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ARTICLE OPEN

Primitive to conventional geometry projection for efficient
phonon transport calculations
Xun Li 1, Simon Thébaud2 and Lucas Lindsay 1✉

The primitive Wigner-Seitz cell and corresponding first Brillouin zone (FBZ) are typically used in calculations of lattice vibrational
and transport properties as they contain the smallest number of degrees of freedom and thus have the cheapest computational
cost. However, in complex materials, the FBZ can take on irregular shapes where lattice symmetries are not apparent. Thus,
conventional cells (with more atoms and regular shapes) are often used to describe materials, though dynamical and transport
calculations are more expensive. Here we discuss an efficient anharmonic lattice dynamic method that maps conventional cell
dynamics to primitive cell dynamics based on translational symmetries. Such symmetries have not been utilized in typical lattice
dynamical calculations. This leads to phase interference conditions that act like conserved quantum numbers and a conservation
rule for phonon scattering that is hidden in conventional dynamics which significantly reduces the computational cost. We
demonstrate this method for phonon transport in a variety of materials with inputs from first-principles calculations and attribute
its efficiency to reduced scattering phase space and fewer summations in scattering matrix element calculations.

npj Computational Materials           (2023) 9:193 ; https://doi.org/10.1038/s41524-023-01148-8

INTRODUCTION
Computational studies of material properties, particularly trans-
port phenomena of heat, charge, and mass at micro- and
nanoscales1, have recently provided accurate quantification of
measured observables and fundamental understanding of com-
plex physics, due in large part to increased computational power,
theoretical advances, and availability of numerical tools2–6. First-
principles calculations based on density functional theory (DFT)
have demonstrated remarkable power in accurately predicting
thermal and electrical properties of semiconductors7–10, for
example, the ultrahigh thermal conductivity of cubic BAs and
BN11–14, phonon hydrodynamics in graphitic materials15–17, and
high mobility of BAs18. Many of these successful simulations have
been based on materials with simple structures and compositions.
More recently, researchers have been exploring more complex
materials with correspondingly diverse and novel properties
including large thermal resistance19,20, anomalous thermal Hall
effect21–23, and topological superconductivity24–26, though this
requires more extensive computational power due to much larger
degrees of freedom.
Calculations and simulations of crystalline material properties

are typically based on periodically arranged unit cells that contain
the smallest number of degrees of freedom, i.e., the primitive unit
cell. The most widely used primitive cells, for which basic
properties can be described, are called Wigner-Seitz cells27

(WSC; real space) and their corresponding first Brillouin zones
(FBZ; reciprocal space). These are typically used for calculations of
lattice vibrational and transport properties because they have the
cheapest computational cost. However, such calculations, parti-
cularly in complex crystals, often have awkward geometries with
WSC and FBZ having irregular, non-intuitive shapes in Cartesian
space. For example, bismuth telluride (Bi2Te3, space group R-3m)
has a primitive cell with an angle of 24° between pairs of lattice
vectors. This adds difficulty in analyzing properties along natural
high-symmetry lines (in-plane and cross-plane) as these require

projection from the oblique lattice vectors. On the other hand,
there are alternative unit cells with different geometries that can
fill space and respect natural symmetries. Experiments, in
particular, tend to probe and analyze material properties from
these more convenient conventional geometries where the
symmetries of the lattice are obvious and straightforward. For
example, the inelastic neutron scattering measurement studied
the structural phase transition in a GeTe conventional cell28. This
makes the comparison between primitive cell calculations and
conventional cell measurements more challenging. One solution is
to perform calculations based on conventional unit cells, however,
the number of vibrational degrees of freedom of the conventional
unit cell can be 2–3 times larger than those of the primitive unit
cell, thus giving a much larger computational burden29. For
example, the hexagonal conventional cell of Bi2Te3 has 15 atoms
with 45 vibrational modes, which is three times larger compared
to that of the primitive unit cell. As a result, calculations of material
properties based on conventional geometries, especially quasi-
particle dynamics and transport phenomena (to be discussed in
this work), are more expensive because of the increased cost in
calculating interactions. In particular, lowest order three-phonon
scattering processes scale to the cubic power of the number of
degrees of freedom, thus phonon transport calculations for the
conventional cell of Bi2Te3 will cost around 27 times more than
those of the primitive unit cell.
It is well known that the choice of unit cell is arbitrary and

should underly the same physical behaviors; however, it is not well
known how to use symmetry relations to make lattice dynamical
calculations more efficient in larger unit cells. Taking advantage of
both the convenience of conventional geometries and lower
degrees of freedom of primitive geometries, we previously
proposed and demonstrated an efficient dynamic method for
calculating quasiparticle dispersions, phonons in particular30.
There, we discussed that mapping of conventional cell dynamics
to primitive cell dynamics using internal translational symmetries
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saves computational cost in dynamical matrix diagonalizations
and leads to phase interference conditions demonstrated through
comparison of calculated phonon dispersions with measured
inelastic neutron scattering spectra.
In this work, we apply this primitive to conventional cell dynamic

method based on primitive translational symmetry (PTS) to thermal
transport calculations limited by anharmonic interactions. In
conventional geometries, this PTS dynamic method significantly
reduces the computational cost of thermal conductivity calcula-
tions by reducing the quasiparticle scattering phase space through
a conservation rule that is hidden in typical conventional dynamics
and reducing the number of summations in scattering matrix
element calculations. We demonstrate the convenience of this PTS
method by calculating phonon transport properties based on DFT
for three materials from different space groups: GeTe with space
group R3m, solid N2 with space group I213, and ferromagnetic
CrCl3 with space group R-3. These are representative materials with
different levels of complexity in conventional cells and have
important applications in thermoelectrics (GeTe)31–34, energy
storage (N2)35,36, and two-dimensional magnetism (CrCl3)37–41.

RESULTS
PTS dynamics in conventional basis
Figure 1 depicts the primitive (a) and conventional (b) geometries
for GeTe with space group R3m. In this figure, the translation vector
S relates the primitive and conventional geometries and is
fractional within the conventional cell. In general, S is (nxR1 +
nyR2 + nzR3)/N where R1, R2, and R3 are conventional lattice basis
vectors, N is the number of layers in the conventional unit cell, and
nx, ny, and nz are integers related to a particular material’s space
group (discussed below). This fractional translational symmetry can
be used to reorganize the dynamical matrix of the conventional
unit cell and more explicitly demonstrate the vibrational phases
between layers:30

Dkk0
αβ ðq; lÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkmk0

p
X

h0p0
Φ00k;h0p0k0

αβ eiq�Rp0eih
0ðq�Sþ2πl=NÞ (1)

where Greek subscripts are Cartesian directions, k loops over the
atoms in a single layer of the conventional unit cell, q is a phonon
wavevector, mk is the mass of atom k, Rp0 is a lattice vector
locating the p0 conventional cell (integer multiples of the basis
vectors above), N is the number of ‘primitive’ layers within the
conventional cell, h0 represents each of these layers ranging from

0 to N-1 (see labels in Fig. 1 for GeTe), Φ00k;h0p0k0

αβ are harmonic
interatomic force constants (IFCs) between atom k in the origin
layer and atom k0 in the p0 conventional cell in layer h0, and eilh

02π=N

is the vibrational phase between layers. Derivation of Eq. 1 is

provided in Supplementary Note 1. In this formalism, l is an
integer representing the phase degree of freedom between the
layers that also ranges from 0 to N-1. It acts as a conserved
quantity in scattering processes (via phase interference condi-
tions) within the conventional unit cell (discussed below) that
limits the scattering phase space30. Equation 1 represents N
3n ´ 3n dynamical matrices for each q, which gives the same
number of phonon branches as those from the single conven-
tional 3Nn ´ 3Nn dynamical matrix, where n is the number of
atoms in one layer of the conventional cell. Diagonalization of
Eq. 1 for N 3n ´ 3n matrices is computationally more efficient than
diagonalizing a single 3Nn ´ 3Nn matrix. Note that the primitive
cell dynamics consists of a single 3n ´ 3n dynamical matrix.
Specifically, for GeTe (space group: R3m) with conventional unit

cell shown in Fig. 1b, there are three layers with two atoms in each
(N ¼ 3 and n ¼ 2). The translation vector S ¼ ð2R1 þ R2 þ
R3Þ=3 ¼ ½a=2; a=ð2 ffiffiffi

3
p Þ; c=3� where a and c are in-plane and out-

of-plane lattice parameters, respectively. Instead of one conven-
tional 18 ´ 18 dynamical matrix, Eq. (1) with PTS dynamics gives
three 6 ´ 6 dynamical matrices for l ¼ 0; 1; 2ð Þ for each q.
The PTS dynamics of Eq. 1 can be applied to 81 different space

groups with symmetry operations x+ nx/N, y+ ny/N, z+ nz/N,
where N is either 2 or 3, and nα ranges from 0 to 2 with nxnynz ≠ 0.
Table 1 summarizes the allowed space groups corresponding to
such operations. We demonstrate the application of PTS dynamics
on representative materials: GeTe with space group R3m, solid N2

with space group I213, and ferromagnetic CrCl3 with space group
R-3. We note that the solid N2 system considered here has not
been synthesized, presumably due to predicted thermodynamic
instability42, but provides a good test case of our method due to
N2 having the I213 space group and a relatively simple structure.
Complete results for GeTe and temperature dependent thermal
conductivities for all materials are presented in the main text.
Structures, phonon dispersions, and scattering rates for CrCl3 and
solid N2 are described in a previous study30 and in Supplementary
Figs. 2–4, respectively. Details of DFT calculations for all materials
are provided in Methods.

Phonon dispersion
We first examine the vibrational properties of GeTe based on its
conventional unit cell (Fig. 1b). Diagonalizing Eq. (1) for each value
of l= (0, 1, 2) gives the phonon dispersion depicted in Fig. 2 with
six branches for each vibrational phase depicted by different
colors. The phonon dispersions from the PTS dynamics overlap
those from the conventional method (underlying black solid
curves) as observed along high-symmetry lines and an arbitrary
direction in reciprocal space. The colored dispersions provide
insights into observables from scattering experiments in

Fig. 1 Crystal structure of GeTe (R3m space group). a Two-atom primitive unit cell where each pair of lattice vectors forms an angle of 57.8°.
b Six-atom conventional unit cell with three layers related by translation vector S (green arrows). The black rectangle highlights that a single
layer can be used to describe the dynamics in a conventional unit cell.
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conventional geometries as only phonon branches with l ¼ 0 give
non-zero spectral intensities, which has been demonstrated for
CrCl330, and other materials with internal twist symmetries43,44.
The wavevector q and integer l are not limited to the FBZ and

can be calculated for extended Brillouin zones. When comparing
phonons from different zones, for instance mapping extended
zones back to the FBZ, which is necessary for studying Umklapp
phonon scattering, Δq relating phonons between zones is given
by a reciprocal lattice vector: Δq ¼ G ¼ g1G1; g2G2; g3G3½ �, an
integer (gi) multiple of the conventional reciprocal lattice basis
vectors (Gi)29. In this mapping, q and l are related through a
conserved phase relation obtained from Eq. (1): Δq � Sþ
2πΔl=N ¼ 0 (see Methods for a detailed derivation), where the
change of integer l is given by Δl ¼ lG ¼ � nxg1 þ nyg2 þ nzg3

� �
.

Again, nα are given by the space group of the crystal (see Table 1).
This relationship was demonstrated for bulk CrCl3 when compar-
ing calculated dispersions to scattering measurements in varying
Brillouin zones30 and is shown for GeTe in Supplementary Fig. 1
(see Methods for details).

Scattering conservation rule from phase relations
The PTS dynamic method also elucidates conservation conditions
for intrinsic phonon-phonon interactions enforced by phase
relations represented by the integer l that are hidden in the
conventional dynamics used to build phonon linewidths30. This
scattering is critically important when trying to determine and
understand thermal transport in conventional geometries.
To demonstrate this, we start with anharmonic three-phonon

transition rates from quantum perturbation theory (i.e., Fermi’s

golden rule):45–47

Γ ±
λλ0λ00 ¼

�hπ
4Nuc

f 0λ þ 1
� �

f 0λ0 þ 1=2± 1=2
� �

f 0λ00

ωλωλ0ωλ00
Vð3Þ
λ;± λ0;�λ00

��� ���2δ ωλ ±ωλ0 � ωλ00ð Þ

(2)

where λ represents a phonon mode with wavevector q and
polarization J, the Dirac delta function δ ensures energy
conservation, Nuc is the number of conventional unit cells, primes

label different phonon modes, V ð3Þ
λ;λ0;λ

0 0 are three-phonon scattering

matrix elements, and f 0λ is the Bose-Einstein distribution for mode
λ. The ± designate two different types of three-phonon
interactions, coalescence and decay48. The scattering matrix
elements in conventional dynamics are

V ð3Þ
λ;λ0;λ00 ¼

X
K

X
p0K 0

X
p00K 00

X
αβγ

Φ0K ;p0K 0;p00K 00
αβγ eiq

0 �Rp0 eiq
00 �Rp00

ξλαKξ
λ0
βK 0ξλ

00
γK 00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mKmK 0mK 00
p

(3)

where K refers to atoms in the conventional cell, ξλαK is the α
component of an eigenvector in the conventional basis for
phonon mode λ, and Φ0K ;p0K 0;p00K 00

αβγ are third-order anharmonic
IFCs47. Translational invariance has already been enforced in
Eq. (3), which leads to crystal momentum conservation for three-
phonon interactions:49

q±q0 � q00 þ Gð Þ ¼ 0 (4)

that limits the scattering phase space.
We now discuss an additional conservation rule of the integer l

in the PTS dynamic method. An eigenvector in the conventional
basis is related to that in PTS dynamics through30

ξλαK ¼ 1ffiffiffiffi
N

p ε
~λ
αke

ih q�Sþ2πl=Nð Þ (5)

Where ε
~λ
αk is the α component of the PTS eigenvector for atom k in

a single layer. eλ represents a phonon mode with wavevector q,
phase integer l, and polarization j (as determined by diagonaliza-
tion of Eq. 1). Combining Eqs. (3) and (5) and replacing atom
notation Kð Þ with h; kð Þ and phonon state notation λ (q; J) with eλ
(q; j; l), as with Eq. 1, we have

V ð3Þ
~λ;±~λ

0
;�~λ00 ¼

1ffiffiffi
N

p
� �3P

h0k

P
h0p0k0

P
h00p00k00

´
P

αβγΦ
h0k;h0p0k0;h00p00k00

αβγ e± iq0 �Rp0e�iq00 �Rp00

´
ε
~λ
αkε

±~λ
0

βk0 ε
�~λ00
γk00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mkmk0mk00
p eih q�Sþ2πl=Nð Þe± ih0 q0 �Sþ2πl0=Nð Þe�ih00 q00 �Sþ2πl00=Nð Þ

(6)

The interatomic potential (to all perturbative orders) is invariant
with respect to translation by a lattice vector (in both primitive
and conventional bases), thus anharmonic IFCs are invariant with
respect to integer multiples of the layer translation vector S so

Fig. 2 Primitive and conventional phonon dispersions of GeTe.
Underlying dashed black curves give the phonon dispersions of
GeTe from conventional dynamics, while the colored solid curves
give these from PTS dynamics, both along high-symmetry lines and
an arbitrary direction from the Γ point to (qx ¼ 0:123π=a,
qy ¼ 0:456π=b, qz ¼ 0:789π=c). Blue, green, and red curves corre-
spond to integers l= 0, l= 1, and l= 2, respectively.

Table 1. Space groups for which PTS dynamics can be applied to conventional unit cells.

Symmetry operations Space groups

[x, y+ 1/2, z+ 1/2], [x+ 1/2, y+ 1/2, z],
[x+ 1/2, y, z+ 1/2]

C2, Cm, Cc, C2/m, C2/c, C2221, C222, Cmm2, Cmc21, Ccc2, Cmcm, Cmca, Cmmm, Cccm, Cmme, Ccce,
F222, Fmm2, Fdd2, Fmmm, Fddd, F23, Fm-3, Fd-3, F432, F4132, F-43m, F-43c, Fm-3m, Fm-3c, Fd-3m,
Fd-3c, Amm2, Aem2, Ama2, Aea2

[x+ 1/2, y+ 1/2, z+ 1/2] I222, I212121, Imm2, Iba2, Ima2, Immm, Ibam, Ibca, Imma, I4, I41, I-4, I4/m, I41/a, I422, I4122, I4mm,
I4cm, I41md, I41cd, I-4m2, I-4c2, I-42m, I-42d, I4/mmm, I4/mcm, I41/amd, I41/acd, I23, I213, Im-3, Ia-3,
I432, I4132, I-43m, I-43d, Im-3m, Ia-3d

[x+ 2/3, y+ 1/3, z+ 1/3],
[x+ 1/3, y+ 2/3, z+ 2/3]

R3, R-3, R32, R3m, R3c, R-3m, R-3c
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that

Φh0k;h0p0k0;h00p00

αβγ k00 ¼ Φ
00k; h0� hð Þp0k0; h00� hð Þp00k00
αβγ

(7)

Note that the unit cell p0 (p00) will be shifted if h0 <h (h00 <h). The
layer phase relations in Eq. (6) are also unchanged if shifted by h:

eih q�Sþ2πl=Nð Þe± ih0 q0 �Sþ2πl0=Nð Þe�ih00 q00 �Sþ2πl00=Nð Þ

¼e± i h0�hð Þ q0 �Sþ2πl0=Nð Þe�i h00�hð Þ q00 �Sþ2πl00=Nð Þ (8)

Rearranging Eq. 8 and using Eq. 4 lead to the following
constraint

eihS�Gei2πh l ± l0�l00ð Þ=N ¼ 1 (9)

Thus,

h �lG þ l ± l0 � l00ð Þ½ � ¼ 0 (10)

where lG ¼ �NS�G= 2πð Þ is an integer (see Methods for further
discussion of the relationship of G and lG). Since h can be any
integer, the expression in the bracket must be zero

l ± l0 � l00 þ lGð Þ ¼ 0 (11)

Equation (11) reveals another conservation rule in terms of
integer l that is hidden in conventional methods. Explicitly using
this conservation condition reduces the scattering phase space by
~1/N and enables significantly more efficient transport calculations
(described below). We note that the primitive and conventional cell
calculations have the additional phase symmetry constraint (Eq. 11)
built in, however, the primitive cell has awkward geometries and
the conventional cell does not explicitly exploit it, simply giving no
strength to scattering interactions that violate Eq. 11.

Scattering and thermal transport
We now continue to show how scattering matrix elements

V ð3Þ
~λ;±~λ

0
;�~λ00 are calculated to obtain scattering rates (Eq. (2)) in PTS

dynamics. Applying translational invariance to the third-order
potential expansion (and relabeling the arbitrary layer indices in
Eqs. 7 and 8), the scattering matrix elements in PTS dynamics
become

V ð3Þ
~λ;±~λ

0
;�~λ00 ¼

1ffiffiffi
N

p
� �3P

h0k

P
h0p0k0

P
h00p00k00

´
P

αβγΦ
00k;h0p0k0;h00p00k00

αβγ eiq
0 �Rp0 eiq

00 �Rp00

´
ε
~λ
αkε

±~λ
0

βk0 ε
�~λ00
γk00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mkmk0mk00
p e± ih0 q0 �Sþ2πl0=Nð Þe�ih00 q00 �Sþ2πl00=Nð Þ

(12)

Since the terms in the summation are independent of h, the
summation over h gives a factor N and Eq. (12) becomes

V ð3Þ
~λ;±~λ

0
;�~λ00 ¼

1ffiffiffi
N

p
P

00k

P
h0p0k0

P
h00p00k00

´
P

αβγΦ
00k;h0p0k0;h00p00k00

αβγ eiq
0 �Rp0 eiq

00 �Rp00

´
ε
~λ
αkε

±~λ
0

βk0 ε
�~λ00
γk00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mkmk0mk00
p e± ih0 q0 �Sþ2πl0=Nð Þe�ih00 q00 �Sþ2πl00=Nð Þ

(13)

We show in Fig. 3a that the scattering rates of GeTe from PTS
dynamics are identical (within numerical accuracy) to those from
conventional dynamics. Figure 3b shows the transition rates49 for a
representative phonon mode at the Γ point with (ω= 2.61 THz,
j= 4) as a function of the frequency of one of the interacting
phonons (ωλ0 ) calculated from conventional dynamics. Here, PTS
dynamics was used to identify the integer l for each of the three
phonon modes involved in the interactions to determine whether
conservation of l occurred or not: Δl ¼ l ± l0 � ðl00 þ lGÞ ¼ 0 or
Δl ≠ 0. In Fig. 3b, the transition rates for Δl ≠ 0 are numerically zero
compared to those for Δl ¼ 0. This demonstrates that conservation
of l, which is mandated by the internal translational symmetry, is
hidden in the conventional formalism suggesting that this can be
used to reduce computational cost in thermal transport calculations.
The thermal conductivity matrix from the PTS dynamic method

is calculated as

κ ¼
X

~λ
C~λv

2
~λ
τ~λ (14)

where C~λ is the volumetric specific heat for phonon mode eλ with
wavevector q, polarization j, and phase integer l, v is the phonon
velocity vector, and τ~λ is the phonon lifetime due to intrinsic three-
phonon scattering (related to the inverse of the sum of scattering
rates that conserve energy, momentum, and l) and isotopic
scattering (in natural samples). Note that phonon branch J in the
conventional basis is broken down into j and l in PTS dynamics.
This is the only difference from the widely used formula in the
conventional method7,47,49–51. The PTS dynamic method gives
identical thermal conductivities as the conventional method for
both in-plane and cross-plane directions. Importantly, unlike
phonon chirality previously described by a twist dynamical
method43,44, here PTS is not limited to specific high-symmetry
directions, and thus calculations that involve sums over the full
Brillouin zone (i.e., including low-symmetry points in reciprocal
space), are possible. This is an important feature for application of
the PTS dynamics to transport phenomena of quasiparticles.
Figure 4 shows the thermal conductivities of bulk N2, GeTe, and

CrCl3 as a function of temperature from 30 to 400 K. The crystalline
N2 system considered here (a non-molecular solid that exists

Fig. 3 Total scattering and individual transition rates for phonons in GeTe. a Scattering rates as a function of phonon frequency from
separate conventional (blue) and PTS (red) dynamics. Inset: Direct comparison of scattering rates from the two methods. An underlying solid
red line provides a guide for the eye showing equality. b Individual anharmonic phonon transition rates for a phonon mode at the Γ point
with (ω= 2.61 THz, j= 4) as a function of the frequency of one of the other interacting modes in three-phonon interactions. Transition rates
with Δl ≠ 0, i.e., violating conservation of l, are numerically zero.
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under high pressure35,36) has isotropic thermal transport, i.e., κxx ¼
κyy ¼ κzz (off-diagonal terms are zero for all systems considered
here), and has the highest κ of the three systems considered, with
room temperature κ ¼ 150:35 Wm-1K-1. We note that N2 has a
reasonably high thermal conductivity, particularly at low tem-
perature, due to its being comprised of covalently bonded light
atoms in a relatively simple structure52, though it is significantly
less thermally conductive than diamond53. We also note that
naturally occurring N is nearly isotopically pure, thus phonon-
isotope scattering does not provide significant thermal resistance
in the temperature range considered here.
GeTe and CrCl3 have anisotropic thermal conductivity

tensors with separate in-plane (κxx ¼ κyy) and cross-plane (κzz)
values; furthermore, phonon-isotope scattering is relatively
important in each (see Supplementary Fig. 5). In Fig. 4 we
compare in-plane κ for CrCl3 and an effective thermal
conductivity (κeff ¼ 2κxx þ κzzð Þ=3) for GeTe with measured
values54–57. Natural isotopes are included in the calculations
for both cases. For GeTe, the crystal orientation of the thin film
samples was not given (thus κeff was used here for comparison)
and significant electronic contributions to κ are anticipated
from measured resistance data. Thus, we compare our phonon
calculations with both the total measured κ (filled red circles)
for GeTe thin films and the expected lattice contribution
(hollow red circles, subtracting estimated electronic κ via the
Wiedemann-Franz law)54. For ferromagnetic CrCl3, spin-
phonon interactions are expected to be important (not
considered in this work), particularly at low temperatures.
Here, we compare with measurements under the strongest
applied in-plane magnetic field, which suppresses scattering
by magnetic excitations so that nearly only intrinsic phonon
scattering dominates the transport, particularly in the tem-
perature range considered here57. Agreement with measure-
ments is reasonable given that phonon-defect interactions (i.e.,
from point defects, grain boundaries, surfaces, and other
extended point defects) have not been considered. This
suggests that the samples are relatively crystalline and pure.

Computational efficiency
To demonstrate the improved efficiency of PTS dynamics over the
conventional dynamics, we calculate the ratio of total cpu hours
required for PTS and conventional thermal conductivity calcula-
tions for GeTe, N2, and CrCl3 (having different degrees of
complexity) for different integration grid densities. The

computational savings is generally independent of the density
of the sampling q mesh (Supplementary Fig. 6), and the average
(over different grid densities) computational cost ratios are 0.3942
± 0:0151 for N2 (N= 2, n= 4), 0.1334 ± 0:0051 for GeTe (N= 3,
n= 2), and 0.0925 ± 0:0054 for CrCl3 (N= 3, n= 8). These results
demonstrate that using PTS in the calculation of thermal transport
in the conventional basis can give ~N2 numerical savings,
particularly when the complexity of the material increases (as in
going from N2 to GeTe to CrCl3). We also tested a very large toy
system developed from GeTe and observed a similar speedup (see
Supplementary Note 2 and Supplementary Fig. 7 for details).
Overall, PTS dynamics in the conventional basis is significantly
more efficient than conventional dynamics, which is especially
beneficial for calculations of large complex conventional cells.
The efficiency of the PTS dynamic method for calculating

phonon transport in a conventional basis comes in two-fold:
reduced dynamical matrix sizes for harmonic calculations and
reduced phase space and matrix sums for anharmonic calcula-
tions. In our particular transport framework3, the reciprocal space
is discretized and phonon harmonic properties are calculated
once for a given q mesh. Thus, the numerical savings for
dynamical matrix diagonalizations are negligible compared with
the much heavier anharmonic calculations. We find that the
reduction of ~1/N2 in computational cost for GeTe and CrCl3 is
primarily derived from two factors in anharmonic calculations.
First, the conservation of integer l in Eq. (11) leads to reduced
phase space that is ~1/N compared to that in conventional
dynamics. Moreover, the first summation in Eq. (13) is only for
atoms in a single layer rather than all atoms in the conventional
cell, which contributes to another 1/N factor in the calculation of
scattering rates, which is the primary numerical cost in thermal
conductivity calculations.

DISCUSSION
It is worth mentioning that our calculation framework, i.e.,
precalculated harmonic phonon properties on a fixed q mesh, is
the same as that in widely used packages like ShengBTE3,
almaBTE4, ALAMODE5, and phono3py6. Thus, the proposed PTS
dynamic method can achieve a similar computational savings of
~1/N2 with appropriate modifications in these applications.
Also, this PTS dynamics can be particularly efficient when

applied to higher-order anharmonic scattering, for example, four-
phonon scattering58,59. In such cases, the scattering rates and

scattering matrix elements are Γ ±
λλ0λ00λ000 and V ð4Þ

λ;± λ0;± λ00 ;�λ000 , respec-

tively, where λ000 represents a fourth phonon mode58. Replacing
the conventional description with PTS dynamics and following the
same derivation, the conservation of integer l in Eq. (11) becomes
l ± l0 ± l00 � ðl000 þ lGÞ ¼ 0 where l000 corresponds to λ000. A similar
reduction of ~1/N2 in computational cost is expected, which is
especially beneficial considering that the four-phonon scattering
rate calculations are thousands of times more expensive than
those of three-phonon calculations58.
In summary, we discussed lattice dynamics and phonon

transport using an efficient dynamic method that uses primitive
translational symmetry (PTS) within conventional cells. Such
symmetry relations do not introduce new physical behaviors but
can significantly simplify calculations in large complex unit cells.
The underlying phase dynamics of quasiparticle interactions
elucidate quantum phase interference conditions hidden in
anharmonic phonon interactions within conventional unit cells,
leading to conservation rules that can be exploited to make more
efficient calculations of quasiparticle dynamics in larger, more
convenient conventional unit cells, comparable to those of
more awkward primitive unit cells. The proposed dynamics
accurately describes transport phenomena and costs significantly
less computationally compared to conventional dynamics, which
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Fig. 4 Thermal conductivity of N2 (black curve, inset), GeTe (blue
curve), and CrCl3 (red curve) from PTS dynamics as a function of
temperature in bulk naturally occurring samples. Measurements
for GeTe are represented by solid and open red circles54, squares55,
and triangle56. In-plane thermal conductivity measurements for
CrCl3 are represented by blue circles57.
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is valuable for studying quasiparticle interactions in complex
material systems.

METHODS
Density functional theory
We performed density functional theory calculations using the
projector augmented wave method (PAW)60, as implemented in
the Vienna Ab-initio Simulation Package (VASP)61–63, for all the
materials considered. The generalized gradient approximation,
parameterized by Perdew, Burke, and Ernzerhof64 was used for
exchange-correlations.
The plane wave energy cut-off is 500 eV (520 eV for CrCl3), and

energy convergence criteria is 10-6 eV. Ionic relaxations were
performed until Hellmann-Feynman forces converged to 10-5 eV/Å
for GeTe and solid N2 (10-4 eV/Å for CrCl3). The structures were
optimized with Γ-centered 9 × 9 × 3 (GeTe), 9 × 9 × 9 (solid N2), and
4 × 4 × 4 (CrCl3) k-meshes. Harmonic IFCs were calculated using
the phonopy package65 with a 4 × 4 × 2 supercell and Γ-centered
3 × 3 × 1 k-mesh for GeTe, a 3 × 3 × 3 supercell and Γ-centered
3 × 3 × 3 k-mesh for solid N2, and a 2 × 2 × 1 supercell and Γ-
centered 2 × 2 × 2 k-mesh for CrCl3.
The anharmonic IFCs were calculated by finite displacement

method using the thirdorder.py package3. For GeTe, a 300-atom
5 × 5 × 2 supercell, Γ-only k-mesh, and a cutoff distance up to the
5th nearest neighbors (NN) were used. For solid N2, a 216-atom
3 × 3 × 3 supercell, Γ-centered 3 × 3 × 3 k-mesh, and a cutoff
distance up to the 3rd NN were used. For CrCl3, the interlayer
spacing is much larger than the in-plane nearest neighbor atomic
distances, thus we used a cylindrical cutoff that is 0.43 nm in the
plane and 0.6 nm across the plane. The cutoffs correspond to the
7th NN in the plane and include most of the atoms in adjacent
layers across the plane. A 192-atom 2 × 2 × 2 supercell and Γ-only
k-mesh were used. All the other calculation parameters are the
same as those used for harmonic calculations.

Zone folding relation between q and l
Translational invariance of the harmonic interatomic potential
with respect to PTS requires that

eiq� Rp0 þh0Sð Þeilh02π
N ¼ eiq� Rp0 þ h0�hð ÞSð Þeilðh0�hÞ2π=N

¼ eiq� Rp0 þh0Sð Þeiq� �hSð Þe
ilh02π
N e�

ilh2π
N

(15)

Rearranging Eq. (15) and comparing terms leads to

eiq�Se
il2π
N ¼ 1 (16)

and thus

q�Sþ 2π
N

l ¼ 0 (17)

where the translation vector S is nx
N R1;

ny
N R2;

nz
N R3

� 	
. For extended

zones, where q is changed by Δq¼G ¼ ½g1 2π
R1
; g2

2π
R2
; g3

2π
R3
�, the

change of integer l is thus

Δl ¼ lG ¼ � N
2π

G�S¼� nxg1 þ nyg2 þ nzg3
� �

(18)

This relationship is shown via the phonon dispersion across two
BZs for GeTe in Supplementary Fig. 1.

Thermal conductivity calculations
The numerical cost of the thermal conductivity calculations was
computed for a variety of reciprocal space integration mesh
densities for each system (Supplementary Fig. 6). For the data
presented in Fig. 4 the q-mesh samplings used are 29 × 29 × 29
(N2), 25 × 25 × 10 (GeTe), and 15 × 15 × 5 (CrCl3), for which thermal
conductivities are converged.

For both conventional and PTS dynamic methods, thermal
conductivities are calculated by solving the steady-state Peierls-
Boltzmann equation under the relaxation time approximation. The
Dirac delta functions for energy conservation in Eq. (2) are
approximated by adaptive Gaussian functions as implemented in
the ShengBTE package3.
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