Modélisation de l'environnement et de son impact sur les propriétés des systèmes chimiques

Réactivité/processus catalytiques par des approches DFT/MM et DM
Carine MICHEL

CMIS

Looking at reactions
A FIRST EXAMPLE

A catalyst lowers the energetic barriers to be overcome

An exemple

Pt(111)
R. Réocreux, C.A. Ould Hamou, C. Michel, J.B. Giorgi, P.Sautet, ACS Catalysis, 2016, 6, 8166-81478

Evaluating thermo

Using periodic DFT we can explore the energetic gain and loss to break a given bond in anisole on $\mathrm{Pt}(111)$.

High cost!

A "movie"

Comparing pathways

Faster to go through the lower saddle point...
...even if the product is not the most stable one

CONCEPTS AND TOOLS

CNIS

Few assumptions

We are working in the context of the Born-Oppenheimer approximation.

We are considering only the ground state.

We are working in the harmonic transition state theory context.

Key points of the potential energy surface

Locally quadratic:

$$
E(\mathbf{R})=E\left(\mathbf{R}_{\mathbf{0}}\right)+\mathbf{g}_{0}{ }^{T}\left(\mathbf{R}-\mathbf{R}_{\mathbf{0}}\right)+\frac{1}{2}\left(\mathbf{R}-\mathbf{R}_{\mathbf{0}}\right)^{T} H_{0}\left(\mathbf{R}-\mathbf{R}_{\mathbf{0}}\right)
$$

LABoratoire DE CHIMIE
ENS DE LYON

Key points of the potential energy surface

Initial state
minimum
Transition State
Saddle point of order 1

Minimum Energy pathway
Derivative is zero perpendicular to this path

The rate of an elementary step

$$
k^{h T S T}=\frac{\Pi_{i}^{N_{D O F}} \nu_{i}^{I S}}{\Pi_{i}^{N_{D O F}-1} \nu_{i}^{T S}} \exp \left(\frac{E^{T S}-E^{I S}}{k_{B} T}\right)
$$

Exploring the potential energy surface

A minimum is defined by:

$$
\forall i,\left(\frac{\partial E}{\partial R_{i}}\right)_{i}=0
$$

Eigenvalue of the mass-weighted Hessian k_{i}

$$
\forall i, k_{i}>0
$$

Harmonic frequencies: $\nu_{i}=\frac{1}{2 \pi} \sqrt{\frac{k_{i}}{\mu}}$

Exploring the potential energy surface

Geometry optimisation loop

Typical criteria:
variation of E , force, max displacement, average displacement

Exploring the potential energy surface

Geometry optimisation algorithms
Newton-Raphson
searching for zero gradient Few steps, costly

Quasi-Newton methods Approximate the Hessian e.g. BFGS algorithm

Conjugated gradient Follow the gradient corrected thanks to the previous steps

Exploring the potential energy surface

Choice of the coordinates, not to be neglected

TABLE II.
Comparison of the Number of Steps Required to Optimize Equilibrium Geometries Using Various Coordinate Systems.

Molecule $^{\mathrm{a}}$	Z Matrix $^{\mathrm{b}}$	Cartesian $^{\mathrm{b}}$	Mixed $^{\mathrm{b}}$	Redundant $^{\text {c }}$
2-Fluoro furan	7	7	7	6
Norbornane	7	5	5	5
Bicyclo[2.2.2]octane	11	19	14	7
Bicyclo[3.2.1]octane	6	6	7	5
Endo hydroxy bicylopentane	8	18	9	12
Exo hydroxy bicylopentane	10	20	71	11
ACTHCP	65	>81	17	27
1,4,5-Trihydroxy anthroquinone	10	11	47	8
Histamine H^{+}	42	>100	19	

[^0]${ }^{\text {c Present work }}$

Exploring the potential energy surface

Transition states

Not easy to get!

Exploring the potential energy surface

Two major approaches:
Single-ended methods
Newton, Quasi-Newton, eigen-follow methods, dimer method

Chain-of-states and Double-ended methods
Nudge Elastic Band, String Method, Growing String Method, Linear Synchronous Transit, Quadratic Synchronous Transit

Exploring the potential energy surface

Newton and Quasi-Newton methods

The Hessian update must allow negative eigenvalues.
Starting structure must be in the quadratic region
+50\% rule of thumb for bond breaking
Hammond postulate
Constrained optimization
Double-ended methods!
Good initial estimate of the Hessian is necessary

Exploring the potential energy surface

Eigen-Follow method

Divide the eigenvectors of \mathbf{H} into two groups:
(i) Search a maximum along one eigenvector (even if the eigenvalue is not negative)
(ii) Search a minimum in the remaining space.

Exploring the potential energy surface

Dimer method

Designed initially for periodic DFT calculations where computing the Hessian is prohibitive.

Based only on the energy and forces of two "images" that forms the dimer.

The dimer is pushed uphill and rotated to find the lowest curvature mode.

FIG. 4. The effective force \mathbf{F}^{\dagger} acting on the center of the dimer is the true force \mathbf{F}_{R} with the component along the lowest curvature mode $\hat{\mathbf{N}}$ inverted. In the neighborhood of a saddle point, the effective force points towards the saddle point.

Exploring the potential energy surface

Building a pathway

Constrained geometry optimization along a selected coordinate
\rightarrow Choice of this coordinate is critical (e.g. distance, angle)

Extrapolate and optimize a path from the reactant to the product
\rightarrow The initial pathway is critical (e.g. cartesian vs. internal ;)
\rightarrow We will focus on the NEB method.

Exploring the potential energy surface

Building a pathway

Image dependent pair potential (IDPP)
Interpolation of pairwise distances at each discretization point along the path

Opt'nPath: Mixing Cartesian and redundant/internal coordinates
http://pfleurat.free.fr/ReactionPath.php

FIG. 1. An illustration of paths generated by linear interpolation of Carte sian coordinates, LI (dashed), and by interpolation of distances between atom pairs, IDPP (solid).

FIG. 2. Initial path for the rotation of a methyl group in ethane, (a) created LI, a linear interpolation of Cartesian coordinates; (b) created using th DPP method. The rotation is clearly better represented by the latter method The NEB calculation starting from the IDPP path required about a third as many atomic iterations and SCF iterations to reach convergence as compare with a calculation starting with the LI path, see Table I.

Exploring the potential energy surface

Nudge elastic band (NEB)

N images i , separated by a spring of constant $k_{i}^{\text {spring }}$ which controls the spacing.

Force projection using the tangent $\hat{\boldsymbol{\tau}}_{i}$

to avoid the sliding-down problem

$$
\mathbf{F}_{\mathbf{i}}=\mathbf{F}_{\mathbf{i}}^{\perp}+\mathbf{F}_{\mathbf{i}}^{\|}
$$

$$
\begin{aligned}
& \mathbf{F}_{\mathbf{i}}{ }^{\perp}=\mathbf{F}_{i}-\left(\mathbf{F}_{i} \cdot \hat{\boldsymbol{\tau}} i\right) \\
& \boldsymbol{\tau}_{i} \\
& \mathbf{F}_{\mathbf{i}}=\left(k_{i}^{\text {spring }}\left|\mathbf{R}_{i+1}-\mathbf{R}_{i}\right|-k_{i-1}^{\text {spring }}\left|\mathbf{R}_{i}-\mathbf{R}_{i-1}\right|\right) \hat{\boldsymbol{\tau}}_{i}
\end{aligned}
$$

Exploring the potential energy surface

Climbing-image NEB (CI-NEB)

To obtain a better convergence to the saddle point, the highest image climbs along the MEP and is not affected by the spring anymore:

$$
\mathbf{F}_{i_{\max }}=\mathbf{F}_{i}-2\left(\mathbf{F}_{i} \cdot \hat{\boldsymbol{\tau}}_{i}\right) \hat{\boldsymbol{\tau}}_{i}
$$

Transition state
minimum

Variable 1

Exploring the potential energy surface

Variable Spring/energy weighted NEB

To improve the sampling close to the saddle point, stronger springs can be used for images higher in energy than a reference energy $E_{r e f}$, in the range of spring constant $\left[k_{l}, k_{u}\right.$]

$$
\begin{aligned}
& k_{i}^{\text {spring }}=\left\{\begin{array}{l}
\left(1-\alpha_{i}\right) k_{u}+\alpha_{i} k_{l}, \text { if } E_{i}>E_{r e f} \\
k_{l}, \text { otherwise }
\end{array}\right. \\
& \alpha_{i}=\frac{E_{\max }-E_{i}}{E_{\max }-E_{r e f}}
\end{aligned}
$$

Exploring the potential energy surface

Comparing NEB methods

Figure 5. Energy curves (or profiles) for the reaction path of ethylene and 1,3-butadiene to form 1,2-hexadiene. The CI-NEB calculations use fixed spring constant of $k^{\mathrm{sp}}=0.1 E_{\mathrm{H}} / a_{0}{ }^{2}$ and the number of images is N_{im} $=10,18$, or 34 . For comparison, the energy weighted CI-NEB calculations use $k^{\text {sp }}$ scaled from 0.01 to $0.1 E_{\mathrm{H}} / a_{0}{ }^{2}$ and $N_{\mathrm{im}}=10$.

Figure 6. Efficiency of CI-NEB and EW-CI-NEB calculations of the reaction of ethylene and 1,3-butadiene to form 1,2-hexadiene. The efficiency is measured in terms of NEB iterations (or optimization steps) required to reach convergence. The CI-NEB calculations are carried out with a fixed spring constant of $k^{\mathrm{sp}}=0.1 E_{\mathrm{H}} / a_{0}{ }^{2}$ and $N_{\mathrm{im}}=10$, 14,18 , or 34 . The energy-weighted CI-NEB calculations scale the $k^{\text {sp }}$ from 0.01 to $0.1 E_{\mathrm{H}} / a_{0}^{2}$ and are carried out using $N_{\mathrm{im}}=7$ and 10 . Note that CI-NEB-10 with $k^{\text {sp }}=0.1 E_{\mathrm{H}} / a_{0}{ }^{2}$ failed to converge within 500 iterations.

Exploring the potential energy surface

Combining the best of two worlds

Figure 8. Computational efficiency of NEB-TS and IDPP-TS calculations of the benchmark set of 121 molecular reactions. The NEB-TS calculations differ in the degree to which the climbing image of the initial EW-CI-NEB calculation is converged before the TS search is started, i.e., $\epsilon_{\max }^{\mathrm{TS}}$ is 0.01 or $0.002 E_{\mathrm{H}} / a_{0}$. In IDPP-TS, the initial EW-CI-NEB phase is skipped. The calculations also use either an initial Hessian matrix that is constructed using the empirical Almlöf scheme or computed analytically (labeled on the x-axis). All calculations use 10 images. The average number of energy/force evaluations required by convergent NEB-TS (and IDPP-TS) calculations to locate saddle points is shown with red solid line along with the standard deviation shown as an error bar. The dashed blue and green dashed lines show how the computational effort of the NEB-TS calculations is divided into the initial EW-CI-NEB phase and the subsequent TS search. Nonconvergent calculations are omitted from the calculation of the averages.

Exploring the potential energy surface

Success depends on the topology of the surface.

a)

Figure 5. Various classes of reaction channels near the TS on reactive potential energy surfaces: (a) I-shaped valley, (b) L- or V-shaped valley, (c) T-shaped valley, (d) H- or X-shaped valley.

A tricky example

Same IS and FS, two different TS...

The secret ingredient

Chemical intuition or educated guess.

The closer to the point you are searching, the better.

Your results are certainly not improved by starting from 'far'.

ENS DE LYON

Including reaction conditions

CONCENTRATION \& TEMP

CnIS

Moving to macroscopic quantities

Thanks to physical statistics we can turn ab initio data into kinetic constants k and equilibrium constants K (be carefull with standard states etc.).

Determining a predominance diagramm

ENS DE LYON

Including a water environment

MICRO-SOLVATION

A prototypic example in practical session.

A less classic example

Modelling oxygenate hydrogenation at metals

Reactant/Product are simplified

- Acetone/iPrOH

A periodic model of the Ru catalyst

- (0001) facet, 4 layers, p(3x3) cell
- Kpoints $3 \times 3 \times 1$
- DFT GGA PW91
- PAW $E_{\text {cut }}=400 e V$

TS search

- Opt'n Path, NEB, Dimer and QN as implemented in the VTST package in VASP

Strategy

Comparison of model « catalysts » based on reaction paths

- Ruvs. $\mathrm{H}_{2} \mathrm{O} @ R u$
- We expect an enhanced reactivity for $\mathrm{H}_{2} \mathrm{O} @ R u$
- Pt vs. $\mathrm{H}_{2} \mathrm{O} @ P \mathrm{Pt}$
- We expect similar reactivity

Two possible paths

- Alkyl path
- Alkoxy path

Ru(0001)

Ru(0001)

C. Michel et al.

Chem. Comm., 2014, 50, 12450-12453

$\mathrm{H}_{2} \mathrm{O}-\mathrm{Ru}(0001)$

$\mathrm{H}_{2} \mathrm{O}-\mathrm{Ru}(0001)$

C. Michel et al.

Chem. Comm., 2014, 50, 12450-12453

$\mathrm{Ru}(0001)$ \& $\mathrm{H}_{2} \mathrm{O} @ R u(0001)$

Levulinic acid to GVL conversion

	THF	$\mathrm{H}_{2} \mathrm{O}$
Ru	\boldsymbol{x}	$\boldsymbol{\checkmark}$
Pd	\boldsymbol{x}	\boldsymbol{x}
Pt	\boldsymbol{J}	$\boldsymbol{\checkmark}$

Water assists the hydrogenation by oxophilic metals

Improving the solvation model ?

Practical: perso.ens-lyon.fr/carine.michel

Carine Michel

Chargée de Recherche CNRS
Accueil C.V. Research People Publications Contracts Teaching \& Dissemination

Teaching

Ecole d'été du GDR EMIE:

Part 1

Part 2.

LABORATOIRE
DE CHIMIE
ENS DE LYON

Carine Michel
M6 Buildina - Room M6.050

Improving the solvation model

Fully explicit

(QM)MM with free energy perturbation to compute solvation

Biased AIMD to investigate reactions

S.N. Steinmann, C. Michel, ACS Catal, 2022, 12, 6294-6301

MOLECULAR DYNAMICS

CnIS

Free energy perturbation

General principle illustrated on protein-ligand binding

MMSolv combines DFT \& MM

Adsorption of benzene at the $\mathrm{Pt} /$ water interface

MMSolv - SolvHybrid package
P. Clabaut et al. J. Chem. Theo. Comp. 2020, 16, 6539

We need a good Pt(111)/water force field

cartwheel angle

GAL17: S. N. Steinmann, .., C. Michel
J. Chem. Theo. Comp, 2018, 14, 3238-3251.

METAL: H. Heinz et al., J. Phys. Chem. C, 2008, 112, 17281.

MMSolv is validated against experiments

Adsorption of benzene at the $\mathrm{Pt} /$ water interface

MM - AMBER TIP3P uff - CM5 charges GAL17

DFT - VASP

PBE+dDsC
PAW approach
Cutoff 400 eV

MMSolv: P. Clabaut et al.J. Chem. Theo. Comp. 2020, 16, 6539 EXP: N. Singh, U. Sanyal, J.L. Fulton, O.Y. Gutiérrez, J.A. Lercher, C.T. Campbell, ACS Catal. 2019, 9, 6869-6881

GAL17 under the hood

Polarized Gaussian describes chemisorption

$$
\mathrm{V}_{G}\left(\vec{r}_{M, O}\right)=\varepsilon_{a} e^{-b_{\|} \cdot r_{\|}^{2}} e^{-b_{\perp} \cdot r_{\perp}^{2}}
$$

Angle correction for water orientation

$$
V_{\text {ang }}=\left(1-\frac{1}{e^{-s_{\text {ang }}\left(r_{0, \text { surf }} / r_{\text {ang }}-1\right)}+1}\right) \sum_{n=1}^{4} a_{n} \cos (n \theta)+\sum_{i=1}^{2} \frac{A_{\text {Hsurf }}}{r_{\mathrm{H}_{i}, \text { surf }}^{5}}
$$

Lennard-Jones potential describes physisorption
\rightarrow Fit 12 parameters to 210 PBE-dDsC water adsorption energies $\{r, \theta, \phi\}$

GAL17 under the hood

Polarized

```
1/r reg & //r not the best...
```

An -erection for water... planar surface

$$
V_{\text {and }}=(1 \quad \text { Need a planar surface }
$$

Lennard-Jones potential de surface specific
\rightarrow Fit 12 parameters to 210 PBE-dDsC water adsorption energies $\{r, \theta, \phi\}$

GAL21 The last generation

Polarized Gaussian describes chemisorption

> Local Norm
> $\vec{n}(M)=\sum_{i} \frac{\vec{r}_{M_{i}, M}}{r_{M_{i}, M}^{5}}$

$$
\mathrm{V}_{G}\left(\vec{r}_{M, O}\right)=\varepsilon_{a} e^{-b_{\|} \cdot r_{\|}^{2}} e^{-b_{\perp} \cdot r_{\perp}^{2}}
$$

Angle correction for water orientation

$$
\mathrm{V}_{A}\left(r_{M, O}, \theta\right)=\frac{\left(e^{-r_{M, O} / R_{O}}\right)^{2}}{\sum_{M_{i} \in \Omega(O)} e^{-r_{M_{i}, O} / R_{O}}} \sum_{n=1}^{4} \mathrm{a}_{n} \cos (n \theta)
$$

Tang-Toennies potential describes physisorption \& repulsion

$$
\mathrm{V}_{T T}(r)=A e^{-B \cdot r}-\left[1-\sum_{k=0}^{6} \frac{(B \cdot r)^{k}}{k!} e^{-B \cdot r}\right] \frac{C_{6}}{r^{6}}
$$

$$
\mathrm{V}_{M, H}\left(r_{M, H}\right)=A_{H} e^{-r_{M, H} \cdot B_{H}}
$$

GAL21 The last generation

Polarized Ga... $1 / r^{5}$ not the best... 1/r $r^{12} \varepsilon 1 / r^{5}$ fetial for M, O \rightarrow TT potential for for M, H
An \rightarrow Exponential decay for M, H

$$
\prime M, O, \theta)=\frac{\left(e^{-r_{M, O} / R_{O}}\right)^{2}}{\sum_{M_{i} \in \Omega(O)} e^{-r_{M_{i}, O} / R_{O}}} \sum_{n=1}^{4} \mathrm{a}_{n} \cos (n \theta)
$$

Tang-Toennies potential describes physisorption \& repulsion

$$
\mathrm{V}_{T T}(r)=A e^{-B \cdot r}-\left[1-\sum_{k=0}^{6} \frac{(B \cdot r)^{k}}{k!} e^{-B \cdot r}\right] \frac{C_{6}}{r^{6}}
$$

$$
\mathrm{V}_{M, H}\left(r_{M, H}\right)=A_{H} e^{-r_{M, H} \cdot B_{H}}
$$

GAL21 The last generation

Polarized Gaussian describes chemisorption
Local Norm

$$
\mathrm{V}_{G}\left(\vec{r}_{M, O}\right)=\varepsilon_{a} e^{-b_{\|} \cdot r_{\|}^{2}} e^{-b_{\perp} \cdot r_{\perp}^{2}}
$$

Angle correction for water orientatir

$$
\begin{gathered}
\mathrm{V}_{A}\left(\begin{array}{l}
\text { Need a planar surface } \\
\\
\rightarrow \text { Local Norm }
\end{array}\right.
\end{gathered}
$$

Tang-Toenn

GAL21 The last generation

Polarized Gaussian describes chemisorption

$$
\mathrm{V}_{G}\left(\vec{r}_{M, O}\right)=\varepsilon_{a} e^{\left.-b_{\|}\right) r_{\|}^{2}} e^{\left.--b_{\perp}\right) r_{\perp}^{2}}
$$

Local Norm

$$
\vec{n}(M)=\sum_{i} \frac{\vec{r}_{M_{i}, M}}{r_{M_{i}, M}^{5}}
$$

Angle correction for water orientation

$$
\sum_{M_{i} \in \Omega(O)} e^{-r_{M_{i}, O} R_{O}} \text { surface specific }
$$

Tang-Toennies potential de

$$
\left.\mathrm{V}_{T T}(r)=A \cdot-B \cdot r\right)-\left[1-\sum_{k=0}^{6} \frac{(B \cdot}{k!}\right.
$$

\rightarrow Linear or quadratic dependence on the gCA

Solvation energy of NPs

Generalisation to oxides \& other molecules

Conclusions

\rightarrow We now have a robust metal/water force field
\rightarrow We can compute solvation energies accurately at the solide/liquid interface
\rightarrow We extended this approach to oxide/O-containing and N containing molecule

Metadynamics

Trick: filling part of the PES with gaussians

how big ?

how often ?
how long?

$$
B_{t}(s)=\omega \sum_{t^{\prime}<t} \exp \left(-\frac{\left(s_{t^{\prime}}-s\right)^{2}}{2 \sigma^{2}}\right)
$$

where ?

Authors: R. Atta-Fynn, E. J. Bylaska, W. A. de Jong www.emsl.pnl.gov www.nwchem-sw.org

$\mathrm{F}(\mathrm{s})=$ Free energy along s
$V_{G}(s, t)=\sum_{i=1,2 \ldots, N} h^{\left[-\left(s-s s_{i}\right)^{2} / 2 \sigma^{2}\right]}$ where $h, \sigma=$ Gaussian height and width

Metadynamics

How long?

how big ?

where ?

how often ?
how long?

[^1]
Metadynamics

How long?

how big ?

where ?

how often ?
how long?

$$
\bar{B}_{t}(s)=\frac{1}{t-t_{f i l l}} \sum_{t^{\prime}=t_{f i l l}}^{t} B_{t^{\prime}}(s)
$$

Metadynamics

Well-tempered metadynamics

how often ?
how long?

One can regulate the extent of FES exploration by tuning ΔT

how big ?

$$
B_{t+1}(s)=B_{t}(s)+\exp \left(-\frac{B_{t}(s)}{\Delta T}\right) \exp \left(-\frac{\left(s_{t}-s\right)^{2}}{2 \sigma^{2}}\right)
$$

FIGURE $2 \mid$ (a-c). Projection onto the Ramachandran plot of the configurations sampled during a well-tempered metadynamics simulation of alanine dipeptide in vacuum (white dots) for different choices of ΔT [600 K (a), 1800 K (b), and 4200 K (c)]. The underlying color map shows the reference free-energy landscape. (d) Estimate of the free-energy difference between the two metastable minima $\mathrm{C}_{7 \mathrm{ax}}(1.22,-1.22)$ and $\mathrm{C}_{7 \mathrm{ed}}$ $(-1.45,1.29)$ as a function of the simulation time. Angles are measured in radians.

Metadynamics

Where?

how big ?

how often ?
how long?
$B_{t}(s)=\omega \sum_{t^{\prime}<t} \exp \left(-\frac{\left(s_{t^{\prime}}-s\right)^{2}}{2 \sigma^{2}}\right)$
$\mathbf{F}_{\mathbf{B}}=-\frac{d B}{d R}=-\omega \sum_{t^{\prime}<t} \exp \left(-\frac{\left(s_{t^{\prime}}-s\right)^{2}}{2 \sigma^{2}}\right) \times \frac{d s}{d R}$
Be careful, if this term is zero,
no force is derived from the bias which piles up!

Metadynamics

"Identifying a set of CVs appropriate for describing complex processes is far from trivial."

Collective variables are derivable functions of the
 microscopic coordinates R. They should:

- distinguish IS/TS/FS and intermediates
- include all the slow modes of the system.
- be limited in number.

Metadynamics

"Identifying a set of CVs appropriate for describing complex processes is far from trivial."

Collective variables are derivable functions of the microscopic coordinates R. They should:

- distinguish IS/TS/FS and intermediates

- include all the slow modes of the system.
- be limited in number.

FIGURE 3|Example of the effect of neglecting a slow degree of freedom in the collective variables (CVs) set. (Top) Model two-dimensional potential with relevant barriers both in s_{1} and s_{2}. (Bottom) Representation of a metadynamics simulation using only s_{1} as CV . The sum of the underlying one-dimensional free-energy $F\left(s_{1}\right)$ (thick line) and of the metadynamics bias is shown at different times (thin lines). Neglecting s_{2} in the CVs set causes strong hysteresis in the reconstructed free energy.

Metadynamics

"Identifying a set of CVs appropriate for describing complex processes is far from trivial."

Trying to find the CVs automatically....

Compute the free energy as a function of several putative CVs, all distinguishing A and $B\left(s_{1} s_{2} s_{3}, \ldots\right)$

The best CV is the one for which the free energy has the highest barrier (s_{2})

Machine learning-based CV optimization

Find the best CV by analysing a large set of short MD trajectories

- TICA: choose the CV that makes the autocorrelation time as large as possible
- Use linear or nonlinear combinations of features to parameterize a function $s(r)$ that predicts if the configuration is committed to A or to B

Metadynamics

"Identifying a set of CVs appropriate for describing complex processes is far from trivial."

Collective variables are derivable functions of the microscopic coordinates R. They should:

- distinguish IS/TS/FS and intermediates
- include all the slow modes of the system.
- be limited in number
«A high-dimensional space is costly to explore and analyzing a high-dimensional surface is far from trivial ».

Alternatives:
Bias-exchange metadynamics Combinaison with Parallell-tempering

Figure 2. Number of explored clusters as a function of the simulation time, for PT (dashed) and PTMetaD (solid). PTMetaD exploration is more than 3 times faster.

Finally, a recipe...

Fig. 5 | Choosing the correct metadynamics variant. a,b|An example of a potential energy landscape characterized by the presence of deep minima (panel a), but whose free energy F as a function of two variables (x and y) is approximately flat (panelb). This situation is rather common in practical applications. $\mathbf{c} \mid$ A decision tree for choosing the most appropriate version of metadynamics. CV, collective variable; PBMETAD, parallel-bias metadynamics; WT, well-tempered.

And inspiration from what has been implemented

A practical exemple
ALUMINA/WATER INTERFACE

CMIS

ㅇ.. \equiv : $=$

$\mathrm{Y}-\mathrm{Al}_{2} \mathrm{O}_{3}$ in water

γ-Alumina is very reactive towards water

$$
\begin{gathered}
\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O}=2 \mathrm{AlOOH} \\
\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O}=2 \mathrm{Al}(\mathrm{OH})_{3}
\end{gathered}
$$

Ravenelle R. M., Copeland J. R., Van Pelt A. H., Crittenden J. C., Sievers C. Topics in Catalysis, 2012, 55, 162-174

$\mathrm{Y}-\mathrm{Al}_{2} \mathrm{O}_{3}$ in water and in presence of biomass

γ-Alumina is very reactive towards water

$$
\begin{gathered}
\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O}=2 \mathrm{AlOOH} \\
\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O}=2 \mathrm{Al}(\mathrm{OH})_{3}
\end{gathered}
$$

XRD

$\mathrm{Pt} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$
as synthesised
$\mathrm{Pt} / \mathrm{Y}-\mathrm{Al}_{2} \mathrm{O}_{3}$
10h @ $225^{\circ} \mathrm{C}$ in water
+5wt\% glycerol
$+5 w t \%$ sorbitol

Building a model of the $\mathrm{Y}-\mathrm{Al}_{2} \mathrm{O}_{3}$ / water interface

(110) surface

Building a model of the $\mathrm{Y}-\mathrm{Al}_{2} \mathrm{O}_{3}$ / water interface

(110) surface

Migration of Al: two Td sites

Building a model of the $\mathrm{Y}-\mathrm{Al}_{2} \mathrm{O}_{3}$ / water interface

(110) surface

Migration of Al: two Td sites
Chemisorption of $5 \mathrm{H}_{2} \mathrm{O}$

Building a model of the $\mathrm{Y}-\mathrm{Al}_{2} \mathrm{O}_{3}$ / water interface

(110) surface

CP2K 2.5.1

PBE+D3
GPW approach
DZVP-MOLOPT GTH
pseudos
Molecular Dynamics
$T=330 \mathrm{~K}, \mathrm{CSVR}$
md -step $=0.5 \mathrm{fs}$
thermalisation $=35 \mathrm{ps}$ production $=27.5 \mathrm{ps}$

Most hydrophilic facet (110)

Two Td sites

Chemisorption of $5 \mathrm{H}_{2} \mathrm{O}$, the $\sim 15 \AA$ of water, free to move

R. Réocreux, T. Jiang, M. lannuzzi, C. Michel, P. Sautet ACS Applied NanoMaterials, 2018, 1, 191-199

Building a model of the $\mathrm{Y}-\mathrm{Al}_{2} \mathrm{O}_{3}$ / water interface

(110) surface

CP2K 2.5.1

PBE+D3
GPW approach DZVP-MOLOPT GTH pseudos

Molecular Dynamics $\mathrm{T}=330 \mathrm{~K}, \mathrm{CSVR}$ md-step $=0.5 \mathrm{fs}$ thermalisation $=35 \mathrm{ps}$ production $=27.5 \mathrm{ps}$

Most hydrophilic facet (110)
Two Td sites
Chemisorption of $5 \mathrm{H}_{2} \mathrm{O}$ $\sim 15 \AA$ of water, free to move

R. Réocreux, T. Jiang, M. lannuzzi, C. Michel, P. Sautet ACS Applied NanoMaterials, 2018, 1, 191-199

Failed attempts...

metadynamics \#1 $\mathrm{CN}\left(\mathrm{Al}_{(\alpha)}, \mathrm{OH}_{(1 \alpha)}\right)$ $\mathrm{CN}\left(\mathrm{Al}_{(1)}, \mathrm{OH}_{(1 \alpha)}\right)$
metadynamics \#2 $\mathrm{CN}\left(\mathrm{Al}_{(\alpha)}, \mathrm{OH}_{(12)}\right)$ $\mathrm{CN}\left(\mathrm{Al}_{(\alpha)}, \mathrm{O}\right)$
R. Réocreux, Thèse, 2017

Failed attempts...

More general?

metadynamics \#3
$\mathrm{CN}\left(\mathrm{Al}_{\alpha} ; \mathrm{O}\right)$
$\mathrm{CN}\left(\mathrm{Al}_{\beta} ; \mathrm{O}\right)$

Failed attempts...

Focused on Al_{α} but separating Oa and Ow

metadynamics \#4
$\mathrm{CN}\left(\mathrm{Al}_{\alpha} ; \mathrm{O}_{\mathrm{a}}\right)$ $\mathrm{CN}\left(\mathrm{Al}_{\alpha} ; \mathrm{O}_{\mathrm{w}}\right)$

$\mathrm{CN}\left(\mathrm{Al}_{\alpha} ; \mathrm{O}_{\mathrm{a}}\right)$

Failed attempts...

Focused on Al_{β} but separating Oa and Ow

metadynamics \#5
$\mathrm{CN}\left(\mathrm{Al}_{\beta} ; \mathrm{O}_{\mathrm{a}}\right)$
$\mathrm{CN}\left(\mathrm{Al}_{\beta} ; \mathrm{O}_{\mathrm{w}}\right)$

$$
\begin{aligned}
& \qquad \mathbf{F}_{\mathbf{B}}=-\frac{d B}{d R}=-\omega \sum_{t^{\prime}<t} \exp \left(-\frac{\left(s_{t^{\prime}}-s\right)^{2}}{2 \sigma^{2}}\right) \times \frac{d s}{d R} \\
& \text { R. Réocreux, Thèse, } 2017
\end{aligned}
$$

(a) Reconstructed free energy profile

(b) time evolution of the CVs

$$
s\left(r_{i j}\right)=\frac{1-\left(\frac{r_{i j}-d_{0}}{r_{0}}\right)^{n}}{1-\left(\frac{r_{i j}-d_{0}}{r_{0}}\right)^{p}}
$$

We need to play on the parameters of the CN to avoid a zero force.

Reactivity of the $\mathrm{Y}-\mathrm{Al}_{2} \mathrm{O}_{3}$ / water interface

$\mathrm{Td} \longrightarrow \mathrm{Oh}$

$\mathrm{Td} \longrightarrow \mathrm{Oh}$

Second tetrahedral Al

$\mathrm{Td} \longrightarrow \mathrm{Oh}$

This Al is pretty mobile!!

R. Réocreux, E. Girel, P. Clabaut, A. Tuel, M. Besson, A. Chaummonot, A. Cabiac, P. Sautet, C. Michel, Nat Comm 2019, 10, 3139

Mechanism of an interfacial reaction

$\mathrm{Td} \longrightarrow \mathrm{Oh}$

Adsorption of a model alcohol at the interface

Adsorption of a model alcohol at the interface

J. Rey, P. Clabaut, R. Réocreux, S. N. Steinmann, C. Michel, J. Phys. Chem C. 2022, 126, 7446-7455

Adsorption of a model alcohol at the interface

In more details...

b)

After few trials...

3CV rather complex
Well-tempered metadynamics (bias factor of 100)
Four walkers
20463 gaussians (204.6 ps)

$$
\operatorname{CN}(A ; B)=\sum_{i \in A} \sum_{j \in \mathrm{~B}} s_{j,}
$$

with

$$
\begin{aligned}
\mathrm{CV}_{\text {solv }}= & \mathrm{CN}\left(\mathrm{O}_{\text {ethanol }} ; \mathrm{H}_{\text {water }} \cup \mathrm{H}_{\text {ethanol }}\right) \\
& +\mathrm{CN}\left(\mathrm{H}_{\text {ethanol }} ; \mathrm{O}_{\text {water }} \cup \mathrm{O}_{\text {ethanol }}\right) \\
& +\mathrm{CN}\left(\mathrm{Al}_{(n)} ; \mathrm{O}_{\text {water }}\right)
\end{aligned}
$$

$$
s_{i j}= \begin{cases}\frac{1-\left(\frac{r_{i j}-d_{0}}{r_{0}}\right)^{n}}{1-\left(\frac{r_{1}-d_{0}}{r_{0}}\right)^{m}} & \text { if } r>d_{0} \\ 1 & \text { if } r<d_{0}\end{cases}
$$

Exploring the PES/FES of complex

 systemsA challenge in $3 n$ or $3 \mathrm{~N}-6$ dimensions...

Don't neglect geometry optimization and toy systems
Be imaginative!

Chemist's intuition is still very valuable :)

[^0]: ${ }^{\text {a }}$ Starting geometries given in ref. 6; calculated by HF / STO-3G.
 ${ }^{\mathrm{b}}$ Ref. 6.

[^1]: A. Barducci, M. Bonomi, M. Parrinello, , WIREs Computational Molecular Science, 2011, 1, 826-843

