as
FEMO) = Lgyean fdxlzx(x, M)F (e AR (A)

= Liry<ony Jd)\l Ty (A A1) fdt e~ AR Gk)
Based on this expression, and since
E[ 310 .t(’kl)] = Loyt — P72,
we get that
E|FE)NFEH )|
= Lwerm Liwyean) fdAldAl DT (V) j dtdt’ O OLHE DR | 3 400
= gp—pn Lcy<an) fdAld/\ T, (\, Al)WJdtdt' SO R N Ry g 2H 2
= c1ip=iy Lry<an) J |§|2H - Jd)\ldX (A Al)WJdtdt’ —HH LN R+ O

= 1=y 1icky<any JR Wﬁfx(%, —&— )L (N, =€ — k2). (3.3)

For a more detailed expression of this quantity, let us introduce the following notation.
Notation 3.1. For all s,t, A € R, we set

t
(N = f dr e”‘rx(r)l[o)t] (r) = J dr 6Z>‘TX(7”),
R

0

o8] t

J dr e x( 1p0,(t) = 1{t>O}J’ dr e x(r) — lgcoy dr e x(r). (3.4)
t

— o0

With this notation, recall that

A\ N) = J}R dt eﬂ)‘tx(t) J;R ds e“\lsx(s)l[o’t] (s) = J}R dt eﬂ)‘tx(t) =), (3.5)
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and so we can rephrase (3.3)) as

E[FETNFE )]

=cl{k:k1}1{<k><2n}Jdtdt’x(t) e~ l“f |£|2H o= Ee(—€ — K?)Ep (=€ — k?). (3.6)

Besides, based on (3.5]), it is readily checked that

70001 iy (3.7

and therefore the expression in (3.3)) leads us to the following uniform estimate (with respect to n): for
all k,k' € Z and \, N € R,

(n) (") ( \r 1 d¢§ 1 1
[FEWFENIO]| < 1w g [ gt e e 1
1 1 1 1
S 1{k:k’}<>\><)\/> = NH1=¢ [<>\ + k2)y2H-1 + (N 4 k2)2H-1 ) (3.8)

where the second inequality follows from [1T, Lemma 3.8].

With similar arguments, we obtain that
E[FENFEEIN)] = e L Liayeany f mzHl L= =KLV E = k), (39)

and then, for all k, k" € Z and A\, M € R,

1 J 1 1
th= ’“’}<A><A'> |s|2H1<s+A+k2><s X —kZ)

‘E[f( ;ﬁ"))(k)f(?fﬁ))(k’)]‘

1 1 1
< 1 .
S L=k }<)\><>\/> O+ N+ 2k2)1—¢ [<)\ + k2)2H-1 + N+ k2>2H—1]
(3.10)

We are now in a position to tackle the proof of our main asymptotic result.

3.2. Proof of Proposition

First, using the integration kernel Z, (.,.) (see (|1.7))) and the Fourier expression of M (see (3.2))), we
can write the Fourier transform of the process under consideration as

FEME 200 = [ v T 00 FME. 1)) ()
~ Loy 3 [ VIO [ tenng), 020

k1#0

_ l{k;ﬁo} Z Jd)‘l ?k )(Al)fd)\Q (?k}Jrk )(AQ)J AN T ()\ )\/)J‘dt —\'t ZtQk k1 zt)\zefzt/h

k1 #0

and thus

FE R 100 = Lsey 3 [ IidhaTu3 s + Ao = MFEDO)FE)00)

k1#0
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Based on this expression, and by applying Wick’s formula, we can compute

E[|F (@ (ME™, 5 ")) ]

= Lo} D Jd/\ld)\g > Jd)\'d)\' WO Qe + A2 = AT\, Qg + Ny — Ap)
k1#0 k’;éO

E[FEO0)F @) O FEE ODFE,) 00)
- [BF @M, 5 ]

+ 1gs0y D, fdA dry Y. Jd)\’d)\’ O Qiey + A2 = AT (N, Qper + Ay — M)
k1#0 k1 #0

E|FE) ) FE ) [E| PO Qo) FO ) 00) |

+1g0p D, fd)\ld/\Q > J’d/\’d)\’ WO Qs + Az = AT, Qo + Ay — A
k1#0 k1#0

B[ FE) O F ) 08) |[E[ FELL ) 0 FEEHOD)| (3.11)

As far as the last term of this expansion is concerned, observe that according to (3.9)), one has

Lo B[ FEL) ) F @) 00) || 7 (?M)(m G|
=1{k;ﬁ0}1{k1=k+k’1}1{k+k1=k’l}E[]:(?k?)()‘1) k+k/ ]E[f?k+k1 (A2) (?(?))()\'1)]

= Loy Lok Tobry =i B[ F ) ) F (?2%( D) B[ FE ) O FEEH 0] =o.

For the same reason,

E[FEO0)F OO0 B[ F O, 0 F ) (00)

= Ty may B[ FOU) O F D) O | B[ F O ) F O 00)
Thus, going back to and recalling the deﬁnltlon 1 1)) of Ckfo , we deduce that

E[V?S) Y] = E[|F @ (M6, 8 0] - [BIF @ (M6 2 ]

= 1{k20} Z Jd)\ld)\g JdX ANy Ty (N Qi iy + A2 — AT (N, Qi ey, + Ay — N))
k1#0

E[FEDO)FE )00 [E[FE) 0 F @) 00 (312)
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Using the estimates (3.7) and (3.8), we get that for all 0 < ¢ < % and € > 0 small enough,

oI 1]

- ,;0 k§0<k>2c <A>2 <dAA11> <dAA;> A=, kll— A2 + A1) <dAA I> <dAX> = ,ﬁl Xy + A
SPIPICE J 55 o <dAA11> <dAA22> o= n s ) 2

- ,;O k§0<k>2c <A>2 <dAA11> <A — O kll MPWNES 2

< ;O k§0<k>2c <A>2 — Q o S I§O<k>2c kz;ﬁo ,k11>“€ < ; <k>27126725 ; <k1>1HE <,

which already proves item (i) of the statement.

Let us now focus on the norm in X°, which, thanks to (3.12), can be expanded as

[T ] = 3 oo 3

k#0

fdAldAQJdA’dx O Qs + A2 — AT N Qs + N, — M)
k1#0

E[FE) O FED D) [E|FEL) Q) FEL ) (K0)|

3.2.1. Proof of item (ii). Assume here that + <b < 2H — 1.
Using the estimates (3.7) and (3.8)), we get that

~ )
EIY ]
A\ s [ AN, dX, 1 1

k;&OJ<>2 ) QO S D) A= Qiepy = Ao+ A1) A= Diepy = A +AD

1 1 1 1
v e || e s R arr e R

S Ay + By,
with
A J’ dM\1 d)As 1 1 1
b k;éO = 22 | ) Q)= Qg — Ao + A O + E22H-1 O + (k + ky)2)2H -1
ANy dN, 1
QD= Qe gy, — Ao+ A
and

d\ d)\ 1 1
Byi= 2, ), f o2 <A11><A22> = e, — A2+ Ay Qq + k)21

k+#0 k1 #0
J‘ ANy dN, 1 1
D Y = Qe ey — Ay + N + (k4 Ky )2)2H-1

Since A, and By, no longer depend on n, we only need to prove that these two quantities are finite.
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For A,, note first that

Jd)\' ANy J'd)\' 1 < 1
QDN = Qe =Xy + M) T D = Qe + A2 T = Qg )

On the other hand,

d\1 d)s 1 1 1
<)\1> </\2> <)\ — Qk,kl — X+ )\1> <)\1 + k%>2H71 <)\2 + (k + ]{71)2>2H71
dX\y 1 dXs 1 < 1 1

Oy Oq 4 E22H=T | O g + (k + kp)2)2H-1 = (g YH=2=¢ (| 4 |y ytH—2—<"
Thus, going back to the definition of A, we obtain that for € > 0 small enough,
dA 1

1 1
<
Ap < kéo <k1>4H—2—s Z Lk + k1>4H—2—6 OV O = Qg e (3.13)
1
<
= k%e:o <k1>4H 2b—2¢ Z <k+k1>4H 2—e (k)2 2b—e "

Since b < 2H — %7 one has 4H — 2b > 1, and so we can deduce that

Ap 3 Z <k-1>8H i1 <%

k1#0

for € > 0 small enough.

As far as By, is concerned, one has

d\1 d)\o 1 1
</\1> <)\2> </\ — Qk,kl — Ao + )\1> </\1 + k‘%>2H—1
d\ 1 1

Oy O + E2H=1N = Qg ey + A1

( dAi 1 ) ( d\ 1 ) : 1 1
TS Qo + R AN = Dy + X272 ) T DM 272 (= e, )2

and in the same way

de ax, 1 ! < ) ,
O Dy O = Qs = Ny + Ny Oy + (b + k)22 T~ et kiy™ 22 (x — Qo 5%

which gives
S Z J
~ <k1>4H 2—e Z <k + k1>4H 2—¢ </\>2 2b </\ SZk k1>

k1#0

Thus, we are in the same position as in , and we can use the same arguments to assert that B, < oo.

This achieves to prove that for every b such that 5 <b<2H — 3, one has

el <

n=1

as desired.
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3.2.2. Proof of item (iii). Assume now that b =2H — 1.
Using the expression in (3.6)), we can write

E[FE)O)F ) 00 [E[ O ) ) F O (0 |
= LiGuy<an) fR |§|§l§1 f dtd’ x(t)x(t')e ™ e M E (=€ — kD)Ew (=€ — k)

d?’] —1X2s 1Ahs =
Lickqndgony JR Wﬁ stds' x(s)x(s")e A28 g1A; Eo(—n — (k + k1)®Zg(—n — (k + Ek1)2). (3.14)
Then observe that by (3.5)),

J’d)\ld)\g IX(A7 Qk,kl + )\2 — A1)61A1t6—lkgs

= J dv 671)\1} J’dT 1[0 U] Jd/\ld)\ e“‘(”k ky FA2—A1) Mlt 71)\25
R
= f dv eiMUX(U) Jd?’ 1[0)1}] (T)X(r)e“‘ﬂk,kl (Jd)\l ezr)qez)\lt) (fdAQ eu‘)\zez)\gs>
R
= 5{s=t}X(t)€thk’k1 J dv 6_1>\UX(U)1[07U] (t), (315)
R

and in a similar way

f AN AN, T (N, Qigy + Ao — N )e M 2% = 5y x ()™ JR dw e x(w) 1[0 (t).  (3.16)

Combining (3.14)), (3.15) and (3.16)), we obtain that

Jd)\ldAQJd)\’ ANy Ty (N Qiy + A2 — AT N, Qs + Ny — M)

J €124~ 1J |77|2H !

([ avemx0) [ atip.g @ en xy ETE == = (54 1))

E[FE)O)FED ) [E|FEL) ) FEL) ()

(L{du)e”\w (w )Jdt Lio.w(t)e T ()3 (€ — KD)Ep (— 77—(/€+k'1)2))

and so, going back to (3.12)), we get the expression

~(n)
2 Qe iy 2
E[Hof be] Z 2 Ltk y<any LiChriiy<any f|€|2H 1 J [n|2H-1 Jd)‘<)‘>2b|Q§+kz,n+ (ktk1)2 ()\)| )

k#0 k1#0

where we have set

Qfp ) 1= [ v f ds e *Ex(s) E(~)E. ().

In particular,

~(n)
2 Qi.k 2
]E[”CY) ”Xb] Z Z Lickiy<ony L Chrhoy<an) J|£|2H 1 J| [2H-1 Jd)‘|)‘|2b|QgJI:;§,n+(k+kl)z(>\)|

kz1lki=1

d¢ Q 2
2b 2b
Z Z 1{<k1><2n}1{<k+k1><2n}9kﬁcl J e f PR fdA IA| |Q€J’::lln+ k+k1)z(/\9k,k-1)| )

k=21ki>1
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For all L > 1, we can use an integration-by-parts argument to decompose Qé B’()‘L) as
t J—
Qhp L) = [[dte (o) | dse x (o ETPIER) = M (N) + Bl (V).

where

MEg () i= 7 [dte MO N BRI () (3.17)

and

1 ¢
Ry = —= f dt e M () j ds e x(s)°Es(=B)Zs (—B). (3.18)
0
Using this decomposition, we can write
?C’m) 2 1426 dg 26 2 Pk ky
E[H be:| = Z Z 1{<k1><2"}1{<k+k1><2"}Qk,k1 |€|2H 1 |n|2H 1 d)‘"\| |M§+k2 n+(k+k1)2()\)|

k>1k1>1
fd,\|A|2"\RQ’”“ W[

1+2b
+ Z Z Ltk y<2ny Ltk y<2ny Sk, me 1 |,7|2H 1 €+k2 n+ (h+hy)2
k>1ki>1
Qe ke

dé Q
1+2b 2b k,k
_22 2 Py J|§|2H 1 |77|2H 1 Jd)\|/\| |J\/[£+k§1n+(k+k1)2 )||R£+k§,n+(k+k1)2(/\)|

k=1k121

1+2b 26 7 1Pk 2
> Z Z Licky<emy Lckrnny<eny i, f|£|2H 1 f [p[2H—1 Jd)\|)\| ‘M§+k21n+(k+k1)2()\)‘

k=1ki>1
d¢ Q Q
1+2b 2b Kk .k
_2;)]”21(2’“"“ J|§|2H 1J|77|2H 1 J’dM)\' ‘M§+k§ n+(k+k1)? )‘|R£+kfl,n+(k+k1)2()\)|'
= 1=

By applying Lemma [3.2] ﬂ below, we get that for all Q > 1, k,£ > 1 and € > 0 small enough,

d
J |§|2I§ 1 J |,,7|2H 1 JdA|)‘|2b|M§+k n+4 ||R§+k n+é(>\)‘
L dg 1
s Q‘”U NEY IAI“ 2l’flfl”’ Jlnlw 1<£+k><v7+13>

o J e |
e AP 2b|/\ 1ft=e |€I2H RRUN

1 1
<<§+k‘><77+€> " <§+(k+ﬂ)><77+f> E+E+DXn+(U-Q—=E—k))
N 1 >+ 1 >] 1

M+ U-—YXE+E)) I+ U—QYXE+(k+Q—n—10))] = Q'

where we have used the fact that for all 0 < o < 8 < 1 such that a + 3 > 1, one has

A

supJ a1 <
aeR JR |£|a <€ + a>5
Therefore, for € > 0 small enough,

Rk kq

d&dn Q
1+2b 2b k,k
Z Z Dl |€]2H-1|p|2H-1 fdA|A| ‘M£+k%1n+(k+k1)2 )“R§+kf7n+(k+k1)2()\)‘

k=1k2>1
SN Y g (D) <
k=1

k>1k1>1

due to b < 1.

We are thus left with the analysis of

n) ._ 2b 2b| p 7€,k 2
me = kzll kzl1{<’€1><2"}1{<k+7€1><2" thﬁ f|§|2H 1 J 21 fd)\|)\| |Mffkk2 n+(k+k1)? (/\)| :
z1lki2
(3.19)
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To this end, write for all Q > 1
d§ 2|/ 2
f |§|2H 1 J | |2H 1 Jd)‘ |)‘| | €+kf n+(k+k1)2()‘)|

dX
|Q|2 f R J n|2H-1 f |)\|2—2b

|Q|2 Jdtdt X (J |)\|2 2b le(ty)) ezsl(tft')jkl (t7tl)jk+k1 (t,t/),

2

j dt e O () E(E — RDE (= — (k + k1))

where we have set

d -
Tt 1) = Wfl_lzx—g—e?)zy(—s—ez).

Then, by elementary transformations,

1 A o o v S
Wfdtdt'x(t)4x(t')4< 7|)‘|2_2b6 AQ(t ”) M) T (44 Thoge, (£, 1)

dtdt! s .
|Q|1+2bf|t #b—1 X x (@) e M) Ty (4, 8) T, (8, 8)

1 dtds 0 -
= |Q|1+2b |8|2b—1 X(t) X(t - 8)4 € ¢ jkl (t7t - 5)jk+k1 (t?t - S)

[N 5) - ) (1 ) o

Let us now expand the two quantities Jg, (t, t— 5) and Jg1k, (t,t — 6) On the one hand,

jkl t—= J|§|2H TE(—€ — (- — kD= & (=€ — kD)

t— =
([ [ s
0

3 / e
B flfl2 JHJdTll[Ovt*%](’“ )X(T/)fdrl[O,t](T)X(T)e (E+kT)(r—r")

d N
- JW 5*1 Jdrl Lpo,1—41(r")x (") Jd’”l[o,t] (' +r)x (" + r)etE kD

dE/ v 2(¢!
= k4H : J G J ki(€'+1) Jd,r/ 1[0,t—§](rl)1[0,t] ' +r)x()x (' +7)
— dg’ dr ¥ ( (&'+1) dr' 1 "1 / r ’ ’ r
- k;i*H*Q e | e P o1 ()1 (7 + ﬁ)"(’" w(r +l?%)

1 dr o r
= ]g‘llH_Q J |7"|2_2H e J‘drl].[mt,%](”r’l)l[o,t] (7’/ + E)X(T )X(T + k2)

and similarly

Tkt ks (t, t— %)

1 du — ! ! ! U 7 i U
- u . 1 — — ).
(k + ky )2 H 2 J ju22H © Jd“ Lo.-51(4) o (“ T k1)2)>‘(“ )X<“ T k1)2)
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By injecting these two expansions into (3.20]), we deduce the expression
d§ 26| 71 2
J |£|2H 1 J [n|2H-1 Jd)‘|/\| | £+k2 n+(k+k1)? ()‘)|

1 (2 S 4
|Q|3k4H 2 (k + kp )M - 2Jdtx J| 20 7€ X(t—ﬁ)
e ’ ’ p T , ,LT
<J| 12~ 2 © Jdr Ljo.1- 510710 (r + k%)x(r )X<r + k%))
w 7 ’ , L , , L
(J |U|2 2 © Jdu Lo 1pg (u * (k+/€1)2)X(u )X(u * (k+k1)2>>

Qo (Q, k, k), (3.21)

_ 1
QP R (k+k )

where we have set

Q@H«L&kn:=J}ujdwjdwxafxgquq
<f| 51 e Loe 1) 1o g1 (w)x (2 - ;2>4> (Jlrlgf”fewl[ovﬂ( kQ)X<T + k2)>

( |u|gu2H R IG (k+uk1)2)x(u/+(k+uk1)2)>'

Using the subsequent Lemma [3.3] we can easily check that

Qv i (e iy by k1) = g as k ky — o,

b, H :=< |2b e )UW s e <Jdtx(t)8 Lt dr’x(r’)QLtdu’X(u’)2>.

Since g, i > 0, there exists K > 1 large enough such that for all k&; > k > K, one has
Qo5 (e iy ke k1) = sz,H.
Therefore, going back to (3.19) and (3.21]), we get that

where

1 1

k;K |k:|2 2b }ék Licmy<ary Lich+ray<any er P20 [ + oy P2
and since K does not depend on n, we deduce that
1
hr{r_l)lorclfim k;K |k|2 2b Z |k1|4H 2 |k + ky [1H2
Z (1 Z 1 1 >
R S |k|8H 4b-1\ | et |%|4H—2b |1 + ﬁ|4H—2
Z J’f dx Z J’f dx
~ S |k|8H =T || || A 2|1 4 [t 2 < S |k|8H -1 | |gBH-2-2
At this point, recall that b = 2H — %, and so the latter bound reduces in fact to
* dx 1 “ dw
g%mWf%IL|ﬂw2b2:(g%w0<ﬁ|wml>:w’
which leads us to the desired conclusion
lim M =

n—w
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3.3. Auxiliary lemmas.
The few technical results below have been used in the proof of Proposition

Lemma 3.2. For all L > 1 and 3,8 € R, let Mé;ﬁ, and legﬁ, be the functions on R defined by (3.17)
and (3.18), respectively. Then the following estimates hold true:

(i) For all |\| = 2, one has

1

; 11
A% () < TpE By

1 L
| S 7L2|)\|2 and |Rﬁ,5'()\)

(i) For all |\| < 2, one has

; 1 1
|Mﬁ7ﬁ’(>‘)| S [2—¢ |)\||)\ _ 1|1—£
and
[R5, (M)
1 1 1 1 1 1
S1'12[ ~ Tt ~ T _,+_, +_/ _1]'
INLBXBY  (L+BXBY (L+BXL+B—=B) (L—=BXB) (L-BXL+B-p >(3 2)
Proof. (i) If |A| = 2, then by an elementary integration-by-parts argument, we get that
1 _ - '
ME O] = a7z [ de OO @IIEC-DIEd-)
1
+ O 0(E B0 B8] + O E-D) |2 E.8NO] < oy
where we have used the uniform bound
Ze(=B)| +10:(Ze(=8))] £ L. (3.23)
In the same way,
R0 0] < ot | [t b1 [ ds PRl
1 1
+ fdt|X'(t)||X(t)|3|5t(—5)||5t(—5')| S 22 (BYRS
where we have used the fact that
[Ze(=B)| < <B> (3.24)

(i) For Méﬂ,()\), we can use again (3.23]) and an integration-by-parts argument to write, for |A| < 2

1—¢ 1
< .
L= \[[X — 1]1-¢

1 .
|ME 5 (V)] S Lw‘ fdte*’““*”x(t)‘*Et(—ﬂ)ax—ﬁ')

As for Ré_ﬂ,()\), observe first that

and so, by (3.24]), we get that

L _ L —iALt 1 ! 1sL 3= _a\e (R
[R5, (M L|/\| dte™ X (1) [ dse X(5)"Es(=B)Es(=5")

t
dt |\ (¢ f ds "0y (s) 2y (—B)| +
0

L%
IR
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Then, using the same elementary arguments as for the derivation of (3.7), we obtain that

i Sezs(L+B) 84: ! 1 1 1
fod x(s) 2= s<L+/3>[</3'>+<L+5—6'>]’

as well as

S |7+
TL=BOLB LB =BY

0
which yields the desired bound (3.22)).

dse”“ﬁ”x(s)‘*a(—ﬂ)‘ ! [1 1],

Lemma 3.3. Fiz a € (0,1).

(7) It holds that

ds s
B R (o0 TRy (t——) <1
sup fR s Lo 21(r") L0, 27(u")x i3
t,r’ u'e[—2,2]
and
sup J ——e"1[o (r' + 1))((7“’ + )‘ <S1
L>1 R |’/‘|a L L
r'e[—2,2]

(i) For oll L = 1 and t,r',u' € [—2,2], one has

ds s ) ’ i ’ AT ’ ’ i 1
LW"’ {1[07t—%1(?")1[o,t—%1(u (t=7) = Lo (). )x(t)}‘ < La{ﬁ_ﬂa +
and
dr , T , T , , 1 1 1
o ar o Y < _— ) _—
e e {1[(“1 (r+ D (7 + 7)) = toa X6 f| < £z TR
Proof.

(¢) Let L > 1 and t,7’,u’ € [-2,2]. One has, for almost every s € R,

Lo 21(r") = 1z Ls<n—myy — Lom<oyls=L(—r))s

and so we can write

1[0,#%] (Tl)l[o,tff (u’)

O
(3.25)
(3.26)
i _1u,|a } (3.27)

|7n/|a

}. (3.28)

= (1{r’>0}1{s<L(t7'f’)} - 1{r’<0}1{s>L(t7T’)}> (l{u’zo}l{sgL(tfu’)} - 1{u’<0}1{s>L(t7u’)})

= 1y w0y Ys<oft—r)at—u)]y + 1w <0y Ls=L(t—r) v (t—u)]}-

Therefore
ds . , , )
fm s L2107 Loz (W)X (t-1)
J Ll (=] g s - ds
=1g uz —ezsx(t - *) + Ly f ds
(w0} | |s|> L =0} | vy 18I

and we can apply the estimate (3.31)) in Lemma below to deduce ([3.25)).

We can then use the same arguments to prove (3.26]), by noting that

r
1[0,t] (7’, + f) = 1{t>0}1{7T’L$r$fr’L+Lt} - 1{t<0}1{7T’L+Lt§r$7T’L}-

e’sx<t —

)
L )
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(79) Regarding (3.27)), we naturally start with the bound
ds S
T {1[0 2110, 2] (u')X(t - f) — 10,1 (r") 10,1 (U')X(t)}‘

18 ’ ' ’ s
U E |a€ {110,4—21(7") = 11,9 (") }10,0— 27 (u )X(t— L)‘

|a { (t-2) - x(t)}‘ (3:29)

+ 10,4 (’”/)

+ Lo, (r") 10,4 (
For the first integral in ([3.29)), observe for instance that for almost every s > 0,
Lro,e-£1(7") = Lio,g (') = Lpwsop{ izt 23 — Limen b — Lpr<op{ Lo+ 2y — i<y
= _{1{7"120} + 1{7‘/<0}}1{r1$t<7”1+%} = _l{T’St}l{SZL(i—'I")}7 (3430)

which, combined with the previous decomposition
1o, 21(t") = Liwz0yLis<riw)y = Liw<oyLs=Lit—u))s

yields
{10.4-210") = 1p.g (") }1pp.e— 27 ()
= ~{Lpcwer<n e my<s<iw)y — L Lw<oy Lz rwy =L} -
As a result,
ds 15 ’ 4 ! i
L —e {1104 21(r") = 1po,g(r )}1[0175*%](“ )X(t - f)
L|t—u| ds s * ds 5
= —1 <u/'<r'< J‘ 7€ZSX t -7)t 1 s 1 ! J‘ 7625X t L)
{0<u/<r'<t} Lit—r| 8% ( L) ('t} Hu! <0} max(L|t—r|,L(t—u’)) S% ( L)

and we can use the estimate (3.32) in Lemma [3.4] to assert that
1 1

ds S 1
541 () =1 "1 . I t— )| < —
J;) a { [0t ](T) [O1t](’r)} [0, L](u )X( L)‘N L max<|t_rl|a’ |t_ul|o¢>’

S
which corresponds to the desired bound.

The bound for the second integral in (3.29) immediately follows from the same arguments, that is from
the combination of (3.30) with (3.32)): we get here that

U e { 14— £1(u) = 1o, (u }x( )‘ ﬁ

As for the third integral in (3.29)), we can write
“ds s o ™ ds s 1 ("ds ., s
UO e x-7) ‘X“)}‘ =% | e (- 1) - g | Senx (t_L)‘

)
< — , Sa+1|Xt_8)

1 (* ds 1 (*F ds 1
S 72 —X(t)|+*J - <

L LJ, s L
which completes the proof of ([3.27]).

The proof of stems from a similar strategy: observe for instance the decomposition, valid for
almost all t,r > 0,

1 (7‘/-{-1)—1 (T’)Zl ot ry—1 ,

[0,t] I [0,¢] {(—T<r/<t—T} {0<r/ <t}

= 1{0<t<L}{1{—L<r’<t—f} — o<} + 1{t>L}{1{—L<r'<0}

— <t<r 1{t_L<r'<t}}
= 1gpen Yirs— Loy Lir<nt—r)y — Lrzrpy Liosr <ty + 1 niry r<ney Lir<oy — 1z nje—vy Lir<oty Lirr<eys
O

which paves the way toward the application of (3.32), just as above.
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Lemma 3.4. Fiz o€ (0,1). For all test-function ¢ : R — R with support in [-K, K] (K = 1) and all
A€ {—1,1}, it holds that

Az gy r
AT ! -«

sup f ——e <p()‘ < lelle + 1€ oK, 3.31
Rt o JR T 7)| S el + ¢l (3.31)

Lz1

and for all0 < By < By <00, L >1,
Bz gy r 1 K=

2 A )| < = 4 39
[ e geliel + Tl (352

Proof. For (3.32)), let us write, with an elementary integrations by parts,
Bz r
S o
JBl re € v (L)
B B
L LBy L1 e (B @ f (D) L [P (),
1\ BY L 1A BY L i\ Jg, rott L WAL Jg, @ L

which, since supp ¢’ < [—K, K], gives

JBszm- (I) <LH L+ el J/ dr +1JKLdT
Blro‘e ('OL NBf‘SDI SDIBITQ+1 LJy, r™

As for (3.31)), it suffices to observe that for every A € [0, 0], one has

11—«

(T 1 K ,
¢ (2)] s gl + g1l

JAdreMT (1) <1 ol Jrldr_;_l Il 1£+ fAdT‘eMr (1)
o 70 ¥ L) S {o<A<1}Pllo ) 7o {Az1} | IPllwc ) 7o L e P I

A
[z

We can then use (3.32) to (uniformly) bound the latter integral and derive (3.31)).

< el + 1iasyy

4. PROOF OF PROPOSITION 23]
4.1. Proof of Proposition
Fix be (1,1) and c€ [0, — 2H). For every n > 1, define Z™) through the formula

1 1 (n)

F(Z{")(\) = l{k?&o}WW‘F(?k J(A).

For every ¢ > 1, one has

]E[Hz(n) Higg] < E[(Zk:@zcde<x>2b|f(zlgn>)(x)|2>q]

1 1 dA dA n n
S klzk (ky Yo—8H=2¢ "~ (kgy0—8H—2¢ J<)\1>41—2b O 4q—2b E[|]:(?§cl))(>‘1)|2 o |]:(?l(<q))(>‘q)|2]

S <Zk: <k>6718H72c JO\;Z:\% E[|‘F( l(cn))(/\)|2q]}l>q S (Zk: <k>6718H72c J<)\;i4/\2b E[|‘7:(?l(cn))()‘)|2]>qv

where we have used the fact that F ( ,(Cn)) (A\) is a Gaussian variable to derive the last inequality.
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Now we can use the basic covariance estimate @ to assert that

X

1

d\
Zk: (kH6—8H-2¢ | (\yi-2b [|]:( ] Z <k>6 8H-2¢ | (\}6-2b () 4 k2)2H 1

< o,

$Z,7,c
i eyt A2

due to ¢ < % — 2H. We have thus checked the first part of (2.4]): namely, for every ¢ > 2,

sup]E[”Z( ||
n=0

n ||X2] <.

We now intend to show that
E[ £ 20| = o0

which, since b, ¢ = 0, will immediately prove the second part of .
Let us start the analysis by writing, along (|1 ,

)

F(LM(ZM)) (V)
1 dA
= kZO 1{k:o}u{k1:k}<kl>ﬂ fd)q Z, (A A1) <)\2§2 (?kl k)(
17

and so

B[|c® 20| = 3 [ XE[lF(e 0z 0
k
> fdA]E[|]-"(£°’(")(Z("))o)(/\)|2]

—M)FEMY ),

]

dXs p~ .

fd)\]E[ kzqgo <k1>1,—4H fd)q Ix()\7>\1) <)\2>2 ‘F(?l(cl))()‘Z _ )\1)]:(?](61))()\2)
X ) (n) 2 o
de Gy 4HJdAIIX(A,A1) <A2§2 [ (@) (A2 = AM)F (@) (A )]‘ — 1™

where we have used Jensen’s inequality to derive the last inequality.

It remains us to prove that
I "=

To this end, we can use the notation of the subsequent Lemma [£.1] to write

D Likp<em 75— JdAlI ) | S22 |
e (ke >3 a Qa)? |k |[*H—2
1 1 d\2
= d)\‘(z | - - )(delzx(,\,h) M()\Q—Al,)\g)>
J kl 1 <k1>3 4H |k1|4H 2 <)\2>2

A
+ 3 Lern delz (W A1) Ri, (e
=, Ty Day?
dXa 2
= |S(n)|2JdA‘Jd)\11X(A,)\1) WM(}\Q_Al,)\2)
2

Ao
> 1eny<zm) 7omq fdklf (A, A1) Ry (A
o (kyy3—4H D)2

fd/\

—2is™)]. UdAUdAlzX(A,,\I)

A2
(A2)?

M(A2 — A1, A2)

dX,

k1#0

> 1{<k1><27L}WJdA (M A1) Do Ry (X5 — A1, X3)

M(A2 — A1, A2) + Ry (A2 — A, )\2)]

2
— A1, A2)

2
— A1, A\2)

|

23

(4.1)
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where we have set

1 1
)=Y"1 " )
%} {k1)=<2 }<k1>3—4H |fey [HH—2

Note that the previous inequality entails in particular

fd)\Ud/\l (A1) f{?; Mg — A1, A2)
_ojsm]. Jd/\ UdAl 17, (A A) |J<‘?§2 M (A —)\1,)\2)|]
[kgofdx T (A, ) |J<if§2 | Ry (X — Xl,XQ)|]. (4.3)

By combining the definition (4.6) and the estimate (4.7) below, it is easy to check that the integral

fdAUdAl IZ (A A1) |f<?§2 |M (A2 — A1, A2) H D de I, (A, ) |J<‘M2 |Rk1()\’2—)\’1,>\’2)|]

2

k1 #0 )\/>2
is finite. Indeed, on the one hand, it holds that
dXs d\1 dXs 1
dA1 | Zy (A Aq) J — AL A)| S J
J il [ s bros x5 | 5255 [ v o
1 d\1 1

S e = o

and on the other hand

d\,
AN} |Z (A A)) |J 2| Ry, (N — AL AS)|
kl;ﬁoj (Ap)?

dN dM}
< > |dy J | Rk, (N = AL )| S D) de J 2| Ri, (ML) < D
k1 ;eof Ap)? k170 Ap)? k1#0
where we have used (4.7)).
We can thus rephrase (4.3)) as

(n) > (n))2 _ ) — jgm2|,. _ ‘1
]I = Co |S | C1 |S | |S | |:Co |S(")|:|’

|k |4H 2e ™~ 1’

where ¢; = 0 is a finite constant and

o ?
o :=fd)\‘fd>\17:x()\,>\1) WM()‘Q_M’)‘Q) :

"% w0, and therefore, based on (4.4), it only remains us to guarantee that c¢o > 0.

Observe that S™
To this end, write

dAs 2
Co = d/\ d)\llx()\,)\l) 7M(/\2 —>\1,)\2)

(A2)?
2
- chA‘Jdtemx(t)fdAl Z(\1) <AA§2J X(5)22° (A2 — A1)E5 (M)
- cfdtx(t)Q ds x(s)? <‘Q§2 (Jd)\l Z(M)E (Ao — )\1)>ES()\2)2.

Then

Jd)\l Ei(A)E7 (A2 — A1) JdTX 0,¢(7) Jdv X(v)1[0,01(5) JdM erherha=A)

= JdUX v O t] ) [0,v] (8)6“1)\27
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which yields

2

co = Cfdtx(t)z

=c f dt x(t)?

where we have used the classical identity

dSX(S)zl[dTX(T)l[O,r](S)l[dvx(v)Ql[O’t](v)l 0.01(5) <‘i/2\§2 )

ds x(s)? f dr x(r) 11 (5) f do X010 (0) 10y ()e~ |

dA —\t -t
</\>2€ —ce Ml

Finally, since x = 0 and x =1 on [—1, 1], we obtain that

1
CJ dt x(t)
0
1
CJ dt
0

2

ROCARET >1[o,r]<s>f Ao (). (0) o ) (5)e 7

ds > 0,

er’ dve " ”l

as desired.

4.2. Auxiliary lemma.

The following decomposition result has been used in the proof of Proposition [2.3}

Lemma 4.1. In the setting of Proposition[2.5, one has for every (ki,k}) # (0,0),

1
[ (? )( )F (?k/ ) (X )] = 1{k1k’1}1{<k1>$2"}|:|k1|4HgM(>‘a/\/)+Rk1(/\7)‘/) ; (4.5)
where, using the notation introduced in (3.4), we have set
MN) = cJ dsx(s)2Z5(N)ZEs(N) (4.6)
R

for some constant ¢ > 0, and the function R is such that for all k1 # 0 and € > 0,

dMo 1
fd)q J< ) |Rk1 )\1,)\2 | S WT% (47)

Proof. Recall that by (3.3), one has

E[‘F(?/(f?))()‘)‘}-(?]i?))()‘l)] = C]‘{k‘l k’}1{<k1><2" J |§|2H 1 ()‘7 _g - k%)IX()‘I7 _5 - k%)7
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and thus
E[f(?,i?)(»f(?,i@)w)] = ¢ L iy Lighay<en)
j |§|2H ; [Larerx fRdse““kf”x(s)l[o,t](s) j d =N (¢ )j ds’ e DY ()10, 00()

R
d —1 2 S —S
= Cl{klzka}1{<k1>szn}f %J d5f ds' e T
R |§| R R
[x<s>x<s') |t [ ar e >1[o,t/]<s'>]
d Ceari
= 01{k1=k3}1{<k1>szn}f %J dr 7"+
r €] R
UR ds x(s)x(s + ) fR dt e x ()10, (s f dt’ e x (¢') 1, tq(sw)]

d§
= 1wy Lcny<amy J’R mzﬁf(flw) (€+k)

3
= L=kl | e gepa Y () ©), (4.8)
r 1€ — kil

where we have set

A= [ dsxonts+0) |

dt ezAtX(t)l[O,t](s) lf dt’ g*z)\/tlx(t/)]_[oﬂy](s + 7’).
R R

With this notation, let us define
M()\, )\I) = Cf df]:(A)\,)\/)(g) = CA)\’,\/(O)
R

and
, 1 1
Rkl ()\7A ) = J df |:|€ k2|2H 1 - |k%|2H1:|]:(A)\,)\')(£)?

which, going back to (4.8)), yields the decomposition (4 .

In order to check (4.7)), let us write

1

1
R, (M) < dg‘ -
| K ( )| . |6 — K22H-T  |22H-1

|7 (Ax ) (©)]

1

+ dg‘ -
12— RFPHTL O [RFPH

|7 (Axx) ()] (4.9)

On the one hand, for every £ € (—o0, $k%), one has | — k7| > £k7, and so

‘ 1 1 1 1 ° 1 T
|€ = RFPH=T RZPHAL TS = RFPHAL JRPPE |6 — RPHST R PHAL

S k2| CH-D)e |g22H(1—2) € S Yy [ 260

which entails

1

1
d _
g‘m—kﬂw—l G

|]:(A,\,,\')(§)| N WTQE JR dg |§|17€|-7'—(A>\,,\')(f)|' (4.10)

On the other hand,

1
df‘ —
N R e e

[F(Axa)(©)

. * 1
(4.11)
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By injecting (4.10)) and ( into , we obtain that

*© 1
|Ri, (X, N)] < % df €1V |F (Aan ) ()] + ka4 | dg T =1 ! |7 (Axn) (K16
|1 | 1 1€ — 1
(4.12)

In order to estimate F (A, ) in the above integrals, observe that

Ay (r) = j ds x(s)x(s +7) j ERNOITG j at X X ()11 (5 + 1)

fds[ r—sfdt’ SNty Ot](r—s” fdtem L1o,41(—5)

= (fy=agx)(r),
with
I (s) == x(s) JR dt'ef“\ltlx(t')l[o,t/](s) and  gx(s) := x(—s) JR dt e“\tx(t)l[w](—s).

As a result,

|7 (Ax ) (O] S |F (A1) ]| F (92) (©))-

Then it is readily checked that

[F () ©] =

J dse " x( f dt’ e N X (') 110,07 (5)

-| [t e >j ds e x(s)

0

< 1t
TANE+N)

In the same way,

1 1
|~7:(9)\)(§)| < @ma

which yields

1 1 1
|.7:(A,\,>\')(f)| < @WWW
Therefore
. 1 |§|1—5
Jo PR O = s [ e
while

1
A'>J dg‘vs AT~ ‘<A+k2§><X+k2£>

x 1
L dg ‘K_HQH_l - 1‘|}_(A>\,,\')(k%5)| < =

Going back to (4.12)), we obtain the estimate

1 1 |€|1 € H 1
S<><N>[|k:1|4H = | ey Il d5‘|§ PR~ ‘<A+k2£><>\’ st
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Once endowed with this bound, the derivation of (4.7) easily follows. Namely, for k1 # 0,

1 1—e
j i [ 22 1R ()] < dhi A, f de L

(A2)? |Ep #1722 ) () ) (e)? <§ + )\1><§ + A2)
. Xy dAQ - g‘ - ‘ 1
|k [H=4 ) ) ) (2)? )y € — 1|2H ! A1+ k3 o + K6
1 Cofda 1 Ay 1
S Az fR A oWt vl o wers v
1 » 1 dM 1 ds 1
* |k i f ®le=iprT - U Oy Ou 1526 | Doyl O + 126

e
|k1|4H f € or5 T pn1 |, dﬁ‘m A1 ‘<k25>26

SIS
s |k1|4H*2€ U R +f €<

1 < 1
|¢ —12H-1 -1 = |y |1 22

5. PROOF OF PROPOSITION [2.4]
5.1. Notation.

As a preliminary observation, note that due to (3.3), the covariance of the kernel K™ satisfies

IE[(IC)((”)) kky (A, A1) (’Cgcn)) k'K, (N, >"1)]
= Lk 20y Liky 2ky Lik, 2k}

Jd/\szg T Qs + M = M) TV, Qo + A, — N)E [ @ k)(Az)f(?,ﬁtf[k,)(A;)]

= 1{/@14:;@;%'}1*3[(’@(”))%1 (A, Al)(IC;"))k,k,l()\’, )\'1)]~ (5.1)

For future reference, let us also rephrase the above expression (when k = k', k1 = k}) using (3.3),
which gives

E[(K07) g, W AD () ., (V2D

= Loy Lin, 213

JdAzd)\'z T (A Qg —k + A1 — A2) T (N, Qg gy -1 + A) — Xz)E[f(?l(e?)—k)()‘2)-7(?/(@711)—}’@)()‘/2)]

dg
= L0} Liy 2y L(Chy — y<2n) I[R EEAT Ay (s M) AG (R, A, (5.2)

where we have set

AS (kM) = [ A T Qi -k + At — M) T (Mo, —€ — (k1 — k)2).
(k.\)

5.2. Proof of Proposition

We fix b, c € (0,1) such that b — ¢ < i and consider the related quantity PISZ) in (2.5)). Using Jensen’s
inequality, we immediately obtain that
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E[P;]

B i Y
> an (k12 + A k2o + N [

k1,k)€Z

]

2

3 [ A 0 (), M) KT) g 0N
keZ

AN}
Z fz <k1>2c + <>\1>2b CRIY2e 1+ (N y2b

k1,k\€Z
(n)

=Py

3 [ an i+ ™y B[ 06, 0 () 0|

keZ

Then, thanks to (5.1)), we can assert that

() d\ Y 2

mb,c = klZE:Z Rz (k126 + )20 (ke H2e + (X))

d\1 dN) , . .
3w o <k1>2c+<xg>2b,€,€2,df PN + WEHEE + Q)

B 061, O (), 000 [ (07,1, O 2 (), 00,30 |

J d)\{<k‘>20+<)\>2b}E|:(K(n))kk ()\ /\1)(ICX ) kl()\’/\ll):l

keZ

which, combined with (5.2), yields that

D Y B O e L R R I Y TR TRy

k0 Fag (R )
dh N, de —_—
Jo s o ), o = g L g A G AR G X0

e
f &2~ e A (kl’)‘l)A(k' (k1 A)

= 3 [N B DU OO T Ly L ayen
k20 kg {k.k)

de de’ J d\ ——
ki, A (k1 A1)
Jo e Jy | g A et A A e )
As a result,
Pyl = D0 Y Lgh <o
k#0 k1#k
de de! A\ 1
fR? dXd) JR e fR T JR TS+ Oy (k )\)(kla)\l)A(k /\/)(kla)\l)
d\ X
S
/§0< ) kék {Cki—k)y<2n} r k)2¢ + D2 g (ke y2e + )P
— dé‘/ —_—_— /
“ T d/\Ak/\)(kzl,/\l)A(k NCRY ]U e IJdA’Afk A,)(k:l,Al)Af,c’A,)(lﬂ,A’l)]

d\ d\
> Syt Y1 ,\nf f i
,§0 Z¢ Wn=ko<2d e Gey2e + Oyt S Ckip2e + 2
2

dg o
RffR AN A (R, A A ) (R M|
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In turn, this entails that

DR S ks d\ 2%+ 5 d\,
k C
& f okt k=12 + (M) L%,; (ke = 1)%e + ()%

2<kg2n
2
3
|2H P ] Ay (k-1 )AL (k= 1,0)

<k>4c —2k+3 —2k+1 , g ¢ 12
22, T |y M)y P g f P A (B 1A A (= 1)

Chy*e dg ¢ ; ’

D <k>4c+<k>4bj d/\lf X JRWJRCZAA(M@—LM —2k) A, (k= 1, X = 2k)| .

2<k<2n 2

(5.3)

At this point, observe that due to €2, _1 = 2k, one has in fact
Afk)/\)(k -1, —2k) = Jd/\2ZX(/\,Qk,_1 + A =2k — X)), (Ao, —€ — 1)

Jd/\z (WAL — AT Oay—E = 1) = B(E, A M),

and therefore, going back to (5.3)), we deduce that

Wz (3 <k>4§’“i4§k>4b>(ﬁ ™ ﬁ; dxl

2<k<2n

y

Recall now that b —c < i Thus, in order to ensure that ‘}317 . "5 o0, we only need to guarantee that

f d)\lf X,
-

To this end, observe for instance that for (A1, A]) = (0,0),

d _
fR |§|21§—1 J;R dA B(f,)\7)\1)B(€7>\7>\/1)

2

d -
wag_l Rd)\B(g,)\,)\l)B(@)\,)\’l) > 0. (5.4)

J |§|2H 1 d)\B(f A, 0)B (5 A, 0) J |£|2H - d/\|B(§,)\70)|27
and then, for (&, \) = (—1,0),

B(~1,0,0) = JdAQIX(O,—)\g)IX()\Q,O)

- J e < JR dt (1) JO s eMst(s)> ( JR dt’ 2t y(#') f ds’x(s'))

~[Laxo [ s x(s)x(—9) [ = [Lan | t dsx(o)” [ asx(s) > 0

0
where we have used the fact that x is symmetric and x =1 on [—1,1].

For obvious continuity reasons, we deduce that (5.4]) is satisfied, and accordingly one has

(n) n>x
mb,c 0

)

as desired.
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6. APPENDIX
6.1. Proof of Lemma item (7).

We know that the linear solution ¥ is explicitly given by the convolution formula

(t) = f t e A9 B(),

0
and hence, using the notation introduced in (1.8)),

190 en) = 2, Eflmacor
:ZLTE[ ]dt ZJ stj ds’e— [ﬁt Sﬁts]
(k)

Recall that the fractional covariance is given by ]E[ﬂs [3 : ] =

, 671k2s s") T pt t—s ezk2T
I:H‘I/HLQ 0,7} ><’J1‘ Z ds ds |s — /2 Z ds . dr |r[2—2H
ts zk'r
‘Zf JdJ o 2H+ZJ fdf "
7zkr ZkT
—ZJ fdsl[ dr||2 ST ,[ fdsf dr||2 ST
cos( k:2
_2ZJ stj =20
ks cos(r
_QJ fdsf i 2H+22|k|4H 2f fdsj " e—2H 2H
k20

k2s
COS
cre2 X o [ o a0 (6.1

k#0

t
—1k?s 5 (k)
e Btfs

0

|s — s'|2H =2 which gives

Now observe that

K COb
|k|4H 2 ds "= 2H
| TR 2f ,[ f y2—2H i k|4 = zf J ds
<= k£0: |k\>

1 ks cos(r)
S Z |k|4H—2 |k|4H 2] J ds J dr :

r2—2H

k#0

fks T’M

7“2_2H

(6.2)

Then
ds H g costr)
|4H 2 cRey7;
k#£0: \k|> %
k2s
cos(r)
k¢0|k‘>l R 2f J J 2—2H k¢0|k\>1 |k [4H- zf f [f - 2H+U1 drr2_2H]
>L
1 ks cos(r)
SZW RS 2f J ds J dr 5w (6.3)

k#0
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and for every s > k%, we can use an integration-by-parts argument to derive that

k?s k?s . I56)
cos(r) | sin(r )| dr
L dr r2—2H s+ L dr p3—2H ~ s+ NREET

Injecting (6.2] , and (| into , we can conclude that

E[H‘I’Hm([o,ﬂxqr)] s+ I;()Wﬁ < %o,

—
—
o
=~
S~—

due to the assumption H > %.

6.2. Estimate of the product-operator norm. We gather here a few elements to justify our consid-
eration of the quantity P,SZ) in (2.5) as an estimate of the operator norm Hﬁﬁ’(”) ”Xg—»)(g'
6.2.1. General operator estimates in Besov spaces. Given a general kernel K € L?(R? x R?), define the
operator Lx : L*(R?) — £2(R?) by

FExf)O = [ anKOAENN). AeR? (6.5)

For each b = (by,...,bq), consider the anisotropic Besov space H% on R? related to the Fourier multiplier

Oy = (gw%i)%

If K has no specific a priori structure, then we are essentially confined to very general transformations
toward the operator norm of L (from H% to HY): namely,
2

Jacflw = [ AOR| [ KOANENN)

2

_ jdA o f A KO (Oo(FH ) (6.6)

- [ anax <Ai>b<A f A Xy KO MK, A')][<<A1>b(ff)(m>)(<x WEN)]
<( <iT><iA> J rovi O RO ) |1

which provides us with the general bound

d\; dN, 2

O V2 (6.7)

j IOV KO AR A

HEKHHE*)HQ’ < Péél’ where Pg,@' =

Remark 6.1. The operator norm ”‘CK”HEHHE’ can be more basically - but less sharply - bounded by the

Hilbert-Schmidt norm of L, that is the quantity

1 d\ 3
0}, - < Jarovs Ql;gmx,mf) ,

as it can be seen from a straightforward application of Cauchy-Schwarz inequality in .

1 1
A classical example where the three quantities HE KHHE Pﬁb’ and Qéy can be compared is given

—)Hél )
by the elementary kernel K (t,s) := 1jo<s<i<iy i L?(R), or more exactly by the integration operator

LFE) = 1.1 f £(s)ds
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In this case, it can be checked that

2
z ~ 0.707.
T

1 1\ % 1 1
~0.637, Pg, = (6) <0639, and Qf = 5

1€l 12002 =

6.2.2. Example: Young integration as random operator. As an additional justification of our focus on
P et us consider the (well-known) case of the fractional integration operator.

Thus, consider a fractional noise B on R with index H € (0,1), as well as a smooth approximation
B given for instance by

BO(t) = f T (dg), (6.8)
{l€l<2n}

where W stands for the Fourier transform of a Wiener process W on R.

Then define the (local) fractional integration operator in a standard way: for any regular z : R - R
and t € R,

t
(L2) () = x () J ds x(5)=(s)B™ (s), (6.9)
0
where x : R — R only stands for a smooth localizing cut-off function.

In Fourier mode, the operator £(™) can easily be written along the pattern of (6.5), that is as
F(L£M™z)(\) = Jd)\l K™\ M) (F2)(\),

for some unique kernel K (™. Setting

| 2

Jof50 = [ irw®i7 ()

and applying (6.7)), we deduce that

2

d\y  dX O
() . 1 1 Jd/\<>\>2bK(n)(/\7)\I)K(n)()\,,\’l). (6.10)

(n)y1 : _
P,)E,  with Py = DO O

£ <

Focusing exclusively on this explicit quantity Plgn) allows us to recover the classical “Young” dichotomy
of fractional integration theory.

Proposition 6.2. In the above setting, the following picture holds true:

(i) If H > 4, then for every be (3, H), one has

Sljlp E[”Plgn)] < oo.

(i4) If H = %, then for every b€ R, one has

For the sake of conciseness, we prefer to leave the proof of this assertion as an exercise to the reader.
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