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A FIRST EXAMPLE
Looking at reactions



A catalyst lowers the energetic barriers to be overcome
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An exemple
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R. Réocreux, C.A. Ould Hamou, C. Michel, J.B. Giorgi, P.Sautet, ACS Catalysis, 2016, 6, 8166-81478



Evaluating thermo
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Using periodic DFT we can 
explore the energetic gain 
and loss to break a given 
bond in anisole on Pt(111). O
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A ”movie”
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Comparing pathways
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Faster to go through the lower saddle point… 
…even if the product is not the most stable one

R. Réocreux, C.A. Ould Hamou, C. Michel, J.B. Giorgi, P.Sautet, ACS Catalysis, 2016, 6, 8166-81478



CONCEPTS AND TOOLS

10



Few assumptions

We are working in the context of the Born-Oppenheimer 
approximation.

We are considering only the ground state.

We are working in the harmonic transition state theory context.

H.B. Schlegel, WIREs Computational Molecular Science, 2011, 1, 790-809



Key points of the potential energy surface
WIREs Computational Molecular Science Geometry optimization

FIGURE 1 | Model potential energy surface showing minima,
transition structures, second-order saddle points, reaction paths, and a
valley ridge inflection point (Reprinted with permission from Ref 5.
Copyright 1998 John Wiley & Sons.)

to separate the motion of the electrons from the mo-
tion of the nuclei. Because the nuclei are much heav-
ier and move much more slowly than the electrons,
the energy of a molecule in the Born–Oppenheimer
approximation is obtained by solving the electronic
structure problem for a set of fixed nuclear positions.
Because this can be repeated for any set of nuclear
positions, the energy of a molecule can be described
as a parametric function of the position of the nuclei,
thereby yielding a potential energy surface.

A potential energy surface, like the one shown in
Figure 1, can be visualized as a hilly landscape, with
valleys, peaks, and mountain passes. Even though
most molecules have many more than two geomet-
ric variables, most of the important features of a po-
tential energy surface can be represented in such a
landscape.

The valleys of a potential energy surface repre-
sent reactants, intermediates, and products of a reac-
tion. The position of the minimum in a valley repre-
sents the equilibrium structure. The energy difference
between the product valley and reactant valley min-
ima represents the energy of the reaction. Vibrational
motion of the molecule about the reactant and prod-
uct equilibrium geometries can be used to compute
zero-point energy and thermal corrections needed to
calculate enthalpy and free energy differences.40 The
lowest energy pathway between the reactant valley
and the product valley is the reaction path.41 The
highest point on this lowest energy reaction path is
the TS for the reaction, and the difference between
the energy of the TS and the reactant is the energy
barrier for the reaction. A TS is a maximum in one
direction (the direction connecting reactant and prod-

uct along the reaction path) and a minimum in all
other directions (directions perpendicular to the reac-
tion path). A TS is also termed as a first-order saddle
point. In Figure 1, it can be visualized as a mountain
pass connecting two valleys. A second-order saddle
point (SOSP) is a maximum in two directions and a
minimum in all the remaining directions. If a reaction
path goes through an SOSP, a lower energy reaction
path can always be found by displacing the path away
from the SOSP. An n-th order saddle point is a max-
imum in n directions and a minimum in all the other
directions.

For a thermally activated reaction, the energy of
the TS and the shape of the potential energy surface
around the TS can be used to estimate the reaction rate
(see other reviews in this series). The steepest descent
reaction path (SDP) from the TS down to the reactants
and to the products is termed the minimum energy
path (MEP) or the intrinsic reaction coordinate (IRC;
the MEP in mass-weighted coordinates). The reaction
path from reactants through intermediates (if any) to
products describes the reaction mechanism.41 A more
detailed description of a reaction can be obtained
by classical trajectory calculations42–45 that simulate
molecular dynamics by integrating the classical equa-
tions of motion for a molecule moving on a potential
energy surface. Photochemistry involves motion on
multiple potential energy surfaces and transitions be-
tween them (see Ref 46).

ENERGY DERIVATIVES
The first and second derivatives of the energy with
respect to the geometrical parameters can be used to
construct a local quadratic approximation to the po-
tential energy surface:

E(x) = E(x0) + gT
0 !x + 1/2!xT H0!x (1)

where g0 is the gradient (dE/dx) at x0, H0 is the Hes-
sian (d2E/dx2) at x0, and !x = x−x0. The gradient
and Hessian can be used to confirm the character of
minima and TSs. The negative of the gradient is the
vector of forces on the atoms in the molecule. Be-
cause the forces are zero for minima, TSs, and higher-
order saddle points, these structures are also termed
stationary points. The Hessian or matrix of second
derivatives of the energy is also known as the
force constant matrix. The eigenvectors of the mass-
weighted Hessian in Cartesian coordinates corre-
spond to the normal modes of vibration (plus five or
six modes for translation and rotation).47 For a struc-
ture to be characterized as a minimum, the gradient
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Key points of the potential energy surface
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The rate of an elementary step
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Exploring the potential energy surface

A minimum is defined by:

Eigenvalue of the mass-weighted
Hessian      

Harmonic frequencies:
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Exploring the potential energy surface

Geometry optimisation loop
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Exploring the potential energy surface

Geometry optimisation algorithms

17

minimum

minimum

Variable 1

Va
ria

ble
 2

Newton-Raphson 
searching for zero gradient 
Few steps, costly

Quasi-Newton methods
Approximate the Hessian
e.g. BFGS algorithm

Conjugated gradient
Follow the gradient corrected
thanks to the previous steps

H.B. Schlegel, WIREs Computational Molecular Science, 2011, 1, 790-809



Exploring the potential energy surface

Choice of the coordinates, not to be neglected
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PENG ET AL. 

TABLE II. 
Comparison of the Number of Steps Required to Optimize Equilibrium Geometries Using Various 
Coordinate Systems. 

Moleculea Z Matrix Cartesianb Mixedb Redundant' 

2-Fluoro furan 
Norbornane 
Bicyclo[2.2.2loctane 
Bicyclo[3.2.1 ]octane 
Endo hydroxy bicylopentane 
Exo hydroxy bicylopentane 
ACTHCP 
1,4,5-Trihydroxy anthroquinone 
Histamine H+ 

7 
7 

11 
6 
8 

10 
65 
10 
42 

7 
5 

19 
6 

18 
20 

> 81 
11 

> 100 

7 
5 

14 
7 
9 

11 
72 
17 
47 

6 
5 
7 
5 

12 
11 
27 
8 

19 

aStarting geometries given in ref. 6; calculated by HF / STO-3G. 
bRef. 6. 
'Present work 

maximum coincidence) is less than 0.0012 au, and 
the maximum component of the predicted dis- 
placement is less than 0.0018 au (i.e., all four must 
be satisfied). Alternatively, if the maximum gradi- 
ent and rms gradient are a factor of 100 smaller 
than their respective thresholds, the optimization 
is considered converged. Baker requires that the 
maximum component of the gradient be less than 
0.0003 au and either the maximum component of 
the predicted Cartesian displacement be less than 
0.0003 au or the energy change from the previous 
cycle be less than au. 

Table I1 summarizes several optimizations of 
equilibrium structures using Z matrix coordinates 
(i.e., nonredundant internal coordinates), Cartesian 
coordinates, mixed Cartesian and nonredundant 
internal coordinates, and redundant internal coor- 
dinates. The starting structures and some of the 
optimization results were published previously.6 
For fairly rigid molecules, the results of all four 
coordinate systems are similar. For more flexible 
molecules, Cartesian coordinates perform more 
poorly. For ACTHCP and histamine H+, the re- 
dundant coordinates show a significant advantage. 
Additional examples that illustrate the efficiency 
of redundant coordinate optimizations include a 
large dye molecule (53 atoms, 153 degrees of free- 
dom, 23 steps from the PM3 geometry to the 
HF/3-21G optimized geometry) and taxol (113 
atoms, 333 degrees of freedom, 58 steps from 
the PM3 geometry to the HF/STO-3G optimized 
geometry). 

Figure 1 shows a simple example of a con- 
strained optimization using redundant internal co- 
ordinates. The potential energy curve for isomer- 

ization of cyclohexane from the chair to the twist- 
boat conformation was computed as a relaxed po- 
tential surface scan. One of the CCCC dihedral 
angles was constrained, and all remaining coordi- 
nates were optimized; the CCCC dihedral was 
incremented by 15" and the process was repeated 
until the scan was completed (six to eight opti- 
mization steps per structure). Relaxed potential 
surface scans of cyclic molecules are considerably 
more difficult to carry out in Cartesian or nonre- 
dundant internal coordinates. 

Table I11 compares the results of a number of 
transition state optimizations in nonredundant in- 

I -231.46 

-60 4 -20 0 20 40 60 
<cccc 

FIGURE 1. Relaxed potential energy surface scan of 
the conversion of chair cyclohexane to twist boat using 
redundant internal coordinates. 
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Exploring the potential energy surface

Transition states 
Not easy to get!
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Exploring the potential energy surface

Two major approaches:
Single-ended methods
 Newton, Quasi-Newton, eigen-follow methods, dimer method

Chain-of-states and Double-ended methods
 Nudge Elastic Band, String Method, Growing String Method, 

Linear Synchronous Transit, Quadratic Synchronous Transit

20 H.B. Schlegel, WIREs Computational Molecular Science, 2011, 1, 790-809



Exploring the potential energy surface

Newton and Quasi-Newton methods
The Hessian update must allow negative eigenvalues. 
Starting structure must be in the quadratic region

+50% rule of thumb for bond breaking
Hammond postulate
Constrained optimization
Double-ended methods!

Good initial estimate of the Hessian is necessary

21 H.B. Schlegel, WIREs Computational Molecular Science, 2011, 1, 790-809



Exploring the potential energy surface

Eigen-Follow method
Divide the eigenvectors of H into two groups:
(i) Search a maximum along one eigenvector (even if the 

eigenvalue is not negative)
(ii) Search a minimum in the remaining space.

22 H.B. Schlegel, WIREs Computational Molecular Science, 2011, 1, 790-809



Exploring the potential energy surface

Dimer method
Designed initially for periodic DFT 

calculations where computing the 
Hessian is prohibitive. 

Based only on the energy and forces of two 
“images” that forms the dimer.

The dimer is pushed uphill and rotated to 
find the lowest curvature mode.

23

Vi!! !Vi"1"!Vi•Vi#1 /!Vi2# if Vi•Fi†$0
!Vi if Vi•Fi†%0 . "20#

There is a problem with the algorithm described thus far
when the dimer is started from a shallow minimum. If the
lowest curvature mode is along a contour of the potential
energy basin, the dimer can take a very long time to leave the
basin, or even possibly become trapped there forever. A so-
lution to this problem is to treat regions where all modes
have positive curvature, the convex regions, differently from
the regions where at least one mode has a negative curvature,
the nonconvex regions. The neighborhood of potential
minima falls into the first category while the saddle point
region falls into the second category. Equation "18# is modi-
fied in the following way to ensure that the dimer quickly
leaves convex regions:

F†!! #F" if C$0
FR#2F" if C%0

, "21#

where C is the minimum curvature. In the convex regions
C$0, and the dimer follows this mode up the potential sur-
face until the lowest curvature becomes negative. It is pos-
sible that C never becomes negative "an example of that in a
two-dimensional case will be given below#, in which case
the dimer continues to climb up the potential forever. This
problem is unlikely to occur in large atomic systems. We
never encountered it in the Al/Al"100# calculations described
below.

The second method we tried for translating the dimer
was the conjugate gradient method. This was found to per-
form better than quick-min in the Al/Al"100# calculations. In
the initial step, the system is minimized along a line defined
by the initial force. Analogous to the rotation algorithm, the
system is moved a small distance along the line "keeping the
dimer orientation fixed#, and the derivative in the magnitude
of the effective forces was calculated. Newton’s method is
used to estimate the zero in the effective force along the line
and the dimer is moved to that point. If the effective force in
the line increases in the small step, the dimer is still in the

minimum region, and Newton’s method calculates a step
backwards against the effective force, pulling the dimer back
into the minimum. In this case, the dimer is simply moved
with the effective force a predefined step size. This algorithm
tends to move the dimer out of the convex region quickly
and in practice speeds up convergence to a saddle point.
After each translation, the dimer is reoriented and then
moved along a direction conjugate to the previous line
minimization.21

D. Selecting initial configurations

In most systems, there can be a large number of saddle
points leading out of the potential energy basin of interest. A
single saddle point search will generally not be enough to
address the question of how the system tends to leave the
basin. In general, it is necessary to know all low lying saddle
points "to within a few kBT from the lowest energy saddle
point# leading from a potential energy basin. While no exist-
ing method can guarantee that all relevant saddle points will
be found, reasonable progress may be made if there is a way
to search for new saddle points in a manner that minimizes
the number of duplications.

One simple approach is to start with a collection of ini-
tial configurations, scattered about the potential energy mini-
mum in the initial basin. In order to avoid high energy con-
figurations, which might be spatially near the potential
minimum, a system can be evolved by classical dynamics at
some finite temperature and configurations of the atoms cor-
responding to maximal displacements from the potential en-
ergy minimum can be saved as initial configurations for
saddle point searches. In other words, different saddle points
can be found if the initial configurations are drawn from the
high potential energy images within a thermal ensemble in
the potential energy basin. This approach turned out to be
quite successful. But, it is important to realize that some
saddle points can be systematically excluded when only this
method is used. The configurations generated tend to be
along low energy modes around the minimum and the dimer
searches from these configurations tend to converge to the
same saddle points, the saddle point lying at the end of a low
curvature mode. These are, however, often the lowest energy
saddle points. Starting with a random set of images displaced
from the minimum, for example, a Gaussian distribution of
displacements amounting to $0.1 Å in each coordinate, gave
a greater variety of saddle points and therefore better sam-
pling. The following section describes how different saddle
points can be found when starting from the same initial con-
figuration.

E. Orthogonalization

The various mode following algorithms can converge to
a variety of saddle points starting from the same initial con-
figuration by following different normal modes.12–14,16 There
is, however, no inherent relationship between the number of
normal modes and the number of saddle points. The impor-
tant aspect of the mode following algorithms is the orthogo-
nality of the modes, which tends to lead the system in dif-
ferent directions towards different saddle points. This kind of

FIG. 4. The effective force F† acting on the center of the dimer is the true
force FR with the component along the lowest curvature mode N̂ inverted. In
the neighborhood of a saddle point, the effective force points towards the
saddle point.

7015J. Chem. Phys., Vol. 111, No. 15, 15 October 1999 Finding saddle points on high dimensional surfaces
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Exploring the potential energy surface

Building a pathway
Constrained geometry optimization along a selected coordinate
à Choice of this coordinate is critical (e.g. distance, angle)

Extrapolate and optimize a path from the reactant to the product
à The initial pathway is critical (e.g. cartesian vs. internal ; )
à We will focus on the NEB method.

24 H.B. Schlegel, WIREs Computational Molecular Science, 2011, 1, 790-809



Exploring the potential energy surface

25

214106-2 Smidstrup et al. J. Chem. Phys. 140, 214106 (2014)

Their method involved two steps. First, a linear synchronous
transit (LST) pathway was constructed so as to make pair dis-
tances change gradually along the path (see below) and then
an optimization procedure, the quadratic synchronous tran-
sit, was carried out to further refine the path. In the method
presented here, the basic idea of LST is used to generate an
improved initial guess for the NEB method, but the procedure
is different from the one used by Halgren and Lipscomb, as
explained below.

The article is organized as follows: In Sec. II, the LI and
LST methods are reviewed and the new method presented.
In Sec. III, three applications are presented, (1) rotation of a
methyl group in an ethane molecule, (2) an exchange of atoms
in an island on a crystal surface, and (3) an exchange of two
Si-atoms in amorphous silicon. The article concludes with a
summary in Sec. IV.

II. INITIAL PATH GENERATION

The NEB method involves finding a discrete representa-
tion of the MEP. First, the atomic coordinates at the two end-
points, i.e., the 3N coordinates of the N atoms at the energy
minima representing initial and final states of the transition, rα

and rβ , are used to generate an initial path. Here, r will denote
the vector of 3N coordinates of the atoms in a given config-
uration, r = {r1, r2, . . . rN}. Typically, a linear interpolation
of the Cartesian coordinates of the two endpoint configura-
tions is used as a starting guess. Given that p − 1 intermedi-
ate discretization points, here referred to as “images” of the
system, will be used, the LI path which so far has been most
commonly used as initial path in NEB calculations, is given
by

rκ
L,i = rα

i + κ
(
r

β
i − rα

i

)
/p. (1)

Here, ri denotes the coordinates of atom i and the index κ

denotes the image number in the path and runs from 1 to
p − 1. In an NEB calculation, a minimization procedure is
then carried out to adjust the coordinates of the p − 1 in-
termediate images until they lie on the MEP, while the end-
point images are kept fixed. As mentioned above, there can
be problems starting a calculation from an LI path, especially
when electronic structure calculations are used to evaluate the
energy and atomic forces, since atoms can land too close to
each other, leading to large atomic forces or even conver-
gence problems in the electronic self-consistency iterations.
If two atoms are too close and need to be moved apart in
an image, µ, or if one chooses to make use of some knowl-
edge of a reasonable intermediate configuration, rµ, then the
initial path for the NEB can be constructed by first creating
a linear interpolation from rα to rµ and then from rµ to rβ .
But, it is better to have an automatic way, as presented in
Sec. II A, of creating a path where pair distances are auto-
matically physically reasonable, and where the initial path is
more likely to lie closer to the MEP than a linear interpolation,
thereby reducing the number of iterations needed to reach
convergence.

A. Image dependent pair potential

Following the first step in the two step procedure pre-
sented by Halgren and Lipscomb,9 an interpolation of all pair
distances between atoms is carried out for each of the inter-
mediate images along the path. These pair distances provide
target values which the initial path is then made to match as
closely as possible. The interpolated distance between atoms
i and j in image k is

dκ
ij = dα

ij + κ(dβ
ij − dα

ij )/p, (2)

where dij =
√∑

σ (ri,σ − rj,σ )2 with σ = x, y, and z, is the
distance between atoms i and j in a given configuration of the
atoms. The LI path and the interpolation of pair distances are
illustrated in Fig. 1.

Since there are many more atom pair distances than
atomic degrees of freedom, N(N − 1)/2 vs. 3N − 6, the in-
terpolated values of the atom coordinates cannot satisfy the
constraints rigorously and a compromise needs to be made.
An objective function can be defined for each image by sum-
ming the squared deviation of pair distances from the target
values

SIDPP
κ (r) =

N∑

i

N∑

j>i

w(dij )



dκ
ij −

√∑

σ

(ri,σ − rj,σ )2




2

.

(3)

Here, w is a weight function which can be used to place more
emphasis on short distances, since the energy of an atomic
system rises strongly when two atoms come too close to-
gether. The function SIDPP defines an objective function for
each image which has the form of a pairwise interaction po-
tential that directs the atom coordinates to a configuration
where the distances between atoms are close to the interpo-
lated distances. One can think of SIDPP

κ (r), as defining an
effective “energy surface” and use the NEB method to find
the optimal path on the SIDPP

κ (r) surface. The force acting on

βdij

αdij

κ=3dij

α

β

i

j

FIG. 1. An illustration of paths generated by linear interpolation of Carte-
sian coordinates, LI (dashed), and by interpolation of distances between atom
pairs, IDPP (solid).
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atom i in image κ is then obtained as

F κ
i (r) = −∇iS

IDPP
κ (r). (4)

After applying the NEB iterative minimization1 with all
spring constants chosen to be equal, a path with even distribu-
tion of the images is obtained where atom pair distances are
changing gradually from one image to another. We will refer
to this as the IDPP path. As we illustrate below, with three ex-
ample calculations, the IDPP path is closer to the MEP on the
true energy surface than the LI path. By using the IDPP path
as an initial path for NEB calculations using atomic forces ob-
tained by density functional theory (DFT), the number of iter-
ations needed to reach convergence was, in the cases studied
here, significantly smaller than when the LI path was used as
the initial path. One good aspect of the IDPP method is that it
does not require a special coordinate system, such as internal
coordinates (e.g., bond distances and angles) and, therefore,
has the advantage of being easily applicable to any system,
including systems subject to periodic boundary conditions.

B. LST path

We now compare this procedure to what Halgren and
Lipscomb named the LST path.10 There, an objective func-
tion was defined as

SLST
κ (r) = SIDPP

κ (r) + γ

N∑

i

( ∑

σ

ri,σ − rκ
L,i,σ

)2 (5)

with the parameter γ chosen to be 10−6 in atomic units.9 The
weight function in SIDPP was chosen to be w(d) = 1/d4. This
choice for the function places greater weight on short dis-
tances, which are more important for the energetics. We have
chosen the same weight function here in our calculations of
the IDPP paths. The second term on the right-hand side of
Eq. (5) was added to remove uniform translation and help
make the path continuous. (The rκ

L,i are given by Eq. (2).)
It is, however, quite arbitrary and does not necessarily result
in a continuous path with an even distribution of the images,
as illustrated below. The atom coordinates, r, in each image,
κ , were chosen so as to minimize SLST, in a least squares
procedure.9

III. APPLICATIONS

For illustration purposes, the method was applied to tran-
sitions in three different systems: Rotation of a methyl group
in ethane, interchange of atoms in a heptamer island on a sur-
face and interchange of atoms in amorphous silicon. In all
cases the initial path was generated using the ATK software.11

Once the initial path had been constructed, the NEB method
was applied to find the MEP.1–3 The iterative NEB minimiza-
tions using velocity projections (“quick-min”)1, 12 were car-
ried out until the maximum force on each atom in any of the
images had dropped below 0.5 eV/Å and then the climbing-
image NEB was used with a conjugate gradient minimiza-
tion algorithm3, 12 until the maximum force dropped below
0.1 eV/Å. A tolerance of 0.1 eV/Å is typically sufficient to
get a good estimate of the path. The calculations of the con-

FIG. 2. Initial path for the rotation of a methyl group in ethane, (a) created
by LI, a linear interpolation of Cartesian coordinates; (b) created using the
IDPP method. The rotation is clearly better represented by the latter method.
The NEB calculation starting from the IDPP path required about a third as
many atomic iterations and SCF iterations to reach convergence as compared
with a calculation starting with the LI path, see Table I.

densed phase systems were carried out using VASP,13 the
PBE functional14 and PAW,15 with the TST tools.16 The hep-
tamer island system consisted of a slab of 3 layers, each with
36 atoms and the calculation included (3×3×1) k-points and
an energy cutoff of 270 eV. The calculation of the amorphous
Si involved 214 atoms including only the gamma point and an
energy cutoff of 245 eV. The methyl rotation was calculated
using the ATK-DFT software,11 PBE functional, and linear
combination of atomic orbitals (LCAO).

A. Rotation of a methyl group in ethane

The first application is rotation of a methyl group in
an ethane molecule. This simple example illustrates well the
difference between LI and IDPP paths, which are shown in
Fig. 2 with 5 intermediate images. The constraint on the
pairwise distances in the construction using the IDPP path
leads to a simple rotation of the methyl group, while the LI
method gives a path with significant variations in the C–H
bond lengths. The convergence in a subsequent NEB calcula-
tion starting from the IDPP path and using atomic forces from
an ATK-DFT11 calculation required about a third as many

TABLE I. Computational effort in converging to the minimum energy path
starting from different initial paths: the linear interpolation of Cartesian co-
ordinates (LI) and the Image Dependent Pair Potential (IDPP) method pre-
sented here. The effort is reported as the number of electronic (SCF) itera-
tions needed as well as the number of atomic displacement (AD) iterations.
In example 2, the Ni-adatom was moved outwards along the surface normal
by 0.2 Å in the intermediate images of the LI path to prevent the DFT calcu-
lation from diverging.

Application LI IDPP

Ex. 1: Methyl rotation
SCF iterations 1802 598
AD iterations 72 28
Ex. 2: Heptamer island
SCF iterations 11 367 1120
AD iterations 151 71
Ex. 3: Si-atom exchange
SCF iterations 9413 6433
AD iterations 149 104
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Nudge elastic band (NEB)
N images i, separated by a spring  

of constant which 
controls the spacing.

Force projection using the tangent     
to avoid the sliding-down 
problem

26
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Climbing-image NEB (CI-NEB)
To obtain a better convergence 

to the saddle point, the 
highest image climbs along 
the MEP and is not affected 
by the spring anymore:
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Exploring the potential energy surface

Variable Spring/energy weighted NEB
To improve the sampling close to the saddle point, stronger 

springs can be used for images higher in energy than a 
reference energy       , in the range of spring constant [   ,    ]

28
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Comparing NEB methods
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set. About 80% of the saddle points obtained by EW-CI-NEB are
already of first order. Clearly, the EW-CI-NEB method (sets 5
and 6) shows significant improvements in performance over the
standardCI-NEBmethodwith equal distribution of images (sets
1−4). As EW-CI-NEB leads to an increased density of images in
the region of the energy barrier, a smaller number of images can
be used in EW-CI-NEB to locate the SP compared to CI-NEB.
In fact, EW-CI-NEB appears to be less sensitive to the choice of
Nim; see section SI-4.2. The convergence behavior of CI-NEB
and EW-CI-NEB is shown in section SI-2.6 for two example
reactions from the benchmark set.
To further demonstrate the difference in the image

distribution obtained by CI-NEB and EW-CI-NEB, the relative
deviation of the interimage distance between CI and its two
neighbors from the even distribution of the RPs is evaluated and
reported in section SI-2.4. For the CI-NEB calculations using
Nim = 10 and ksp = 0.1 EH/a0, 92% of the convergent CI-NEB
calculations show a less than 2% deviation from the even
distribution and 99% of the systems are within a 5% deviation.
This is to be expected since CI-NEB attempts to obtain an even
distribution of images and the selected spring constants are
relatively stiff (compared to typical values used for ksp). For CI-
NEB, a large deviation from the ideal even distribution can be a
sign of instability and kinked paths. For EW-CI-NEB, using Nim
= 10, the interimage distances in higher energy regions of the
path become shorter as the images are shifted up along the path
due to stiffer springs in those regions. The interimage distance
between CI and its closer neighboring image is less than 1/2 of
the even distribution for 92% of the EW-CI-NEB paths and less
than 1/3 for 64% of the paths. This shows how EW-CI-NEB
effectively introduces a denser distribution of images around the
CI and thereby improves the approximation to the path tangent
at the CI.
4.1.3. Comparison of CI-NEB and EW-CI-NEB for an

Example Reaction. To further examine the difference in
convergence behavior between CI-NEB and EW-CI-NEB, the
reaction of 1,3-butadiene and ethylene to form 1,2-hexadiene is
chosen from the benchmark set of molecular reactions. CI-NEB
calculations using Nim = 10, 14, 18, and 34 with ksp = 0.1 EH/a02

are compared to EW-CI-NEB calculations using Nim = 7 and 10
with ksp scaled from 0.01 to 0.1 EH/a02. The resulting paths,
computational efficiency, and key configurations (reactant,
product, and saddle points) are shown in Figures 5 and 6. In this
case, the computational efficiency is measured by the number of
optimization steps rather than the number of energy/force
evaluations.
The resulting reaction path for the formation of 1,2-hexadiene

(see Figure 5) is characterized by a long, flat energy tail that
corresponds, e.g., to the rotation of the ethylene fragment into
the necessary orientation needed for the reaction to occur. This
is typical for calculations of molecular association reactions and
can for some reactions be reduced by improving the alignment of
the initial reactant and product configurations. The reaction
then proceeds by H-transfer from 1,3-butadiene to ethylene and
C−C bond formation with an energy barrier of 36.7 kcal/mol.
Finally, to yield the product state, the reaction is followed by an
isomerization with a barrier of 5.8 kcal/mol, relative to the
product state energy minimum.
The CI-NEB calculation with fixed spring constant and Nim =

10 is unable to converge within the 500 allowed optimization
steps. Moreover, the energy profile of the path from the last
optimization step of this CI-NEB calculation does not give a
good estimate of the large energy barrier. The CI-NEB

calculation withNim = 14 is able to converge in 469 optimization
steps. A closer inspection of the calculation reveals that this large
number of steps is due to an oscillatory behavior of the CI. This
behavior is attributed to the poor resolution of the energy
barrier. By increasing the number of images even further toNim =
18 and to 34, the oscillations are quenched, and a large reduction
in the number of optimization steps is achieved, to 235 and 147,
respectively. Interestingly, for Nim = 18, the resolution of the
energy barrier is still quite poor as the images adjacent to the CI
are located at the base of the energy peak, see Figure 5. The EW-
CI-NEB calculations with Nim = 7 and 10 offer a better

Figure 5. Energy curves (or profiles) for the reaction path of ethylene
and 1,3-butadiene to form 1,2-hexadiene. The CI-NEB calculations use
fixed spring constant of ksp = 0.1 EH/a02 and the number of images isNim
= 10, 18, or 34. For comparison, the energy weighted CI-NEB
calculations use ksp scaled from 0.01 to 0.1 EH/a02 and Nim = 10.
Convergence is defined only in terms of the atomic forces acting on the
climbing image, so the intermediate images are not converged to the
same degree. The large energy barrier is associated with H-transfer from
1,3-butadiene to ethylene and a C−C bond formation. The second
energy barrier corresponds to a rearrangement to yield the specified
product state. Note that the energy curve for CI-NEB-10 is not
converged and is unable to resolve the large energy barrier. The reactant
(denoted by R), saddle point (denoted by SP), and product (denoted
by P) configurations are shown as insets.

Figure 6. Efficiency of CI-NEB and EW-CI-NEB calculations of the
reaction of ethylene and 1,3-butadiene to form 1,2-hexadiene. The
efficiency is measured in terms of NEB iterations (or optimization
steps) required to reach convergence. The CI-NEB calculations are
carried out with a fixed spring constant of ksp = 0.1 EH/a0

2 andNim = 10,
14, 18, or 34. The energy-weighted CI-NEB calculations scale the ksp

from 0.01 to 0.1 EH/a0
2 and are carried out using Nim = 7 and 10. Note

that CI-NEB-10 with ksp = 0.1 EH/a0
2 failed to converge within 500

iterations.
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In fact, EW-CI-NEB appears to be less sensitive to the choice of
Nim; see section SI-4.2. The convergence behavior of CI-NEB
and EW-CI-NEB is shown in section SI-2.6 for two example
reactions from the benchmark set.
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at the CI.
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convergence behavior between CI-NEB and EW-CI-NEB, the
reaction of 1,3-butadiene and ethylene to form 1,2-hexadiene is
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calculations using Nim = 10, 14, 18, and 34 with ksp = 0.1 EH/a02

are compared to EW-CI-NEB calculations using Nim = 7 and 10
with ksp scaled from 0.01 to 0.1 EH/a02. The resulting paths,
computational efficiency, and key configurations (reactant,
product, and saddle points) are shown in Figures 5 and 6. In this
case, the computational efficiency is measured by the number of
optimization steps rather than the number of energy/force
evaluations.
The resulting reaction path for the formation of 1,2-hexadiene

(see Figure 5) is characterized by a long, flat energy tail that
corresponds, e.g., to the rotation of the ethylene fragment into
the necessary orientation needed for the reaction to occur. This
is typical for calculations of molecular association reactions and
can for some reactions be reduced by improving the alignment of
the initial reactant and product configurations. The reaction
then proceeds by H-transfer from 1,3-butadiene to ethylene and
C−C bond formation with an energy barrier of 36.7 kcal/mol.
Finally, to yield the product state, the reaction is followed by an
isomerization with a barrier of 5.8 kcal/mol, relative to the
product state energy minimum.
The CI-NEB calculation with fixed spring constant and Nim =

10 is unable to converge within the 500 allowed optimization
steps. Moreover, the energy profile of the path from the last
optimization step of this CI-NEB calculation does not give a
good estimate of the large energy barrier. The CI-NEB

calculation withNim = 14 is able to converge in 469 optimization
steps. A closer inspection of the calculation reveals that this large
number of steps is due to an oscillatory behavior of the CI. This
behavior is attributed to the poor resolution of the energy
barrier. By increasing the number of images even further toNim =
18 and to 34, the oscillations are quenched, and a large reduction
in the number of optimization steps is achieved, to 235 and 147,
respectively. Interestingly, for Nim = 18, the resolution of the
energy barrier is still quite poor as the images adjacent to the CI
are located at the base of the energy peak, see Figure 5. The EW-
CI-NEB calculations with Nim = 7 and 10 offer a better

Figure 5. Energy curves (or profiles) for the reaction path of ethylene
and 1,3-butadiene to form 1,2-hexadiene. The CI-NEB calculations use
fixed spring constant of ksp = 0.1 EH/a02 and the number of images isNim
= 10, 18, or 34. For comparison, the energy weighted CI-NEB
calculations use ksp scaled from 0.01 to 0.1 EH/a02 and Nim = 10.
Convergence is defined only in terms of the atomic forces acting on the
climbing image, so the intermediate images are not converged to the
same degree. The large energy barrier is associated with H-transfer from
1,3-butadiene to ethylene and a C−C bond formation. The second
energy barrier corresponds to a rearrangement to yield the specified
product state. Note that the energy curve for CI-NEB-10 is not
converged and is unable to resolve the large energy barrier. The reactant
(denoted by R), saddle point (denoted by SP), and product (denoted
by P) configurations are shown as insets.

Figure 6. Efficiency of CI-NEB and EW-CI-NEB calculations of the
reaction of ethylene and 1,3-butadiene to form 1,2-hexadiene. The
efficiency is measured in terms of NEB iterations (or optimization
steps) required to reach convergence. The CI-NEB calculations are
carried out with a fixed spring constant of ksp = 0.1 EH/a0
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Exploring the potential energy surface

Combining the best of two worlds

30 V. Ásgeirsson, B.O. Birgisson, R. Bjornsson, U. Becker, F. Neese, C. Riplinger, H. Jònsson, J Chem Theory Comput, 2021, 17, 4929-4945resolution of the energy barrier and achieve comparable
performance to CI-NEB with Nim = 34 where the number of
optimization steps required is 166 and 152, respectively.
However, the EW-CI-NEB calculations are unable to resolve
other features of the path such as the second energy barrier with
this low number of images. In practice it may be advantageous to
partition multistep reactions into multiple (EW-)CI-NEB
calculations, with one (EW-)CI-NEB calculation per energy
maximum.
4.2. Performance of NEB-TS.The performance of NEB-TS

is assessed using four sets of different method parameters. The
results are compared to the IDPP-TS method and summarized
in Figures 7 and 8. Two different TS activation thresholds for
stopping the EW-CI-NEB calculation and starting the TS search
are used, i.e., ϵmax

TS = 0.01 and 0.002 EH/a0. Also, the initial
Hessian matrix is either computed analytically or constructed

using the empirical Almlöf scheme. Other parameters of the
NEB-TS method are as specified in section 2.3.
The convergence ratio of a set of NEB-TS calculations is

determined by the number of calculations that converge on a SP
within 500 optimization steps in total, i.e., sum of steps used in
the EW-CI-NEB and the subsequent TS search. The set of SPs
obtained by the NEB-TS calculations are further analyzed
according to the absolute energy difference from the reference
set of SPs defined in section 2.3.2. The computational efficiency
is measured by the average number and standard deviation of
energy/force evaluations required by convergent calculations.
All four sets of the NEB-TS calculations are found to have a

100% convergence ratio, regardless of when EW-CI-NEB is
stopped and the TS search is started and also irrespective of
whether the exact or an empirical Hessian matrix is used at the
beginning of the TS search. In section SI-2.6, the convergence

Figure 7.Convergence ratio and accuracy of results obtained by NEB-TS and IDPP-TS calculations for the benchmark set of 121 molecular reactions.
The calculations differ in the degree to which the climbing image of the EW-CI-NEB calculation is converged before the TS search is started, i.e., ϵmax

TS , is
0.01 and 0.002 EH/a0. In IDPP-TS, the initial EW-CI-NEB phase is skipped. The calculations also use either an approximation to the initial Hessian
matrix constructed using the empirical Almlöf scheme or computed analytically (labeled on the x-axis). All calculations use 10 images. The
convergence ratio is given by the blue line (right vertical axis). A calculation is considered to be converged if the magnitude of the atomic force drops
belowmax(|FTS|) < 5× 10−4 EH/a0 and RMS(FTS) < 3× 10−4 EH/a0, within 500 optimization steps. The fraction of NEB-TS and IDPP-TS calculations
that yield a saddle point estimate withinΔ of the reference set is shown in red (left vertical axis) for three different values ofΔ, orΔ = 0.1, 0.5, and 1.0
kcal/mol.

Figure 8. Computational efficiency of NEB-TS and IDPP-TS calculations of the benchmark set of 121 molecular reactions. The NEB-TS calculations
differ in the degree to which the climbing image of the initial EW-CI-NEB calculation is converged before the TS search is started, i.e., ϵmax

TS , is 0.01 or
0.002 EH/a0. In IDPP-TS, the initial EW-CI-NEB phase is skipped. The calculations also use either an initial Hessian matrix that is constructed using
the empirical Almlöf scheme or computed analytically (labeled on the x-axis). All calculations use 10 images. The average number of energy/force
evaluations required by convergent NEB-TS (and IDPP-TS) calculations to locate saddle points is shown with red solid line along with the standard
deviation shown as an error bar. The dashed blue and green dashed lines show how the computational effort of the NEB-TS calculations is divided into
the initial EW-CI-NEB phase and the subsequent TS search. Nonconvergent calculations are omitted from the calculation of the averages.
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Success depends on the 
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and G4 model chemistry results were computed for gas-phase
reactions with more than one water molecule and for all
aqueous reactions. For the aqueous results, the agreement
between G4 and experiment is very good for the uncatalyzed
tautomerization, thus all further discussions of energetics will
refer to the G4 results unless noted otherwise.

As seen previously,10,21 HY is the lower energy gas-phase
tautomer only when no proton-shuttling water is present. The
addition of one, two, or three water catalysts stabilizes PY
by an additional 5.2, 6.0, and 6.7 kJ/mol, respectively.
Interestingly, the catalytic waters always form a prereactive
complex which minimizes the hydrogen bonding distances
prior to transferring the H atom (see Supporting Information).
In the aqueous systems, PY is always the lower energy
tautomer regardless of the number of catalytic water mol-
ecules present. As seen in Table 4, the aqueous reaction
energy computed with polarizable continuum models be-
comes essentially constant once catalytic water molecules
are employed as proton shuttles. Therefore the number of
catalytic water molecules actually participating in the ground-
state tautomerization reaction is determined by the barrier
height, not the over all reaction energy. Such trends in
reaction barriers for additional catalytic waters have been
seen previously.58 In both phases, the reaction barrier
decreases by ∼90 kJ/mol with the addition of one catalytic
water molecule. Additional water molecules actually increase
the barrier height by ∼10 kJ/mol for two water molecules,
which agrees with earlier computational studies.21,30 Since
multiple water catalysts increase the reaction barrier height,
electronic potential energy surfaces will only be constructed
for the two reactions, PYf HY and PY(H2O)f HY(H2O).

3.2. Reactive Potential Energy Surfaces. A prerequisite
step in molecular dynamic (MD) studies is the construction
of a reliable reactive electronic potential energy surface. A

reactive potential energy surface V(q), where q is the vector
of molecular coordinates, can be constructed by means of a
superposition of reactant and product configuration, ψ1 and
ψ2, interacting via an empirical Hamiltonian, Ĥ.59

H11 and H22 are the energy surfaces for the reactant and
product potentials, respectively, and H12 is the resonance
integral that must be represented by an approximate func-
tional form. The construction of reactive potential energy
surfaces as a superposition of two or more states has a long
history as evidenced in the review by Balint-Kurti.60 In 1929,
London showed that a qualitatively correct potential energy
surface for the H + H2 exchange reaction could be generated
from two configurations.61 In a 1938 Faraday discussion on
reaction kinetics, Eyring reported the potential energy surface
for the same hydrogen exchange reaction calculated from
the interaction of five configurations.62 At the same confer-
ence, Evans and Polanyi described a surface for the Cl- +
CH3Cl SN2 reaction built from a reactant and a product
configuration.63 The ensuing discussion pointed out that the
two approaches are equivalent and identical to the method
used in an earlier work on the barriers for ionic reactions.64

Evans also provided an early application of this approach to
the Diels-Alder reaction.65 Subsequent variations on this
method differ primarily in the manner of approximating the
H11, H22, and H12 matrix elements.

An empirical valence bond (EVB) approach for estimating
the matrix elements was employed by Warshel for comparing
reactions in solution and enzymes.66 Pross and Shaik used a
qualitative, valence-bond, configuration-mixing approach to
investigate organic reactions.67 More relevant to the present
work, Chang and Miller68,69 constructed accurate potential
energy surfaces by fitting a superposition of two EVB
configurations to ab initio energies, gradients and Hessians
using a generalized Gaussian for H12. Minichino and Voth
generalized the Chang-Miller method68 for N-state systems
and provided a scheme to correct gas-phase ab initio data
for solutions.70

From a pedagogical point of view, EVB surfaces can be
classified by the approximation employed in H12. In addition
to the simple choice of setting H12 equal to a constant
(Constant-EVB) that reproduces experimental or high-level
ab initio barrier heights, two methods have emerged for
constructing accurate reactive EVB surfaces: DWI-EVB and
DG-EVB. DWI-EVB represents H12(q) as a distance weighted
interpolation (DWI), aka Shepard interpolation, around a set
of molecular configurations (called Shepard points) where
the energy, gradient, and Hessian are available.71-74 DG-
EVB builds upon the Chang-Miller method68 and expands

Figure 5. Various classes of reaction channels near the TS
on reactive potential energy surfaces: (a) I-shaped valley, (b)
L- or V-shaped valley, (c) T-shaped valley, (d) H- or X-shaped
valley.

Ψ ) c1ψ1 + c2ψ2 (1)

Ĥ ) [H11 H12

H21 H22 ] (2)
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2.04 Å

2.63 Å

2.30 Å

3.00 Å

-12 kJ.mol-1
183 kJ.mol-1

-12 kJ.mol-1
159 kJ.mol-1

Same IS and FS, two different TS…
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The secret ingredient

Chemical intuition or educated guess.

The closer to the point you are searching, the better.
 
Your results are certainly not improved by starting from ‘far’.
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CONCENTRATION & TEMP
Including reaction conditions
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Moving to macroscopic quantities

Thanks to physical statistics we can turn ab initio data into kinetic 
constants k and equilibrium constants K (be carefull with 
standard states etc.).
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Determining a predominance diagramm
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where U0Pt13ðXÞis the energy of the Pt13 cluster subsystem with
the same geometry as in the adsorbed state (with hydrogen).

c) The deformation energy of the metallic clusters, as
compared to the reference isolated BP cluster (n = 0):

Ddef UPt13ðXÞ ¼ U0Pt13ðXÞ $ UBP
Pt13

ð4Þ

where UBP
Pt13

is the energy of the isolated cluster with the BP
morphology.

d) The deformation energy of the alumina surface:

Ddef UAl2O3
¼ U0Al2 O3

$ UAl2 O3
ð5Þ

Figure 3 plots the evolution of the CUB–BP difference for
these four contributions as a function of the hydrogen cover-
age. It becomes clear that the interaction energy between the
hydrogenated cluster and the support is always strongly in
favor of the BP morphology. In particular, the cluster–support
interaction for the CUB morphology reaches a value close to
zero when more than 24 hydrogen atoms are adsorbed. This
coverage value corresponds to the full occupation of bridge
sites, when the platinum cluster is no longer bonded to the
alumina because of H insertion at the metal–support interface.
In contrast, the deformation energy of the alumina surface is
always in favor of the CUB morphology, as a consequence of
the weaker metal–support interaction. However, the most strik-
ing result is obtained for n%20, where the deformation energy

of the cluster and the hydrogen interaction with the cluster
both strongly favor the CUB morphology. As a result, the sum
of these two components, added to the deformation energy of
the alumina surface, counterbalances the cluster-support inter-
action energy term and stabilizes the CUB morphology. This
structure is able to adsorb significant amounts of hydrogen
and simultaneously pays a moderate deformation energy cost.

2. Thermodynamics of the H2–Pt13/g-Al2O3 system

The thermodynamic diagrams (Figure 4 a) show the evolution
of the most stable cluster structures and the optimum H cover-
ages as a function of the pressure of H2. These diagrams are
determined by combining the 0 K DFT energies (discussed in
the previous paragraph) with a thermodynamic model as ex-
plained in the Computational Methods Section and in Support-
ing Information, S5. Due to far more exothermic adsorptions of
hydrogen on the Pt13 cluster (for a wide range of n values, see
the Supporting Information, S3), the H uptake of the support-
ed Pt13 cluster encompasses that of extended Pt(111) (Fig-
ure 4 b) and Pt(100) (Figure 4 c) surfaces. Therefore, at PH2

=
P8= 0.1 MPa, ideal surfaces exposed by large particles are de-
pleted from H atoms at T>900 K, whereas the Pt13 cluster still
contains 6 H atoms (H/Pt&0.5 at P = P8= 0.1 MPa, T = 900 K).
Moreover, the thermodynamic conditions for the transition be-
tween BP and CUB morphologies are reached for H/Pt ratio ex-
ceeding 1.4 (n%18–20; Figure 4 a). Typically, for PH2

= P8, such a
transition occurs at T&675 K. For T<675 K, the cluster exhibits

Figure 4. Thermodynamic diagrams depicting the most stable hydrogen coverage as a function of the temperature and the hydrogen partial pressure:
a) Pt13/g-Al2O3(100) (the number of hydrogen atoms per cluster is given in the corresponding zones). The yellow and red areas correspond to conditions
where a cuboctahedral (CUB) geometry is preferred for Pt13, whereas BP-like clusters (see Figure 1) are more stable in the conditions depicted by the blue
areas. The green zone depicts the BP–CUB reconstruction domain. All systems within a DrG difference of 10 kJ mol$1 are indicated in a given zone; b) Pt(111) ;
c) Pt(100) surfaces (the hydrogen coverage of the most stable system in the given conditions is indicated in the corresponding zones, ML = monolayer).
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H2-Induced Reconstruction of Supported Pt Clusters

considered as a relevant particle morphology. g-Al2O3 is known
as a support of choice for the stabilization of small particles,
and is thus used in many industrial applications.[18] The degree
of hydroxylation of the support depends on the temperature
and the water partial pressure. In previous works, we estab-
lished a detailed model of the surfaces of g-Al2O3 nanocrystal-
lites as a function of the operating conditions.[19] Alumina pla-
telets are mainly composed of (100) and (110) surfaces (about
20 % and 70 % respectively). For typical reaction conditions
(above 600 K), the (100) surface is dehydrated, whereas the
(110) remains hydroxylated. In a previous report,[20] we showed
that, in the absence of hydrogen, Pt13 clusters interact much
more strongly with the AlV and OIII sites on the dehydrated
(100) surface than with the hydroxyl groups on the (110) sur-
face. For this reason, small Pt particles are more likely located
on the dehydrated (100) alumina surface. Moreover, to opti-
mize the metal–support interaction, among various competi-
tive Pt13 structures,[21] the Pt13 cluster preferentially lies in a “bi-
planar” (BP) morphology (Figure 1 a).[20] On the surface model
depicted in Figure 1 a, the cluster’s diameter is estimated to be
between 0.63 nm (from the largest Pt atomic core to core dis-
tance) and 1 nm (when including metallic radii). This model
and the results obtained herein will thus be applicable for sub-
nanometer particles, such as the highly dispersed platinum cat-
alysts used experimentally and industrially.[15–17] Twelve of the
thirteen platinum atoms are accessible, so the theoretical dis-

persion is close to 100 %. This model, as the most stable found
to date, is the basis of the present work.

These Pt clusters supported on g-alumina are shown to be
the subject of a remarkable structural reconstruction induced
by H2, hence reaching a higher hydrogen adsorption capacity
than extended surfaces, with formation of a surface hydride.
Important experimental data are revisited.

Results and Discussion

1. The H2–Pt13/g-Al2O3 system: Driving forces for the BP to
CUB reconstruction

The adsorption of n (n = 1–40) hydrogen atoms on Pt13/g-Al2O3,
leading to Pt13Hn/g-Al2O3, was investigated by a molecular dy-
namics (MD) approach, allowing a careful sampling of the con-
figuration space (see Computational Methods Section and the
Supporting Information, S1). Top and bridge sites appear to be
the most favored adsorption modes, regardless of the hydro-
gen coverage value qH (Figure 1 b–d; see Section 3 for a more
refined analysis) in contrast with the ideal surfaces (see the
Supporting Information, S2), for which hollow fcc and top sites
are known to be favored on Pt(111)[22] and bridge sites on
Pt(100).[23] The other main difference between extended planes
and the supported cluster is the exothermicity of hydrogen ad-
sorption until a very high coverage for the cluster (40 H atoms
per cluster, 3.33 H per Ptsurf ; see the Supporting Information,
S3), whereas the extended (111) and (100) surfaces saturate at
1 and 1.75 H per Ptsurf, respectively. In addition, these exother-
mic adsorptions are accompanied by a strong deformation of
the BP cluster (Figure 1 c), and by a weakening of the metal–
support interaction (Figure 1 d) for the highest coverage, by in-
sertion of hydrogen atoms between the particle and the
support.

Such a phenomenon suggests that a deeper reconstruction
of the cluster may occur for high qH values, when the metal–
support interaction, which stabilizes the preferred BP geome-
try,[20] is altered and when the particle structure is significantly
modified. Thus, we investigated the stability of isolated BP
clusters containing 24 hydrogen atoms by MD simulation
(800 K in a 20 !3 supercell ; Figure 2). The starting geometry
was the most stable deformed BP system covered by 24 H
atoms found during the exploration on the clusters supported
on the (100) Al2O3 surface. After 25 ps of MD simulation, the
starting deformed BP geometry evolves to a CUB morphology
(Figure 2 (d)), which is the most stable geometry found by MD.
Its total energy is very close to a regular CUB, on which hydro-
gen atoms occupy all bridge sites (Figure 2 f). In the absence
of hydrogen atoms, the reverse evolution took place. The MD
simulation starting from a CUB morphology leads to BP as one
of the preferential morphologies.[21] Thus, the presence of hy-
drogen is the driving force that leads to the formation of a
symmetric (Oh) morphology of the cluster, maximizing the Pt
coordination number (see the Supporting Information, S4). To
some extent, this result is consistent with recent DFT calcula-
tions of Pt clusters in the gas phase[24] and of truncated Pt par-
ticles supported on graphene,[23] suggesting that cuboctahe-

Figure 1. Calculated structures for hydrogen-covered Pt13Hn clusters (n is the
number of hydrogen atoms) supported on g-Al2O3 (100) surface, with n = 0
(a), n = 6 (b), n = 18 (c), n = 38 (meta-stable) (d), n = 20 (e), n = 34 (f).
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considered as a relevant particle morphology. g-Al2O3 is known
as a support of choice for the stabilization of small particles,
and is thus used in many industrial applications.[18] The degree
of hydroxylation of the support depends on the temperature
and the water partial pressure. In previous works, we estab-
lished a detailed model of the surfaces of g-Al2O3 nanocrystal-
lites as a function of the operating conditions.[19] Alumina pla-
telets are mainly composed of (100) and (110) surfaces (about
20 % and 70 % respectively). For typical reaction conditions
(above 600 K), the (100) surface is dehydrated, whereas the
(110) remains hydroxylated. In a previous report,[20] we showed
that, in the absence of hydrogen, Pt13 clusters interact much
more strongly with the AlV and OIII sites on the dehydrated
(100) surface than with the hydroxyl groups on the (110) sur-
face. For this reason, small Pt particles are more likely located
on the dehydrated (100) alumina surface. Moreover, to opti-
mize the metal–support interaction, among various competi-
tive Pt13 structures,[21] the Pt13 cluster preferentially lies in a “bi-
planar” (BP) morphology (Figure 1 a).[20] On the surface model
depicted in Figure 1 a, the cluster’s diameter is estimated to be
between 0.63 nm (from the largest Pt atomic core to core dis-
tance) and 1 nm (when including metallic radii). This model
and the results obtained herein will thus be applicable for sub-
nanometer particles, such as the highly dispersed platinum cat-
alysts used experimentally and industrially.[15–17] Twelve of the
thirteen platinum atoms are accessible, so the theoretical dis-

persion is close to 100 %. This model, as the most stable found
to date, is the basis of the present work.

These Pt clusters supported on g-alumina are shown to be
the subject of a remarkable structural reconstruction induced
by H2, hence reaching a higher hydrogen adsorption capacity
than extended surfaces, with formation of a surface hydride.
Important experimental data are revisited.

Results and Discussion

1. The H2–Pt13/g-Al2O3 system: Driving forces for the BP to
CUB reconstruction

The adsorption of n (n = 1–40) hydrogen atoms on Pt13/g-Al2O3,
leading to Pt13Hn/g-Al2O3, was investigated by a molecular dy-
namics (MD) approach, allowing a careful sampling of the con-
figuration space (see Computational Methods Section and the
Supporting Information, S1). Top and bridge sites appear to be
the most favored adsorption modes, regardless of the hydro-
gen coverage value qH (Figure 1 b–d; see Section 3 for a more
refined analysis) in contrast with the ideal surfaces (see the
Supporting Information, S2), for which hollow fcc and top sites
are known to be favored on Pt(111)[22] and bridge sites on
Pt(100).[23] The other main difference between extended planes
and the supported cluster is the exothermicity of hydrogen ad-
sorption until a very high coverage for the cluster (40 H atoms
per cluster, 3.33 H per Ptsurf ; see the Supporting Information,
S3), whereas the extended (111) and (100) surfaces saturate at
1 and 1.75 H per Ptsurf, respectively. In addition, these exother-
mic adsorptions are accompanied by a strong deformation of
the BP cluster (Figure 1 c), and by a weakening of the metal–
support interaction (Figure 1 d) for the highest coverage, by in-
sertion of hydrogen atoms between the particle and the
support.

Such a phenomenon suggests that a deeper reconstruction
of the cluster may occur for high qH values, when the metal–
support interaction, which stabilizes the preferred BP geome-
try,[20] is altered and when the particle structure is significantly
modified. Thus, we investigated the stability of isolated BP
clusters containing 24 hydrogen atoms by MD simulation
(800 K in a 20 !3 supercell ; Figure 2). The starting geometry
was the most stable deformed BP system covered by 24 H
atoms found during the exploration on the clusters supported
on the (100) Al2O3 surface. After 25 ps of MD simulation, the
starting deformed BP geometry evolves to a CUB morphology
(Figure 2 (d)), which is the most stable geometry found by MD.
Its total energy is very close to a regular CUB, on which hydro-
gen atoms occupy all bridge sites (Figure 2 f). In the absence
of hydrogen atoms, the reverse evolution took place. The MD
simulation starting from a CUB morphology leads to BP as one
of the preferential morphologies.[21] Thus, the presence of hy-
drogen is the driving force that leads to the formation of a
symmetric (Oh) morphology of the cluster, maximizing the Pt
coordination number (see the Supporting Information, S4). To
some extent, this result is consistent with recent DFT calcula-
tions of Pt clusters in the gas phase[24] and of truncated Pt par-
ticles supported on graphene,[23] suggesting that cuboctahe-
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number of hydrogen atoms) supported on g-Al2O3 (100) surface, with n = 0
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considered as a relevant particle morphology. g-Al2O3 is known
as a support of choice for the stabilization of small particles,
and is thus used in many industrial applications.[18] The degree
of hydroxylation of the support depends on the temperature
and the water partial pressure. In previous works, we estab-
lished a detailed model of the surfaces of g-Al2O3 nanocrystal-
lites as a function of the operating conditions.[19] Alumina pla-
telets are mainly composed of (100) and (110) surfaces (about
20 % and 70 % respectively). For typical reaction conditions
(above 600 K), the (100) surface is dehydrated, whereas the
(110) remains hydroxylated. In a previous report,[20] we showed
that, in the absence of hydrogen, Pt13 clusters interact much
more strongly with the AlV and OIII sites on the dehydrated
(100) surface than with the hydroxyl groups on the (110) sur-
face. For this reason, small Pt particles are more likely located
on the dehydrated (100) alumina surface. Moreover, to opti-
mize the metal–support interaction, among various competi-
tive Pt13 structures,[21] the Pt13 cluster preferentially lies in a “bi-
planar” (BP) morphology (Figure 1 a).[20] On the surface model
depicted in Figure 1 a, the cluster’s diameter is estimated to be
between 0.63 nm (from the largest Pt atomic core to core dis-
tance) and 1 nm (when including metallic radii). This model
and the results obtained herein will thus be applicable for sub-
nanometer particles, such as the highly dispersed platinum cat-
alysts used experimentally and industrially.[15–17] Twelve of the
thirteen platinum atoms are accessible, so the theoretical dis-

persion is close to 100 %. This model, as the most stable found
to date, is the basis of the present work.

These Pt clusters supported on g-alumina are shown to be
the subject of a remarkable structural reconstruction induced
by H2, hence reaching a higher hydrogen adsorption capacity
than extended surfaces, with formation of a surface hydride.
Important experimental data are revisited.

Results and Discussion

1. The H2–Pt13/g-Al2O3 system: Driving forces for the BP to
CUB reconstruction

The adsorption of n (n = 1–40) hydrogen atoms on Pt13/g-Al2O3,
leading to Pt13Hn/g-Al2O3, was investigated by a molecular dy-
namics (MD) approach, allowing a careful sampling of the con-
figuration space (see Computational Methods Section and the
Supporting Information, S1). Top and bridge sites appear to be
the most favored adsorption modes, regardless of the hydro-
gen coverage value qH (Figure 1 b–d; see Section 3 for a more
refined analysis) in contrast with the ideal surfaces (see the
Supporting Information, S2), for which hollow fcc and top sites
are known to be favored on Pt(111)[22] and bridge sites on
Pt(100).[23] The other main difference between extended planes
and the supported cluster is the exothermicity of hydrogen ad-
sorption until a very high coverage for the cluster (40 H atoms
per cluster, 3.33 H per Ptsurf ; see the Supporting Information,
S3), whereas the extended (111) and (100) surfaces saturate at
1 and 1.75 H per Ptsurf, respectively. In addition, these exother-
mic adsorptions are accompanied by a strong deformation of
the BP cluster (Figure 1 c), and by a weakening of the metal–
support interaction (Figure 1 d) for the highest coverage, by in-
sertion of hydrogen atoms between the particle and the
support.

Such a phenomenon suggests that a deeper reconstruction
of the cluster may occur for high qH values, when the metal–
support interaction, which stabilizes the preferred BP geome-
try,[20] is altered and when the particle structure is significantly
modified. Thus, we investigated the stability of isolated BP
clusters containing 24 hydrogen atoms by MD simulation
(800 K in a 20 !3 supercell ; Figure 2). The starting geometry
was the most stable deformed BP system covered by 24 H
atoms found during the exploration on the clusters supported
on the (100) Al2O3 surface. After 25 ps of MD simulation, the
starting deformed BP geometry evolves to a CUB morphology
(Figure 2 (d)), which is the most stable geometry found by MD.
Its total energy is very close to a regular CUB, on which hydro-
gen atoms occupy all bridge sites (Figure 2 f). In the absence
of hydrogen atoms, the reverse evolution took place. The MD
simulation starting from a CUB morphology leads to BP as one
of the preferential morphologies.[21] Thus, the presence of hy-
drogen is the driving force that leads to the formation of a
symmetric (Oh) morphology of the cluster, maximizing the Pt
coordination number (see the Supporting Information, S4). To
some extent, this result is consistent with recent DFT calcula-
tions of Pt clusters in the gas phase[24] and of truncated Pt par-
ticles supported on graphene,[23] suggesting that cuboctahe-

Figure 1. Calculated structures for hydrogen-covered Pt13Hn clusters (n is the
number of hydrogen atoms) supported on g-Al2O3 (100) surface, with n = 0
(a), n = 6 (b), n = 18 (c), n = 38 (meta-stable) (d), n = 20 (e), n = 34 (f).
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considered as a relevant particle morphology. g-Al2O3 is known
as a support of choice for the stabilization of small particles,
and is thus used in many industrial applications.[18] The degree
of hydroxylation of the support depends on the temperature
and the water partial pressure. In previous works, we estab-
lished a detailed model of the surfaces of g-Al2O3 nanocrystal-
lites as a function of the operating conditions.[19] Alumina pla-
telets are mainly composed of (100) and (110) surfaces (about
20 % and 70 % respectively). For typical reaction conditions
(above 600 K), the (100) surface is dehydrated, whereas the
(110) remains hydroxylated. In a previous report,[20] we showed
that, in the absence of hydrogen, Pt13 clusters interact much
more strongly with the AlV and OIII sites on the dehydrated
(100) surface than with the hydroxyl groups on the (110) sur-
face. For this reason, small Pt particles are more likely located
on the dehydrated (100) alumina surface. Moreover, to opti-
mize the metal–support interaction, among various competi-
tive Pt13 structures,[21] the Pt13 cluster preferentially lies in a “bi-
planar” (BP) morphology (Figure 1 a).[20] On the surface model
depicted in Figure 1 a, the cluster’s diameter is estimated to be
between 0.63 nm (from the largest Pt atomic core to core dis-
tance) and 1 nm (when including metallic radii). This model
and the results obtained herein will thus be applicable for sub-
nanometer particles, such as the highly dispersed platinum cat-
alysts used experimentally and industrially.[15–17] Twelve of the
thirteen platinum atoms are accessible, so the theoretical dis-

persion is close to 100 %. This model, as the most stable found
to date, is the basis of the present work.

These Pt clusters supported on g-alumina are shown to be
the subject of a remarkable structural reconstruction induced
by H2, hence reaching a higher hydrogen adsorption capacity
than extended surfaces, with formation of a surface hydride.
Important experimental data are revisited.

Results and Discussion

1. The H2–Pt13/g-Al2O3 system: Driving forces for the BP to
CUB reconstruction

The adsorption of n (n = 1–40) hydrogen atoms on Pt13/g-Al2O3,
leading to Pt13Hn/g-Al2O3, was investigated by a molecular dy-
namics (MD) approach, allowing a careful sampling of the con-
figuration space (see Computational Methods Section and the
Supporting Information, S1). Top and bridge sites appear to be
the most favored adsorption modes, regardless of the hydro-
gen coverage value qH (Figure 1 b–d; see Section 3 for a more
refined analysis) in contrast with the ideal surfaces (see the
Supporting Information, S2), for which hollow fcc and top sites
are known to be favored on Pt(111)[22] and bridge sites on
Pt(100).[23] The other main difference between extended planes
and the supported cluster is the exothermicity of hydrogen ad-
sorption until a very high coverage for the cluster (40 H atoms
per cluster, 3.33 H per Ptsurf ; see the Supporting Information,
S3), whereas the extended (111) and (100) surfaces saturate at
1 and 1.75 H per Ptsurf, respectively. In addition, these exother-
mic adsorptions are accompanied by a strong deformation of
the BP cluster (Figure 1 c), and by a weakening of the metal–
support interaction (Figure 1 d) for the highest coverage, by in-
sertion of hydrogen atoms between the particle and the
support.

Such a phenomenon suggests that a deeper reconstruction
of the cluster may occur for high qH values, when the metal–
support interaction, which stabilizes the preferred BP geome-
try,[20] is altered and when the particle structure is significantly
modified. Thus, we investigated the stability of isolated BP
clusters containing 24 hydrogen atoms by MD simulation
(800 K in a 20 !3 supercell ; Figure 2). The starting geometry
was the most stable deformed BP system covered by 24 H
atoms found during the exploration on the clusters supported
on the (100) Al2O3 surface. After 25 ps of MD simulation, the
starting deformed BP geometry evolves to a CUB morphology
(Figure 2 (d)), which is the most stable geometry found by MD.
Its total energy is very close to a regular CUB, on which hydro-
gen atoms occupy all bridge sites (Figure 2 f). In the absence
of hydrogen atoms, the reverse evolution took place. The MD
simulation starting from a CUB morphology leads to BP as one
of the preferential morphologies.[21] Thus, the presence of hy-
drogen is the driving force that leads to the formation of a
symmetric (Oh) morphology of the cluster, maximizing the Pt
coordination number (see the Supporting Information, S4). To
some extent, this result is consistent with recent DFT calcula-
tions of Pt clusters in the gas phase[24] and of truncated Pt par-
ticles supported on graphene,[23] suggesting that cuboctahe-

Figure 1. Calculated structures for hydrogen-covered Pt13Hn clusters (n is the
number of hydrogen atoms) supported on g-Al2O3 (100) surface, with n = 0
(a), n = 6 (b), n = 18 (c), n = 38 (meta-stable) (d), n = 20 (e), n = 34 (f).
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considered as a relevant particle morphology. g-Al2O3 is known
as a support of choice for the stabilization of small particles,
and is thus used in many industrial applications.[18] The degree
of hydroxylation of the support depends on the temperature
and the water partial pressure. In previous works, we estab-
lished a detailed model of the surfaces of g-Al2O3 nanocrystal-
lites as a function of the operating conditions.[19] Alumina pla-
telets are mainly composed of (100) and (110) surfaces (about
20 % and 70 % respectively). For typical reaction conditions
(above 600 K), the (100) surface is dehydrated, whereas the
(110) remains hydroxylated. In a previous report,[20] we showed
that, in the absence of hydrogen, Pt13 clusters interact much
more strongly with the AlV and OIII sites on the dehydrated
(100) surface than with the hydroxyl groups on the (110) sur-
face. For this reason, small Pt particles are more likely located
on the dehydrated (100) alumina surface. Moreover, to opti-
mize the metal–support interaction, among various competi-
tive Pt13 structures,[21] the Pt13 cluster preferentially lies in a “bi-
planar” (BP) morphology (Figure 1 a).[20] On the surface model
depicted in Figure 1 a, the cluster’s diameter is estimated to be
between 0.63 nm (from the largest Pt atomic core to core dis-
tance) and 1 nm (when including metallic radii). This model
and the results obtained herein will thus be applicable for sub-
nanometer particles, such as the highly dispersed platinum cat-
alysts used experimentally and industrially.[15–17] Twelve of the
thirteen platinum atoms are accessible, so the theoretical dis-

persion is close to 100 %. This model, as the most stable found
to date, is the basis of the present work.

These Pt clusters supported on g-alumina are shown to be
the subject of a remarkable structural reconstruction induced
by H2, hence reaching a higher hydrogen adsorption capacity
than extended surfaces, with formation of a surface hydride.
Important experimental data are revisited.

Results and Discussion

1. The H2–Pt13/g-Al2O3 system: Driving forces for the BP to
CUB reconstruction

The adsorption of n (n = 1–40) hydrogen atoms on Pt13/g-Al2O3,
leading to Pt13Hn/g-Al2O3, was investigated by a molecular dy-
namics (MD) approach, allowing a careful sampling of the con-
figuration space (see Computational Methods Section and the
Supporting Information, S1). Top and bridge sites appear to be
the most favored adsorption modes, regardless of the hydro-
gen coverage value qH (Figure 1 b–d; see Section 3 for a more
refined analysis) in contrast with the ideal surfaces (see the
Supporting Information, S2), for which hollow fcc and top sites
are known to be favored on Pt(111)[22] and bridge sites on
Pt(100).[23] The other main difference between extended planes
and the supported cluster is the exothermicity of hydrogen ad-
sorption until a very high coverage for the cluster (40 H atoms
per cluster, 3.33 H per Ptsurf ; see the Supporting Information,
S3), whereas the extended (111) and (100) surfaces saturate at
1 and 1.75 H per Ptsurf, respectively. In addition, these exother-
mic adsorptions are accompanied by a strong deformation of
the BP cluster (Figure 1 c), and by a weakening of the metal–
support interaction (Figure 1 d) for the highest coverage, by in-
sertion of hydrogen atoms between the particle and the
support.

Such a phenomenon suggests that a deeper reconstruction
of the cluster may occur for high qH values, when the metal–
support interaction, which stabilizes the preferred BP geome-
try,[20] is altered and when the particle structure is significantly
modified. Thus, we investigated the stability of isolated BP
clusters containing 24 hydrogen atoms by MD simulation
(800 K in a 20 !3 supercell ; Figure 2). The starting geometry
was the most stable deformed BP system covered by 24 H
atoms found during the exploration on the clusters supported
on the (100) Al2O3 surface. After 25 ps of MD simulation, the
starting deformed BP geometry evolves to a CUB morphology
(Figure 2 (d)), which is the most stable geometry found by MD.
Its total energy is very close to a regular CUB, on which hydro-
gen atoms occupy all bridge sites (Figure 2 f). In the absence
of hydrogen atoms, the reverse evolution took place. The MD
simulation starting from a CUB morphology leads to BP as one
of the preferential morphologies.[21] Thus, the presence of hy-
drogen is the driving force that leads to the formation of a
symmetric (Oh) morphology of the cluster, maximizing the Pt
coordination number (see the Supporting Information, S4). To
some extent, this result is consistent with recent DFT calcula-
tions of Pt clusters in the gas phase[24] and of truncated Pt par-
ticles supported on graphene,[23] suggesting that cuboctahe-

Figure 1. Calculated structures for hydrogen-covered Pt13Hn clusters (n is the
number of hydrogen atoms) supported on g-Al2O3 (100) surface, with n = 0
(a), n = 6 (b), n = 18 (c), n = 38 (meta-stable) (d), n = 20 (e), n = 34 (f).
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where DadsU is the mean adsorption energy of n/2 H2 molecules (or
n H atoms). A similar approach was applied to Pt(111) and Pt(100)
surfaces. The typical uncertainty for transition temperatures ob-
tained by this method is about 100 K. More specific details are
given in the Supporting Information.
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A prototypic example in practical session.
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N N
H

OH O

#H2O
vac PCM

0 149.3 161.8

1 61.3 63.9

2 69.8 71.3

3 94.1 82.4
in kJ.mol-1
MP2/6-311+G(d,p)/IEF-PCM 
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A less classic example
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LA conversion
in THF

C. Michel et al. Chem. Comm., 2014, 50, 12450-12453 

THF H2O
Ru ✗ ✓

Pd ✗ ✗

Pt ✓ ✓



Modelling oxygenate hydrogenation at metals

Reactant/Product are simplified
§ Acetone/iPrOH

A periodic model of the Ru catalyst
§ (0001) facet, 4 layers, p(3x3) cell
§ Kpoints 3x3x1
§ DFT GGA PW91
§ PAW Ecut=400eV

TS search
§ Opt’n Path, NEB, Dimer and QN as 

implemented in the VTST package in 
VASP

iPrO-H2O@Ru(0001)41



Strategy

Comparison of model « catalysts » based on reaction paths
• Ru vs. H2O@Ru
§ We expect an enhanced reactivity for H2O@Ru
• Pt vs. H2O@Pt
§ We expect similar reactivity

Two possible paths
• Alkyl path
• Alkoxy path

42



Ru(0001)

1.37 eV

43 C. Michel et al.
Chem. Comm., 2014, 50, 12450-12453 



Ru(0001)

1.40 eV

44 C. Michel et al.
Chem. Comm., 2014, 50, 12450-12453 



H2O-Ru(0001)

1.56 eV

45 C. Michel et al.
Chem. Comm., 2014, 50, 12450-12453 



H2O-Ru(0001)

0.99 eV

46 C. Michel et al.
Chem. Comm., 2014, 50, 12450-12453 



Ru(0001)  & H2O@Ru(0001)

1.37 eV

0.99 eV
Alkoxy
path

Alkoxy
path

47 C. Michel et al.
Chem. Comm., 2014, 50, 12450-12453 



Levulinic acid to GVL conversion

THF H2O
Ru ✗ ✓

Pd ✗ ✗

Pt ✓ ✓
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Water assists the hydrogenation by oxophilic metals
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Improving the solvation model ?

50

Model Energetic span on Ru 
(eV)

No solvent 1.37
Continuum

model
1.39

1 water 0.99
3 waters 1.18

11 waters 1.03

1.391.40 1.39

C. Michel et al.
Chem. Comm., 2014, 50, 12450-12453 



Practical: perso.ens-lyon.fr/carine.michel

http://perso.ens-lyon.fr/carine.michel/
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Improving the solvation model

C. Michel52

Continuum 
models

Microsolvation Fully 
explicitFully explicit

(QM)MM with free energy perturbation to 
compute solvation

Biased AIMD to investigate reactions 

S.N. Steinmann, C. Michel, ACS Catal, 2022, 12, 6294-6301
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Free energy perturbation

General principle illustrated on protein-ligand binding

a series of heuristic approximations inherent in the classical
simulation methodology, and the details of the model
parametrization and sampling algorithms.
Over the past 5 years, advances in both computer hardware

and FEP methodology have enabled large-scale testing of the
accuracy and robustness of FEP methods in both retrospective
and prospective studies.5,7−13 We discuss below the progress
that has been made in enhanced sampling, force field
development, and automation of system setup, and report
results comparing to experimental data for a wide range of
ligand−receptor complexes. An illustrative application of FEP
in an industrial drug discovery project is then presented.
Finally, the implications of these developments for drug
discovery efforts going forward, as the calculations continue
to become more efficient and reliable, are considered.

■ FEP METHODOLOGY
Free energy perturbation (FEP) refers to an ensemble of
rigorous statistical mechanical methods enabling the calculation
the free energy change of an alchemical process by slowly
morphing the potential energies, such as the transformation of
ligand A to ligand B, thus giving the relative binding free energy
of the ligands to the same receptor. The thermodynamic cycle
depicted in Figure 1 illustrates how the binding free energy

difference, ΔΔGAB, is typically computed in practice. The
Zwanzig exponential average16 (also called FEP in some
literature) is a representative way among the various
formulations to relate the free energy difference between the
two physical states A and B to the changes in their energy
distributions:14−18

= ⟨ ⟩β β− Δ − Δ→ →e eF U x( )
A

A B A B (1)

where ΔUA→B(x) is the potential energy difference between the
two states at configuration x, and the average is taken over the

ensemble of configurations sampled for state A. In practice, a
number of intermediate states (also called lambda windows)
are introduced such that the neighboring windows have
sufficient overlapped regions in phase space to enable
converged free energy calculations.
Since the first FEP calculations of protein−ligand binding

were carried out in 1980s,19 a standardized approach,
incorporating a series of heuristic approximations, has been
developed which accounts for the great majority of FEP
simulations performed to date.20,21 First, the configurations are
sampled through classical molecular dynamics simulations, as
opposed to a quantum mechanical treatment of nuclear
motion.22,23 Second, a molecular mechanics force field based
on atom-centered fixed charges is employed.7,24−33 Typical
functional form of the force field is given by
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The use of fixed charges instead of an explicit representation of
polarization effects, and other limitations of the details of the
functional form, potentially limit the accuracy and robustness of
the model. Third, typical FEP simulation times are of limited
duration; as the potential energy surface of the protein−ligand
complex exhibits a huge number of local minima, the system
can become trapped and fail to execute ergodic sampling across
configuration space.34−40

The use of the classical equations of motion and neglect of
explicit polarization effects constitute major approximation to
the exact physics, adopted because of the large increase in
complexity and computational cost associated with more
realistic treatments. Over the past 5 years, we have endeavored
to answer a relatively straightforward question: what sort of
accuracy can be achieved with the standard classical simulation,
fixed charge FEP methodology, if a large engineering effort is
made to improve the parametrization of the force field, apply
enhanced sampling methods that are better able to overcome
barriers, and ensure that the initial system setup is as precise as
possible? Below we briefly outline the improvements in the
force field, sampling algorithms, and implementation that
constitute our current approach, which we call FEP+.5

Comparisons with extensive and diverse experimental data
sets are presented to address the key issues of accuracy and
reliability of the FEP calculations.

■ THE OPLS3 FORCE FIELD
OPLS3 is based on the OPLS force field developed over the
past 30 years by Jorgensen and co-workers.7,24−26 The
functional form is that of eq 2, although some off center
charges are employed for ring nitrogens and halogens, based on
investigations showing that asymmetries in the atomic charge
distribution play a particularly important role in these cases (a
similar modification may be required for sulfur; this is currently
under investigation).7,26 van der Waals parameters, and some
atomic charges, are obtained from fitting to liquid state
thermodynamic data; valence force field parameters such as

Figure 1. Thermodynamic pathway used for relative binding free
energy calculations. The protein is depicted in green, the aqueous
solvent in blue, the initial ligand “1” in red, and the final ligand “2” in
yellow. The relative binding free energy is calculated via two distinct
alchemical transformations where first alchemical transformation “A” is
used to determine the free energy of transforming ligand 1 to ligand 2
in the solvent; and second alchemical transformation “B” is used to
determine the free energy of transforming ligand 1 to ligand 2 in the
receptor. The difference between the free energies obtained from
alchemical transformations A and B can be rigorously related to the
binding free energy difference of the two ligands 1 and 2.
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Advancing Drug Discovery through Enhanced Free Energy
Calculations
Robert Abel,†,§ Lingle Wang,†,§ Edward D. Harder,†,§ B. J. Berne,‡ and Richard A. Friesner*,‡

†Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
‡Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States

CONSPECTUS: A principal goal of drug discovery project is to design
molecules that can tightly and selectively bind to the target protein
receptor. Accurate prediction of protein−ligand binding free energies
is therefore of central importance in computational chemistry and
computer aided drug design. Multiple recent improvements in
computing power, classical force field accuracy, enhanced sampling
methods, and simulation setup have enabled accurate and reliable
calculations of protein−ligands binding free energies, and position free
energy calculations to play a guiding role in small molecule drug
discovery. In this Account, we outline the relevant methodological
advances, including the REST2 (Replica Exchange with Solute
Temperting) enhanced sampling, the incorporation of REST2
sampling with convential FEP (Free Energy Perturbation) through FEP/REST, the OPLS3 force field, and the advanced
simulation setup that constitute our FEP+ approach, followed by the presentation of extensive comparisons with experiment,
demonstrating sufficient accuracy in potency prediction (better than 1 kcal/mol) to substantially impact lead optimization
campaigns. The limitations of the current FEP+ implementation and best practices in drug discovery applications are also
discussed followed by the future methodology development plans to address those limitations. We then report results from a
recent drug discovery project, in which several thousand FEP+ calculations were successfully deployed to simultaneously
optimize potency, selectivity, and solubility, illustrating the power of the approach to solve challenging drug design problems.
The capabilities of free energy calculations to accurately predict potency and selectivity have led to the advance of ongoing drug
discovery projects, in challenging situations where alternative approaches would have great difficulties. The ability to effectively
carry out projects evaluating tens of thousands, or hundreds of thousands, of proposed drug candidates, is potentially
transformative in enabling hard to drug targets to be attacked, and in facilitating the development of superior compounds, in
various dimensions, for a wide range of targets. More effective integration of FEP+ calculations into the drug discovery process
will ensure that the results are deployed in an optimal fashion for yielding the best possible compounds entering the clinic; this is
where the greatest payoff is in the exploitation of computer driven design capabilities.
A key conclusion from the work described is the surprisingly robust and accurate results that are attainable within the
conventional classical simulation, fixed charge paradigm. No doubt there are individual cases that would benefit from a more
sophisticated energy model or dynamical treatment, and properties other than protein−ligand binding energies may be more
sensitive to these approximations. We conclude that an inflection point in the ability of MD simulations to impact drug discovery
has now been attained, due to the confluence of hardware and software development along with the formulation of “good
enough” theoretical methods and models.

■ INTRODUCTION

All atom, explicit solvent molecular dynamics (MD)
simulations have become a powerful tool for modeling
biomolecular systems. Interesting results have been obtained
in studying a wide range of biological processes, including
protein folding, ion channel transport, conformational change
in G-protein coupled receptors, and ligand binding kinetics,
with simulations times reported in the millisecond range.1 The
advent of inexpensive GPU hardware has made extensive MD
simulations routinely available in academic and industrial
laboratories.2−4

In the present Account, we focus on the application of free
energy perturbation (FEP) methods utilizing MD for the

calculation of protein−ligand binding affinities in structure
based drug discovery projects. This problem differs from many
of those enumerated above in that a very high degree of
accuracy (on the order of 1 kcal/mol) and reliability, for a wide
range of ligand chemistries, is required in the calculation of
relative ligand binding affinities to substantively impact hit-to-
lead and lead optimization efforts.5,6 FEP calculations in
principle provide a rigorous evaluation of the free energy
difference ΔΔGAB between the binding affinity of two ligands A
and B. However, the accuracy is critically dependent upon both
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MMSolv combines DFT & MM

C. Michel55

extremely fast semi-empirical electronic structure method is available for transition metal surfaces,

which is also a reason for which the QM region is kept frozen during all our MM computations.

Furthermore, in contrast to attempts to characterize the structural properties of interfacial water

by classical molecular mechanics simulations,35 low-cost force-field methods are generally not

available for reactive adsorption events on metal surfaces, which are the main systems of interest

herein.

Although probably not very accurate quantitatively, our MM-FEP scheme has the same merit

as the PCM: it can be applied to all kinds of systems and, as we demonstrate hereafter, it provides

a similar accuracy as the implicit solvent. The advantage is, however, that MM-FEP can be

systematically improved and can "easily" account for all the relevant physics, especially when other

solvents than water are involved.

2.4 Impact of the Solvation on Adsorption Energies

Our target in this work is to assess the impact of the water solvent on the adsorption reaction of a

given substrate (here levulinic acid, named LA in the following) on a surface (here Ru(0001)). This

process can be described by the following reaction:

LAsolv +Ru(0001)solv ��! LA@Ru(0001)solv

Since the free energy of adsorption in vacuum is much more accessible than the one in solvent,

it is customary to write the Gibbs free energy of adsorption in solution DG
solv

⇤
ads

as the following sum

DG
solv

⇤
ads

= DG
vac

⇤
ads

+DDG
ads

⇤
solv

(8)

where DG
vac

⇤
ads

is the Gibbs free energy of adsorption in vacuum and DDG
ads

⇤
solv

corresponds to the

variation of the solvation Gibbs free energy DG
⇤
solv

along the adsorption process.

Since we have no data for a comparison with experiment for adsorption energies, we do not

include any terms that affect all the schemes to the same extent. This implies that thermal effects

(e.g., entropy of adsorption) are neglected in the present approach, but could be included at least

9

Ab initioMMSolv MM

H2OH2O

H2O H2O H2O

H2O

Pt Pt

MMSolv – SolvHybrid package
P. Clabaut et al. J. Chem. Theo. Comp. 2020, 16, 6539

Adsorption of benzene at the Pt/water interface



We need a good Pt(111)/water force field

C. Michel56
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MMSolv is validated against experiments

C. Michel57
MMSolv: P. Clabaut et al.J. Chem. Theo. Comp. 2020, 16, 6539

EXP: N. Singh, U. Sanyal, J.L.  Fulton, O.Y. Gutiérrez, J.A. Lercher, C.T. Campbell, ACS Catal. 2019, 9, 6869−6881

Adsorption of benzene at the Pt/water interface

DFT - VASP
PBE+dDsC
PAW approach
Cutoff 400eV

MM - AMBER
TIP3P
uff – CM5 charges
GAL17



GAL17 under the hood
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Polarized Gaussian describes chemisorption 

Angle correction for water orientation

Lennard-Jones potential describes physisorption

à Fit 12 parameters to 210 PBE-dDsC water adsorption energies {r, q, f}

C. Michel

4

where VG is an attractive Gaussian potential:

VG(!rM,O) = εae
−b‖·r

2

‖e−b⊥·r2⊥ (6)

where r‖ and r⊥ are, respectively, the parallel and per-
pendicular projection of !rM,O on the surface normal !n.

VA is an angular correction term which modulates the
interaction energy of the water molecule as a function of
the angle θ between the surface norm !n and the molecular
dipole moment:

VA(rM,O, θ) =
(e−rM,O/RO )2
∑

Mi∈Ω(O)

e−rMi,O
/RO

4
∑

n=1

an cos(nθ) (7)

where RO is a parameter for the characteristic distance
of the M-O distance and the an are the expansion param-
eters of the Fourier series.

Finally, VTT is the potential of Tang and Toennies,26

accounting for both the short-range repulsion and the
long-range dispersion interactions.

VTT (r) = Ae−B·r
−

[

1−
6

∑

k=0

(B · r)k

k!
e−B·r

]

C6

r6
(8)

where A, B, and C6 are parameters.
The surface normal !n is defined locally for each metallic

atom M of a surface or a nanoparticle. Its definition has
been slightly revised compared to GAL19 to behave more
smoothly at the surface of highly corrugated objects. It
reads:

!n(M) =
∑

i

!rMi,M

r5Mi,M

(9)

where i runs over all metallic atoms (i.e., including all
constituents in the case of an alloy) within a distance
cut-off of M . The cutoff is defined as the global force
field cutoff. The sum causes the resulting vector to point
away from the volume containing metallic atoms, and
therefore, to the outside of the metallic object.

In total, VGAL depends on 13 parameters: AH , BH ,
εa, b‖, b⊥, RO, the four an, A, B and C6. In GAL21,
two parameters are taken as GCN-independent (RO and
C6), six parameters become linearly dependant on the
GCN of M: AH , BH , b‖, b⊥, A, and B; and 5 parameters
become quadratically dependant on the GCN of M: εa
and the four an. Each parameter L depending linearly
on the GCN of M is written as:

L = L(1) ·GCN(M) + L(0) (10)

and each parameter Q depending quadratically on the
GCN of M is parametrized as:

Q = Q(2) ·GCN(M)2 +Q(1) ·GCN(M) +Q(0) (11)

B. Fitting method and data set

In order to investigate atomic sites for water adsorp-
tion presenting a wide range of associated GCN, several
surfaces were built. Fig 1 presents the different model
surfaces and atomic sites considered, along with their as-
sociated GCN.
In total, 29 adjustable parameters are needed for the

GAL21 force field for each metal: there are four hydrogen
repulsion parameters, i.e., the two parameters for the lin-
ear dependence of AH and RH of Eq. 4. Then, we have
seven parameters for the Gaussian attraction (Eq. 6):
the three parameters of the quadratic dependence of εa
and the four parameters of the linear dependence of b‖
and b⊥. The angular dependence (Eq. 7) requires thir-
teen parameters: RO, and the three parameters of the
quadratic dependence of each a1, a2, a3, and a4. Finally,
the physisorption potential (Eq. 8) depends on five pa-
rameters: the C6 coefficient and the two parameters of
the linear dependence of A and B).
Like for GAL19, the C6 parameter is the only one that

is not fitted but directly extracted from the DFT compu-
tations via the use of the dDsC dispersion correction.27

In order to fit the remaining parameters, a set of 4154
configurations is built for Co, Ni, Cu, Pd, Ag, Pt, Au.
All configurations consist of a single water molecule ad-
sorbed on a p(3×3) or p(4×4) metallic slab. The con-
figurations probe various orientations, distances, and ad-
sorption sites (top, hollow, addatom, etc...) of the water
molecule. For each surface, several adsorption sites were
identified. Then, for each adsorption site, the potential
energy is scanned on a grid, varying the distance to the
surface and the angular orientation (θ,φ). Only a re-
stricted part of the total set (500 configurations obtained
from a stratified random sampling) is used to fit the data,
while all geometries with negative adsorption energies are
used to validate the model. More details about the set
can be found in the supporting information section S1.
Similarly to our previous work,19 the optimisation pro-

cess is split between linear and non-linear parameters. In-
deed, only nine parameters are non-linear and have been
optimized via a simplex optimizer. All linear parameters
for which a GCN dependence is introduced can be de-
composed into three individually linear (and thus, easy
to fit) parameters:

Q(GCN) · T = (Q(2) ·GCN2 +Q(1) ·GCN +Q(0)) · T (12)

= Q(2) ·GCN2
· T +Q(1) ·GCN · T +Q(0) · T

where Q is a linear parameter with a quadratic GCN
dependence, Q(i) its components in the GCN depen-
dence, and T a term of the potential. Hence, at each
iteration of the simplex, the linear parameters are deter-
mined via a least-squares fit. The final parameters have
been selected among 18 simplex runs that have been in-
tialized via a Latin hypercube with random values that
minimize the maximum correlation coefficient as imple-
mented in pyDOE.
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4

where VG is an attractive Gaussian potential:

VG(!rM,O) = εae
−b‖·r

2

‖e−b⊥·r2⊥ (6)

where r‖ and r⊥ are, respectively, the parallel and per-
pendicular projection of !rM,O on the surface normal !n.

VA is an angular correction term which modulates the
interaction energy of the water molecule as a function of
the angle θ between the surface norm !n and the molecular
dipole moment:

VA(rM,O, θ) =
(e−rM,O/RO )2
∑

Mi∈Ω(O)

e−rMi,O
/RO

4
∑

n=1

an cos(nθ) (7)

where RO is a parameter for the characteristic distance
of the M-O distance and the an are the expansion param-
eters of the Fourier series.

Finally, VTT is the potential of Tang and Toennies,26

accounting for both the short-range repulsion and the
long-range dispersion interactions.

VTT (r) = Ae−B·r
−

[

1−
6

∑

k=0

(B · r)k

k!
e−B·r

]

C6

r6
(8)

where A, B, and C6 are parameters.
The surface normal !n is defined locally for each metallic

atom M of a surface or a nanoparticle. Its definition has
been slightly revised compared to GAL19 to behave more
smoothly at the surface of highly corrugated objects. It
reads:

!n(M) =
∑

i

!rMi,M

r5Mi,M

(9)

where i runs over all metallic atoms (i.e., including all
constituents in the case of an alloy) within a distance
cut-off of M . The cutoff is defined as the global force
field cutoff. The sum causes the resulting vector to point
away from the volume containing metallic atoms, and
therefore, to the outside of the metallic object.

In total, VGAL depends on 13 parameters: AH , BH ,
εa, b‖, b⊥, RO, the four an, A, B and C6. In GAL21,
two parameters are taken as GCN-independent (RO and
C6), six parameters become linearly dependant on the
GCN of M: AH , BH , b‖, b⊥, A, and B; and 5 parameters
become quadratically dependant on the GCN of M: εa
and the four an. Each parameter L depending linearly
on the GCN of M is written as:

L = L(1) ·GCN(M) + L(0) (10)

and each parameter Q depending quadratically on the
GCN of M is parametrized as:

Q = Q(2) ·GCN(M)2 +Q(1) ·GCN(M) +Q(0) (11)

B. Fitting method and data set

In order to investigate atomic sites for water adsorp-
tion presenting a wide range of associated GCN, several
surfaces were built. Fig 1 presents the different model
surfaces and atomic sites considered, along with their as-
sociated GCN.
In total, 29 adjustable parameters are needed for the

GAL21 force field for each metal: there are four hydrogen
repulsion parameters, i.e., the two parameters for the lin-
ear dependence of AH and RH of Eq. 4. Then, we have
seven parameters for the Gaussian attraction (Eq. 6):
the three parameters of the quadratic dependence of εa
and the four parameters of the linear dependence of b‖
and b⊥. The angular dependence (Eq. 7) requires thir-
teen parameters: RO, and the three parameters of the
quadratic dependence of each a1, a2, a3, and a4. Finally,
the physisorption potential (Eq. 8) depends on five pa-
rameters: the C6 coefficient and the two parameters of
the linear dependence of A and B).
Like for GAL19, the C6 parameter is the only one that

is not fitted but directly extracted from the DFT compu-
tations via the use of the dDsC dispersion correction.27

In order to fit the remaining parameters, a set of 4154
configurations is built for Co, Ni, Cu, Pd, Ag, Pt, Au.
All configurations consist of a single water molecule ad-
sorbed on a p(3×3) or p(4×4) metallic slab. The con-
figurations probe various orientations, distances, and ad-
sorption sites (top, hollow, addatom, etc...) of the water
molecule. For each surface, several adsorption sites were
identified. Then, for each adsorption site, the potential
energy is scanned on a grid, varying the distance to the
surface and the angular orientation (θ,φ). Only a re-
stricted part of the total set (500 configurations obtained
from a stratified random sampling) is used to fit the data,
while all geometries with negative adsorption energies are
used to validate the model. More details about the set
can be found in the supporting information section S1.
Similarly to our previous work,19 the optimisation pro-

cess is split between linear and non-linear parameters. In-
deed, only nine parameters are non-linear and have been
optimized via a simplex optimizer. All linear parameters
for which a GCN dependence is introduced can be de-
composed into three individually linear (and thus, easy
to fit) parameters:

Q(GCN) · T = (Q(2) ·GCN2 +Q(1) ·GCN +Q(0)) · T (12)

= Q(2) ·GCN2
· T +Q(1) ·GCN · T +Q(0) · T

where Q is a linear parameter with a quadratic GCN
dependence, Q(i) its components in the GCN depen-
dence, and T a term of the potential. Hence, at each
iteration of the simplex, the linear parameters are deter-
mined via a least-squares fit. The final parameters have
been selected among 18 simplex runs that have been in-
tialized via a Latin hypercube with random values that
minimize the maximum correlation coefficient as imple-
mented in pyDOE.
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where VG is an attractive Gaussian potential:

VG(!rM,O) = εae
−b‖·r

2

‖e−b⊥·r2⊥ (6)

where r‖ and r⊥ are, respectively, the parallel and per-
pendicular projection of !rM,O on the surface normal !n.

VA is an angular correction term which modulates the
interaction energy of the water molecule as a function of
the angle θ between the surface norm !n and the molecular
dipole moment:

VA(rM,O, θ) =
(e−rM,O/RO )2
∑

Mi∈Ω(O)

e−rMi,O
/RO

4
∑

n=1

an cos(nθ) (7)

where RO is a parameter for the characteristic distance
of the M-O distance and the an are the expansion param-
eters of the Fourier series.

Finally, VTT is the potential of Tang and Toennies,26

accounting for both the short-range repulsion and the
long-range dispersion interactions.

VTT (r) = Ae−B·r
−

[

1−
6

∑

k=0

(B · r)k

k!
e−B·r

]

C6

r6
(8)

where A, B, and C6 are parameters.
The surface normal !n is defined locally for each metallic

atom M of a surface or a nanoparticle. Its definition has
been slightly revised compared to GAL19 to behave more
smoothly at the surface of highly corrugated objects. It
reads:

!n(M) =
∑

i

!rMi,M

r5Mi,M

(9)

where i runs over all metallic atoms (i.e., including all
constituents in the case of an alloy) within a distance
cut-off of M . The cutoff is defined as the global force
field cutoff. The sum causes the resulting vector to point
away from the volume containing metallic atoms, and
therefore, to the outside of the metallic object.

In total, VGAL depends on 13 parameters: AH , BH ,
εa, b‖, b⊥, RO, the four an, A, B and C6. In GAL21,
two parameters are taken as GCN-independent (RO and
C6), six parameters become linearly dependant on the
GCN of M: AH , BH , b‖, b⊥, A, and B; and 5 parameters
become quadratically dependant on the GCN of M: εa
and the four an. Each parameter L depending linearly
on the GCN of M is written as:

L = L(1) ·GCN(M) + L(0) (10)

and each parameter Q depending quadratically on the
GCN of M is parametrized as:

Q = Q(2) ·GCN(M)2 +Q(1) ·GCN(M) +Q(0) (11)

B. Fitting method and data set

In order to investigate atomic sites for water adsorp-
tion presenting a wide range of associated GCN, several
surfaces were built. Fig 1 presents the different model
surfaces and atomic sites considered, along with their as-
sociated GCN.
In total, 29 adjustable parameters are needed for the

GAL21 force field for each metal: there are four hydrogen
repulsion parameters, i.e., the two parameters for the lin-
ear dependence of AH and RH of Eq. 4. Then, we have
seven parameters for the Gaussian attraction (Eq. 6):
the three parameters of the quadratic dependence of εa
and the four parameters of the linear dependence of b‖
and b⊥. The angular dependence (Eq. 7) requires thir-
teen parameters: RO, and the three parameters of the
quadratic dependence of each a1, a2, a3, and a4. Finally,
the physisorption potential (Eq. 8) depends on five pa-
rameters: the C6 coefficient and the two parameters of
the linear dependence of A and B).
Like for GAL19, the C6 parameter is the only one that

is not fitted but directly extracted from the DFT compu-
tations via the use of the dDsC dispersion correction.27

In order to fit the remaining parameters, a set of 4154
configurations is built for Co, Ni, Cu, Pd, Ag, Pt, Au.
All configurations consist of a single water molecule ad-
sorbed on a p(3×3) or p(4×4) metallic slab. The con-
figurations probe various orientations, distances, and ad-
sorption sites (top, hollow, addatom, etc...) of the water
molecule. For each surface, several adsorption sites were
identified. Then, for each adsorption site, the potential
energy is scanned on a grid, varying the distance to the
surface and the angular orientation (θ,φ). Only a re-
stricted part of the total set (500 configurations obtained
from a stratified random sampling) is used to fit the data,
while all geometries with negative adsorption energies are
used to validate the model. More details about the set
can be found in the supporting information section S1.
Similarly to our previous work,19 the optimisation pro-

cess is split between linear and non-linear parameters. In-
deed, only nine parameters are non-linear and have been
optimized via a simplex optimizer. All linear parameters
for which a GCN dependence is introduced can be de-
composed into three individually linear (and thus, easy
to fit) parameters:

Q(GCN) · T = (Q(2) ·GCN2 +Q(1) ·GCN +Q(0)) · T (12)

= Q(2) ·GCN2
· T +Q(1) ·GCN · T +Q(0) · T

where Q is a linear parameter with a quadratic GCN
dependence, Q(i) its components in the GCN depen-
dence, and T a term of the potential. Hence, at each
iteration of the simplex, the linear parameters are deter-
mined via a least-squares fit. The final parameters have
been selected among 18 simplex runs that have been in-
tialized via a Latin hypercube with random values that
minimize the maximum correlation coefficient as imple-
mented in pyDOE.
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4

where VG is an attractive Gaussian potential:

VG(!rM,O) = εae
−b‖·r

2

‖e−b⊥·r2⊥ (6)

where r‖ and r⊥ are, respectively, the parallel and per-
pendicular projection of !rM,O on the surface normal !n.

VA is an angular correction term which modulates the
interaction energy of the water molecule as a function of
the angle θ between the surface norm !n and the molecular
dipole moment:

VA(rM,O, θ) =
(e−rM,O/RO )2
∑

Mi∈Ω(O)

e−rMi,O
/RO

4
∑

n=1

an cos(nθ) (7)

where RO is a parameter for the characteristic distance
of the M-O distance and the an are the expansion param-
eters of the Fourier series.

Finally, VTT is the potential of Tang and Toennies,26

accounting for both the short-range repulsion and the
long-range dispersion interactions.

VTT (r) = Ae−B·r
−

[

1−
6

∑

k=0

(B · r)k

k!
e−B·r

]

C6

r6
(8)

where A, B, and C6 are parameters.
The surface normal !n is defined locally for each metallic

atom M of a surface or a nanoparticle. Its definition has
been slightly revised compared to GAL19 to behave more
smoothly at the surface of highly corrugated objects. It
reads:

!n(M) =
∑

i

!rMi,M

r5Mi,M

(9)

where i runs over all metallic atoms (i.e., including all
constituents in the case of an alloy) within a distance
cut-off of M . The cutoff is defined as the global force
field cutoff. The sum causes the resulting vector to point
away from the volume containing metallic atoms, and
therefore, to the outside of the metallic object.

In total, VGAL depends on 13 parameters: AH , BH ,
εa, b‖, b⊥, RO, the four an, A, B and C6. In GAL21,
two parameters are taken as GCN-independent (RO and
C6), six parameters become linearly dependant on the
GCN of M: AH , BH , b‖, b⊥, A, and B; and 5 parameters
become quadratically dependant on the GCN of M: εa
and the four an. Each parameter L depending linearly
on the GCN of M is written as:

L = L(1) ·GCN(M) + L(0) (10)

and each parameter Q depending quadratically on the
GCN of M is parametrized as:

Q = Q(2) ·GCN(M)2 +Q(1) ·GCN(M) +Q(0) (11)

B. Fitting method and data set

In order to investigate atomic sites for water adsorp-
tion presenting a wide range of associated GCN, several
surfaces were built. Fig 1 presents the different model
surfaces and atomic sites considered, along with their as-
sociated GCN.
In total, 29 adjustable parameters are needed for the

GAL21 force field for each metal: there are four hydrogen
repulsion parameters, i.e., the two parameters for the lin-
ear dependence of AH and RH of Eq. 4. Then, we have
seven parameters for the Gaussian attraction (Eq. 6):
the three parameters of the quadratic dependence of εa
and the four parameters of the linear dependence of b‖
and b⊥. The angular dependence (Eq. 7) requires thir-
teen parameters: RO, and the three parameters of the
quadratic dependence of each a1, a2, a3, and a4. Finally,
the physisorption potential (Eq. 8) depends on five pa-
rameters: the C6 coefficient and the two parameters of
the linear dependence of A and B).
Like for GAL19, the C6 parameter is the only one that

is not fitted but directly extracted from the DFT compu-
tations via the use of the dDsC dispersion correction.27

In order to fit the remaining parameters, a set of 4154
configurations is built for Co, Ni, Cu, Pd, Ag, Pt, Au.
All configurations consist of a single water molecule ad-
sorbed on a p(3×3) or p(4×4) metallic slab. The con-
figurations probe various orientations, distances, and ad-
sorption sites (top, hollow, addatom, etc...) of the water
molecule. For each surface, several adsorption sites were
identified. Then, for each adsorption site, the potential
energy is scanned on a grid, varying the distance to the
surface and the angular orientation (θ,φ). Only a re-
stricted part of the total set (500 configurations obtained
from a stratified random sampling) is used to fit the data,
while all geometries with negative adsorption energies are
used to validate the model. More details about the set
can be found in the supporting information section S1.
Similarly to our previous work,19 the optimisation pro-

cess is split between linear and non-linear parameters. In-
deed, only nine parameters are non-linear and have been
optimized via a simplex optimizer. All linear parameters
for which a GCN dependence is introduced can be de-
composed into three individually linear (and thus, easy
to fit) parameters:

Q(GCN) · T = (Q(2) ·GCN2 +Q(1) ·GCN +Q(0)) · T (12)

= Q(2) ·GCN2
· T +Q(1) ·GCN · T +Q(0) · T

where Q is a linear parameter with a quadratic GCN
dependence, Q(i) its components in the GCN depen-
dence, and T a term of the potential. Hence, at each
iteration of the simplex, the linear parameters are deter-
mined via a least-squares fit. The final parameters have
been selected among 18 simplex runs that have been in-
tialized via a Latin hypercube with random values that
minimize the maximum correlation coefficient as imple-
mented in pyDOE.
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where VG is an attractive Gaussian potential:

VG(!rM,O) = εae
−b‖·r

2

‖e−b⊥·r2⊥ (6)

where r‖ and r⊥ are, respectively, the parallel and per-
pendicular projection of !rM,O on the surface normal !n.

VA is an angular correction term which modulates the
interaction energy of the water molecule as a function of
the angle θ between the surface norm !n and the molecular
dipole moment:

VA(rM,O, θ) =
(e−rM,O/RO )2
∑

Mi∈Ω(O)

e−rMi,O
/RO

4
∑

n=1

an cos(nθ) (7)

where RO is a parameter for the characteristic distance
of the M-O distance and the an are the expansion param-
eters of the Fourier series.

Finally, VTT is the potential of Tang and Toennies,26

accounting for both the short-range repulsion and the
long-range dispersion interactions.

VTT (r) = Ae−B·r
−

[

1−
6

∑

k=0

(B · r)k

k!
e−B·r

]

C6

r6
(8)

where A, B, and C6 are parameters.
The surface normal !n is defined locally for each metallic

atom M of a surface or a nanoparticle. Its definition has
been slightly revised compared to GAL19 to behave more
smoothly at the surface of highly corrugated objects. It
reads:

!n(M) =
∑

i

!rMi,M

r5Mi,M

(9)

where i runs over all metallic atoms (i.e., including all
constituents in the case of an alloy) within a distance
cut-off of M . The cutoff is defined as the global force
field cutoff. The sum causes the resulting vector to point
away from the volume containing metallic atoms, and
therefore, to the outside of the metallic object.

In total, VGAL depends on 13 parameters: AH , BH ,
εa, b‖, b⊥, RO, the four an, A, B and C6. In GAL21,
two parameters are taken as GCN-independent (RO and
C6), six parameters become linearly dependant on the
GCN of M: AH , BH , b‖, b⊥, A, and B; and 5 parameters
become quadratically dependant on the GCN of M: εa
and the four an. Each parameter L depending linearly
on the GCN of M is written as:

L = L(1) ·GCN(M) + L(0) (10)

and each parameter Q depending quadratically on the
GCN of M is parametrized as:

Q = Q(2) ·GCN(M)2 +Q(1) ·GCN(M) +Q(0) (11)

B. Fitting method and data set

In order to investigate atomic sites for water adsorp-
tion presenting a wide range of associated GCN, several
surfaces were built. Fig 1 presents the different model
surfaces and atomic sites considered, along with their as-
sociated GCN.
In total, 29 adjustable parameters are needed for the

GAL21 force field for each metal: there are four hydrogen
repulsion parameters, i.e., the two parameters for the lin-
ear dependence of AH and RH of Eq. 4. Then, we have
seven parameters for the Gaussian attraction (Eq. 6):
the three parameters of the quadratic dependence of εa
and the four parameters of the linear dependence of b‖
and b⊥. The angular dependence (Eq. 7) requires thir-
teen parameters: RO, and the three parameters of the
quadratic dependence of each a1, a2, a3, and a4. Finally,
the physisorption potential (Eq. 8) depends on five pa-
rameters: the C6 coefficient and the two parameters of
the linear dependence of A and B).
Like for GAL19, the C6 parameter is the only one that

is not fitted but directly extracted from the DFT compu-
tations via the use of the dDsC dispersion correction.27

In order to fit the remaining parameters, a set of 4154
configurations is built for Co, Ni, Cu, Pd, Ag, Pt, Au.
All configurations consist of a single water molecule ad-
sorbed on a p(3×3) or p(4×4) metallic slab. The con-
figurations probe various orientations, distances, and ad-
sorption sites (top, hollow, addatom, etc...) of the water
molecule. For each surface, several adsorption sites were
identified. Then, for each adsorption site, the potential
energy is scanned on a grid, varying the distance to the
surface and the angular orientation (θ,φ). Only a re-
stricted part of the total set (500 configurations obtained
from a stratified random sampling) is used to fit the data,
while all geometries with negative adsorption energies are
used to validate the model. More details about the set
can be found in the supporting information section S1.
Similarly to our previous work,19 the optimisation pro-

cess is split between linear and non-linear parameters. In-
deed, only nine parameters are non-linear and have been
optimized via a simplex optimizer. All linear parameters
for which a GCN dependence is introduced can be de-
composed into three individually linear (and thus, easy
to fit) parameters:

Q(GCN) · T = (Q(2) ·GCN2 +Q(1) ·GCN +Q(0)) · T (12)

= Q(2) ·GCN2
· T +Q(1) ·GCN · T +Q(0) · T

where Q is a linear parameter with a quadratic GCN
dependence, Q(i) its components in the GCN depen-
dence, and T a term of the potential. Hence, at each
iteration of the simplex, the linear parameters are deter-
mined via a least-squares fit. The final parameters have
been selected among 18 simplex runs that have been in-
tialized via a Latin hypercube with random values that
minimize the maximum correlation coefficient as imple-
mented in pyDOE.
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where VG is an attractive Gaussian potential:

VG(!rM,O) = εae
−b‖·r

2

‖e−b⊥·r2⊥ (6)

where r‖ and r⊥ are, respectively, the parallel and per-
pendicular projection of !rM,O on the surface normal !n.

VA is an angular correction term which modulates the
interaction energy of the water molecule as a function of
the angle θ between the surface norm !n and the molecular
dipole moment:

VA(rM,O, θ) =
(e−rM,O/RO )2
∑

Mi∈Ω(O)

e−rMi,O
/RO

4
∑

n=1

an cos(nθ) (7)

where RO is a parameter for the characteristic distance
of the M-O distance and the an are the expansion param-
eters of the Fourier series.

Finally, VTT is the potential of Tang and Toennies,26

accounting for both the short-range repulsion and the
long-range dispersion interactions.

VTT (r) = Ae−B·r
−

[

1−
6

∑

k=0

(B · r)k

k!
e−B·r

]

C6

r6
(8)

where A, B, and C6 are parameters.
The surface normal !n is defined locally for each metallic

atom M of a surface or a nanoparticle. Its definition has
been slightly revised compared to GAL19 to behave more
smoothly at the surface of highly corrugated objects. It
reads:

!n(M) =
∑

i

!rMi,M

r5Mi,M

(9)

where i runs over all metallic atoms (i.e., including all
constituents in the case of an alloy) within a distance
cut-off of M . The cutoff is defined as the global force
field cutoff. The sum causes the resulting vector to point
away from the volume containing metallic atoms, and
therefore, to the outside of the metallic object.

In total, VGAL depends on 13 parameters: AH , BH ,
εa, b‖, b⊥, RO, the four an, A, B and C6. In GAL21,
two parameters are taken as GCN-independent (RO and
C6), six parameters become linearly dependant on the
GCN of M: AH , BH , b‖, b⊥, A, and B; and 5 parameters
become quadratically dependant on the GCN of M: εa
and the four an. Each parameter L depending linearly
on the GCN of M is written as:

L = L(1) ·GCN(M) + L(0) (10)

and each parameter Q depending quadratically on the
GCN of M is parametrized as:

Q = Q(2) ·GCN(M)2 +Q(1) ·GCN(M) +Q(0) (11)

B. Fitting method and data set

In order to investigate atomic sites for water adsorp-
tion presenting a wide range of associated GCN, several
surfaces were built. Fig 1 presents the different model
surfaces and atomic sites considered, along with their as-
sociated GCN.
In total, 29 adjustable parameters are needed for the

GAL21 force field for each metal: there are four hydrogen
repulsion parameters, i.e., the two parameters for the lin-
ear dependence of AH and RH of Eq. 4. Then, we have
seven parameters for the Gaussian attraction (Eq. 6):
the three parameters of the quadratic dependence of εa
and the four parameters of the linear dependence of b‖
and b⊥. The angular dependence (Eq. 7) requires thir-
teen parameters: RO, and the three parameters of the
quadratic dependence of each a1, a2, a3, and a4. Finally,
the physisorption potential (Eq. 8) depends on five pa-
rameters: the C6 coefficient and the two parameters of
the linear dependence of A and B).
Like for GAL19, the C6 parameter is the only one that

is not fitted but directly extracted from the DFT compu-
tations via the use of the dDsC dispersion correction.27

In order to fit the remaining parameters, a set of 4154
configurations is built for Co, Ni, Cu, Pd, Ag, Pt, Au.
All configurations consist of a single water molecule ad-
sorbed on a p(3×3) or p(4×4) metallic slab. The con-
figurations probe various orientations, distances, and ad-
sorption sites (top, hollow, addatom, etc...) of the water
molecule. For each surface, several adsorption sites were
identified. Then, for each adsorption site, the potential
energy is scanned on a grid, varying the distance to the
surface and the angular orientation (θ,φ). Only a re-
stricted part of the total set (500 configurations obtained
from a stratified random sampling) is used to fit the data,
while all geometries with negative adsorption energies are
used to validate the model. More details about the set
can be found in the supporting information section S1.
Similarly to our previous work,19 the optimisation pro-

cess is split between linear and non-linear parameters. In-
deed, only nine parameters are non-linear and have been
optimized via a simplex optimizer. All linear parameters
for which a GCN dependence is introduced can be de-
composed into three individually linear (and thus, easy
to fit) parameters:

Q(GCN) · T = (Q(2) ·GCN2 +Q(1) ·GCN +Q(0)) · T (12)

= Q(2) ·GCN2
· T +Q(1) ·GCN · T +Q(0) · T

where Q is a linear parameter with a quadratic GCN
dependence, Q(i) its components in the GCN depen-
dence, and T a term of the potential. Hence, at each
iteration of the simplex, the linear parameters are deter-
mined via a least-squares fit. The final parameters have
been selected among 18 simplex runs that have been in-
tialized via a Latin hypercube with random values that
minimize the maximum correlation coefficient as imple-
mented in pyDOE.
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The determination of the neighbours and of their co-
ordination number is not uniquely defined for general
(e.g., amorphous) systems and is, here, performed by the
parameter-free ASANN algorithm.25 In Fig. 1, the GCN
of the adsorption site (highlighted in red) is provided.
It spans a wide range, from 2.5 to 11.25 (12 being the
maximum in the bulk).

FIG. 2: Schematic representation of the GCN
determination process. On the left, the standard

coordination numbers of the metallic atoms. As a first
step, the neighbour of each atom are identified and their
standard coordination numbers gathered. In a second
step, the formula is applied to compute the GCN of

each metallic atom of the slab.

The adsorption energy of a water molecule Eads,min is
defined as:

Eads,min = EH2O@slab − EH2O − Eslab (2)

with EH2O@slab the energy of the adsorption of a water
molecule on the selected atomic site on the slab, EH2O

is the energy of the isolated water molecule and Eslab

is the energy of the slab. The relation between the DFT
minimum adsorption energies on the various explored ad-
sorption sites and the GCN of the nearest atomic adsorp-
tion sites is presented in Fig 3. The adsorption energy
is not linearly but rather quadratically dependent on the
GCN. This information is key to motivate the GAL21
functional form.

FIG. 3: DFT minimum adsorption energies of water
among the configuration set used in this study for each
atomic adsorption site in function of the GCN of the
atomic adsorption site and the corresponding fitted

parabolas.

III. DEVELOPMENT OF A STRUCTURE-SENSITIVE
METAL-WATER FORCE FIELD

A. GAL21 functional form

The basic atom-pairwise additive functional form of
GAL1919 was used:

VGAL19/21 =
∑

H

∑

M∈Ω(H)

VM,H(!rM,H)

+
∑

O

∑

M∈Ω(O)

VM,O(!rM,O, θ) (3)

where Ω(H) and Ω(O) represent two ensemble of
metallic atoms (indistinct of their nature in the case of
an alloy) within a given distance cut-off of an H atom
and the O atom respectively.
The interaction of the surface with the hydrogen

(VM,H) atom is purely repulsive:

VM,H(rM,H) = AHe−rM,H ·BH (4)

where r is the norm of !r, AH tunes the strength of
the repulsion, and BH (an inverse distance) describes the
characteristic distance of the exponential decay.
The attractive interactions between water and the

metal surface are collected in the oxygen/metal inter-
action potential:

VM,O(!rM,O, θ) = VG(εa, b‖, b⊥;!rM,O)

+ VA(RO, a1−4; rM,O, θ)

+ VTT (A,B,C6; rM,O) (5)
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where VG is an attractive Gaussian potential:

VG(!rM,O) = εae
−b‖·r

2

‖e−b⊥·r2⊥ (6)

where r‖ and r⊥ are, respectively, the parallel and per-
pendicular projection of !rM,O on the surface normal !n.

VA is an angular correction term which modulates the
interaction energy of the water molecule as a function of
the angle θ between the surface norm !n and the molecular
dipole moment:

VA(rM,O, θ) =
(e−rM,O/RO )2
∑

Mi∈Ω(O)

e−rMi,O
/RO

4
∑

n=1

an cos(nθ) (7)

where RO is a parameter for the characteristic distance
of the M-O distance and the an are the expansion param-
eters of the Fourier series.

Finally, VTT is the potential of Tang and Toennies,26

accounting for both the short-range repulsion and the
long-range dispersion interactions.

VTT (r) = Ae−B·r
−

[

1−
6

∑

k=0

(B · r)k

k!
e−B·r

]

C6

r6
(8)

where A, B, and C6 are parameters.
The surface normal !n is defined locally for each metallic

atom M of a surface or a nanoparticle. Its definition has
been slightly revised compared to GAL19 to behave more
smoothly at the surface of highly corrugated objects. It
reads:

!n(M) =
∑

i

!rMi,M

r5Mi,M

(9)

where i runs over all metallic atoms (i.e., including all
constituents in the case of an alloy) within a distance
cut-off of M . The cutoff is defined as the global force
field cutoff. The sum causes the resulting vector to point
away from the volume containing metallic atoms, and
therefore, to the outside of the metallic object.

In total, VGAL depends on 13 parameters: AH , BH ,
εa, b‖, b⊥, RO, the four an, A, B and C6. In GAL21,
two parameters are taken as GCN-independent (RO and
C6), six parameters become linearly dependant on the
GCN of M: AH , BH , b‖, b⊥, A, and B; and 5 parameters
become quadratically dependant on the GCN of M: εa
and the four an. Each parameter L depending linearly
on the GCN of M is written as:

L = L(1) ·GCN(M) + L(0) (10)

and each parameter Q depending quadratically on the
GCN of M is parametrized as:

Q = Q(2) ·GCN(M)2 +Q(1) ·GCN(M) +Q(0) (11)

B. Fitting method and data set

In order to investigate atomic sites for water adsorp-
tion presenting a wide range of associated GCN, several
surfaces were built. Fig 1 presents the different model
surfaces and atomic sites considered, along with their as-
sociated GCN.
In total, 29 adjustable parameters are needed for the

GAL21 force field for each metal: there are four hydrogen
repulsion parameters, i.e., the two parameters for the lin-
ear dependence of AH and RH of Eq. 4. Then, we have
seven parameters for the Gaussian attraction (Eq. 6):
the three parameters of the quadratic dependence of εa
and the four parameters of the linear dependence of b‖
and b⊥. The angular dependence (Eq. 7) requires thir-
teen parameters: RO, and the three parameters of the
quadratic dependence of each a1, a2, a3, and a4. Finally,
the physisorption potential (Eq. 8) depends on five pa-
rameters: the C6 coefficient and the two parameters of
the linear dependence of A and B).
Like for GAL19, the C6 parameter is the only one that

is not fitted but directly extracted from the DFT compu-
tations via the use of the dDsC dispersion correction.27

In order to fit the remaining parameters, a set of 4154
configurations is built for Co, Ni, Cu, Pd, Ag, Pt, Au.
All configurations consist of a single water molecule ad-
sorbed on a p(3×3) or p(4×4) metallic slab. The con-
figurations probe various orientations, distances, and ad-
sorption sites (top, hollow, addatom, etc...) of the water
molecule. For each surface, several adsorption sites were
identified. Then, for each adsorption site, the potential
energy is scanned on a grid, varying the distance to the
surface and the angular orientation (θ,φ). Only a re-
stricted part of the total set (500 configurations obtained
from a stratified random sampling) is used to fit the data,
while all geometries with negative adsorption energies are
used to validate the model. More details about the set
can be found in the supporting information section S1.
Similarly to our previous work,19 the optimisation pro-

cess is split between linear and non-linear parameters. In-
deed, only nine parameters are non-linear and have been
optimized via a simplex optimizer. All linear parameters
for which a GCN dependence is introduced can be de-
composed into three individually linear (and thus, easy
to fit) parameters:

Q(GCN) · T = (Q(2) ·GCN2 +Q(1) ·GCN +Q(0)) · T (12)

= Q(2) ·GCN2
· T +Q(1) ·GCN · T +Q(0) · T

where Q is a linear parameter with a quadratic GCN
dependence, Q(i) its components in the GCN depen-
dence, and T a term of the potential. Hence, at each
iteration of the simplex, the linear parameters are deter-
mined via a least-squares fit. The final parameters have
been selected among 18 simplex runs that have been in-
tialized via a Latin hypercube with random values that
minimize the maximum correlation coefficient as imple-
mented in pyDOE.
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where VG is an attractive Gaussian potential:

VG(!rM,O) = εae
−b‖·r

2

‖e−b⊥·r2⊥ (6)

where r‖ and r⊥ are, respectively, the parallel and per-
pendicular projection of !rM,O on the surface normal !n.

VA is an angular correction term which modulates the
interaction energy of the water molecule as a function of
the angle θ between the surface norm !n and the molecular
dipole moment:

VA(rM,O, θ) =
(e−rM,O/RO )2
∑

Mi∈Ω(O)

e−rMi,O
/RO

4
∑

n=1

an cos(nθ) (7)

where RO is a parameter for the characteristic distance
of the M-O distance and the an are the expansion param-
eters of the Fourier series.

Finally, VTT is the potential of Tang and Toennies,26

accounting for both the short-range repulsion and the
long-range dispersion interactions.

VTT (r) = Ae−B·r
−

[

1−
6

∑

k=0

(B · r)k

k!
e−B·r

]

C6

r6
(8)

where A, B, and C6 are parameters.
The surface normal !n is defined locally for each metallic

atom M of a surface or a nanoparticle. Its definition has
been slightly revised compared to GAL19 to behave more
smoothly at the surface of highly corrugated objects. It
reads:

!n(M) =
∑

i

!rMi,M

r5Mi,M

(9)

where i runs over all metallic atoms (i.e., including all
constituents in the case of an alloy) within a distance
cut-off of M . The cutoff is defined as the global force
field cutoff. The sum causes the resulting vector to point
away from the volume containing metallic atoms, and
therefore, to the outside of the metallic object.

In total, VGAL depends on 13 parameters: AH , BH ,
εa, b‖, b⊥, RO, the four an, A, B and C6. In GAL21,
two parameters are taken as GCN-independent (RO and
C6), six parameters become linearly dependant on the
GCN of M: AH , BH , b‖, b⊥, A, and B; and 5 parameters
become quadratically dependant on the GCN of M: εa
and the four an. Each parameter L depending linearly
on the GCN of M is written as:

L = L(1) ·GCN(M) + L(0) (10)

and each parameter Q depending quadratically on the
GCN of M is parametrized as:

Q = Q(2) ·GCN(M)2 +Q(1) ·GCN(M) +Q(0) (11)

B. Fitting method and data set

In order to investigate atomic sites for water adsorp-
tion presenting a wide range of associated GCN, several
surfaces were built. Fig 1 presents the different model
surfaces and atomic sites considered, along with their as-
sociated GCN.
In total, 29 adjustable parameters are needed for the

GAL21 force field for each metal: there are four hydrogen
repulsion parameters, i.e., the two parameters for the lin-
ear dependence of AH and RH of Eq. 4. Then, we have
seven parameters for the Gaussian attraction (Eq. 6):
the three parameters of the quadratic dependence of εa
and the four parameters of the linear dependence of b‖
and b⊥. The angular dependence (Eq. 7) requires thir-
teen parameters: RO, and the three parameters of the
quadratic dependence of each a1, a2, a3, and a4. Finally,
the physisorption potential (Eq. 8) depends on five pa-
rameters: the C6 coefficient and the two parameters of
the linear dependence of A and B).
Like for GAL19, the C6 parameter is the only one that

is not fitted but directly extracted from the DFT compu-
tations via the use of the dDsC dispersion correction.27

In order to fit the remaining parameters, a set of 4154
configurations is built for Co, Ni, Cu, Pd, Ag, Pt, Au.
All configurations consist of a single water molecule ad-
sorbed on a p(3×3) or p(4×4) metallic slab. The con-
figurations probe various orientations, distances, and ad-
sorption sites (top, hollow, addatom, etc...) of the water
molecule. For each surface, several adsorption sites were
identified. Then, for each adsorption site, the potential
energy is scanned on a grid, varying the distance to the
surface and the angular orientation (θ,φ). Only a re-
stricted part of the total set (500 configurations obtained
from a stratified random sampling) is used to fit the data,
while all geometries with negative adsorption energies are
used to validate the model. More details about the set
can be found in the supporting information section S1.
Similarly to our previous work,19 the optimisation pro-

cess is split between linear and non-linear parameters. In-
deed, only nine parameters are non-linear and have been
optimized via a simplex optimizer. All linear parameters
for which a GCN dependence is introduced can be de-
composed into three individually linear (and thus, easy
to fit) parameters:

Q(GCN) · T = (Q(2) ·GCN2 +Q(1) ·GCN +Q(0)) · T (12)

= Q(2) ·GCN2
· T +Q(1) ·GCN · T +Q(0) · T

where Q is a linear parameter with a quadratic GCN
dependence, Q(i) its components in the GCN depen-
dence, and T a term of the potential. Hence, at each
iteration of the simplex, the linear parameters are deter-
mined via a least-squares fit. The final parameters have
been selected among 18 simplex runs that have been in-
tialized via a Latin hypercube with random values that
minimize the maximum correlation coefficient as imple-
mented in pyDOE.
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where VG is an attractive Gaussian potential:

VG(!rM,O) = εae
−b‖·r

2

‖e−b⊥·r2⊥ (6)

where r‖ and r⊥ are, respectively, the parallel and per-
pendicular projection of !rM,O on the surface normal !n.

VA is an angular correction term which modulates the
interaction energy of the water molecule as a function of
the angle θ between the surface norm !n and the molecular
dipole moment:

VA(rM,O, θ) =
(e−rM,O/RO )2
∑

Mi∈Ω(O)

e−rMi,O
/RO

4
∑

n=1

an cos(nθ) (7)

where RO is a parameter for the characteristic distance
of the M-O distance and the an are the expansion param-
eters of the Fourier series.

Finally, VTT is the potential of Tang and Toennies,26

accounting for both the short-range repulsion and the
long-range dispersion interactions.

VTT (r) = Ae−B·r
−

[

1−
6

∑

k=0

(B · r)k

k!
e−B·r

]

C6

r6
(8)

where A, B, and C6 are parameters.
The surface normal !n is defined locally for each metallic

atom M of a surface or a nanoparticle. Its definition has
been slightly revised compared to GAL19 to behave more
smoothly at the surface of highly corrugated objects. It
reads:

!n(M) =
∑

i

!rMi,M

r5Mi,M

(9)

where i runs over all metallic atoms (i.e., including all
constituents in the case of an alloy) within a distance
cut-off of M . The cutoff is defined as the global force
field cutoff. The sum causes the resulting vector to point
away from the volume containing metallic atoms, and
therefore, to the outside of the metallic object.

In total, VGAL depends on 13 parameters: AH , BH ,
εa, b‖, b⊥, RO, the four an, A, B and C6. In GAL21,
two parameters are taken as GCN-independent (RO and
C6), six parameters become linearly dependant on the
GCN of M: AH , BH , b‖, b⊥, A, and B; and 5 parameters
become quadratically dependant on the GCN of M: εa
and the four an. Each parameter L depending linearly
on the GCN of M is written as:

L = L(1) ·GCN(M) + L(0) (10)

and each parameter Q depending quadratically on the
GCN of M is parametrized as:

Q = Q(2) ·GCN(M)2 +Q(1) ·GCN(M) +Q(0) (11)

B. Fitting method and data set

In order to investigate atomic sites for water adsorp-
tion presenting a wide range of associated GCN, several
surfaces were built. Fig 1 presents the different model
surfaces and atomic sites considered, along with their as-
sociated GCN.
In total, 29 adjustable parameters are needed for the

GAL21 force field for each metal: there are four hydrogen
repulsion parameters, i.e., the two parameters for the lin-
ear dependence of AH and RH of Eq. 4. Then, we have
seven parameters for the Gaussian attraction (Eq. 6):
the three parameters of the quadratic dependence of εa
and the four parameters of the linear dependence of b‖
and b⊥. The angular dependence (Eq. 7) requires thir-
teen parameters: RO, and the three parameters of the
quadratic dependence of each a1, a2, a3, and a4. Finally,
the physisorption potential (Eq. 8) depends on five pa-
rameters: the C6 coefficient and the two parameters of
the linear dependence of A and B).
Like for GAL19, the C6 parameter is the only one that

is not fitted but directly extracted from the DFT compu-
tations via the use of the dDsC dispersion correction.27

In order to fit the remaining parameters, a set of 4154
configurations is built for Co, Ni, Cu, Pd, Ag, Pt, Au.
All configurations consist of a single water molecule ad-
sorbed on a p(3×3) or p(4×4) metallic slab. The con-
figurations probe various orientations, distances, and ad-
sorption sites (top, hollow, addatom, etc...) of the water
molecule. For each surface, several adsorption sites were
identified. Then, for each adsorption site, the potential
energy is scanned on a grid, varying the distance to the
surface and the angular orientation (θ,φ). Only a re-
stricted part of the total set (500 configurations obtained
from a stratified random sampling) is used to fit the data,
while all geometries with negative adsorption energies are
used to validate the model. More details about the set
can be found in the supporting information section S1.
Similarly to our previous work,19 the optimisation pro-

cess is split between linear and non-linear parameters. In-
deed, only nine parameters are non-linear and have been
optimized via a simplex optimizer. All linear parameters
for which a GCN dependence is introduced can be de-
composed into three individually linear (and thus, easy
to fit) parameters:

Q(GCN) · T = (Q(2) ·GCN2 +Q(1) ·GCN +Q(0)) · T (12)

= Q(2) ·GCN2
· T +Q(1) ·GCN · T +Q(0) · T

where Q is a linear parameter with a quadratic GCN
dependence, Q(i) its components in the GCN depen-
dence, and T a term of the potential. Hence, at each
iteration of the simplex, the linear parameters are deter-
mined via a least-squares fit. The final parameters have
been selected among 18 simplex runs that have been in-
tialized via a Latin hypercube with random values that
minimize the maximum correlation coefficient as imple-
mented in pyDOE.
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where VG is an attractive Gaussian potential:

VG(!rM,O) = εae
−b‖·r

2

‖e−b⊥·r2⊥ (6)

where r‖ and r⊥ are, respectively, the parallel and per-
pendicular projection of !rM,O on the surface normal !n.

VA is an angular correction term which modulates the
interaction energy of the water molecule as a function of
the angle θ between the surface norm !n and the molecular
dipole moment:

VA(rM,O, θ) =
(e−rM,O/RO )2
∑

Mi∈Ω(O)

e−rMi,O
/RO

4
∑

n=1

an cos(nθ) (7)

where RO is a parameter for the characteristic distance
of the M-O distance and the an are the expansion param-
eters of the Fourier series.

Finally, VTT is the potential of Tang and Toennies,26

accounting for both the short-range repulsion and the
long-range dispersion interactions.

VTT (r) = Ae−B·r
−

[

1−
6

∑

k=0

(B · r)k

k!
e−B·r

]

C6

r6
(8)

where A, B, and C6 are parameters.
The surface normal !n is defined locally for each metallic

atom M of a surface or a nanoparticle. Its definition has
been slightly revised compared to GAL19 to behave more
smoothly at the surface of highly corrugated objects. It
reads:

!n(M) =
∑

i

!rMi,M

r5Mi,M

(9)

where i runs over all metallic atoms (i.e., including all
constituents in the case of an alloy) within a distance
cut-off of M . The cutoff is defined as the global force
field cutoff. The sum causes the resulting vector to point
away from the volume containing metallic atoms, and
therefore, to the outside of the metallic object.

In total, VGAL depends on 13 parameters: AH , BH ,
εa, b‖, b⊥, RO, the four an, A, B and C6. In GAL21,
two parameters are taken as GCN-independent (RO and
C6), six parameters become linearly dependant on the
GCN of M: AH , BH , b‖, b⊥, A, and B; and 5 parameters
become quadratically dependant on the GCN of M: εa
and the four an. Each parameter L depending linearly
on the GCN of M is written as:

L = L(1) ·GCN(M) + L(0) (10)

and each parameter Q depending quadratically on the
GCN of M is parametrized as:

Q = Q(2) ·GCN(M)2 +Q(1) ·GCN(M) +Q(0) (11)

B. Fitting method and data set

In order to investigate atomic sites for water adsorp-
tion presenting a wide range of associated GCN, several
surfaces were built. Fig 1 presents the different model
surfaces and atomic sites considered, along with their as-
sociated GCN.
In total, 29 adjustable parameters are needed for the

GAL21 force field for each metal: there are four hydrogen
repulsion parameters, i.e., the two parameters for the lin-
ear dependence of AH and RH of Eq. 4. Then, we have
seven parameters for the Gaussian attraction (Eq. 6):
the three parameters of the quadratic dependence of εa
and the four parameters of the linear dependence of b‖
and b⊥. The angular dependence (Eq. 7) requires thir-
teen parameters: RO, and the three parameters of the
quadratic dependence of each a1, a2, a3, and a4. Finally,
the physisorption potential (Eq. 8) depends on five pa-
rameters: the C6 coefficient and the two parameters of
the linear dependence of A and B).
Like for GAL19, the C6 parameter is the only one that

is not fitted but directly extracted from the DFT compu-
tations via the use of the dDsC dispersion correction.27

In order to fit the remaining parameters, a set of 4154
configurations is built for Co, Ni, Cu, Pd, Ag, Pt, Au.
All configurations consist of a single water molecule ad-
sorbed on a p(3×3) or p(4×4) metallic slab. The con-
figurations probe various orientations, distances, and ad-
sorption sites (top, hollow, addatom, etc...) of the water
molecule. For each surface, several adsorption sites were
identified. Then, for each adsorption site, the potential
energy is scanned on a grid, varying the distance to the
surface and the angular orientation (θ,φ). Only a re-
stricted part of the total set (500 configurations obtained
from a stratified random sampling) is used to fit the data,
while all geometries with negative adsorption energies are
used to validate the model. More details about the set
can be found in the supporting information section S1.
Similarly to our previous work,19 the optimisation pro-

cess is split between linear and non-linear parameters. In-
deed, only nine parameters are non-linear and have been
optimized via a simplex optimizer. All linear parameters
for which a GCN dependence is introduced can be de-
composed into three individually linear (and thus, easy
to fit) parameters:

Q(GCN) · T = (Q(2) ·GCN2 +Q(1) ·GCN +Q(0)) · T (12)

= Q(2) ·GCN2
· T +Q(1) ·GCN · T +Q(0) · T

where Q is a linear parameter with a quadratic GCN
dependence, Q(i) its components in the GCN depen-
dence, and T a term of the potential. Hence, at each
iteration of the simplex, the linear parameters are deter-
mined via a least-squares fit. The final parameters have
been selected among 18 simplex runs that have been in-
tialized via a Latin hypercube with random values that
minimize the maximum correlation coefficient as imple-
mented in pyDOE.
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The determination of the neighbours and of their co-
ordination number is not uniquely defined for general
(e.g., amorphous) systems and is, here, performed by the
parameter-free ASANN algorithm.25 In Fig. 1, the GCN
of the adsorption site (highlighted in red) is provided.
It spans a wide range, from 2.5 to 11.25 (12 being the
maximum in the bulk).

FIG. 2: Schematic representation of the GCN
determination process. On the left, the standard

coordination numbers of the metallic atoms. As a first
step, the neighbour of each atom are identified and their
standard coordination numbers gathered. In a second
step, the formula is applied to compute the GCN of

each metallic atom of the slab.

The adsorption energy of a water molecule Eads,min is
defined as:

Eads,min = EH2O@slab − EH2O − Eslab (2)

with EH2O@slab the energy of the adsorption of a water
molecule on the selected atomic site on the slab, EH2O

is the energy of the isolated water molecule and Eslab

is the energy of the slab. The relation between the DFT
minimum adsorption energies on the various explored ad-
sorption sites and the GCN of the nearest atomic adsorp-
tion sites is presented in Fig 3. The adsorption energy
is not linearly but rather quadratically dependent on the
GCN. This information is key to motivate the GAL21
functional form.

FIG. 3: DFT minimum adsorption energies of water
among the configuration set used in this study for each
atomic adsorption site in function of the GCN of the
atomic adsorption site and the corresponding fitted

parabolas.

III. DEVELOPMENT OF A STRUCTURE-SENSITIVE
METAL-WATER FORCE FIELD

A. GAL21 functional form

The basic atom-pairwise additive functional form of
GAL1919 was used:

VGAL19/21 =
∑

H

∑

M∈Ω(H)

VM,H(!rM,H)

+
∑

O

∑

M∈Ω(O)

VM,O(!rM,O, θ) (3)

where Ω(H) and Ω(O) represent two ensemble of
metallic atoms (indistinct of their nature in the case of
an alloy) within a given distance cut-off of an H atom
and the O atom respectively.
The interaction of the surface with the hydrogen

(VM,H) atom is purely repulsive:

VM,H(rM,H) = AHe−rM,H ·BH (4)

where r is the norm of !r, AH tunes the strength of
the repulsion, and BH (an inverse distance) describes the
characteristic distance of the exponential decay.
The attractive interactions between water and the

metal surface are collected in the oxygen/metal inter-
action potential:

VM,O(!rM,O, θ) = VG(εa, b‖, b⊥;!rM,O)

+ VA(RO, a1−4; rM,O, θ)

+ VTT (A,B,C6; rM,O) (5)
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where VG is an attractive Gaussian potential:

VG(!rM,O) = εae
−b‖·r

2

‖e−b⊥·r2⊥ (6)

where r‖ and r⊥ are, respectively, the parallel and per-
pendicular projection of !rM,O on the surface normal !n.

VA is an angular correction term which modulates the
interaction energy of the water molecule as a function of
the angle θ between the surface norm !n and the molecular
dipole moment:

VA(rM,O, θ) =
(e−rM,O/RO )2
∑

Mi∈Ω(O)

e−rMi,O
/RO

4
∑

n=1

an cos(nθ) (7)

where RO is a parameter for the characteristic distance
of the M-O distance and the an are the expansion param-
eters of the Fourier series.

Finally, VTT is the potential of Tang and Toennies,26

accounting for both the short-range repulsion and the
long-range dispersion interactions.

VTT (r) = Ae−B·r
−

[

1−
6

∑

k=0

(B · r)k

k!
e−B·r

]

C6

r6
(8)

where A, B, and C6 are parameters.
The surface normal !n is defined locally for each metallic

atom M of a surface or a nanoparticle. Its definition has
been slightly revised compared to GAL19 to behave more
smoothly at the surface of highly corrugated objects. It
reads:

!n(M) =
∑

i

!rMi,M

r5Mi,M

(9)

where i runs over all metallic atoms (i.e., including all
constituents in the case of an alloy) within a distance
cut-off of M . The cutoff is defined as the global force
field cutoff. The sum causes the resulting vector to point
away from the volume containing metallic atoms, and
therefore, to the outside of the metallic object.

In total, VGAL depends on 13 parameters: AH , BH ,
εa, b‖, b⊥, RO, the four an, A, B and C6. In GAL21,
two parameters are taken as GCN-independent (RO and
C6), six parameters become linearly dependant on the
GCN of M: AH , BH , b‖, b⊥, A, and B; and 5 parameters
become quadratically dependant on the GCN of M: εa
and the four an. Each parameter L depending linearly
on the GCN of M is written as:

L = L(1) ·GCN(M) + L(0) (10)

and each parameter Q depending quadratically on the
GCN of M is parametrized as:

Q = Q(2) ·GCN(M)2 +Q(1) ·GCN(M) +Q(0) (11)

B. Fitting method and data set

In order to investigate atomic sites for water adsorp-
tion presenting a wide range of associated GCN, several
surfaces were built. Fig 1 presents the different model
surfaces and atomic sites considered, along with their as-
sociated GCN.
In total, 29 adjustable parameters are needed for the

GAL21 force field for each metal: there are four hydrogen
repulsion parameters, i.e., the two parameters for the lin-
ear dependence of AH and RH of Eq. 4. Then, we have
seven parameters for the Gaussian attraction (Eq. 6):
the three parameters of the quadratic dependence of εa
and the four parameters of the linear dependence of b‖
and b⊥. The angular dependence (Eq. 7) requires thir-
teen parameters: RO, and the three parameters of the
quadratic dependence of each a1, a2, a3, and a4. Finally,
the physisorption potential (Eq. 8) depends on five pa-
rameters: the C6 coefficient and the two parameters of
the linear dependence of A and B).
Like for GAL19, the C6 parameter is the only one that

is not fitted but directly extracted from the DFT compu-
tations via the use of the dDsC dispersion correction.27

In order to fit the remaining parameters, a set of 4154
configurations is built for Co, Ni, Cu, Pd, Ag, Pt, Au.
All configurations consist of a single water molecule ad-
sorbed on a p(3×3) or p(4×4) metallic slab. The con-
figurations probe various orientations, distances, and ad-
sorption sites (top, hollow, addatom, etc...) of the water
molecule. For each surface, several adsorption sites were
identified. Then, for each adsorption site, the potential
energy is scanned on a grid, varying the distance to the
surface and the angular orientation (θ,φ). Only a re-
stricted part of the total set (500 configurations obtained
from a stratified random sampling) is used to fit the data,
while all geometries with negative adsorption energies are
used to validate the model. More details about the set
can be found in the supporting information section S1.
Similarly to our previous work,19 the optimisation pro-

cess is split between linear and non-linear parameters. In-
deed, only nine parameters are non-linear and have been
optimized via a simplex optimizer. All linear parameters
for which a GCN dependence is introduced can be de-
composed into three individually linear (and thus, easy
to fit) parameters:

Q(GCN) · T = (Q(2) ·GCN2 +Q(1) ·GCN +Q(0)) · T (12)

= Q(2) ·GCN2
· T +Q(1) ·GCN · T +Q(0) · T

where Q is a linear parameter with a quadratic GCN
dependence, Q(i) its components in the GCN depen-
dence, and T a term of the potential. Hence, at each
iteration of the simplex, the linear parameters are deter-
mined via a least-squares fit. The final parameters have
been selected among 18 simplex runs that have been in-
tialized via a Latin hypercube with random values that
minimize the maximum correlation coefficient as imple-
mented in pyDOE.
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where VG is an attractive Gaussian potential:

VG(!rM,O) = εae
−b‖·r

2

‖e−b⊥·r2⊥ (6)

where r‖ and r⊥ are, respectively, the parallel and per-
pendicular projection of !rM,O on the surface normal !n.

VA is an angular correction term which modulates the
interaction energy of the water molecule as a function of
the angle θ between the surface norm !n and the molecular
dipole moment:

VA(rM,O, θ) =
(e−rM,O/RO )2
∑

Mi∈Ω(O)

e−rMi,O
/RO

4
∑

n=1

an cos(nθ) (7)

where RO is a parameter for the characteristic distance
of the M-O distance and the an are the expansion param-
eters of the Fourier series.

Finally, VTT is the potential of Tang and Toennies,26

accounting for both the short-range repulsion and the
long-range dispersion interactions.

VTT (r) = Ae−B·r
−

[

1−
6

∑

k=0

(B · r)k

k!
e−B·r

]

C6

r6
(8)

where A, B, and C6 are parameters.
The surface normal !n is defined locally for each metallic

atom M of a surface or a nanoparticle. Its definition has
been slightly revised compared to GAL19 to behave more
smoothly at the surface of highly corrugated objects. It
reads:

!n(M) =
∑

i

!rMi,M

r5Mi,M

(9)

where i runs over all metallic atoms (i.e., including all
constituents in the case of an alloy) within a distance
cut-off of M . The cutoff is defined as the global force
field cutoff. The sum causes the resulting vector to point
away from the volume containing metallic atoms, and
therefore, to the outside of the metallic object.

In total, VGAL depends on 13 parameters: AH , BH ,
εa, b‖, b⊥, RO, the four an, A, B and C6. In GAL21,
two parameters are taken as GCN-independent (RO and
C6), six parameters become linearly dependant on the
GCN of M: AH , BH , b‖, b⊥, A, and B; and 5 parameters
become quadratically dependant on the GCN of M: εa
and the four an. Each parameter L depending linearly
on the GCN of M is written as:

L = L(1) ·GCN(M) + L(0) (10)

and each parameter Q depending quadratically on the
GCN of M is parametrized as:

Q = Q(2) ·GCN(M)2 +Q(1) ·GCN(M) +Q(0) (11)

B. Fitting method and data set

In order to investigate atomic sites for water adsorp-
tion presenting a wide range of associated GCN, several
surfaces were built. Fig 1 presents the different model
surfaces and atomic sites considered, along with their as-
sociated GCN.
In total, 29 adjustable parameters are needed for the

GAL21 force field for each metal: there are four hydrogen
repulsion parameters, i.e., the two parameters for the lin-
ear dependence of AH and RH of Eq. 4. Then, we have
seven parameters for the Gaussian attraction (Eq. 6):
the three parameters of the quadratic dependence of εa
and the four parameters of the linear dependence of b‖
and b⊥. The angular dependence (Eq. 7) requires thir-
teen parameters: RO, and the three parameters of the
quadratic dependence of each a1, a2, a3, and a4. Finally,
the physisorption potential (Eq. 8) depends on five pa-
rameters: the C6 coefficient and the two parameters of
the linear dependence of A and B).
Like for GAL19, the C6 parameter is the only one that

is not fitted but directly extracted from the DFT compu-
tations via the use of the dDsC dispersion correction.27

In order to fit the remaining parameters, a set of 4154
configurations is built for Co, Ni, Cu, Pd, Ag, Pt, Au.
All configurations consist of a single water molecule ad-
sorbed on a p(3×3) or p(4×4) metallic slab. The con-
figurations probe various orientations, distances, and ad-
sorption sites (top, hollow, addatom, etc...) of the water
molecule. For each surface, several adsorption sites were
identified. Then, for each adsorption site, the potential
energy is scanned on a grid, varying the distance to the
surface and the angular orientation (θ,φ). Only a re-
stricted part of the total set (500 configurations obtained
from a stratified random sampling) is used to fit the data,
while all geometries with negative adsorption energies are
used to validate the model. More details about the set
can be found in the supporting information section S1.
Similarly to our previous work,19 the optimisation pro-

cess is split between linear and non-linear parameters. In-
deed, only nine parameters are non-linear and have been
optimized via a simplex optimizer. All linear parameters
for which a GCN dependence is introduced can be de-
composed into three individually linear (and thus, easy
to fit) parameters:

Q(GCN) · T = (Q(2) ·GCN2 +Q(1) ·GCN +Q(0)) · T (12)

= Q(2) ·GCN2
· T +Q(1) ·GCN · T +Q(0) · T

where Q is a linear parameter with a quadratic GCN
dependence, Q(i) its components in the GCN depen-
dence, and T a term of the potential. Hence, at each
iteration of the simplex, the linear parameters are deter-
mined via a least-squares fit. The final parameters have
been selected among 18 simplex runs that have been in-
tialized via a Latin hypercube with random values that
minimize the maximum correlation coefficient as imple-
mented in pyDOE.
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where VG is an attractive Gaussian potential:

VG(!rM,O) = εae
−b‖·r

2

‖e−b⊥·r2⊥ (6)

where r‖ and r⊥ are, respectively, the parallel and per-
pendicular projection of !rM,O on the surface normal !n.

VA is an angular correction term which modulates the
interaction energy of the water molecule as a function of
the angle θ between the surface norm !n and the molecular
dipole moment:

VA(rM,O, θ) =
(e−rM,O/RO )2
∑

Mi∈Ω(O)

e−rMi,O
/RO

4
∑

n=1

an cos(nθ) (7)

where RO is a parameter for the characteristic distance
of the M-O distance and the an are the expansion param-
eters of the Fourier series.

Finally, VTT is the potential of Tang and Toennies,26

accounting for both the short-range repulsion and the
long-range dispersion interactions.

VTT (r) = Ae−B·r
−

[

1−
6

∑

k=0

(B · r)k

k!
e−B·r

]

C6

r6
(8)

where A, B, and C6 are parameters.
The surface normal !n is defined locally for each metallic

atom M of a surface or a nanoparticle. Its definition has
been slightly revised compared to GAL19 to behave more
smoothly at the surface of highly corrugated objects. It
reads:

!n(M) =
∑

i

!rMi,M

r5Mi,M

(9)

where i runs over all metallic atoms (i.e., including all
constituents in the case of an alloy) within a distance
cut-off of M . The cutoff is defined as the global force
field cutoff. The sum causes the resulting vector to point
away from the volume containing metallic atoms, and
therefore, to the outside of the metallic object.

In total, VGAL depends on 13 parameters: AH , BH ,
εa, b‖, b⊥, RO, the four an, A, B and C6. In GAL21,
two parameters are taken as GCN-independent (RO and
C6), six parameters become linearly dependant on the
GCN of M: AH , BH , b‖, b⊥, A, and B; and 5 parameters
become quadratically dependant on the GCN of M: εa
and the four an. Each parameter L depending linearly
on the GCN of M is written as:

L = L(1) ·GCN(M) + L(0) (10)

and each parameter Q depending quadratically on the
GCN of M is parametrized as:

Q = Q(2) ·GCN(M)2 +Q(1) ·GCN(M) +Q(0) (11)

B. Fitting method and data set

In order to investigate atomic sites for water adsorp-
tion presenting a wide range of associated GCN, several
surfaces were built. Fig 1 presents the different model
surfaces and atomic sites considered, along with their as-
sociated GCN.
In total, 29 adjustable parameters are needed for the

GAL21 force field for each metal: there are four hydrogen
repulsion parameters, i.e., the two parameters for the lin-
ear dependence of AH and RH of Eq. 4. Then, we have
seven parameters for the Gaussian attraction (Eq. 6):
the three parameters of the quadratic dependence of εa
and the four parameters of the linear dependence of b‖
and b⊥. The angular dependence (Eq. 7) requires thir-
teen parameters: RO, and the three parameters of the
quadratic dependence of each a1, a2, a3, and a4. Finally,
the physisorption potential (Eq. 8) depends on five pa-
rameters: the C6 coefficient and the two parameters of
the linear dependence of A and B).
Like for GAL19, the C6 parameter is the only one that

is not fitted but directly extracted from the DFT compu-
tations via the use of the dDsC dispersion correction.27

In order to fit the remaining parameters, a set of 4154
configurations is built for Co, Ni, Cu, Pd, Ag, Pt, Au.
All configurations consist of a single water molecule ad-
sorbed on a p(3×3) or p(4×4) metallic slab. The con-
figurations probe various orientations, distances, and ad-
sorption sites (top, hollow, addatom, etc...) of the water
molecule. For each surface, several adsorption sites were
identified. Then, for each adsorption site, the potential
energy is scanned on a grid, varying the distance to the
surface and the angular orientation (θ,φ). Only a re-
stricted part of the total set (500 configurations obtained
from a stratified random sampling) is used to fit the data,
while all geometries with negative adsorption energies are
used to validate the model. More details about the set
can be found in the supporting information section S1.
Similarly to our previous work,19 the optimisation pro-

cess is split between linear and non-linear parameters. In-
deed, only nine parameters are non-linear and have been
optimized via a simplex optimizer. All linear parameters
for which a GCN dependence is introduced can be de-
composed into three individually linear (and thus, easy
to fit) parameters:

Q(GCN) · T = (Q(2) ·GCN2 +Q(1) ·GCN +Q(0)) · T (12)

= Q(2) ·GCN2
· T +Q(1) ·GCN · T +Q(0) · T

where Q is a linear parameter with a quadratic GCN
dependence, Q(i) its components in the GCN depen-
dence, and T a term of the potential. Hence, at each
iteration of the simplex, the linear parameters are deter-
mined via a least-squares fit. The final parameters have
been selected among 18 simplex runs that have been in-
tialized via a Latin hypercube with random values that
minimize the maximum correlation coefficient as imple-
mented in pyDOE.
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where VG is an attractive Gaussian potential:

VG(!rM,O) = εae
−b‖·r

2

‖e−b⊥·r2⊥ (6)

where r‖ and r⊥ are, respectively, the parallel and per-
pendicular projection of !rM,O on the surface normal !n.

VA is an angular correction term which modulates the
interaction energy of the water molecule as a function of
the angle θ between the surface norm !n and the molecular
dipole moment:

VA(rM,O, θ) =
(e−rM,O/RO )2
∑

Mi∈Ω(O)

e−rMi,O
/RO

4
∑

n=1

an cos(nθ) (7)

where RO is a parameter for the characteristic distance
of the M-O distance and the an are the expansion param-
eters of the Fourier series.

Finally, VTT is the potential of Tang and Toennies,26

accounting for both the short-range repulsion and the
long-range dispersion interactions.

VTT (r) = Ae−B·r
−

[

1−
6

∑

k=0

(B · r)k

k!
e−B·r

]

C6

r6
(8)

where A, B, and C6 are parameters.
The surface normal !n is defined locally for each metallic

atom M of a surface or a nanoparticle. Its definition has
been slightly revised compared to GAL19 to behave more
smoothly at the surface of highly corrugated objects. It
reads:

!n(M) =
∑

i

!rMi,M

r5Mi,M

(9)

where i runs over all metallic atoms (i.e., including all
constituents in the case of an alloy) within a distance
cut-off of M . The cutoff is defined as the global force
field cutoff. The sum causes the resulting vector to point
away from the volume containing metallic atoms, and
therefore, to the outside of the metallic object.

In total, VGAL depends on 13 parameters: AH , BH ,
εa, b‖, b⊥, RO, the four an, A, B and C6. In GAL21,
two parameters are taken as GCN-independent (RO and
C6), six parameters become linearly dependant on the
GCN of M: AH , BH , b‖, b⊥, A, and B; and 5 parameters
become quadratically dependant on the GCN of M: εa
and the four an. Each parameter L depending linearly
on the GCN of M is written as:

L = L(1) ·GCN(M) + L(0) (10)

and each parameter Q depending quadratically on the
GCN of M is parametrized as:

Q = Q(2) ·GCN(M)2 +Q(1) ·GCN(M) +Q(0) (11)

B. Fitting method and data set

In order to investigate atomic sites for water adsorp-
tion presenting a wide range of associated GCN, several
surfaces were built. Fig 1 presents the different model
surfaces and atomic sites considered, along with their as-
sociated GCN.
In total, 29 adjustable parameters are needed for the

GAL21 force field for each metal: there are four hydrogen
repulsion parameters, i.e., the two parameters for the lin-
ear dependence of AH and RH of Eq. 4. Then, we have
seven parameters for the Gaussian attraction (Eq. 6):
the three parameters of the quadratic dependence of εa
and the four parameters of the linear dependence of b‖
and b⊥. The angular dependence (Eq. 7) requires thir-
teen parameters: RO, and the three parameters of the
quadratic dependence of each a1, a2, a3, and a4. Finally,
the physisorption potential (Eq. 8) depends on five pa-
rameters: the C6 coefficient and the two parameters of
the linear dependence of A and B).
Like for GAL19, the C6 parameter is the only one that

is not fitted but directly extracted from the DFT compu-
tations via the use of the dDsC dispersion correction.27

In order to fit the remaining parameters, a set of 4154
configurations is built for Co, Ni, Cu, Pd, Ag, Pt, Au.
All configurations consist of a single water molecule ad-
sorbed on a p(3×3) or p(4×4) metallic slab. The con-
figurations probe various orientations, distances, and ad-
sorption sites (top, hollow, addatom, etc...) of the water
molecule. For each surface, several adsorption sites were
identified. Then, for each adsorption site, the potential
energy is scanned on a grid, varying the distance to the
surface and the angular orientation (θ,φ). Only a re-
stricted part of the total set (500 configurations obtained
from a stratified random sampling) is used to fit the data,
while all geometries with negative adsorption energies are
used to validate the model. More details about the set
can be found in the supporting information section S1.
Similarly to our previous work,19 the optimisation pro-

cess is split between linear and non-linear parameters. In-
deed, only nine parameters are non-linear and have been
optimized via a simplex optimizer. All linear parameters
for which a GCN dependence is introduced can be de-
composed into three individually linear (and thus, easy
to fit) parameters:

Q(GCN) · T = (Q(2) ·GCN2 +Q(1) ·GCN +Q(0)) · T (12)

= Q(2) ·GCN2
· T +Q(1) ·GCN · T +Q(0) · T

where Q is a linear parameter with a quadratic GCN
dependence, Q(i) its components in the GCN depen-
dence, and T a term of the potential. Hence, at each
iteration of the simplex, the linear parameters are deter-
mined via a least-squares fit. The final parameters have
been selected among 18 simplex runs that have been in-
tialized via a Latin hypercube with random values that
minimize the maximum correlation coefficient as imple-
mented in pyDOE.
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The determination of the neighbours and of their co-
ordination number is not uniquely defined for general
(e.g., amorphous) systems and is, here, performed by the
parameter-free ASANN algorithm.25 In Fig. 1, the GCN
of the adsorption site (highlighted in red) is provided.
It spans a wide range, from 2.5 to 11.25 (12 being the
maximum in the bulk).

FIG. 2: Schematic representation of the GCN
determination process. On the left, the standard

coordination numbers of the metallic atoms. As a first
step, the neighbour of each atom are identified and their
standard coordination numbers gathered. In a second
step, the formula is applied to compute the GCN of

each metallic atom of the slab.

The adsorption energy of a water molecule Eads,min is
defined as:

Eads,min = EH2O@slab − EH2O − Eslab (2)

with EH2O@slab the energy of the adsorption of a water
molecule on the selected atomic site on the slab, EH2O

is the energy of the isolated water molecule and Eslab

is the energy of the slab. The relation between the DFT
minimum adsorption energies on the various explored ad-
sorption sites and the GCN of the nearest atomic adsorp-
tion sites is presented in Fig 3. The adsorption energy
is not linearly but rather quadratically dependent on the
GCN. This information is key to motivate the GAL21
functional form.

FIG. 3: DFT minimum adsorption energies of water
among the configuration set used in this study for each
atomic adsorption site in function of the GCN of the
atomic adsorption site and the corresponding fitted

parabolas.

III. DEVELOPMENT OF A STRUCTURE-SENSITIVE
METAL-WATER FORCE FIELD

A. GAL21 functional form

The basic atom-pairwise additive functional form of
GAL1919 was used:

VGAL19/21 =
∑

H

∑

M∈Ω(H)

VM,H(!rM,H)

+
∑

O

∑

M∈Ω(O)

VM,O(!rM,O, θ) (3)

where Ω(H) and Ω(O) represent two ensemble of
metallic atoms (indistinct of their nature in the case of
an alloy) within a given distance cut-off of an H atom
and the O atom respectively.
The interaction of the surface with the hydrogen

(VM,H) atom is purely repulsive:

VM,H(rM,H) = AHe−rM,H ·BH (4)

where r is the norm of !r, AH tunes the strength of
the repulsion, and BH (an inverse distance) describes the
characteristic distance of the exponential decay.
The attractive interactions between water and the

metal surface are collected in the oxygen/metal inter-
action potential:

VM,O(!rM,O, θ) = VG(εa, b‖, b⊥;!rM,O)

+ VA(RO, a1−4; rM,O, θ)

+ VTT (A,B,C6; rM,O) (5)
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where VG is an attractive Gaussian potential:

VG(!rM,O) = εae
−b‖·r

2

‖e−b⊥·r2⊥ (6)

where r‖ and r⊥ are, respectively, the parallel and per-
pendicular projection of !rM,O on the surface normal !n.

VA is an angular correction term which modulates the
interaction energy of the water molecule as a function of
the angle θ between the surface norm !n and the molecular
dipole moment:

VA(rM,O, θ) =
(e−rM,O/RO )2
∑

Mi∈Ω(O)

e−rMi,O
/RO

4
∑

n=1

an cos(nθ) (7)

where RO is a parameter for the characteristic distance
of the M-O distance and the an are the expansion param-
eters of the Fourier series.

Finally, VTT is the potential of Tang and Toennies,26

accounting for both the short-range repulsion and the
long-range dispersion interactions.

VTT (r) = Ae−B·r
−

[

1−
6

∑

k=0

(B · r)k

k!
e−B·r

]

C6

r6
(8)

where A, B, and C6 are parameters.
The surface normal !n is defined locally for each metallic

atom M of a surface or a nanoparticle. Its definition has
been slightly revised compared to GAL19 to behave more
smoothly at the surface of highly corrugated objects. It
reads:

!n(M) =
∑

i

!rMi,M

r5Mi,M

(9)

where i runs over all metallic atoms (i.e., including all
constituents in the case of an alloy) within a distance
cut-off of M . The cutoff is defined as the global force
field cutoff. The sum causes the resulting vector to point
away from the volume containing metallic atoms, and
therefore, to the outside of the metallic object.

In total, VGAL depends on 13 parameters: AH , BH ,
εa, b‖, b⊥, RO, the four an, A, B and C6. In GAL21,
two parameters are taken as GCN-independent (RO and
C6), six parameters become linearly dependant on the
GCN of M: AH , BH , b‖, b⊥, A, and B; and 5 parameters
become quadratically dependant on the GCN of M: εa
and the four an. Each parameter L depending linearly
on the GCN of M is written as:

L = L(1) ·GCN(M) + L(0) (10)

and each parameter Q depending quadratically on the
GCN of M is parametrized as:

Q = Q(2) ·GCN(M)2 +Q(1) ·GCN(M) +Q(0) (11)

B. Fitting method and data set

In order to investigate atomic sites for water adsorp-
tion presenting a wide range of associated GCN, several
surfaces were built. Fig 1 presents the different model
surfaces and atomic sites considered, along with their as-
sociated GCN.
In total, 29 adjustable parameters are needed for the

GAL21 force field for each metal: there are four hydrogen
repulsion parameters, i.e., the two parameters for the lin-
ear dependence of AH and RH of Eq. 4. Then, we have
seven parameters for the Gaussian attraction (Eq. 6):
the three parameters of the quadratic dependence of εa
and the four parameters of the linear dependence of b‖
and b⊥. The angular dependence (Eq. 7) requires thir-
teen parameters: RO, and the three parameters of the
quadratic dependence of each a1, a2, a3, and a4. Finally,
the physisorption potential (Eq. 8) depends on five pa-
rameters: the C6 coefficient and the two parameters of
the linear dependence of A and B).
Like for GAL19, the C6 parameter is the only one that

is not fitted but directly extracted from the DFT compu-
tations via the use of the dDsC dispersion correction.27

In order to fit the remaining parameters, a set of 4154
configurations is built for Co, Ni, Cu, Pd, Ag, Pt, Au.
All configurations consist of a single water molecule ad-
sorbed on a p(3×3) or p(4×4) metallic slab. The con-
figurations probe various orientations, distances, and ad-
sorption sites (top, hollow, addatom, etc...) of the water
molecule. For each surface, several adsorption sites were
identified. Then, for each adsorption site, the potential
energy is scanned on a grid, varying the distance to the
surface and the angular orientation (θ,φ). Only a re-
stricted part of the total set (500 configurations obtained
from a stratified random sampling) is used to fit the data,
while all geometries with negative adsorption energies are
used to validate the model. More details about the set
can be found in the supporting information section S1.
Similarly to our previous work,19 the optimisation pro-

cess is split between linear and non-linear parameters. In-
deed, only nine parameters are non-linear and have been
optimized via a simplex optimizer. All linear parameters
for which a GCN dependence is introduced can be de-
composed into three individually linear (and thus, easy
to fit) parameters:

Q(GCN) · T = (Q(2) ·GCN2 +Q(1) ·GCN +Q(0)) · T (12)

= Q(2) ·GCN2
· T +Q(1) ·GCN · T +Q(0) · T

where Q is a linear parameter with a quadratic GCN
dependence, Q(i) its components in the GCN depen-
dence, and T a term of the potential. Hence, at each
iteration of the simplex, the linear parameters are deter-
mined via a least-squares fit. The final parameters have
been selected among 18 simplex runs that have been in-
tialized via a Latin hypercube with random values that
minimize the maximum correlation coefficient as imple-
mented in pyDOE.
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where VG is an attractive Gaussian potential:

VG(!rM,O) = εae
−b‖·r

2

‖e−b⊥·r2⊥ (6)

where r‖ and r⊥ are, respectively, the parallel and per-
pendicular projection of !rM,O on the surface normal !n.

VA is an angular correction term which modulates the
interaction energy of the water molecule as a function of
the angle θ between the surface norm !n and the molecular
dipole moment:

VA(rM,O, θ) =
(e−rM,O/RO )2
∑

Mi∈Ω(O)

e−rMi,O
/RO

4
∑

n=1

an cos(nθ) (7)

where RO is a parameter for the characteristic distance
of the M-O distance and the an are the expansion param-
eters of the Fourier series.

Finally, VTT is the potential of Tang and Toennies,26

accounting for both the short-range repulsion and the
long-range dispersion interactions.

VTT (r) = Ae−B·r
−

[

1−
6

∑

k=0

(B · r)k

k!
e−B·r

]

C6

r6
(8)

where A, B, and C6 are parameters.
The surface normal !n is defined locally for each metallic

atom M of a surface or a nanoparticle. Its definition has
been slightly revised compared to GAL19 to behave more
smoothly at the surface of highly corrugated objects. It
reads:

!n(M) =
∑

i

!rMi,M

r5Mi,M

(9)

where i runs over all metallic atoms (i.e., including all
constituents in the case of an alloy) within a distance
cut-off of M . The cutoff is defined as the global force
field cutoff. The sum causes the resulting vector to point
away from the volume containing metallic atoms, and
therefore, to the outside of the metallic object.

In total, VGAL depends on 13 parameters: AH , BH ,
εa, b‖, b⊥, RO, the four an, A, B and C6. In GAL21,
two parameters are taken as GCN-independent (RO and
C6), six parameters become linearly dependant on the
GCN of M: AH , BH , b‖, b⊥, A, and B; and 5 parameters
become quadratically dependant on the GCN of M: εa
and the four an. Each parameter L depending linearly
on the GCN of M is written as:

L = L(1) ·GCN(M) + L(0) (10)

and each parameter Q depending quadratically on the
GCN of M is parametrized as:

Q = Q(2) ·GCN(M)2 +Q(1) ·GCN(M) +Q(0) (11)

B. Fitting method and data set

In order to investigate atomic sites for water adsorp-
tion presenting a wide range of associated GCN, several
surfaces were built. Fig 1 presents the different model
surfaces and atomic sites considered, along with their as-
sociated GCN.
In total, 29 adjustable parameters are needed for the

GAL21 force field for each metal: there are four hydrogen
repulsion parameters, i.e., the two parameters for the lin-
ear dependence of AH and RH of Eq. 4. Then, we have
seven parameters for the Gaussian attraction (Eq. 6):
the three parameters of the quadratic dependence of εa
and the four parameters of the linear dependence of b‖
and b⊥. The angular dependence (Eq. 7) requires thir-
teen parameters: RO, and the three parameters of the
quadratic dependence of each a1, a2, a3, and a4. Finally,
the physisorption potential (Eq. 8) depends on five pa-
rameters: the C6 coefficient and the two parameters of
the linear dependence of A and B).
Like for GAL19, the C6 parameter is the only one that

is not fitted but directly extracted from the DFT compu-
tations via the use of the dDsC dispersion correction.27

In order to fit the remaining parameters, a set of 4154
configurations is built for Co, Ni, Cu, Pd, Ag, Pt, Au.
All configurations consist of a single water molecule ad-
sorbed on a p(3×3) or p(4×4) metallic slab. The con-
figurations probe various orientations, distances, and ad-
sorption sites (top, hollow, addatom, etc...) of the water
molecule. For each surface, several adsorption sites were
identified. Then, for each adsorption site, the potential
energy is scanned on a grid, varying the distance to the
surface and the angular orientation (θ,φ). Only a re-
stricted part of the total set (500 configurations obtained
from a stratified random sampling) is used to fit the data,
while all geometries with negative adsorption energies are
used to validate the model. More details about the set
can be found in the supporting information section S1.
Similarly to our previous work,19 the optimisation pro-

cess is split between linear and non-linear parameters. In-
deed, only nine parameters are non-linear and have been
optimized via a simplex optimizer. All linear parameters
for which a GCN dependence is introduced can be de-
composed into three individually linear (and thus, easy
to fit) parameters:

Q(GCN) · T = (Q(2) ·GCN2 +Q(1) ·GCN +Q(0)) · T (12)

= Q(2) ·GCN2
· T +Q(1) ·GCN · T +Q(0) · T

where Q is a linear parameter with a quadratic GCN
dependence, Q(i) its components in the GCN depen-
dence, and T a term of the potential. Hence, at each
iteration of the simplex, the linear parameters are deter-
mined via a least-squares fit. The final parameters have
been selected among 18 simplex runs that have been in-
tialized via a Latin hypercube with random values that
minimize the maximum correlation coefficient as imple-
mented in pyDOE.
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where VG is an attractive Gaussian potential:

VG(!rM,O) = εae
−b‖·r

2

‖e−b⊥·r2⊥ (6)

where r‖ and r⊥ are, respectively, the parallel and per-
pendicular projection of !rM,O on the surface normal !n.

VA is an angular correction term which modulates the
interaction energy of the water molecule as a function of
the angle θ between the surface norm !n and the molecular
dipole moment:

VA(rM,O, θ) =
(e−rM,O/RO )2
∑

Mi∈Ω(O)

e−rMi,O
/RO

4
∑

n=1

an cos(nθ) (7)

where RO is a parameter for the characteristic distance
of the M-O distance and the an are the expansion param-
eters of the Fourier series.

Finally, VTT is the potential of Tang and Toennies,26

accounting for both the short-range repulsion and the
long-range dispersion interactions.

VTT (r) = Ae−B·r
−

[

1−
6

∑

k=0

(B · r)k

k!
e−B·r

]

C6

r6
(8)

where A, B, and C6 are parameters.
The surface normal !n is defined locally for each metallic

atom M of a surface or a nanoparticle. Its definition has
been slightly revised compared to GAL19 to behave more
smoothly at the surface of highly corrugated objects. It
reads:

!n(M) =
∑

i

!rMi,M

r5Mi,M

(9)

where i runs over all metallic atoms (i.e., including all
constituents in the case of an alloy) within a distance
cut-off of M . The cutoff is defined as the global force
field cutoff. The sum causes the resulting vector to point
away from the volume containing metallic atoms, and
therefore, to the outside of the metallic object.

In total, VGAL depends on 13 parameters: AH , BH ,
εa, b‖, b⊥, RO, the four an, A, B and C6. In GAL21,
two parameters are taken as GCN-independent (RO and
C6), six parameters become linearly dependant on the
GCN of M: AH , BH , b‖, b⊥, A, and B; and 5 parameters
become quadratically dependant on the GCN of M: εa
and the four an. Each parameter L depending linearly
on the GCN of M is written as:

L = L(1) ·GCN(M) + L(0) (10)

and each parameter Q depending quadratically on the
GCN of M is parametrized as:

Q = Q(2) ·GCN(M)2 +Q(1) ·GCN(M) +Q(0) (11)

B. Fitting method and data set

In order to investigate atomic sites for water adsorp-
tion presenting a wide range of associated GCN, several
surfaces were built. Fig 1 presents the different model
surfaces and atomic sites considered, along with their as-
sociated GCN.
In total, 29 adjustable parameters are needed for the

GAL21 force field for each metal: there are four hydrogen
repulsion parameters, i.e., the two parameters for the lin-
ear dependence of AH and RH of Eq. 4. Then, we have
seven parameters for the Gaussian attraction (Eq. 6):
the three parameters of the quadratic dependence of εa
and the four parameters of the linear dependence of b‖
and b⊥. The angular dependence (Eq. 7) requires thir-
teen parameters: RO, and the three parameters of the
quadratic dependence of each a1, a2, a3, and a4. Finally,
the physisorption potential (Eq. 8) depends on five pa-
rameters: the C6 coefficient and the two parameters of
the linear dependence of A and B).
Like for GAL19, the C6 parameter is the only one that

is not fitted but directly extracted from the DFT compu-
tations via the use of the dDsC dispersion correction.27

In order to fit the remaining parameters, a set of 4154
configurations is built for Co, Ni, Cu, Pd, Ag, Pt, Au.
All configurations consist of a single water molecule ad-
sorbed on a p(3×3) or p(4×4) metallic slab. The con-
figurations probe various orientations, distances, and ad-
sorption sites (top, hollow, addatom, etc...) of the water
molecule. For each surface, several adsorption sites were
identified. Then, for each adsorption site, the potential
energy is scanned on a grid, varying the distance to the
surface and the angular orientation (θ,φ). Only a re-
stricted part of the total set (500 configurations obtained
from a stratified random sampling) is used to fit the data,
while all geometries with negative adsorption energies are
used to validate the model. More details about the set
can be found in the supporting information section S1.
Similarly to our previous work,19 the optimisation pro-

cess is split between linear and non-linear parameters. In-
deed, only nine parameters are non-linear and have been
optimized via a simplex optimizer. All linear parameters
for which a GCN dependence is introduced can be de-
composed into three individually linear (and thus, easy
to fit) parameters:

Q(GCN) · T = (Q(2) ·GCN2 +Q(1) ·GCN +Q(0)) · T (12)

= Q(2) ·GCN2
· T +Q(1) ·GCN · T +Q(0) · T

where Q is a linear parameter with a quadratic GCN
dependence, Q(i) its components in the GCN depen-
dence, and T a term of the potential. Hence, at each
iteration of the simplex, the linear parameters are deter-
mined via a least-squares fit. The final parameters have
been selected among 18 simplex runs that have been in-
tialized via a Latin hypercube with random values that
minimize the maximum correlation coefficient as imple-
mented in pyDOE.
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where VG is an attractive Gaussian potential:

VG(!rM,O) = εae
−b‖·r

2

‖e−b⊥·r2⊥ (6)

where r‖ and r⊥ are, respectively, the parallel and per-
pendicular projection of !rM,O on the surface normal !n.

VA is an angular correction term which modulates the
interaction energy of the water molecule as a function of
the angle θ between the surface norm !n and the molecular
dipole moment:

VA(rM,O, θ) =
(e−rM,O/RO )2
∑

Mi∈Ω(O)

e−rMi,O
/RO

4
∑

n=1

an cos(nθ) (7)

where RO is a parameter for the characteristic distance
of the M-O distance and the an are the expansion param-
eters of the Fourier series.

Finally, VTT is the potential of Tang and Toennies,26

accounting for both the short-range repulsion and the
long-range dispersion interactions.

VTT (r) = Ae−B·r
−

[

1−
6

∑

k=0

(B · r)k

k!
e−B·r

]

C6

r6
(8)

where A, B, and C6 are parameters.
The surface normal !n is defined locally for each metallic

atom M of a surface or a nanoparticle. Its definition has
been slightly revised compared to GAL19 to behave more
smoothly at the surface of highly corrugated objects. It
reads:

!n(M) =
∑

i

!rMi,M

r5Mi,M

(9)

where i runs over all metallic atoms (i.e., including all
constituents in the case of an alloy) within a distance
cut-off of M . The cutoff is defined as the global force
field cutoff. The sum causes the resulting vector to point
away from the volume containing metallic atoms, and
therefore, to the outside of the metallic object.

In total, VGAL depends on 13 parameters: AH , BH ,
εa, b‖, b⊥, RO, the four an, A, B and C6. In GAL21,
two parameters are taken as GCN-independent (RO and
C6), six parameters become linearly dependant on the
GCN of M: AH , BH , b‖, b⊥, A, and B; and 5 parameters
become quadratically dependant on the GCN of M: εa
and the four an. Each parameter L depending linearly
on the GCN of M is written as:

L = L(1) ·GCN(M) + L(0) (10)

and each parameter Q depending quadratically on the
GCN of M is parametrized as:

Q = Q(2) ·GCN(M)2 +Q(1) ·GCN(M) +Q(0) (11)

B. Fitting method and data set

In order to investigate atomic sites for water adsorp-
tion presenting a wide range of associated GCN, several
surfaces were built. Fig 1 presents the different model
surfaces and atomic sites considered, along with their as-
sociated GCN.
In total, 29 adjustable parameters are needed for the

GAL21 force field for each metal: there are four hydrogen
repulsion parameters, i.e., the two parameters for the lin-
ear dependence of AH and RH of Eq. 4. Then, we have
seven parameters for the Gaussian attraction (Eq. 6):
the three parameters of the quadratic dependence of εa
and the four parameters of the linear dependence of b‖
and b⊥. The angular dependence (Eq. 7) requires thir-
teen parameters: RO, and the three parameters of the
quadratic dependence of each a1, a2, a3, and a4. Finally,
the physisorption potential (Eq. 8) depends on five pa-
rameters: the C6 coefficient and the two parameters of
the linear dependence of A and B).
Like for GAL19, the C6 parameter is the only one that

is not fitted but directly extracted from the DFT compu-
tations via the use of the dDsC dispersion correction.27

In order to fit the remaining parameters, a set of 4154
configurations is built for Co, Ni, Cu, Pd, Ag, Pt, Au.
All configurations consist of a single water molecule ad-
sorbed on a p(3×3) or p(4×4) metallic slab. The con-
figurations probe various orientations, distances, and ad-
sorption sites (top, hollow, addatom, etc...) of the water
molecule. For each surface, several adsorption sites were
identified. Then, for each adsorption site, the potential
energy is scanned on a grid, varying the distance to the
surface and the angular orientation (θ,φ). Only a re-
stricted part of the total set (500 configurations obtained
from a stratified random sampling) is used to fit the data,
while all geometries with negative adsorption energies are
used to validate the model. More details about the set
can be found in the supporting information section S1.
Similarly to our previous work,19 the optimisation pro-

cess is split between linear and non-linear parameters. In-
deed, only nine parameters are non-linear and have been
optimized via a simplex optimizer. All linear parameters
for which a GCN dependence is introduced can be de-
composed into three individually linear (and thus, easy
to fit) parameters:

Q(GCN) · T = (Q(2) ·GCN2 +Q(1) ·GCN +Q(0)) · T (12)

= Q(2) ·GCN2
· T +Q(1) ·GCN · T +Q(0) · T

where Q is a linear parameter with a quadratic GCN
dependence, Q(i) its components in the GCN depen-
dence, and T a term of the potential. Hence, at each
iteration of the simplex, the linear parameters are deter-
mined via a least-squares fit. The final parameters have
been selected among 18 simplex runs that have been in-
tialized via a Latin hypercube with random values that
minimize the maximum correlation coefficient as imple-
mented in pyDOE.
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The determination of the neighbours and of their co-
ordination number is not uniquely defined for general
(e.g., amorphous) systems and is, here, performed by the
parameter-free ASANN algorithm.25 In Fig. 1, the GCN
of the adsorption site (highlighted in red) is provided.
It spans a wide range, from 2.5 to 11.25 (12 being the
maximum in the bulk).

FIG. 2: Schematic representation of the GCN
determination process. On the left, the standard

coordination numbers of the metallic atoms. As a first
step, the neighbour of each atom are identified and their
standard coordination numbers gathered. In a second
step, the formula is applied to compute the GCN of

each metallic atom of the slab.

The adsorption energy of a water molecule Eads,min is
defined as:

Eads,min = EH2O@slab − EH2O − Eslab (2)

with EH2O@slab the energy of the adsorption of a water
molecule on the selected atomic site on the slab, EH2O

is the energy of the isolated water molecule and Eslab

is the energy of the slab. The relation between the DFT
minimum adsorption energies on the various explored ad-
sorption sites and the GCN of the nearest atomic adsorp-
tion sites is presented in Fig 3. The adsorption energy
is not linearly but rather quadratically dependent on the
GCN. This information is key to motivate the GAL21
functional form.

FIG. 3: DFT minimum adsorption energies of water
among the configuration set used in this study for each
atomic adsorption site in function of the GCN of the
atomic adsorption site and the corresponding fitted

parabolas.

III. DEVELOPMENT OF A STRUCTURE-SENSITIVE
METAL-WATER FORCE FIELD

A. GAL21 functional form

The basic atom-pairwise additive functional form of
GAL1919 was used:

VGAL19/21 =
∑

H

∑

M∈Ω(H)

VM,H(!rM,H)

+
∑

O

∑

M∈Ω(O)

VM,O(!rM,O, θ) (3)

where Ω(H) and Ω(O) represent two ensemble of
metallic atoms (indistinct of their nature in the case of
an alloy) within a given distance cut-off of an H atom
and the O atom respectively.
The interaction of the surface with the hydrogen

(VM,H) atom is purely repulsive:

VM,H(rM,H) = AHe−rM,H ·BH (4)

where r is the norm of !r, AH tunes the strength of
the repulsion, and BH (an inverse distance) describes the
characteristic distance of the exponential decay.
The attractive interactions between water and the

metal surface are collected in the oxygen/metal inter-
action potential:

VM,O(!rM,O, θ) = VG(εa, b‖, b⊥;!rM,O)

+ VA(RO, a1−4; rM,O, θ)

+ VTT (A,B,C6; rM,O) (5)
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Surface specific

à Linear or quadratic 

dependance on the gCN

P. Clabaut et al. JCP, 2022, 157, 194705   



Solvation energy of NPs
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   Au55

Gsolv  = -9.9 kcal/mol/surface atom

Gsolv  = -5.2 kcal/mol/surface atom

   Pt55

P. Clabaut et al. JCP, 2022, 157, 194705   



Generalisation to oxides & other molecules

65

Me2O@Al2O3 Me2NH@Al2O3

J. Rey et al. J. Phys. Chem. B, 2021, 125, 10843-10853



Conclusions

àWe now have a robust metal/water force field

àWe can compute solvation energies accurately at the 
solide/liquid interface

àWe extended this approach to oxide/O-containing and N-
containing molecule

66
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flooding,6,7 adaptive force bias,8 steered MD,9 and
self-healing umbrella sampling.10

In this review, we will focus on metadynam-
ics, which, at the same time, is able to enhance sam-
pling and reconstruct the free-energy surface (FES) as
a function of the chosen CVs. The paper is organized
in two parts. In the first, we will provide an overview
of the basic theory underpinning metadynamics. In
the second, we will present some recent representative
applications in the field of material science, chemical
reactions, and biomolecular dynamics.

THEORY
In metadynamics, an external history-dependent bias
potential which is a function of the CVs is added
to the Hamiltonian of the system. This potential can
be written as a sum of Gaussians deposited along
the system trajectory in the CVs space to discourage
the system from revisiting configurations that have
already been sampled.

In the first version of metadynamics, the bias
was used to influence a coarse-grained dynamics in the
CVs space that was based on a series of constrained
MD simulations.3 Later on, the bias was applied con-
tinuously during an MD simulation either through an
extended Lagrangian formalism11 or acting directly
on the microscopic coordinates of the system.12 In
this review, we will focus on the latter version, the
so-called continuous direct metadynamics.

Let S be a set of d functions of the microscopic
coordinates R of the system:

S(R) = (S1(R), . . . , Sd(R)). (1.1)

At time t, the metadynamics bias potential can
be written as

VG(S, t) =
t∫

0

dt′ω exp

(

−
d∑

i=1

(Si (R) − Si (R(t′)))2

2σ 2
i

)

,

(1.2)

where ω is an energy rate and σi is the width of the
Gaussian for the ith CV. The energy rate is constant
and usually expressed in terms of a Gaussian height
W and a deposition stride τG:

ω = W
τG

. (1.3)

To understand the effect of VG on the evolution
of the system, let us consider the simple case of the
one-dimensional potential of Figure 1, in which three
local minima A, B, and C are present. The system is

FIGURE 1 | Example of metadynamics simulation in a
one-dimensional model potential. The time t is measured by counting
the number of Gaussians deposited. (Top) Time evolution of the
collective variables during the simulation. (Bottom) Schematic
representation of the progressive filling of the underlying potential
(thick line) by means of the Gaussians deposited along the trajectory.
The sum of the underlying potential and of the metadynamics bias is
shown at different times (thin lines).

prepared in the local minimum B. Let us measure the
time t by counting the number of Gaussians added. In
a standard MD simulation, the system would remain
stuck in this minimum because barriers are larger than
thermal fluctuations. Instead, in the metadynamics
simulation, as time goes by, Gaussians are deposited
causing the underlying bias potential to grow, until
eventually around t = 135 the system is pushed out
of the basin B into a new local minimum. The natu-
ral and more convenient escape route is to pass the
lowest barrier and fall into the left basin. Here, the
Gaussians accumulation starts again. The system is
trapped in A until the underlying free-energy basin is
completely filled (t = 430). At this point, the system
diffuses in the region between the first two minima.
Starting from t = 810, the system can easily access also
the region of C on the right. Finally, when this basin
is also compensated by the bias potential (t = 1650),
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flooding,6,7 adaptive force bias,8 steered MD,9 and
self-healing umbrella sampling.10

In this review, we will focus on metadynam-
ics, which, at the same time, is able to enhance sam-
pling and reconstruct the free-energy surface (FES) as
a function of the chosen CVs. The paper is organized
in two parts. In the first, we will provide an overview
of the basic theory underpinning metadynamics. In
the second, we will present some recent representative
applications in the field of material science, chemical
reactions, and biomolecular dynamics.

THEORY
In metadynamics, an external history-dependent bias
potential which is a function of the CVs is added
to the Hamiltonian of the system. This potential can
be written as a sum of Gaussians deposited along
the system trajectory in the CVs space to discourage
the system from revisiting configurations that have
already been sampled.

In the first version of metadynamics, the bias
was used to influence a coarse-grained dynamics in the
CVs space that was based on a series of constrained
MD simulations.3 Later on, the bias was applied con-
tinuously during an MD simulation either through an
extended Lagrangian formalism11 or acting directly
on the microscopic coordinates of the system.12 In
this review, we will focus on the latter version, the
so-called continuous direct metadynamics.

Let S be a set of d functions of the microscopic
coordinates R of the system:

S(R) = (S1(R), . . . , Sd(R)). (1.1)

At time t, the metadynamics bias potential can
be written as

VG(S, t) =
t∫

0

dt′ω exp

(

−
d∑

i=1

(Si (R) − Si (R(t′)))2

2σ 2
i

)

,

(1.2)

where ω is an energy rate and σi is the width of the
Gaussian for the ith CV. The energy rate is constant
and usually expressed in terms of a Gaussian height
W and a deposition stride τG:

ω = W
τG

. (1.3)

To understand the effect of VG on the evolution
of the system, let us consider the simple case of the
one-dimensional potential of Figure 1, in which three
local minima A, B, and C are present. The system is

FIGURE 1 | Example of metadynamics simulation in a
one-dimensional model potential. The time t is measured by counting
the number of Gaussians deposited. (Top) Time evolution of the
collective variables during the simulation. (Bottom) Schematic
representation of the progressive filling of the underlying potential
(thick line) by means of the Gaussians deposited along the trajectory.
The sum of the underlying potential and of the metadynamics bias is
shown at different times (thin lines).

prepared in the local minimum B. Let us measure the
time t by counting the number of Gaussians added. In
a standard MD simulation, the system would remain
stuck in this minimum because barriers are larger than
thermal fluctuations. Instead, in the metadynamics
simulation, as time goes by, Gaussians are deposited
causing the underlying bias potential to grow, until
eventually around t = 135 the system is pushed out
of the basin B into a new local minimum. The natu-
ral and more convenient escape route is to pass the
lowest barrier and fall into the left basin. Here, the
Gaussians accumulation starts again. The system is
trapped in A until the underlying free-energy basin is
completely filled (t = 430). At this point, the system
diffuses in the region between the first two minima.
Starting from t = 810, the system can easily access also
the region of C on the right. Finally, when this basin
is also compensated by the bias potential (t = 1650),
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Figure S1. Schematic representation of error calculation in ordinary (upper) and well-tempered 
(lower) metadynamics. In ordinary metadynamics, the negative bias potential is used to estimate 
the free energy as a function of the biased CV. As the simulation proceeds, the time series of the 
potential changes and fluctuates around the correct profile. The initial part of the simulation should 
be discarded (dashed profiles). After that, a time average of the potential can be computed and 
block analysis can be used to compute the error. In well-tempered metadynamics a similar 
procedure can be used to analyze the histogram of the biased CV. In particular, one computes the 
histogram over a series of blocks and use their standard deviation to obtain the error on the free 
energy profile. Also in this case it is convenient to discard the initial part of the simulation, where the 
bias potential has not filled yet the relevant free-energy basins. 
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FIGURE 2 | (a–c). Projection onto the Ramachandran plot of the configurations sampled during a well-tempered metadynamics simulation of
alanine dipeptide in vacuum (white dots) for different choices of !T [600 K (a), 1800 K (b), and 4200 K (c)]. The underlying color map shows the
reference free-energy landscape. (d) Estimate of the free-energy difference between the two metastable minima C7ax (1.22, −1.22) and C7eq

(−1.45, 1.29) as a function of the simulation time. Angles are measured in radians.

closer to thermodynamic equilibrium as the simula-
tion proceeds. The second is that the bias potential
does not fully compensate the FES, but it converges
to

VG(S, t → ∞) = − !T
T + !T

F (S) + C, (1.10)

where C is an immaterial constant. At variance with
standard metadynamics, the bias converges to its lim-
iting value in a single run. It must also be noted that in
the long time limit, the CVs probability distribution
becomes

P(S) ∝ e− F (S)
kB(T+!T) . (1.11)

Therefore, for !T → 0, ordinary MD is recov-
ered, whereas the !T → ∞ limit corresponds to stan-
dard metadynamics. In between one can regulate the
extent of FES exploration by tuning !T. This avoids
overfilling and might save computational time when
a large number of CVs are used. Figure 2 shows how
the choice of !T affects the exploration and the con-
vergence of the free-energy difference between two
metastable states of alanine dipeptide.

The introduction of a history-dependent poten-
tial alters the probability distribution. Although from
Eq. (1.11) the probability distribution for the CVs can
be easily reconstructed, that for the others degrees of
freedom is distorted in a nontrivial way. Different
techniques have been proposed to reweight a meta-
dynamics run and recover the unbiased distribution
for variables other than the CVs21,22 assuming an
adiabatic evolution for the bias potential. Recently,
a simple reweighting scheme23 in the framework of
well-tempered metadynamics has been introduced,
in which this assumption becomes more and more
valid as the simulation progresses. The algorithm pro-
ceeds in two steps. The first is the evolution of the
biased probability P(R, t) during the metadynamics

simulation

P(R, t + !t) = e−β(V̇G(S(R),t)−〈V̇G(S,t)〉)!t P(R, t),

(1.12)

where the average in the exponent is calculated in the
biased ensemble. The second is a standard reweight-
ing step to recover the Boltzmann distribution PB(R)

PB(R) ∝ e+βVG(S(R),t) P(R, t). (1.13)

Under the assumptions described above, this
technique allows computing on the fly expectation
values of any variable. Therefore, one does not need
to use CVs directly related to measurable quantities
to make quantitatively contact with experiments.24

THE HEART OF THE MATTER
A CV is a function of the microscopic coordinates
of the system.a To guarantee an effective application
of metadynamics, the CVs must respect the following
guidelines:

• They should distinguish between the initial
and final state and describe all the relevant
intermediates.

• They should include all the slow modes of
the system.

• They should be limited in number.

Let us examine these requirements one by one.
When we project the potential energy function

on a FES, we operate a dimensional reduction. This
transformation is not appropriate for studying a par-
ticular process if the CVs cannot discriminate between
the configurations of the reactants, products, and rel-
evant intermediates. It must be noted that for the CVs
to be dynamically meaningful, i.e., to correspond to
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“Identifying a set of CVs appropriate for 
describing complex processes is far from trivial.”

Collective variables are derivable functions of the 
microscopic coordinates R. They should:

• distinguish IS/TS/FS and intermediates
• include all the slow modes of the system. 
• be limited in number. 
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Be careful, if this term is zero, 
no force is derived from the bias which piles up!
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CVs are arbitrary functions of the atomic coordinates 

and, because they are usually fewer than the number of 
atomic coordinates, CVs provide a low- dimensional 
projection of the conformational space. For a multistable 
system, a minimum criterion for this low- dimensional 
projection is that different meta stable states should 
correspond to different values of the CVs. If this con-
dition is not satisfied (FIG. 2a), any bias potential added 
to one state will equally disfavour all the other states 
that correspond to the same value of the CVs (FIG. 2d). 
Even if the potential energy landscape has two minima, 
the free energy as a function of x has a single mini-
mum. In this condition, metadynamics is not able to 

accelerate in any manner the transitions between the two  
minima (FIG. 2g).

A second requirement is that the CVs should be able 
to distinguish transition states. Indeed, metadynamics 
tends to work in a similar manner to biological enzymes, 
in that it accelerates transitions by stabilizing the transi-
tion state relative to reactant and product states. If the 
CV distinguishes the metastable states, but not the tran-
sition state (FIG. 2b), the transition will not be enhanced. 
The corresponding free energy as a function of x (FIG. 2e) 
has two minima, but the value of the CV at the transition 
state approximately coincides with the value of the CV in 
states with lower free energy that are part of the basin of 
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“Identifying a set of CVs appropriate for 
describing complex processes is far from trivial.”

Collective variables are derivable functions of the 
microscopic coordinates R. They should:

• distinguish IS/TS/FS and intermediates
• include all the slow modes of the system. 
• be limited in number. 
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FIGURE 3 | Example of the effect of neglecting a slow degree of
freedom in the collective variables (CVs) set. (Top) Model
two-dimensional potential with relevant barriers both in s1 and s2.
(Bottom) Representation of a metadynamics simulation using only s1

as CV. The sum of the underlying one-dimensional free-energy F (s1)
(thick line) and of the metadynamics bias is shown at different times
(thin lines). Neglecting s2 in the CVs set causes strong hysteresis in the
reconstructed free energy.

the reaction coordinate, stricter conditions must be
fulfilled.25

The second prerequisite is essential. We define
as ‘slow’ those variables that cannot be satisfactorily
sampled in the timescale of the simulation. We also
expect that the other ‘fast’ variables adjust rapidly to
the evolution of the slow variables. If any of the latter
is not added to the CVs list, the bias potential may
not converge to the FES in a reasonable simulation
time.

As an example of the consequences of neglecting
a slow variable, let us consider the two-dimensional
potential of Figure 3. The transition between the two
metastable states A and B presents high free-energy
barriers in both s1 and s2. We shall start from basin B
and bias only s1. When metadynamics fills the basin,
the system remains stuck there, as it faces a barrier in
the hidden variable s2. As a result, basin B is overfilled

and the barrier going to A is overestimated. Eventu-
ally, s2 will make the transition and the system will
reach state A. At this point, a similar phenomenon
will occur again. The overall result is that the situ-
ation in which the free energy grows evenly and the
system diffuses from A to B is never reached.

Another instructive example can be found in
Ref 26. Here, the authors wanted to study the penetra-
tion of tetramethylammonium (TMA) into the acetyl-
cholinesterase (AChE) gorge. In a first trial, only the
distance between the center of mass of TMA and the
active site of AChE was used as CV. This metadynam-
ics run was not successful, as the system sometimes
showed a diffusive behavior in the CV, whereas at
other times, it got stuck at a particular point. This
hysteretic behavior is the typical sign that a slow mo-
tion of the system is not included in the CVs. As a
result, the system remains stuck at a certain posi-
tion until the rare event involving the hidden variable
eventually takes place. In the case of Ref 26, a care-
ful inspection of the system showed that some aro-
matic residues were blocking the access to the gorge
of AChE. Once a further variable describing the open-
ing of the gate was added, metadynamics showed a
smooth reversible behavior.

This example demonstrates an important point.
Choosing a correct set of CVs comes together with
an understanding of the physics and chemistry of the
process under study. In light of this, the difficulty
of choosing a priori the right CVs is not a flaw of
metadynamics and of the large variety of CV-based
methods. It just reflects the fact that one needs to gain
some experience and make a few trials and errors
before solving any new problem.

Last but not least, the number of CVs should be
kept small because the use of many CVs implies that
a high-dimensional space has to be explored. Even
using well-tempered metadynamics,20 this may take
a considerable amount of computational time. Fur-
thermore, analyzing a high-dimensional surface is far
from trivial.

The question thus arises how it is possible to
choose prior to a simulation a set of CVs for de-
scribing complex processes that may involve hundreds
or thousands of particles. Unfortunately, a universal
recipe still does not exist. However, several useful ap-
proaches have been suggested. They can be grouped
in two general categories:

1. the development of appropriate CVs,
2. the combination of metadynamics with

methods that enhance the sampling in trans-
verse coordinates.
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FIGURE 3 | Example of the effect of neglecting a slow degree of
freedom in the collective variables (CVs) set. (Top) Model
two-dimensional potential with relevant barriers both in s1 and s2.
(Bottom) Representation of a metadynamics simulation using only s1

as CV. The sum of the underlying one-dimensional free-energy F (s1)
(thick line) and of the metadynamics bias is shown at different times
(thin lines). Neglecting s2 in the CVs set causes strong hysteresis in the
reconstructed free energy.

the reaction coordinate, stricter conditions must be
fulfilled.25

The second prerequisite is essential. We define
as ‘slow’ those variables that cannot be satisfactorily
sampled in the timescale of the simulation. We also
expect that the other ‘fast’ variables adjust rapidly to
the evolution of the slow variables. If any of the latter
is not added to the CVs list, the bias potential may
not converge to the FES in a reasonable simulation
time.

As an example of the consequences of neglecting
a slow variable, let us consider the two-dimensional
potential of Figure 3. The transition between the two
metastable states A and B presents high free-energy
barriers in both s1 and s2. We shall start from basin B
and bias only s1. When metadynamics fills the basin,
the system remains stuck there, as it faces a barrier in
the hidden variable s2. As a result, basin B is overfilled

and the barrier going to A is overestimated. Eventu-
ally, s2 will make the transition and the system will
reach state A. At this point, a similar phenomenon
will occur again. The overall result is that the situ-
ation in which the free energy grows evenly and the
system diffuses from A to B is never reached.

Another instructive example can be found in
Ref 26. Here, the authors wanted to study the penetra-
tion of tetramethylammonium (TMA) into the acetyl-
cholinesterase (AChE) gorge. In a first trial, only the
distance between the center of mass of TMA and the
active site of AChE was used as CV. This metadynam-
ics run was not successful, as the system sometimes
showed a diffusive behavior in the CV, whereas at
other times, it got stuck at a particular point. This
hysteretic behavior is the typical sign that a slow mo-
tion of the system is not included in the CVs. As a
result, the system remains stuck at a certain posi-
tion until the rare event involving the hidden variable
eventually takes place. In the case of Ref 26, a care-
ful inspection of the system showed that some aro-
matic residues were blocking the access to the gorge
of AChE. Once a further variable describing the open-
ing of the gate was added, metadynamics showed a
smooth reversible behavior.

This example demonstrates an important point.
Choosing a correct set of CVs comes together with
an understanding of the physics and chemistry of the
process under study. In light of this, the difficulty
of choosing a priori the right CVs is not a flaw of
metadynamics and of the large variety of CV-based
methods. It just reflects the fact that one needs to gain
some experience and make a few trials and errors
before solving any new problem.

Last but not least, the number of CVs should be
kept small because the use of many CVs implies that
a high-dimensional space has to be explored. Even
using well-tempered metadynamics,20 this may take
a considerable amount of computational time. Fur-
thermore, analyzing a high-dimensional surface is far
from trivial.

The question thus arises how it is possible to
choose prior to a simulation a set of CVs for de-
scribing complex processes that may involve hundreds
or thousands of particles. Unfortunately, a universal
recipe still does not exist. However, several useful ap-
proaches have been suggested. They can be grouped
in two general categories:

1. the development of appropriate CVs,
2. the combination of metadynamics with

methods that enhance the sampling in trans-
verse coordinates.
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freedom in the collective variables (CVs) set. (Top) Model
two-dimensional potential with relevant barriers both in s1 and s2.
(Bottom) Representation of a metadynamics simulation using only s1

as CV. The sum of the underlying one-dimensional free-energy F (s1)
(thick line) and of the metadynamics bias is shown at different times
(thin lines). Neglecting s2 in the CVs set causes strong hysteresis in the
reconstructed free energy.

the reaction coordinate, stricter conditions must be
fulfilled.25

The second prerequisite is essential. We define
as ‘slow’ those variables that cannot be satisfactorily
sampled in the timescale of the simulation. We also
expect that the other ‘fast’ variables adjust rapidly to
the evolution of the slow variables. If any of the latter
is not added to the CVs list, the bias potential may
not converge to the FES in a reasonable simulation
time.

As an example of the consequences of neglecting
a slow variable, let us consider the two-dimensional
potential of Figure 3. The transition between the two
metastable states A and B presents high free-energy
barriers in both s1 and s2. We shall start from basin B
and bias only s1. When metadynamics fills the basin,
the system remains stuck there, as it faces a barrier in
the hidden variable s2. As a result, basin B is overfilled

and the barrier going to A is overestimated. Eventu-
ally, s2 will make the transition and the system will
reach state A. At this point, a similar phenomenon
will occur again. The overall result is that the situ-
ation in which the free energy grows evenly and the
system diffuses from A to B is never reached.

Another instructive example can be found in
Ref 26. Here, the authors wanted to study the penetra-
tion of tetramethylammonium (TMA) into the acetyl-
cholinesterase (AChE) gorge. In a first trial, only the
distance between the center of mass of TMA and the
active site of AChE was used as CV. This metadynam-
ics run was not successful, as the system sometimes
showed a diffusive behavior in the CV, whereas at
other times, it got stuck at a particular point. This
hysteretic behavior is the typical sign that a slow mo-
tion of the system is not included in the CVs. As a
result, the system remains stuck at a certain posi-
tion until the rare event involving the hidden variable
eventually takes place. In the case of Ref 26, a care-
ful inspection of the system showed that some aro-
matic residues were blocking the access to the gorge
of AChE. Once a further variable describing the open-
ing of the gate was added, metadynamics showed a
smooth reversible behavior.

This example demonstrates an important point.
Choosing a correct set of CVs comes together with
an understanding of the physics and chemistry of the
process under study. In light of this, the difficulty
of choosing a priori the right CVs is not a flaw of
metadynamics and of the large variety of CV-based
methods. It just reflects the fact that one needs to gain
some experience and make a few trials and errors
before solving any new problem.

Last but not least, the number of CVs should be
kept small because the use of many CVs implies that
a high-dimensional space has to be explored. Even
using well-tempered metadynamics,20 this may take
a considerable amount of computational time. Fur-
thermore, analyzing a high-dimensional surface is far
from trivial.

The question thus arises how it is possible to
choose prior to a simulation a set of CVs for de-
scribing complex processes that may involve hundreds
or thousands of particles. Unfortunately, a universal
recipe still does not exist. However, several useful ap-
proaches have been suggested. They can be grouped
in two general categories:

1. the development of appropriate CVs,
2. the combination of metadynamics with

methods that enhance the sampling in trans-
verse coordinates.
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“Identifying a set of CVs appropriate for 
describing complex processes is far from trivial.”

Collective variables are derivable functions of the 
microscopic coordinates R. They should:

• distinguish IS/TS/FS and intermediates
• include all the slow modes of the system. 
• be limited in number. 
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“Identifying a set of CVs appropriate for 
describing complex processes is far from trivial.”

Trying to find the CVs automatically…. 

be the one with the largest barrier separating reactants 
and products (FIG. 3b). To recover the free energy along 
putative linear combinations, it is crucial to perform a 
proper re- weighting. With a similar goal to spectral gap 
optimization, time- independent component analysis 
(TICA) constructs a linear combination of pre- selected 
features that is ‘as slow as possible’, that is, with the larg-
est possible autocorrelation time. The first few compo-
nents of a pre- computed TICA can be used as biased 
CVs for metadynamics50. A TICA- based approach was 
also introduced in REF.51, in which the time- independent 
components (TICs) are directly computed during the 
biased simulation, thus allowing conformational changes 
that are only visible in biased sampling to be studied. 
We note that metadynamics performed with the correct 
CV changes the relaxation dynamics of the system sub-
stantially because, ideally, the slowest dynamics takes 
place in the hyperplane of a constant CV. Therefore, 
to compute the correct TICs, it is necessary to apply a 
re- weighting technique. The method of REF.51 was used 
to identify slow molecular motions in complex chemi-
cal reactions52. Following a similar idea, it was recently 
shown that variational auto- encoders can be used to 
construct nonlinear functions that optimally represent 
the kinetics of the system53,54. A related approach was 
used in REF.55, in which a linear encoder was combined 
with a nonlinear decoder. In principle, limiting the 
encoder step to linear combinations allows the generated 
CVs to be easier to interpret.

Implementation
CVs are often defined by complicated functional forms, 
but they usually depend on the coordinates of a limited 
number of atoms. Moreover, the same CVs and the same 
variants of metadynamics can be used across different 
applications, such as ab initio and classical MD. For this 
reason, metadynamics is optimally implemented in a 
separate library — such as PLUMED56, COLVARS57 or 

SSAGES58 — which can then be used in combination 
with any MD code (TABLE 2). These libraries typically 
have their own input files that are read during initial-
ization and are then called at every iteration of the MD 
simulation (FIG. 4). Coordinates should be passed to the 
library. In some cases, this might lead to a slow down 
of the simulation, in particular if the MD engine stores 
the coordinates on a graphical processing unit but the 
library requires coordinates on the central processing 
unit. The library then computes the requested CVs and 
bias potentials, resulting in forces that should be added 
to those computed by the MD engine. In principle, 
metadynamics can also be used with MC simulations, 
although we are not aware of MC codes interfaced with 
the above- mentioned libraries.

The typical aim of these libraries is to allow a user to 
add arbitrary bias potentials on chosen CVs. In particu-
lar, substantial flexibility is usually given to the user in 
the choice of the CVs, because tuning their definition — 
either manually or automatically, as discussed above — is 
a crucial step in the application of any biasing technique. 
The code should then compute the derivatives of the ith 
CV si with respect to the atomic positions.

Arbitrary combinations of CVs can also be used. 
At least two of the above- mentioned packages, COLVAR 
and PLUMED56,57, allow users to specify arbitrary alge-
braic functions in their input that are then automati-
cally differentiated. The possibility of using arbitrary 
combinations of CVs makes it possible to implement 
some of the automatically determined CVs discussed 
above directly in the input script. Although this option 
is often suboptimal from the performance point of view, 
it speeds up the development of new ideas.

The same approach can be used to implement any 
method based on the idea of adding a bias potential or a 
force to a set of chosen CVs. This is the reason why these 
packages typically provide the user with many other 
enhanced sampling methods based on biasing CVs, such 
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Machine learning-based
CV optimization  

Find the best CV by analysing a large 
set of short MD trajectories
• TICA: choose the CV that makes the 

autocorrelation time as large as 
possible

• Use linear or nonlinear combinations 
of features to parameterize a function 
s(r) that predicts if the configuration 
is committed to A or to B

Fig. 3 | Three approaches for automatically finding the best CV. di is the squared distance between the current atomic 
configuration and the ith reference structure, and λ is a smoothing parameter. r represents the present coordinates of the 
system, and ri the coordinates in the ith milestone. s1, s2 and s3 represent possible collective variables (CVs). MD, molecular 
dynamics; TICA , time- independent component analysis.
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be the one with the largest barrier separating reactants 
and products (FIG. 3b). To recover the free energy along 
putative linear combinations, it is crucial to perform a 
proper re- weighting. With a similar goal to spectral gap 
optimization, time- independent component analysis 
(TICA) constructs a linear combination of pre- selected 
features that is ‘as slow as possible’, that is, with the larg-
est possible autocorrelation time. The first few compo-
nents of a pre- computed TICA can be used as biased 
CVs for metadynamics50. A TICA- based approach was 
also introduced in REF.51, in which the time- independent 
components (TICs) are directly computed during the 
biased simulation, thus allowing conformational changes 
that are only visible in biased sampling to be studied. 
We note that metadynamics performed with the correct 
CV changes the relaxation dynamics of the system sub-
stantially because, ideally, the slowest dynamics takes 
place in the hyperplane of a constant CV. Therefore, 
to compute the correct TICs, it is necessary to apply a 
re- weighting technique. The method of REF.51 was used 
to identify slow molecular motions in complex chemi-
cal reactions52. Following a similar idea, it was recently 
shown that variational auto- encoders can be used to 
construct nonlinear functions that optimally represent 
the kinetics of the system53,54. A related approach was 
used in REF.55, in which a linear encoder was combined 
with a nonlinear decoder. In principle, limiting the 
encoder step to linear combinations allows the generated 
CVs to be easier to interpret.

Implementation
CVs are often defined by complicated functional forms, 
but they usually depend on the coordinates of a limited 
number of atoms. Moreover, the same CVs and the same 
variants of metadynamics can be used across different 
applications, such as ab initio and classical MD. For this 
reason, metadynamics is optimally implemented in a 
separate library — such as PLUMED56, COLVARS57 or 

SSAGES58 — which can then be used in combination 
with any MD code (TABLE 2). These libraries typically 
have their own input files that are read during initial-
ization and are then called at every iteration of the MD 
simulation (FIG. 4). Coordinates should be passed to the 
library. In some cases, this might lead to a slow down 
of the simulation, in particular if the MD engine stores 
the coordinates on a graphical processing unit but the 
library requires coordinates on the central processing 
unit. The library then computes the requested CVs and 
bias potentials, resulting in forces that should be added 
to those computed by the MD engine. In principle, 
metadynamics can also be used with MC simulations, 
although we are not aware of MC codes interfaced with 
the above- mentioned libraries.

The typical aim of these libraries is to allow a user to 
add arbitrary bias potentials on chosen CVs. In particu-
lar, substantial flexibility is usually given to the user in 
the choice of the CVs, because tuning their definition — 
either manually or automatically, as discussed above — is 
a crucial step in the application of any biasing technique. 
The code should then compute the derivatives of the ith 
CV si with respect to the atomic positions.

Arbitrary combinations of CVs can also be used. 
At least two of the above- mentioned packages, COLVAR 
and PLUMED56,57, allow users to specify arbitrary alge-
braic functions in their input that are then automati-
cally differentiated. The possibility of using arbitrary 
combinations of CVs makes it possible to implement 
some of the automatically determined CVs discussed 
above directly in the input script. Although this option 
is often suboptimal from the performance point of view, 
it speeds up the development of new ideas.

The same approach can be used to implement any 
method based on the idea of adding a bias potential or a 
force to a set of chosen CVs. This is the reason why these 
packages typically provide the user with many other 
enhanced sampling methods based on biasing CVs, such 
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be the one with the largest barrier separating reactants 
and products (FIG. 3b). To recover the free energy along 
putative linear combinations, it is crucial to perform a 
proper re- weighting. With a similar goal to spectral gap 
optimization, time- independent component analysis 
(TICA) constructs a linear combination of pre- selected 
features that is ‘as slow as possible’, that is, with the larg-
est possible autocorrelation time. The first few compo-
nents of a pre- computed TICA can be used as biased 
CVs for metadynamics50. A TICA- based approach was 
also introduced in REF.51, in which the time- independent 
components (TICs) are directly computed during the 
biased simulation, thus allowing conformational changes 
that are only visible in biased sampling to be studied. 
We note that metadynamics performed with the correct 
CV changes the relaxation dynamics of the system sub-
stantially because, ideally, the slowest dynamics takes 
place in the hyperplane of a constant CV. Therefore, 
to compute the correct TICs, it is necessary to apply a 
re- weighting technique. The method of REF.51 was used 
to identify slow molecular motions in complex chemi-
cal reactions52. Following a similar idea, it was recently 
shown that variational auto- encoders can be used to 
construct nonlinear functions that optimally represent 
the kinetics of the system53,54. A related approach was 
used in REF.55, in which a linear encoder was combined 
with a nonlinear decoder. In principle, limiting the 
encoder step to linear combinations allows the generated 
CVs to be easier to interpret.

Implementation
CVs are often defined by complicated functional forms, 
but they usually depend on the coordinates of a limited 
number of atoms. Moreover, the same CVs and the same 
variants of metadynamics can be used across different 
applications, such as ab initio and classical MD. For this 
reason, metadynamics is optimally implemented in a 
separate library — such as PLUMED56, COLVARS57 or 

SSAGES58 — which can then be used in combination 
with any MD code (TABLE 2). These libraries typically 
have their own input files that are read during initial-
ization and are then called at every iteration of the MD 
simulation (FIG. 4). Coordinates should be passed to the 
library. In some cases, this might lead to a slow down 
of the simulation, in particular if the MD engine stores 
the coordinates on a graphical processing unit but the 
library requires coordinates on the central processing 
unit. The library then computes the requested CVs and 
bias potentials, resulting in forces that should be added 
to those computed by the MD engine. In principle, 
metadynamics can also be used with MC simulations, 
although we are not aware of MC codes interfaced with 
the above- mentioned libraries.

The typical aim of these libraries is to allow a user to 
add arbitrary bias potentials on chosen CVs. In particu-
lar, substantial flexibility is usually given to the user in 
the choice of the CVs, because tuning their definition — 
either manually or automatically, as discussed above — is 
a crucial step in the application of any biasing technique. 
The code should then compute the derivatives of the ith 
CV si with respect to the atomic positions.

Arbitrary combinations of CVs can also be used. 
At least two of the above- mentioned packages, COLVAR 
and PLUMED56,57, allow users to specify arbitrary alge-
braic functions in their input that are then automati-
cally differentiated. The possibility of using arbitrary 
combinations of CVs makes it possible to implement 
some of the automatically determined CVs discussed 
above directly in the input script. Although this option 
is often suboptimal from the performance point of view, 
it speeds up the development of new ideas.

The same approach can be used to implement any 
method based on the idea of adding a bias potential or a 
force to a set of chosen CVs. This is the reason why these 
packages typically provide the user with many other 
enhanced sampling methods based on biasing CVs, such 
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“Identifying a set of CVs appropriate for 
describing complex processes is far from trivial.”

Collective variables are derivable functions of the 
microscopic coordinates R. They should:

• distinguish IS/TS/FS and intermediates
• include all the slow modes of the system. 
• be limited in number

« A high-dimensional space is costly to explore and 
analyzing a high-dimensional surface is far from trivial ». 

Alternatives:
Bias-exchange metadynamics

Combinaison with Parallell-tempering

has to be completely filled before the system is able to explore the
second one. With MetaD plus PT (right), the low temperature replica
tunnels to the second well (see the arrow in Figure 1) already after a
short transient and the two basins are filled simultaneously. This allows
the free-energy difference of the two wells to be measured in a shorter
time and greatly increases the accuracy of MetaD, since accepted
exchanges quickly decorrelate the dynamics.
We empirically observed through systematic testing that the best

choice is to use higher Gaussians on the high temperature replicas, so
that they rapidly fill their free-energy profiles. Thus, we rescale the
weight of the Gaussians with the replica temperature. Since the accuracy
of MetaD is related to the square root of the Gaussians’ height, this
choice leads to an error that grows with temperature but allows for
faster filling of the free-energy wells in the hot replicas. We also
checked our approach on two-dimensional models, where MetaD is
performed on only one of the two variables. The presence of barriers
on the hidden variable significantly decreases the accuracy of standard
MetaD. If MetaD is applied in combination with PT, the barriers in
the hidden variable are crossed in the high-temperature replicas, and
the free energy in the biased variable is reproduced with much better
accuracy.
Our approach is related to that applied by Coluzza and Frenkel to a

lattice-protein model,39 where PT is combined with adaptive umbrella
sampling. However, our approach is not to be confused with the parallel
MetaD introduced in ref 40. In this case, all the replicas (referred to as
walkers) are evolved at the same temperature, and a single free-energy
profile is calculated. In the present approach, the different replicas are
evolved at different temperatures and the free-energy profiles for all
these temperatures are calculated at the same time.

III. Simulation Details

The ! hairpin system was taken from the C terminus
(residues 41-56) of protein G (PDB code: 2gb1). Hydrogen
atoms were added, and the resulting peptide was solvated
in a cubic box of 1559 TIP3P water molecules.41 The
system was equilibrated at 300 K at constant pressure. The final
box side was 36.7 Å. All simulations were performed
using the ORAC MD code42 with the OPLSAA force
field.26 The long-range electrostatic interactions with
periodic boundary conditions were calculated by the
particle mesh Ewald algorithm with a mesh of 64 × 64 × 64.
We run 64 replicas of the system in a temperature range
of 270 to 695 K. Each replica was pre-equilibrated for
200 ps at its target temperature. During the simulation, we
keep the temperature constant by rescaling velocities. The
details of how temperature is controlled play a lesser role
here due to the fact that parallel tempering itself acts as a
thermostat.
Optimal distribution is obtained when the acceptance ratio

is constant across the entire temperature range. We adopt a
simple geometric distribution of temperatures, which is known
to lead to optimal acceptance if the specific heat is constant.43
We then check the acceptance and a posteriori verify that its
value is in the optimal range (between 0.3 and 0.5) for all the
temperatures. We attempt to swap neighboring replicas once
every 192 fs.
To compare conventional parallel tempering (PT) with

parallel tempering plus metadynamics (PTMetaD) in a fair
way, we use exactly the same simulation parameters
(number of replicas, exchange frequency) in both cases.
In the PTMetaD approach we build a compensating bias
acting on a set of preselected CVs, putatively suitable for
the description of the folding mechanism. Then, we recon-
struct the free energy as the negative of the bias potential. In
PT, we simply measure the value of the same CVs every
0.6 ps, and then we build the histogram of these quantities
and calculate the free energy as its logarithm. Thus, we
have two estimates of the free-energy profile with respect
to the selected variables and are able to compare the two
methods.
The first CV that we select is the gyration radius of the heavy

atoms of the backbone, defined as

where the summations run over the Nb heavy atoms of
the backbone. This variable is generally used to discrim-
inate between a completely unfolded protein and a molten
globule state, where the protein is compact but disordered.
Thus, we also introduce variables that can distinguish
between the molten globule and a folded structure by
means of nontrivial information on the secondary structure. A
natural way to do this is to introduce a CV that counts the

(39) Coluzza, I.; Frenkel, D. Chem. Phys. Chem. 2005, 6, 1779.
(40) Raiteri, P.; Laio, A.; Gervasio, F. L.; Micheletti, C.; Parrinello, M. J. Phys.

Chem. B 2005, 110, 3533.

(41) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein,
M. L. J. Chem. Phys. 1983, 79, 926.

(42) Procacci, P.; Darden, T.; Paci, E.; Marchi, M. J. Comput. Chem. 1997,
18, 1848.

(43) Rathore, N.; Chopra, M.; de Pablo, J. J. J. Chem. Phys. 2005, 122, 024111.

Figure 1. Metadynamics on a two-basin energy profile (thick line). We
use a model of Langevin dynamics, combined with standard MetaD (left)
or with MetaD plus PT (right; only the lowest-temperature replica is
represented). The thin lines represent subsequent images of MetaD filling,
labeled with sequential numbers, obtained by plotting the free energy plus
the MetaD bias. See the text for a discussion.

Figure 2. Number of explored clusters as a function of the simulation
time, for PT (dashed) and PTMetaD (solid). PTMetaD exploration is more
than 3 times faster.
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on the mean force observed during the biased run57,63 or 
Gaussian process regression64.

To understand better the differences between these 
approaches, it is important to discuss what happens if the 
CVs are not appropriately chosen. In FIG. 2, we presented 
three examples of 2D potential energy landscapes asso-
ciated with systems with two metastable states. In two 
cases, in particular, the free energy as a function of the 
s1 coordinate is very similar: two minima separated by a 
barrier (FIG. 2b,c). However, the capability of the method 
of estimating the free energy is strikingly different in 
the two cases. In one case, estimating the free energy is 
practically impossible: the CV identifies the two meta-
stable states, but not the transition state between the 
two, and therefore the bias potential does not accelerate 
the transitions (FIG. 2e,h). In FIG. 5a, we show a potential 
energy landscape characterized by the presence of four 
minima. The free- energy landscapes as a function of  
x and y (FIG. 5b) are approximately flat, despite the 
presence of very substantial barriers in the 2D land-
scape. In this case, if x is used as a CV, well- tempered 

metadynamics is by construction unable to generate 
a bias potential that can enhance the sampling in the  
x direction; similarly if y is used as a CV. Indeed, at con-
vergence, the bias potential is a constant, and this bias 
is not affected any longer by the new Gaussians, whose 
height becomes smaller and smaller at the end of the run.  
Therefore, the system will get stuck in one of the minima. 
In short, the problem is that a bias potential compensat-
ing exactly the free energy does not necessarily make the 
landscape barrierless. The behaviour of ordinary meta-
dynamics on this system is rather different: the approach 
by construction enforces transitions even when the CV 
is not correct, as long as the CV takes different values 
in the different minima. The system continues to per-
form transitions and explore the free- energy landscape. 
However, the bias potential is affected by large fluctua-
tions, and the free- energy estimate does not converge. 
Indeed, because the transition states are not identified 
correctly by the CV, forward and backward transitions 
might follow different paths, leading to hysteresis in the 
estimated free energy.

A possible way out of this problem is offered by rep-
lica exchange methods. Metadynamics can be combined 
with parallel tempering65, CV tempering22 or solute 
tempering66 to enhance sampling in directions that are 
not directly biased. These approaches address, to some 
extent, the problem of metastability in degrees of free-
dom that are orthogonal to the biased CV. Another way 
to address the same problem is to use bias- exchange 
metadynamics21, an approach in which several meta-
dynamics simulations are run in parallel and at the same 
temperature, each biasing a different CV. Exchanges of 
the coordinates between different replicas are attempted 
at regular time intervals, and accepted according to the 
Metropolis criterion. This approach makes it possible 
to use a very large number of CVs simultaneously, and 

Table 3 | Feature comparison of MTD libraries

MTD feature PLUMED COLVARS SSAGES

Ordinary MTD Yes Yes Yes

WT- MTD Yes Yes No

Grids Yes Yes Yes

Multiple walkers Yes Yes Yes

Bias exchange Yesa No No

Arbitrary CVs Yes Yes No
These three libraries are currently under development. This 
table reflects the respective documentation in October 2019. 
CV, collective variable; MTD, metadynamics; WT, well- tempered. 
aOnly in combination with GROMACS.
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Fig. 5 | Choosing the correct metadynamics variant. a,b ∣ An example of a potential energy landscape characterized by 
the presence of deep minima (panel a), but whose free energy F as a function of two variables (x and y) is approximately flat 
(panel b). This situation is rather common in practical applications. c ∣ A decision tree for choosing the most appropriate 
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c-Al2O3 [36, 37]. For the sample treated in water, only a
sharp symmetric resonance corresponding to octahedrally

coordinated aluminum was observed, which is consistent

with the formation of boehmite (Fig. 2b).
Both tetrahedral and octahedral resonances were

observed for the catalysts treated in the glycerol and sor-

bitol solutions, although the catalyst treated in glycerol
showed a notable decrease in the tetrahedral/octahedral

aluminum ratio, and the shoulders of the peaks decreased

indicating the formation of more symmetric environments.
The 27Al NMR spectra of the samples treated in the sugar

alcohol solutions were fit as a linear combination of

untreated alumina and boehmite in order to determine the
amount of boehmite present (Table 1) [16]. The fraction of

boehmite formed in the catalyst treated with the glycerol

solution was higher than that of the catalyst treated with the
sorbitol solution. However, the fraction of boehmite

formed in either of these samples was significantly less

compared to the catalyst treated in water, which was

completely converted to boehmite within 10 h.

3.3 Thermogravimetric Analysis (TG/DTGA)

The TG curves of the catalysts can be divided into three

distinct regions (Table 2). In the first region (22–130 !C),

weakly adsorbed water is removed as indicated by a DTG
peak centered near 50 !C. This peak was observed for the

untreated catalyst as well as for the catalysts treated in the
polyol solutions (Fig. 3). The peak was absent for the sample

treated in pure water. It is suggested that this sample can

adsorb much less water because of its drastically reduced
surface area.

The second region lies in the temperature range of 130–

450 !C, which is mainly attributed to desorption of organic
species. The last region is mainly assigned to boehmite

dehydration and associated release of water which occurs at

temperatures above 450 !C [16]. For example, the curve of
the catalyst treated in water contained a single sharp DTG

peak centered at 520 !C (Fig. 3b). However, it should be

noted that this region can also contain peaks corresponding
to the removal of strongly bound carbonaceous deposits.

In order to differentiate between dehydration of

boehmite and decomposition of carbon deposits in region
3, the amount of expected water loss is estimated based on

the boehmite fraction according to Eq. 1:

XAlOOH ¼ XH2O=MH2Oð Þ $ 2MAlOOH ð1Þ

where XAlOOH is the concentration of boehmite present
(%), XH2O is the mass loss (in %) due to boehmite dehy-

dration (above 450 !C), 2 is the stoichiometric factor
according to the boehmite dehydration reaction (2AlOO-

H ? Al2O3 ? H2O), and MH2O and MAlOOH are the

molecular masses of water and boehmite [38].
The concentration of boehmite in the samples is known

from 27Al MAS NMR analysis. The amount of carbona-

ceous species desorbed from the samples treated in glyc-
erol and sorbitol solutions is then calculated as the

difference between the total mass loss and the mass loss

due to desorption of weakly bound water and water

100 80 60 40 20 0 -20 -40 -60 -80

Chemical shift / ppm

(a)

(b)

(c)

(d)

Fig. 2 27Al NMR spectra of 1 wt% Pt/Al2O3 as synthesized (a), and
following treatment for 10 h at 225 !C in water (b), 5 wt% glycerol
(c) and 5 wt% sorbitol (d)

Table 1 Boehmite fraction in untreated Pt/Al2O3 and after treatment
in aqueous media at 225 !C for 10 h. Quantification based on linear
combination of 27Al NMR spectra

Catalyst Boehmite fraction/%

Untreated Water 5 % Glycerol 5 % Sorbitol

1 % Pt/Al2O3 0 100 15 2

Table 2 Mass loss in the three temperature regions for 1 wt% Pt/
Al2O3 catalysts

Mass lost/wt%

Untreated Water Glycerol Sorbitol

22–130 !C 2.3 0.2 3.2 2.8

130–450 !C 0.7 1.0 3.3 4.2

[ 450 !C 0.9 14.7 2.3 1.3

Total 3.9 15.9 8.8 8.3

Deposits 0 0 2.5 4.3

Top Catal (2012) 55:162–174 165

123

γ-Al2O3 in water and in presence of biomass

XRD

Td Oh

27Al NMR

Pt/γ-Al2O3
as synthesised
Pt/γ-Al2O3
10h @ 225°C in water

+5wt% glycerol

+5wt% sorbitol

Ravenelle R. M., Copeland J. R., Van Pelt A. H., Crittenden J. C., Sievers C.
 Topics in Catalysis, 2012, 55, 162-17480
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Figure 8.1: Skeletal representation of the s5 primitive cell surface of �-Al2O3

(110). The bonds in blue are associated with the two CVs of metadynamics #1,
namely CN(Al(1),OH(1↵)) and CN(Al(↵),OH(1↵)). The red double arrow stands for
CN(Al(↵),OH(12)) used in metadynamics #2 along with CN(Al(↵),O).

parameters are given in the Results and Discussion section.

s(rij) =
1�

⇣
rij�d0

r0

⌘n

1�
⇣
rij�d0

r0

⌘p (8.5)

Results and Discussion

This part reports ongoing research and some aspects are still under investigation. How-

ever the simulations reported here provide a rich exploration of the system regarding

to its hydration and o↵ers perspectives for short-term enhancements of the simulations.

The first part focuses on migration mechanisms and the second part proposes a more

general approach that treats hydration regardless of any presupposed mechanism. The

surface aluminum atoms are labelled as in Figure 8.1 using greek letters for tetrahedral

aluminum atoms (Al(↵) and Al(�)) and arabic numbers for octahedral aluminum atoms

(Al(1) and Al(2)). The hydroxy and chemisorbed water units are referred to, whenever

needed, using the labels of the aluminum atoms they are bound to (for instance HO(1↵),

HO(12) or H2O(↵)). When referring to coordination numbers CN(X,O), CN(X,Oa) and

CN(X,Ow), O, Oa and Ow stand for the set of all oxygen atoms, the set of alumina

oxygens and the set of water oxygens respectively.
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Migration mechanisms

In the first metadynamics simulation, we have chosen the coordination numbers of

OH(1↵) to both the tetrahedral Al(↵) and the octahedral Al(1) (see blue bonds in Fig-

ure 8.1 and Table 8.1 for further numerical details). This allows to test the hydrolysis

mechanism, through which one of bonds of the Al(1)�OH(1↵)�Al(↵) moiety is likely to

get cleaved.

switching function gaussian
parameters r0 (Å) d0 (Å) n p h (kJ/mol) �

metadynamics #1
CN(Al(↵),OH(1↵)) 2.8 0.0 3 6 2.1 0.03
CN(Al(1),OH(1↵)) 2.8 0.0 3 6 2.1 0.03

metadynamics #2
CN(Al(↵),OH(12)) 2.8 0.0 3 6 2.1 0.03

CN(Al(↵),O) 2.8 0.0 3 6 2.1 0.06

Table 8.1: Parameters concerning the switching function and the gaussian bias poten-
tial used for the simulation of the Al migration mechanism.

Starting from the basin centered around (0.8 ; 0.8) in Figure 8.2, we can notice

that, with the help of the bias potential, the system gets pushed away from the initial

position and visits a phase space that is almost three times as big in the CN(Al(↵),OH(1↵))

direction as in the CN(Al(1),OH(1↵)) direction. It seems to indicate that the tetrahedral

Al(↵) atom is prompter to a modification of its coordination sphere than the octahedral

Al(1). With the accumulation of gaussians, the system finally reaches a saddle-point of

the free energy potential at around (0.2 ; 0.5) and flees towards the second basin centered

around (0.05 ; 0.05). It means that the OH(1↵) is neither bound to the tetrahedral Al(↵)

nor the octahedral Al(1) anymore.

A careful analysis of the simulation shows that an extra water molecule (green in

Figure 8.3) is actually involved in this mechanism, which appears to be a hydrolysis of the

Al(1)�OH(1↵)�Al(↵) bond as shown in Figure 8.3. As the variations of the CVs suggest,

the mechanism is extremely asynchronous. CN(OH1↵,Al(1)) first decreases from 0.8 to

0.3 keeping CN(OH1↵,Al(↵)) constant. It is only then that CN(OH1↵,Al(↵)) decreases.

As represented in Figure 8.3, the hydrolysis also involves the OH(12) (red in Figure 8.3)

that replaces the OH(1↵) (blue in Figure 8.3). The main issue of this simulation lies in the

choice of the CV. Singling out one oxygen in particular in such a mechanism where this
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Figure 8.2: Reconstructed Free Energy profile in the dimensions of the two CVs used
for metadynamics #1. The color scale is given in kJ/mol.
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Figure 8.3: Skeletal representation of the hydrolysis of the Al(1)�OH(1↵)�Al(↵) bond
along the reaction coordinate described by CN(Al(↵),OH(1↵)) and CN(Al(1),OH(1↵)). The
initially bridging OH group is colored in red to facilitate its tracking along the process.
The extra physisorbed water molecule involved in the proton transfer is colored in green.
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very oxygen flees away in the liquid makes the entire process completely irreversible. As

soon as the system is in the second basin at (0.05 ; 0.05) it indeed cannot come back and

a very large number (if finite) of gaussians is added in this basin. Even if the phase space

cannot be sampled properly with this simulation, it still gives an order of magnitude of

the free energy barrier, which is here computed at 256 kJ/mol.

Since an extra water molecule, as well as the OH(12) group, have appeared to be in-

volved in the mechanism, we have performed a second metadynamics using CN(Al(↵),OH(12))

and CN(Al(↵),O) as CVs (see Table 8.1 for the choice of the parameters). However we

have not been able to locate any particular products. Worse, the CN(Al(↵),O) appears

to be ill-defined since the expected coordination number of the tetrahedral Al(↵) should

equal 4 and not a value between 4.5 and 6 as suggested by the Free Energy Surface given

in Figure 8.4. The main issue comes from the choice of the switching function in the

definition of CN(Al(↵),O). With the exponents n = 3 and p = 6 the switching function

is too soft and counts contributions, albeit very small, for all the very numerous oxygen

atoms (357 atoms). This ill-defined CV drastically slows the simulation down since a lot

of time is spent adding gaussians along this direction while nothing particular happens.

We therefore need a better definition of the CN.
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Figure 8.4: Reconstructed Free Energy profile in the dimensions of the two CVs used
for metadynamics #2. The color scale is given in kJ/mol.
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Figure 8.5: Reconstructed Free Energy profile in the dimensions of the two CVs used
for metadynamics #3. The color scale is given in kJ/mol.
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Figure 8.6: Reconstructed Free Energy profile in the dimensions of the two CVs used
for metadynamics #4. The color scale is given in kJ/mol.
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Figure 8.6: Reconstructed Free Energy profile in the dimensions of the two CVs used
for metadynamics #4. The color scale is given in kJ/mol.
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Figure 8.7: Free energy profile and time evolution of the CVs for metadynamics #5.

Even if Al(�) has tried to hook an oxygen of �-Al2O3 (regions where CN(Al(�),Oa)� 4),

it more preferably detaches from the surface (decrease of CN(Al(�),Oa)) while catching

water molecules (increase of CN(Al(�),Ow)).

The corresponding mechanism is represented in Figure 8.8. Starting from state A,

Al(�) acquires an octahedral geometry by capturing the chemisorbed water molecule at

Al(2) (A ! B) and an extra physisorbed water molecule (B ! C). This is followed by

a reorganization of the whole coordination sphere of Al(�) that is pushed away from the

average plane of the surface and attains a tetrahedral geometry. Its coordination number

to surface oxygens CN(Al(�),Oa) diminishes from 3 to 2, yielding to state D. This very

same strategy that involves, first a chemisorbed water molecule, second a physisorbed

water molecule and third a Oa�Al(�) bond cleavage occurs for the second detachment

from the surface (stepsD!H). However, an extra step inserts just after the physisorbed

water molecule enters the coordination sphere, namely a proton transfer (F ! G). This

proton transfer is important since it likely increases the nucleophilicity of the hydroxyl

at Al(1), involved in the formation of state I. The last step corresponds to the cleavage

of the last Al(�)�Oa bond, leaving a surface hydroxyl behind. The associated structure

J corresponds to an Al3+ cation bound to chemisorbed water molecules.

From a Free Energy point of view, it appears that the formation of intermediate E

is rather di�cult. Points near (2 ; 2.5) and (2.5 ; 3) in Figure 8.7a indeed have a high

free energy. However, metadynamics #5 is not converged, and such conclusions must

be taken with care. Moreover, the simulation seems to show instances of hill surfing :
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Figure 8.1: Skeletal representation of the s5 primitive cell surface of �-Al2O3

(110). The bonds in blue are associated with the two CVs of metadynamics #1,
namely CN(Al(1),OH(1↵)) and CN(Al(↵),OH(1↵)). The red double arrow stands for
CN(Al(↵),OH(12)) used in metadynamics #2 along with CN(Al(↵),O).

parameters are given in the Results and Discussion section.

s(rij) =
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⇣
rij�d0

r0

⌘n

1�
⇣
rij�d0

r0

⌘p (8.5)

Results and Discussion

This part reports ongoing research and some aspects are still under investigation. How-

ever the simulations reported here provide a rich exploration of the system regarding

to its hydration and o↵ers perspectives for short-term enhancements of the simulations.

The first part focuses on migration mechanisms and the second part proposes a more

general approach that treats hydration regardless of any presupposed mechanism. The

surface aluminum atoms are labelled as in Figure 8.1 using greek letters for tetrahedral

aluminum atoms (Al(↵) and Al(�)) and arabic numbers for octahedral aluminum atoms

(Al(1) and Al(2)). The hydroxy and chemisorbed water units are referred to, whenever

needed, using the labels of the aluminum atoms they are bound to (for instance HO(1↵),

HO(12) or H2O(↵)). When referring to coordination numbers CN(X,O), CN(X,Oa) and

CN(X,Ow), O, Oa and Ow stand for the set of all oxygen atoms, the set of alumina

oxygens and the set of water oxygens respectively.
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We need to play on the parameters 
of the CN to avoid a zero force.

Focused on Alβ but separating Oa and Ow

R. Réocreux, Thèse, 2017
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Only one clear minimum: 
this Al is hard to hydrate and is not very mobile
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This Al is pretty mobile!!
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Adsorption of a model alcohol at the interface
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Integration
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à MMSolv is the most 
efficient (solvation 
contribution at the MM 
level)
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In more details… 

98

10.5 Å < CVheight < 12.5 Å. It includes four minima
corresponding to four different solvation states (CVsolv = 2, 3,
4, 5), which encompass a variety of structures including proton
exchanges between ethanol, the chemisorbed water molecules,
and the surrounding water molecules. In contrast, the portion
associated to μ0 (CVmulti > 0.5) is large, covering the whole
volume of the available liquid (12.5 Å < CVheight < 19 Å).
Sampling this large volume has required several walkers in the
well-tempered metadynamics to obtain a semiquantitative
estimation of adsorption free energy, ΔFads = −14 kJ·mol−1,
applying eqs 6 and 7 (see Figure S3a) for the one-dimensional

(1D) profile along CVmulti. The transition state region is
located around CVmulti = 0.5 as expected, with a free energy
barrier of adsorption of 36 kJ·mol−1.
The lowest transition channel is located at CVsolv = 4.

Because the deepest well of the μ0 state is found at CVsolv = 5,
the adsorption mechanism is a two-step process: (i) desolva-
tion (typically through water desorption) overcoming a barrier
of 33 kJ·mol−1 followed by (ii) adsorption with a barrier of 36
kJ·mol−1. Once ethanol is chemisorbed at the γ-Al2O3(110)/
water interface, its solvation may again vary (from CVsolv = 4 to
CVsolv = 3 or 5), overcoming a barrier of around 35 kJ·mol−1.

Figure 4. 2D representations of the free energy surface FES1 built using well-tempered metadynamics starting from the μ1 adsorption mode of
ethanol at the γ-Al2O3(110)/water interface. (a) FES1 as a function of CVmulti and CVsolv. (b) FES1 as a function of CVheight and CVsolv. The μ0
macrostate (CVmulti < 0.5, CVheight > 12.5 Å, desorbed ethanol) and the μ1 macrostate (CVmulti > 0.5, CVheight > 12.5 Å, chemisorbed ethanol) are
separated by a dashed line. The third CV has been integrated using the PLUMED library.74

Figure 5. 2D representations of the free energy surface FES2 built using well-tempered metadynamics starting from μ2, with the ethanol
chemisorbed dissociatively at the γ-Al2O3(110)/water interface. (a) FES2 as a function of CVmulti and CVsolv. (b) FES2 as a function of CVheight and
CVsolv. The macrostates μ0 (CVmulti < 0.5, CVheight > 12.5 Å, desorbed ethanol), μ̃1 (1.5 > CVmulti > 0.5, CVheight < 12.5 Å, monodentate
chemisorbed ethanol), and μ2 (CVmulti > 1.5, CVheight < 12.5 Å, bidentate chemisorbed ethanol) are separated by dashed lines. The dash contour
lines were added at +110 and +130 kJ·mol−1 to better identify the transition regions. The third CV has been integrated using the PLUMED
library.75
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After few trials…
3CV rather complex 
Well-tempered metadynamics 
(bias factor of 100)
Four walkers
20463 gaussians (204.6 ps)

(see Figure 1b). The width of the Gaussian hills along
this CV is set to 0.04.

• The solvation (CVsolv) is designed to account for the
changes in the solvation of ethanol and alumina upon
desorption. These changes are described by the number
of hydrogen bonds between the water solvent and the
hydroxyl group of ethanol and the number of Al−Owater
bonds. CVsolv is thus defined as follow

CV CN(O ; H H )

CN(H ; O O )

CN(Al ; O )n

solv ethanol water ethanol

ethanol water ethanol

( ) water

= ∪
+ ∪
+ (3)

where CN(A; B) stands for the coordination number between
two groups of atoms (A and B). Oethanol corresponds to the
oxygen of ethanol. Hwater and Owater include all the hydrogen
atoms and all the oxygen atoms that originate from water
molecules (free, adsorbed, or dissociated). Hethanol stands for
the hydrogen atom of the hydroxyl group of ethanol and is
therefore defined only for the simulations starting with μ1. Al(n)
stands for the aluminum atoms that are bonded to ethanol,
that is, Al(2) when starting with the μ1-ethanol, and Al(1) and
Al(2) when starting with the μ2 (see Figure 1b). The width of
the Gaussian hills along this CV was also set to 0.04.
The coordination numbers between two groups of atoms A

and B used in eq 3 were defined following the PLUMED
implementation75
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with rij the distance between the atoms i and j, and the d0 and
r0 two cutoff distances chosen as presented in Table 1.

2.5.4. Computing Free Energy Differences between
Macrostates. To compare the results of the TI (with only a
bias along one variable) and the well-tempered metadynamics
simulations (three variables), it is necessary to integrate the
free energy landscapes over the different microstates (visited
during the simulation) that belong to the same macrostate.
The free energy differences between two macrostates of
respective populations p1 and p2 and defined by the boundaries
([CV1, min; CV1, max]···[CVN, min; CVN, max]) (with N the
number of CVs) is given by the following formulae

F RT
p
p

ln 1

2

L
NMMMMMM

\]̂]]]]]Δ = − ·
(6)

where p1 and p2 are defined as follows

p i N
K

F x
RT

x

(CV , CV , 1... ) 1 ...

exp
( )

d

i i

N
N

,min ,max CV
CV

CV

CV

CV
CV

CV
N

N

1,min

1,max

,min

,max LNMMMMM \̂]]]]]
∫

∫

= =

−
(7)

The integration variable xCVN is the coordinate of the system
in the N-space defined by the CVs and K the normalization
constant. Integration is performed using PLUMED.74

3. RESULTS AND DISCUSSION
To investigate the mechanism of adsorption/desorption of
ethanol at the γ-Al2O3(110)/water interface, we compared two
configurations: (i) in μ1, the ethanol molecule is chemisorbed
interacting with a single aluminum atom (Figure 1a); (ii) in μ2,
the ethanol molecule is adsorbed dissociatively and bridges two
aluminum atoms (Figure 1b). More details are provided in
Sections 2.1 and 2.2. In the desorbed state (μ0), ethanol is
solvated in bulk water.
We have considered three approaches of increasing

complexity aimed at identifying the role of the water
environment in the adsorption/desorption of ethanol. Static
models provide a first insight into the relative stability of the
three states under consideration (μ0, μ1, μ2). Then, the barrier
of desorption is estimated using ab initio TI using the height as
a proxy for the reaction coordinate (CVheight). Last, ab initio
metadynamics allows us to explicitly include a bias in solvation
(CVsolv) to sample proton transfers but also accelerate the
EtOH/water exchange through a biasing potential.

3.1. Static Approaches and Classical Solvation. Free
energy differences are computed based on the following
substitution reaction

EtOH H O@Al O EtOH@Al O H O2 2 3 2 2+ → + (8)

We have screened several possible orientations of chem-
isorbed water molecules and hydroxyls and several surface
proton configurations for μ1 and μ2 using geometry
optimizations. The most stable structures are shown in Figure
S1. The free energy diagram including the two most stable
OH/H surface configurations for each case is presented in
Figure 2. Three situations are compared: (a) in the absence of
the solvent, (b) using a PCM for the water solvent, and (c)
using a hybrid approach (MMSolv) to explicitly include the
effect of solvating water molecules.
When solvation is not accounted for (Figure 2a), the non-

dissociative adsorption to μ1 is almost athermic (ΔFads(μ1) =
−1 kJ·mol−1), whereas the dissociative adsorption to μ2 is
exothermic (ΔFads(μ2) = −13 kJ·mol−1).
Upon the addition of solvent effects using the PCM (Figure

2b), each adsorbed state is systematically stabilized, but this
stabilization depends on the adsorption mode and the
localization of the protons, spanning −3 to −20 kJ·mol−1.
Noticeably, the relative energies of the two considered
adsorption modes are inverted, μ1 being more stable than μ2.
Although implicit solvation is well-suited to describe indirect

solvation effects such as modifications in the long-range
electrostatic interactions, it cannot provide a proper estimate of
other significant contributions, such as the rearrangement of
the hydrogen-bonding network.77−79 To overcome this
problem, we moved to the explicit solvation method
MMSolv,25 a hybrid approach that we have recently developed.

Table 1. Numerical Parameters Used to Define the
Coordination Numbers between Atoms

type d0 (Å) r0 (Å) n m

O; H 1.9 0.4 4 10
Al; O 1.9 0.8 4 10
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(see Figure 1b). The width of the Gaussian hills along
this CV is set to 0.04.

• The solvation (CVsolv) is designed to account for the
changes in the solvation of ethanol and alumina upon
desorption. These changes are described by the number
of hydrogen bonds between the water solvent and the
hydroxyl group of ethanol and the number of Al−Owater
bonds. CVsolv is thus defined as follow

CV CN(O ; H H )

CN(H ; O O )

CN(Al ; O )n

solv ethanol water ethanol

ethanol water ethanol

( ) water

= ∪
+ ∪
+ (3)

where CN(A; B) stands for the coordination number between
two groups of atoms (A and B). Oethanol corresponds to the
oxygen of ethanol. Hwater and Owater include all the hydrogen
atoms and all the oxygen atoms that originate from water
molecules (free, adsorbed, or dissociated). Hethanol stands for
the hydrogen atom of the hydroxyl group of ethanol and is
therefore defined only for the simulations starting with μ1. Al(n)
stands for the aluminum atoms that are bonded to ethanol,
that is, Al(2) when starting with the μ1-ethanol, and Al(1) and
Al(2) when starting with the μ2 (see Figure 1b). The width of
the Gaussian hills along this CV was also set to 0.04.
The coordination numbers between two groups of atoms A

and B used in eq 3 were defined following the PLUMED
implementation75
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with rij the distance between the atoms i and j, and the d0 and
r0 two cutoff distances chosen as presented in Table 1.

2.5.4. Computing Free Energy Differences between
Macrostates. To compare the results of the TI (with only a
bias along one variable) and the well-tempered metadynamics
simulations (three variables), it is necessary to integrate the
free energy landscapes over the different microstates (visited
during the simulation) that belong to the same macrostate.
The free energy differences between two macrostates of
respective populations p1 and p2 and defined by the boundaries
([CV1, min; CV1, max]···[CVN, min; CVN, max]) (with N the
number of CVs) is given by the following formulae

F RT
p
p

ln 1

2

L
NMMMMMM

\]̂]]]]]Δ = − ·
(6)

where p1 and p2 are defined as follows
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The integration variable xCVN is the coordinate of the system
in the N-space defined by the CVs and K the normalization
constant. Integration is performed using PLUMED.74

3. RESULTS AND DISCUSSION
To investigate the mechanism of adsorption/desorption of
ethanol at the γ-Al2O3(110)/water interface, we compared two
configurations: (i) in μ1, the ethanol molecule is chemisorbed
interacting with a single aluminum atom (Figure 1a); (ii) in μ2,
the ethanol molecule is adsorbed dissociatively and bridges two
aluminum atoms (Figure 1b). More details are provided in
Sections 2.1 and 2.2. In the desorbed state (μ0), ethanol is
solvated in bulk water.
We have considered three approaches of increasing

complexity aimed at identifying the role of the water
environment in the adsorption/desorption of ethanol. Static
models provide a first insight into the relative stability of the
three states under consideration (μ0, μ1, μ2). Then, the barrier
of desorption is estimated using ab initio TI using the height as
a proxy for the reaction coordinate (CVheight). Last, ab initio
metadynamics allows us to explicitly include a bias in solvation
(CVsolv) to sample proton transfers but also accelerate the
EtOH/water exchange through a biasing potential.

3.1. Static Approaches and Classical Solvation. Free
energy differences are computed based on the following
substitution reaction

EtOH H O@Al O EtOH@Al O H O2 2 3 2 2+ → + (8)

We have screened several possible orientations of chem-
isorbed water molecules and hydroxyls and several surface
proton configurations for μ1 and μ2 using geometry
optimizations. The most stable structures are shown in Figure
S1. The free energy diagram including the two most stable
OH/H surface configurations for each case is presented in
Figure 2. Three situations are compared: (a) in the absence of
the solvent, (b) using a PCM for the water solvent, and (c)
using a hybrid approach (MMSolv) to explicitly include the
effect of solvating water molecules.
When solvation is not accounted for (Figure 2a), the non-

dissociative adsorption to μ1 is almost athermic (ΔFads(μ1) =
−1 kJ·mol−1), whereas the dissociative adsorption to μ2 is
exothermic (ΔFads(μ2) = −13 kJ·mol−1).
Upon the addition of solvent effects using the PCM (Figure

2b), each adsorbed state is systematically stabilized, but this
stabilization depends on the adsorption mode and the
localization of the protons, spanning −3 to −20 kJ·mol−1.
Noticeably, the relative energies of the two considered
adsorption modes are inverted, μ1 being more stable than μ2.
Although implicit solvation is well-suited to describe indirect

solvation effects such as modifications in the long-range
electrostatic interactions, it cannot provide a proper estimate of
other significant contributions, such as the rearrangement of
the hydrogen-bonding network.77−79 To overcome this
problem, we moved to the explicit solvation method
MMSolv,25 a hybrid approach that we have recently developed.

Table 1. Numerical Parameters Used to Define the
Coordination Numbers between Atoms

type d0 (Å) r0 (Å) n m

O; H 1.9 0.4 4 10
Al; O 1.9 0.8 4 10
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