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This paper attempts to provide a unified description of the laws of physics. In the first section, a novel category of complex numbers, the so-called ai-complex numbers, is presented. These numbers are particularly useful for describing mass and charge in the form of a single complex quantity. If one combines mass and charge in this new ai-complex quantity, space and all space-dependent vector quantities can be described in the form of ai-complex biquaternions. For the description of vector quantities, a reduced complex biquaternion is needed. Following this method, a very elegant, consistent, and concise formulation of the well-known laws of physics can be written. In this formulation, the theory of relativity follows directly when ct is defined as a further, fourth dimension. The laws of electrodynamics, the laws of mechanics and the laws of quantum theory also follow.

Furthermore, the laws of electrodynamics and the laws of gravitation can be condensed. In this case, for the description of the condensed fields, the full ai-complex biquaternion is needed. An interesting possibility for the description of nuclear energy also follows from introducing the new physical quantity constructed from mass and charge.

INTRODUCTION

The amazing thing about deducing the various physical laws, as proposed here, is that all well-known physical formulas follow directly ab initio from the definitions of the physical quantities. These definitions are given solely based on ai-complex biquaternion notation and certain mathematical transformations, without the need of additional assumptions.

Therefore, the ai biquaternion of a vector physical quantity such as velocity, which is independent of mass and charge, need only be written down, and then, the following four definitions must be taken into account: 0, 0, 0, 0 ct aii aij and aik     .

This means that the ai-imaginary parts of all space-dependent vector physical quantities are not realized, except for time, which is a purely ai-imaginary quantity; mass and charge, which form a united ai-complex quantity; and all mass-and/or charge-dependent condensed fields.

By this definition, the four-velocity follows in the correct form because time is represented through t ai ct   .

The basic formulas of relativity then follow from calculating the magnitude of the resulting four-vector. On the other hand, the scalar real component is zero for all complex biquaternions. This means that time is a purely ai-imaginary quantity. The real part of time is zero. Subsequently, only purely mathematical transformations must be made for all physical laws to follow. In the case of deducing the laws of quantum theory, the definitions of the impulse operator and the energy operator must be taken into account. These two operators show that impulse and energy are oscillating functions of time. These are the only additional assumptions necessary to deduce all important physical laws known to date.

Introduction of the ai-Complex Numbers

The existence of imaginary or complex quantities in the physical world may not initially be accepted by many readers. They may deny the existence of imaginary and/or complex objects in reality. These numbers cannot exist in reality, only in imagination; such is the opinion of many physicists and mathematicians.

However, the axioms of algebra that are used today require the definition of imaginary and complex numbers to manage certain operations. When a different type of algebra is defined, in which the axiom 'minus times minus equals plus' is no longer valid but in which the axiom 'minus times minus equals minus' is valid, these apparent contradictions dissolve. In this new algebra, a definition of imaginary or complex elements is no longer necessary. Therefore, in this new algebra, it is not necessary to introduce imaginary or complex numbers. It is important to recognize that classifying a number as imaginary or complex is part of human nature. Such designations are a matter of human nature and/or opinion. Mathematicians had difficulty conceptualizing these numbers in the early days following the introduction of these numbers. Therefore, the mathematicians selected these names ("imaginary") and/or designations to codify their difficulty in thinking about these numbers. By the same token, there are, for example, also 'transcendental' and 'irrational' numbers. All of these designations refer not to the physical existence or non-existence of these numbers but rather to the mental difficulties their discoverers encountered when thinking about these numbers.

Furthermore, there are two additional important advantages to changing the axiom "minus times minus equals plus" to the axiom "minus times minus equals minus."

First, this new definition increases the clarity of solutions of equations within the new algebra.

-6 -For example, the square function becomes a clear function and is no longer only a relation. Likewise, the square-root relation becomes a function. Thus, in every case, only one solution exists. The second major advantage of the new algebra using the axiom "minus times minus equals minus" is that no complex numbers are necessary. Again, these complex numbers contain inherent ambiguities and several solutions. For example, in conventional algebra, a complex number and its conjugate complex number are usually both solutions of the same equation at the same time. However, in this new algebra, the periods () ni e  of complex solutions disappear.

Different Types of Negative Numbers

On the one hand, it is possible to define a new algebra under the assumption of the axiom

      1 1 1 x     .
Here, this new algebra is called (-1)-algebra. Therefore, in this new algebra, the root of a negative number is given by a negative number, so the square root of a negative number can be defined without any difficulty. In addition, in the well-known ialgebra, the square root of a negative number can also be defined as an imaginary number. In this case, this problematic expression is carried throughout the entire calculation in the form of the so-called imaginary unit i. When these two types of algebra are compared to each other, it can be seen that they each have different types of non-positive numbers. It seems as though all three numbers [(+i), (-i), (-1)] are different types of non-positive numbers.

Def: 22 1 ai ai ai    ; ai ai  2 , where 0 ai  (1)
In this way, ai is defined as the negative number, which, when multiplied with itself, -7 -reproduces itself exactly. By means of the definition of the number ai, the new (-1)-algebra can be integrated into the well-known i-algebra. With the number ai, a new type of negative number is defined here, as a new number has also been introduced previously with the number (i); thus, a third form is added to the two forms of non-positive numbers that are already known: (-1) and (i). The special property of ai is that ai is negative, yet multiplication with itself exactly reproduces ai, exactly as the positive number (+1) does. Therefore, there is a high degree of symmetry between the well-known positive numbers and the ai-negative numbers regarding multiplication with their own algebraic sign and regarding multiplication with other numbers of the same algebraic sign (+1 and/or ai). While the numbers (i) and (-i) lie orthogonal to (+1) and (-1) the new number (ai) lies parallel to (-1) and is therefore a new type of a negative number. The use of and calculation with negative numbers of the ai form can take place in exactly the same manner as calculations with imaginary numbers are done.

Analogously to complex numbers ( 2 , , 1 a b i        ), split-complex numbers (hyperbolic numbers, 2 , 1, 1 ab      
) and dual numbers ( 2 ,0 ab   ) here so called "ai-complex numbers" ( 2 ,, a b ai

      
) can be defined. Thereby these ai-complex numbers with the component ai, are linear combined numbers with a real component and an ai component.

Hyperbolic numbers are well known to be useful for the description of Minkowski metric and for the description of special relativity. The algebraic group of ai-complex numbers is thought to be isomorph to the conjugate hyperbolic numbers 2 ( , 1, 1)

ab       . Conjugation of ai-
complex numbers is done in the same way as for complex numbers ( 2 ,, a b ai

       ).
Further more the ai-complex numbers can be balanced directly with the real part at the end of a calculation, meaning that the ai part is subtracted from the real part. This is a novel aspect of ai-imaginary numbers if compared to imaginary numbers. Here, such an accounting of the -8 -imaginary with the real part is only possible if the imaginary part is first squared. On the other hand, one must ensure that (-1) and ai are not interchanged during the calculation. Instead, ai must be treated completely analogously to i during calculations and must be carried throughout the calculation. Conjugation of ai-complex numbers is defined here absolutely analogously to the conjugation of normal complex numbers

y ai x z ) ( *  
. A solution using

 

1 ai  and, thus, the accounting of ai-negative numbers with the positive real part must be applied only at the end of the calculation; it must be the last step. In this way, it can be guaranteed that the special characteristic of ai of being a unique negative number, whose square is identical to itself and which is not (-1), remains until the end of the calculation. 

The special property of ai is that it is negative, yet multiplication of ai with itself reproduces exactly the same number again, as multiplication of +1 with +1 does. The use of and calculation with negative numbers of the ai form can therefore take place in exactly the same way as for imaginary numbers. It must be stated that the arithmetic rule    

1 1 ) ( 1 x    
requires an axiom and, therefore, a definition. There might be good reasons underlying this definition, but it remains an axiomatic definition. There are also good reasons underlying the introduction of the sign or unit ai, a negative number that reproduces itself when multiplied by itself: ai ai ai  , 1 ai  and 0 ai  . Similar to the sign and/or the unit (i), ai must be carried throughout the entire calculation. By doing so, one ensures that the defined properties of ai remain, which is the principle of the calculation with ai in the ai-calculus; this aicalculus retains the characteristic of ai. If an early transformation of ai into (-1) is applied, ai loses its peculiarities and characteristics.

-9 -In addition to the i-complex numbers, there is a further category of complex numbers that can be defined, which are described here as the so-called ai-complex numbers. For almost all arithmetic rules, both types of complex numbers (the i-and ai-complex numbers) behave absolutely identically to a large extent, up to the point at which i-complex numbers "at the end" of a calculation remain complex numbers, whereas ai-complex numbers "at the end" of a calculation become real numbers.

By introducing a new ai-complex number that consists of mass and charge, it is possible to summarize Newton's law of gravitation and Coulomb's law of electrostatics into one new unified force law. Mass and charge become a single ai-complex quantity. Furthermore, with the introduction of this new quantity, all space-dependent quantities, such as positions, fields, potentials, and forces, as well as all vector quantities, such as directions, velocities, and accelerations, can be described very well as ai-complex biquaternions, which are very similar to the well-known Hamiltonian quaternions. From a historical viewpoint, all of these quantities were first described as Hamiltonian quaternions. The entire formulation becomes particularly elegant if the usual Hamiltonian quaternions are replaced with the newly defined ai-complex biquaternions for the description of physical laws, as shown here.

Furthermore, in the description of electrodynamics using these ai-complex biquaternions, the real scalar part becomes zero, which corresponds to the law of conservation of electrical charge or, more precisely, the equation of continuity. On the other hand, the ai-imaginary vector part of the ai-complex biquaternions also must be defined as zero. It seems that space, along with space-dependent quantities, can be described very well using ai-complex biquaternions, whereas in this space, mass and charge are two components of a single ai-

complex quantity of the form   , a z bq mai bq m    (2) 
Furthermore, an intensive interaction seems to exist between ai-complex space and this aicomplex quantity that consists of mass and charge. Thus, mass and charge correspond to appropriate spatial coordinates. Herein, it is assumed that the real part of space and the aicomplex part of space lie within one another. Thus, as shown in the following, for the derivation of the equations of electrodynamics, it is assumed and/or approximated that the electrostatic potential affects the charge alone. Thus, the ai-complex quantity of mass and charge is reduced to the charge alone in these cases for the derivation of the well-known laws of electrodynamics. The influence of mass is neglected in these cases. Similarly, for the derivation of the equations of mechanics and kinetics, it is assumed and/or approximated that the charge is zero and has no influence on the derivation of the well-known laws of mechanics. Thus, the ai-complex quantity is reduced to the mass alone in this case. Using this principle as the foundation, the possibility arises that there may be further interactions between mass and charge. These new equations may be found if the abovementioned approximations are not made, but rather the entire ai-complex mass-charge quantity is inserted into the appropriate equations. To date, interactions between mass and charge, if there are any, have been described purely qualitatively in physics and are subsumed under the terms "influence," "induction," and/or "polarization" effects. Because all these effects are actually physically observable, however, an interpretation of these effects as mass-charge interactions appears to be possible.

In a later section, it is pointed out that when the existence of a mass-charge interaction is assumed within the field of nuclear physics, a meaningful and beautiful description of the nuclear binding energy and, with it, of nuclear physics is possible. This description might be regarded as a hint or supporting evidence that such an interaction between mass and charge as is given by the following equations might actually exist. Regarding the standardization and unification of physics, the following equations appear to be particularly important because they make it possible, for the first time, to completely unify various disparate fields of physics: the theory of relativity, the theory of electrodynamics, and quantum theory. All of these theories can be derived as conclusions from a single beginning. Simultaneously, it can be understood why the straightforward mathematical form used here with the so-called aicomplex biquaternions is so successful in describing physical processes. Mass and charge are considered to be two components of one single ai-complex quantity because they exhibit correspondences with spatial coordinates in the form of an ai-complex biquaternion space.

Mass and charge interact with and "stretch" this space, to a certain extent.

When Maxwell's theory of electrodynamics was first emerging, the quaternion notation was often used, but it was ultimately replaced in nearly all equations with what is now called vector notation. If the founders of electrodynamics had used quaternions more consistently, considering their most important characteristic of four-dimensionality, then relativity would most likely have been introduced somewhat earlier than Einstein's work.

While formula 1 and formula 2 give the definition of the newly proposed ai-calculus, formulas 3 to 6 describe the familiar calculation with quaternions, here extended on time in equation 7. Formula 8 give the definition of ai-complex biquaternions and formula 9 gives the proceeding for calculations with time.

-12 -Definition of ai complex quaternions

(3) (4)

(5)

(end of calc.) (9)

Formulas 3 -9

These formulas give the definitions of the newly proposed ai-calculus and the calculus with ai-complex numbers and ai-complex biquaternions.
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Theory of Relativity and Theory of Electrodynamics

The equations of Voigt, Lorentz and Einstein for both the theories of relativity and electrodynamics follow very nicely from the ansatz of the ai-complex biquaternions for space and/or the potential and/or the electric current. Because the equations of quantum mechanics also result from the additional substitution of energy and impulse with their operators, as shown below, this formulation comes together very nicely. Thus, a new form of quaternion notation is introduced here and will be examined in the following sections to describe the basis of electrodynamics. From this beginning, a set of extended Maxwell equations follow, and the classical Lorentz condition in the well-known form also results. Moreover, as mentioned above, quaternions can also be used very effectively for the description of quantum mechanics and for the description of other disciplines of physics. One of the largest and most emotional scientific discussions of the late nineteenth century was the discussion regarding the mathematical notation of the equations of electrodynamics [cp. Ref. 1-7].

Today's vector notation was not yet fully developed at that time, and some physicists, including James Clerk Maxwell, were convinced of the benefits of the quaternion notation.

The quaternion notation was invented in 1843 by Sir William Rowan Hamilton. Historically, Peter Guthrie Tait was one of the staunchest defenders of the quaternion notation, whereas Oliver Heaviside and Josiah Gibbs independently decided that the use of only a part of the quaternion rather than the entire quaternion would be better suited to their computations. As a result, they went on to develop what is now known as three-dimensional vector algebra.

Before the era of Einstein, nearly all computations were accomplished using this threedimensional vector algebra alone.

-14 -After Einstein, a four-dimensional form of vector algebra was introduced, although this formulation was unnecessary because a four-dimensional notation had already been formulated by Hamilton using quaternions. The common quaternion is already a fourdimensional number. Einstein introduced four-dimensional "space-time" into physics. To use the quaternion for the originally three-dimensional electrodynamics, Maxwell, Hamilton and Tait appended the indicator "S" before the scalar part of the quaternion in their calculations and placed the indicator "V" before the vector part; this same notation is also used here. This notation was also used by Maxwell for all of his equations in the papers that he published.

However, with the application of these prefixes, most of the advantages of quaternions are lost. Thus, Maxwell did not truly use quaternions for his computations; he only presented the final results in quaternion form. His approach corresponds, instead, to a calculation using scalars and vectors, as is done today. In general, a quaternion has a scalar part and a vector part. "A" is the scalar part, and "bi + cj + dk" is the vector part, of the Hamiltonian quaternion Q = A + bi + cj + dk. Thus, in this quaternion, A, b, c, and d are real numbers, and i, j, and k are the well-known Hamiltonian units, all of which square to (-1).

Furthermore, these units satisfy the Hamilton equations. The absolute value of the quaternion in four-dimensional space is defined as the absolute value of the usual complex numbers.

Analogously, the introduction of a conjugated quaternion can be accomplished by using the absolute value of a given quaternion. The four-dimensional quaternion is highly suitable for the representation of an event in four-dimensional vector space. An extension of quaternions towards eight-dimensional numbers can easily be achieved if the variables A, B, C, and D, which are commonly used to characterize the components of a Hamiltonian quaternion, are not real but rather are ai-complex numbers.

-15 -An ai-complex quaternion can then be written as

        Q A iaA B iaB i C iaC j D iaD k         . An ai-complex biquaternion is a hyper-complex number.
This number differs from the octonions, which are well known from Lie algebra, because the known Hamiltonian units i, j, and k are used and no additional units must be added.

Therefore, an ai-complex biquaternion is an eight-fold number that consists of two numbers because it is composed of the four-dimensional space of the Hamiltonian quaternion and the two-dimensional space of the ai-complex number. The ai-complex biquaternion Q can be divided into two sub-spaces. In investigations of this eight-fold number, it was found that using the real term offers a very compact and elegant description of the laws of electrodynamics.

The usage of complex quaternions to describe relativity has already been done by Rastall et al. [Ref. 8]. However, the authors were unclear why these numbers are particularly well suited for the description of relativity.

The algebraic unit vectors in three-dimensional space are usually written in boldface with i, j, and k; the Hamiltonian units i, j, and k are usually written in italics, and the imaginary unit i is usually written in normal script [Ref. 9]. The following definitions should be assumed to always refer to the ai-complex quaternion. The nabla operator used for quaternions is given by formula 10, the quaternion Laplace operator is given by formula 11, the total time differential is given by formula 12, and the absolute magnitude of the entire quaternion is given by formulas 5 and 7.

-16 -Definition of operators ( 10) (11) (12)

For the potential (x) we get following ai-bicomplex quaternion

with two substitutions, we get for the ai-bicomplex quaternions E and B and ( 14)

(15) at and ( 16) 

1 2 3 ai i j k c t x x x              2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 3 1 ai c t x x x c t                       V dt d 1 2 3 1 3 2 2 1 2 3 1 2 3 2 1 3 3 2 1 2 3 1 3 1 2 11 () 1 ai xi c t x x x c t c x x x ai ai ai jk c t c x x x c t c x x x                                                                 t E             B 1 1 2 2 3 3 2 1 ai ai ai E B i E B j E B k c t c c c                                            0 1 2        t c  0  E -17 -
(20) (21) (22) (23) 1 2 3 1 3 2 1 2 3 1 2 3 2 1 3 3 2 1 2 3 1 3 1 2 1 () 1 I I I I I I I x aic i t x x x c t x x x ai I I I I I I aic j aic k c t x x x c t x x x                                                                 t I c G        2 I C    1 1 2 2 3 3 ai ai ai I I G C i G C j G C k t c c c                                             2 1 . q v V F vp z E v B v A ai cB E c t c                             2 1 . q v V F vp q E v B v A ai cB E c t c                             B v E q F q     E c v B    2 -18 - (24) (25) (26) with (27) (28) (29) (30) (31) (32) 0       E t B I                          t c t E 2 1          D E I t c t E c B                        2 2 1 1 I t E c B         2 1 0     B 2 1 . ai S B E c t c t                          22 11 . E ai B V B E c t c t c t                                   -19 - (33) (34) (35) (19) 
With the operators and (36)

(37) (38) (39) h E aic t    h p ai x    0 1 2 2 2 2 2 2         h c m t c 0 ) 1 ( 3 2 1                   mc t c k x j x i x h 0 1 2 3 0 1 2 3 0 hh mc c t ai x x x                     22 11 E BI c t c t                     0 B E t        2 1 E t c t                   0     B -20 - (40) (41) (42)
As a conclusion or definition for all electrodynamic vectorial physical quantities, exept for  and D, which form full ai-complex (43) biquaternions. These ai components can be used for the integration of gravitation.

E  with (full ai-complex biquaternions) (44) B  D, with (45) 
Formulas 1 -45

These formulas allow the derivation of the various physical laws and of the various fields of physics. The first set of formulas describes the deduction of the theory of relativity, and the second set of formulas describes the deduction of electrodynamics.
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The Theory of Special Relativity Follows Naturally and Organically

Quaternions in four-dimensional space-time very cleanly result from the definitions and representations given above. Four-dimensional space-time can thus be interpreted as a representation of curved four-dimensional Minkowski space. The velocity of light, however, is based on special relativity invariant with respect to the inertial system. This statement is also valid for the velocity of light as given by the ai-complex biquaternions used here. All phenomena that are well known from relativity, such as the phenomena of length contraction and time dilation, arise very simply and logically from the quaternions given here when ct is considered as an additional coordinate or dimension. Division by c results in a further invariant quantity that represents time dilation, which is also a well-known phenomenon in relativity theory. Furthermore, when the differences in the observations of an event as seen by different observers are considered, the well-known four-velocity form follows and, with it, the laws of relativity. For the definitions of electrodynamics, similar to the definition of velocities, the potential can be defined and added. Analogously, currents must be defined and added.

Then, for the potential, it follows that formula 13 is valid. With the substitutions of formula 14, which allow for a compressed manner of expression, it follows that formula 15 is valid.

According to the definition or conclusion of formula 43, the real scalar part must be equal to zero, and the ai-imaginary vector part also must be equal to zero, which corresponds to the well-known Lorentz condition. Therefore, the Lorentz condition is only valid for E = 0 (formula 16). Otherwise, it is freely selectable. From the definition of the potential field in accordance with the above discussion, for the divergence of the vector potential, it follows that for E = 0, the Lorentz condition holds (formula 16). Likewise, the current density can be -22 -written as in formula 17. Again, two new substitutions can be performed to enable the equations to be written in a compressed format (formula 18). According to the definition, both the real scalar part and the ai-imaginary vector part are equal to zero, which corresponds to the well-known continuity condition (law of conservation of charge) and is given by formula 17. Again, using this formulation, the continuity condition as given by formula 19, similar to the time condition, is valid only for certain conditions, when G = 0. Otherwise, however, further interpretations are permitted.

For the deduction of the Lorentz force (formulas 20, 21 and 22), the quaternion impulse is defined in such a way that it is valid also for a quaternion impulse in the potential field of an electrical charge q, besides this formula 23 follows. From this definition, the entire energy W of a charge q is calculated in the same manner as it is for a three-dimensional impulse. The four-force is defined in such a way that it follows from the force of the potential field on a charge q. Formula 24 results for the scalar part (S.) and formula 25 results from the vector part (V.). The first and second terms of formula 25 correspond to a physically real force, in accordance with the definition of the four-force. The first term describes the well-known Lorentzian force on a free charge, the second term corresponds to the Lorentz condition and is equal to zero, and the third term, in accordance with the relevant definitions, is also equal to zero. Thus, several well-known physics-formulas follow (formulas 20 to 35). The scalar part of the nabla nabla phi-term is given by formula 24. According to the definition of the fourforce, the first and second terms are physically meaningful, while, for the third term, the following statement is valid: if the trajectory of an electrical charge exactly follows the lines of flux of B, then no further forces act on this charge. The second term is dependent on this statement, and the Lorentz condition remains valid. The first term corresponds to the power consumption and/or generation / P dWq dt  of the charge moving in an electrical field.

Regarding the transformation equations of the field, if one wishes to write the time equation -23 -without the magnetic field, it can be written in the following form: the power generation 0 Pq  is analogous to that of 0 vE  . However, this relation, as it is formulated here, is not valid in general, as shown above.

The Deduction of Maxwell's Equations

When the Laplace operator is applied to the quaternion potential, after some algebra, the result for the scalar part of the quaternion is formula 24, and the vector part of the quaternion is given by formula 25. Similar equations have been previously presented by Maxwell. From the ai-imaginary part of this equation, Ampère's law directly follows. The same starting point yields an extended Faraday law, which the Lorentzian condition changes into the well-known Maxwell equation for the scalar part, and the extended Maxwell equations straightforwardly follow without the introduction of the Lorentzian condition. With the application of the classical and generally used Lorentzian condition, the extended Maxwell equation presented above, which is in agreement with the well-known form of the equation commonly used today, can be easily deduced. If the quaternion current density is used, this expression can also be defined using the quaternion speed. This definition is equivalent to a charge density moving in four-dimensional space-time, which corresponds very well to the concept of an electric current.

The Deduction of Mechanical Kinematics

The analogy between the electrodynamics equations and the mechanical equations is clear.

Because the electric potential field obeys the same impulse law in relation to charges as the velocity fields in relation to masses, the procedures used here for electrodynamics can easily be transformed for application to mechanics, leading to the commonly used and well-known -24 -laws of fluid mechanics. The electric field of the four-potential corresponds to the field of the four-velocity, whereas the charge q corresponds to the mass m, in this case. On the other hand, with respect to the definition of the mass impulses, only the relative velocity of the mass m toward an observer is used. The impulse laws for charge and mass are therefore not defined identically. The four-dimensional speed can be written in a similar manner. Then, the total energy of a mass m and the three-dimensional impulse follow from the definition of the impulse. Each object describes a world line in four-dimensional space, very similar to what is called Minkowski space. In physics, the definition of an absolute speed does not seem to make sense; the definition of a relative speed u between two bodies is used instead. This relative velocity results from the difference between the four-dimensional speeds of the two bodies. In physics, the impulse can be measured only in relation to a relative velocity. Thus, it must act between at least two bodies. Furthermore, the total energy of a mass is defined not only as a difference between two masses but also for a single individual mass, which is why Einstein's equation is valid. Similarly, as in electrodynamics, which describes forces between charges, an equivalent expression can be formulated for forces between masses using a force 

The Deduction of Newtonian Kinematics

Contrary to the description given above, in classical mechanics, velocity and/or acceleration always refer to the movements of a mass relative to an observer. Therefore, the principal equations remain valid. However, from the definition of the well-known continuity equation, -25 -the scalar part follows, which is valid only for /0 vt  (with the ai-imaginary vector part equal to zero). Analogously, the vector part of the quaternion is also valid now. The real part corresponds to a real physical force. This force corresponds to the force of inertia of an accelerated mass, which acts in opposition to the direction of acceleration. It is noteworthy that this force of inertia in the middle, material term of fluid mechanics corresponds to an acceleration field, which does not deviate. For a straight-line acceleration, both equations result from the same forces of inertia, but not for curvilinear accelerations. The ai-imaginary term must be set to zero beforehand so that a new relation can arise.

The Deduction of Quantum Mechanics and Relativistic Wave Equations

One possible way of writing the relativistic quantum mechanical wave equations using quaternions entails the use of the Hamiltonian units as pre-and/or post-factors. A description using the quaternion notation is presented here. In this manner, the relativistic wave equation is deduced. In addition, the theorem of the conservation of momentum and the definition of the total energy of a mass are used so that Einstein's formula can be deduced.

Up to this point, energy in this paper has been expressed as a scalar function, which takes a constant value, for example, for an object at rest. However, in the field of quantum physics, it is well known that this description is not correct. Rather, energy must be described using a wave equation instead. The static equations that have been used thus far can only be understood as statistically averaged equations of an accumulation of several individual energy oscillators. For an individual single elementary particle, the oscillatory characteristics of energy are relevant and visible. To derive the wave equation from the energy equation, the substitutions of formula 36, which have already been established in quantum physics, are relevant and necessary for the differentials, where h corresponds to Planck's elementary -26 -quantum. The energy equation in the square form is given by formula 37, which also applies for the differential operators of a wave equation. The differentials now must be applied to a new wave function. In principal, this procedure is no different from the use of other wave functions in physics. This wave function can be represented by an ai-complex quaternion (formula 38 and transformed formula 39). Thus, a set of relativistic wave equations can be formed, which are identical to Dirac's equations (formulas 40, 41, and 42). In this way, particles without external potential fields can be described by solving the energy equations.

These equations, however, also offer the possibility that they may be easily solved via the direct use of the quaternion impulse. The sign of the quaternion impulse may not change, but this can be achieved by using a transformation equation. The two possible signs of the energy state in these equations led Dirac to postulate the existence of antiparticles and, in particular, to postulate the existence of the positron.

When the substitutions mentioned above are extended to further equations, it follows that these equations differ, at first sight, from the original Dirac equations because no matrices are used. However, the Hamiltonian units can be written as matrices. When this set of equations is expanded, it follows that this set of Dirac's equations can also be written for particles without external potential fields. The description of phenomena in the case with external potentials can be written using a procedure similar to that applied for the case without external potentials. For a particle in an external potential field, the existence of the external potential field changes the impulse of the charged particle. If now one defines the impulse of an external field on a charge q, the influence of the external potential field on the energy of the charge also follows. The total energy is then extended, in comparison with Dirac's equation, and follows from this same equation again via the substitution of the energy and impulse operators (formula 36). In this case, ai-complex biquaternions can be used successfully in place of matrices. In summary, with the introduction of ai-complex biquaternions according to the definitions given here, all principal equations of electrodynamics, mechanics, and quantum dynamics can be formulated in a very compact and elegant form and formulas 38 to 42 follow. This new fundamental formulation provides a method of writing Maxwell's equations and the subsequent Lorentz precondition. For the first time, a satisfying explanation can be given for why this type of four-dimensional number can be used so successfully for describing electrodynamics. In addition to their successful application to electrodynamics, as shown here, ai-complex biquaternions are suitable for describing other fields of physics, for example, relativity, mechanics, and quantum mechanics. The structure of ai-complex biquaternions is particularly interesting. Nevertheless, such a quantity contains several aiimaginary numbers and, at the same time, real numbers. Girardt [Ref. 10], who also recognized the considerable symmetry between complex biquaternions and the various physical theories, in particular, the theory of relativity and Maxwell's theory of electrodynamics, explained this striking symmetry by considering the fact that both theories exhibit SU(3) symmetry and that complex biquaternions are the ideal mathematical tool for describing this SU(3) symmetry. In conclusion we come to formula 43.

Unification of Gravitation and Electrodynamics: Electromagnetic field vectors and gravitational field vectors fill up the ai-complex biquaternion

A unification of the theory of gravitation and the theory of electrodynamics can be reached via the application of the substitution shown in equations 44 and 45. These formulas allow a relation between the electromagnetic field and the analogous gravitational fields to be found.

Therefore, the analogous gravitational fields must first be defined: the well-known gravitational acceleration field (g field) corresponds to the electrical field (E field), and a newly defined gravitational C field corresponds to the magnetic field (B field). Thus, in the -28 -ansatz proposed here, the gravitational fields gain the factor ai to indicate that they correspond to separate ai-imaginary components. Next, the sum of the E and g fields represents the potential phi, and the sum of the B and C fields represents a novel ai-complex field, here named the D field.

This formulation leads to equivalent formulas for electrodynamics and for gravity. Thus, in the biquaternion notation, the quaternions for the E and g fields complete a full ai-complex biquaternion that consists of the real components of the original E field and the ai-imaginary components of the original g field. Analogously, the quaternions of the B and C fields form a complete ai-complex biquaternion, here named the D field. Again, in this ai-complex biquaternion of the D field, the real components are formed by the original B field, and the aiimaginary components are formed by the original C field. Of course, time in all ai-complex biquaternions is represented by an ai-imaginary scalar component multiplied by the speed of light: x t = aict. On the other hand, the corresponding real scalar component is always zero for all ai-complex biquaternions.

This notation illustrates the great homology between electrodynamics and gravitation. This homology allows the combination of both fields into a united theory of electrogravitation. It seems particularly important to experimentally confirm the impact of this theoretically derived influence of electricity on gravitational masses. It appears that this effect should be relatively strong and important. Conversely, it also appears that it should be significant to experimentally confirm the effects of gravitation on electric charges that are theoretically derived here. However, this effect should be relatively small and thus difficult to confirm.

Because quantities q and m can be described by the same formulas (with the substitution q  m), the hypothesis is put forth here that both quantities can be combined into one single aicomplex quantity, in accordance with Formula 2:
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q m ai, z , a zb bq m     (2)

Starting from this ansatz, the relation between m and q has already been investigated by considering the atomic nuclei and their mass and charge numbers A and Z [11].

As demonstrated by the correlations that can be seen in the figures presented in this reference, it can be seen that the nuclear binding energy is given by a formula in the form of formula 46 [11]:

. A - ZA - Z E 2 2  ( 46 
)
The same type of formula follows from squaring z:

  2 2 2 2 2 , 2 z bq m b q bqmi m     .

  . The kinematic field can be divided into two well-known parts.