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A. Curnier 
Lab. Mecanique Appliquee, Departement de Mecanique, Ecole Polytechnique Federale de Lausanne, 
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A mixed penalty-duality formulation of the frictional contact problem, inspired from an augmented 
Lagrangian approach is proposed. The continuity of the resulting conewise linear operator is used to 
establish a uniqueness condition on the coefficient of friction. Modified and generalized Newton 
methods are examined and sufficient conditions for their convergence conjectured. A cylindrical 
frictional contact problem assesses the stability of the method. Mixed penalty-duality methods are 
found more accurate and stabler than penalty methods and as economical as them. 

Introduction 

Contact problems involving friction are difficult to formulate and even more difficult to 
solve, because they are governed by a multivalued tribological law which does not derive from
a natural potential (even non-differentiable). As such, they cannot be formulated as standard
optimization problems (with inequality constraints). 

In [ 1  J a rigorous formulation of the frictional contact problem was obtained using penalty 
methods to circumvent the multivalued character of the law and constructing a non-smooth 
(yet continuous) unsymmetric operator directly, for want of deriving it from a lacking
potential. Newton's method was then generalized to solve the resulting non-linear equation. 
However, the solutions carried slight systematic errors inherent to penalty methods and 
special damping techniques were necessary to ensure the convergence of Newton's method. 

In this paper, an alternative formulation of the frictional contact problem is developed using
a mixed penalty-duality approach (i.e. adding Lagrange multipliers) inspired from the
augmented Lagrangian method to treat the multivalued aspect and deriving the relevant
unsymmetric operator from a 'quasi-' augmented Lagrangian to palliate the absence of a
genuine one. Modified and generalized Newton methods are then examined to solve the 
resulting system of equations. The solutions satisfy the contact constraints and friction criteria 
exactly and Newton's method converges without any stabilizing damping. 

The augmented Lagrangian method was initially introduced by Hestenes [2] and Powell [3] 
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for solving non-linear programming problems with equality constraints. It was extended to 
treat convex differentiable optimization problems with inequality constraints (such as the 
frictionless contact problem) by Rockafellar [4]. The same year, Fortin [5] gave an application
to a non-differentiable case (such as the pure friction problem). More recently, an incomplete
formulation was proposed by Landers and Taylor [6] for frictionless contacts and an 
augmented Lagrangian merit function was introduced by Barthold and Bischoff [7] for 
stabilizing their frictional contact algorithm. However, a complete mixed formulation of thefrictional contact problem and a thorough discussion of its crucial features such as the lack of a 
genuine augmented Lagrangian, the conewise linearity of the resulting unsymmetric operator 
and, above all, its continuity across the border lines separating the (gap, stick and slip) regions
of linearity are yet lacking. In this paper, we exhibit these properties and use them to establish 
a necessary and sufficient condition on the friction coefficient for the solution to curved, 
discrete, small slip contacts to be unique and to guarantee the convergence of Newton's
method. 

A brief outline of the paper follows. In Section 1, a contact mechanics summary provides 
the necessary background and motivation. A 'brut' variational formulation of the discrete 
incremental problem is stated in Section 2, as a starting point. In Section 3, we show how to
construct the frictional contact operator following an augmented Lagrangian approach. 
Section 4 is devoted to Newton type solution methods. The cylindrical contact of a disk in a 
bore is used to illustrate the stability of the algorithm in Section 5. 

I. Contact mechanics background

The theory of contact mechanics is less developed than that of continuum mechanics. The 
choice of appropriate kinematic and dynamic variables to describe contact processes is not 
well settled yet. 

Moreover, normal contact and tangential friction tribological laws are unusual multivalued 
functions and, worse, they cease to derive from a (pseudo-, i.e. non-differentiable) potential 
when the two components are treated conjointly, as in a non-associated Coulomb's model. 
The reader is referred to [ 1] for a more complete introduction to the subject. 

1.1. Kinematics and statics 
First of all, it is necessary to define kinematic variables for measuring the relative motion of 

the two bodies candidate to contact and static variables for enforcing their interaction. 
To define the relative displacement between two contacting deformable bodies, it is 

convenient to take one of them, say body-2, for reference and to describe body-1 with respect 
to it (Fig. 1). Accordingly, the contact surface is identified with a portion I'� of the deformed
boundary of body-2. We note a2 a particle of I'� and x2 = x(a2) its coordinates in some
reference frame. To each master particle a2 of I'�, we associate a slave particle a 1 ( a2) of I'! 
such that 

x1 = x(a1) E argmin{llz - x211 I z E x(I'!)} Va2 EI'�. ( 1) 

A local frame can be attached to the slave particle a1: n = n1(x1) is the outward unit normal
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vector to body-1. We define the normal contact distance as a scalar field on r�: 
(2) 

As time is relevant, the vector field of relative velocities can be written as

(3) 

where 81 is the projection of i> on the tangent vector space to x(T!) at xI and represents then
the vector field of tangential relative velocities. 

The choice of the particle a I is not unique in general unless body-1 is convex or a2 is in
contact with r ! . If the argmin is a set, anyone of its element is acceptable. In the simplest
case, when r! is convex and x2 lies outside body-1, xI is the projection of x2 on x(T!) and

(4) 

(situations where x2 penetrates body-1 are not precluded at this stage). If d is positive, it is • n 
the local gap between the two bodies. 81 is defined even when contact does not occur and is
not equal to d1 which is zero.

To model contact behaviour, it is necessary to introduce a contact stress field ,.\ defined as
the stress vector acting on the boundary of body-2. It is convenient to resolve the contact 
stress into normal and tangential components also 

(5) 

We are now in a position to define the tribological law. For didactic reasons, we begin with the 
normal contact law (perfect slip), proceed with the pure friction law (at constant pressure) and
terminate with the coupled frictional contact law (Coulomb's non-associated friction).

1.2. Unilateral contact law 
Usually, two bodies can either separate-but-not-pull each other or they can press-on-but­

not-penetrate each other. These two exclusive status: gap (dn > 0, An = 0) or contact (dn = 0,
An< 0) are classically formulated by an impenetrability condition, a compression condition
and a complementarity condition: 

(6) 

Fig. 1. Local contact kinematics and dynamics. 
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The gap and contact status are clearly distinguished on the graph of the relationship between 
A11 and d11 as shown in Fig. 2. The multivalued contact law A11[d,,) and its inverse d,,[A,,) can be
shown to derive from two conjugate pseudo- (i.e. non-differentiable) potentials, in the form of 
two similar inclusions, 

(7) 

where l/JIR+ is the indicator function of the positive half line, ol/JIR+ its sub-differential and l/llR- its 
conjugate (the indicator function of the polar cone � - of � +) [8).

1.3. Pure friction law 
By pure friction, we mean friction at constant pressure as it occurs between two bodies in 

steady contact (such as a dead weight on an inclined board for instance). Two bodies in steady 
contact either stick-to-and-shear each other or they slip-and-rub-on each other along a same
direction. These two exclusive status: 

stick: (118,11=0, II A,11 < k), 
slip: (118,11 >0, llA,11 = k, A,/llA,ll = 8,/118,11),

are traditionally expressed by a slip rule, a friction criterion and a complementarity condition: 

(8) 

where k is the friction threshold: k = - µA,,= constant (since A11 is constant). The 2D graph of
the resulting relationship between A, and 8, (or dc5J is shown in Fig. 3 where the three status:
stick, backward slip and forward slip are easily sorted out. As for unilateral contact, the 
multivalued slip law 8,[A,] and its inverse, the multivalued friction law A,[8,), can both be
shown to derive from two conjugate pseudo-potentials, in the form of two different inclusions: 

(9) 

d0i 

Backward slip 

Fig. 2. Unilateral contact (graph and mixed operator). Fig. 3. Friction (graph and mixed operator). 
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where kjj81 il = l/l�(B1) is the Fenchel conjugate of the indicator function lf!c of the convex discC of radius k centered at the origin 

C= {\/jjA,11 �k} · ( 10) 

Because C is a disk (not a cone) If!� is a norm (not an indicator function). The conjugate
function of an indicator function being always positive homogeneous of degree one 
(If!�( aBJ = alf! �( B) Va ;:,: 0) the shear-stress slip-rate law A1 [ 81 ]  is positive homogeneous of
degree zero, which expresses the experimental evidence that friction is rate-independent in 
first approximation. Anisotropic friction can be accommodated by taking an elliptical disc 
instead of a circular one. Thus, general steady contact, rate independent friction laws deriving 
from a pseudo-potential can be written as [8] 

( 11) 

where C is a convex set containing the origin. 

1.4. Frictional contact law 
Contrary to what the two previous (didactic) paragraphs may infer, normal contact and 

tangential friction are strongly coupled phenomena: according to Coulomb's classical law, the 
friction shear is proportional to the contact pressure. The trouble is that this coupling is not 
symmetric: the contact pressure is independent of the friction shear. Keeping this lack of 
symmetry in mind, general and realistic frictional contact laws can still be constructed by 
combining the normal contact and tangential friction laws as follows: 

( 12a) 

( 12b) 

where the friction criterion C( An) now depends on the pressure. Coulomb's classical law of
isotropic friction consists in taking for C( An) the closed disk centered at the origin with radius
equal to the product of (-AJ by the friction coefficient µ. C( AJ is thus a section of
Coulomb's cone: 

(13) 

In case of gap (dn > 0, An = 0), the friction convex set is reduced to the singleton {O} and
alf!{o}(O) is equal to the tangent vector space. Then the expressions ( 12b) involving the sliding
velocity remain meaningful for the relative velocity, thus the notation overlap. 

In case of stick contact (dn =0, An <0; llB1 ll =O, llA1ll <-µAJ, the shear stress is unde­
termined. 

In case of slip contact (dn = 0, An< O; 1151 11>0, II A1 1i =-µAn), the slip rule implied in B1[AJ
is associated (i.e. normal) to Coulomb's disc but not associated to Coulomb's cone. 

We propose to call the indicator function l/lqAnl and its conjugate lf!�(A l 'quasi-'potentials
instead of pseudo-potentials to stress the dependence of the convex set on the pressure. 
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Formally, the dependence of the convex set on the solution is a minor change, but 
fundamentally it is of major importance. In the special case of Coulomb's disc, the friction 
quasi-potential is simply the norm of the sliding velocity scaled by the shear stress magnitude: 

( 14) 

2. Variational formulation of the discrete incremental problem

2. 1. Quasi-static evolution 
In quasi-static cases, the slip rate 81 in the slip rule ( 8) or the friction law ( 11) must be

approximated by increments dor For this time discretisation, a fully implicit algorithm has 
long proven the most stable (and accurate) scheme, both in plasticity [9, 8, 10] and in friction
[ 1, 11]. D�e to the homogeneity of the normal cone aiflC(A")' this operation simply consists in
replacing 01 by a slip increment do1 in (9) and ( 11) provided the local frame (n - t) is assumed
fixed over the increment 

( 15) 

The second expression is particularly suitable for implementing contact treatment in existing 
finite element programs based on the incremental loading (continuation) technique. 

From here on, we will restrict our attention to the incremental problem (any one step of the
loading sequence). Within such an increment, a simultaneous treatment of contact and friction
laws (( 12a) and ( 12b)) requires an accurate localisation of the slave particle a1 at impact time
and determination of the associated local frame. This is briefly discussed in the next 
paragraph. 

2.2. Contact discretisation 
Using the finite element method to discretize the two solids, the discrete contact surface 

consists in the set of nodes /2 located on the mesh boundary r;h. A contact element is the
associated to each node of r;h as follows. If a one-to-one correspondence between the
boundary nodes of the two bodies can be established and maintained throughout the contact 
duration (stick or small slip contact), then a node-on-node geometry is quite adequate. 
Otherwise, a node-on-facet contact must be used to account for initial mismatching as well as 
subsequent sliding (moderate slip contact). Finally, if body-1 is rigid, a simpler but more 
accurate node-on-curve treatment is possible (body-1 does not need to be discretized and 
finite slip problems are tractable). 

With the node-on-node geometry, the slave node of r �h on mesh-1 which is the closest to
each master node of r;h can be assigned in advance. This assignation can be seen as a coarse
discrete version of ( 1). But this definition supposes that nodes e2 and e1(e2) come in contact
exactly one on top of the other which is exceptionally the case. Otherwise some impact 
localisation strategy must be used. The fixed local frame (n - t) is defined by the nodes
adjacent to node e1 (2 nodes in 2D, 4 in 3D) [ 12, 1]. The impact location of node e2 on body-1
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is then taken as the intersection of its linear trajectory (over the increment) with the tangent 
plane to body-1 passing through node e1• 

With the node-on-facet geometry, the slave particle location x1 (which is unknown a priori)
on the slave facet (which is known a priori) can be expressed in terms of the facet corner 
coordinates by means of the interpolation functions used for body-1 [ 13, 14, 1]. The local 
frame is determined by the facet geometry in this case, and the impact point localized 
accordingly. 

Finally, with the node-on-curve geometry, the slave particle position x1 on the rigid surface
r: can be localized exactly (at least in principle) at any time. Over a time increment, two
instants are commonly used (Fig. 4): 
- the beginning of the increment, corresponding to an explicit type of projection algorithm; 
- the impact time, whose determination requires an approximation of the master particle 

trajectory, typical of a predictor strategy. 
Depending on the approach, both the slave particle x1 and the local frame (n - t) will differ
significantly for strongly curved obstacles. 

In the three fore-mentioned cases, a global normal distance vector dn can be defined as the
vector composed of the discrete normal distances e d n, e = 1, p - for convenience, we denote
discrete nodal variables by the same letters as the corresponding continuous variables: 

( 16) 

where p is the number of master nodes, i.e. of contact elements. Moreover d" can be written
as a linear function of u: 

ed I + edo n = neu n ' ( 17) 

where e d� denotes the initial normal contact distance at the beginning of the increment. The
global slip increment vector do, is constructed in the same way in 2D discretisation:

( 18) 

where o � is the initial tangential contact gap at the beginning of the increment. Accordingly, ,\ 

Fig. 4. Explicit projection (A), impact detection (•) and implicit projection (•) methods.
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becomes the global contact force vector whose components are the contact forces concen­
trated at the master nodes, 

(19) 

The rotation and assembly of this force vector (effected by the transposed matrices A: and A;) 
will be discussed later. 

2.3. Variational formulation 
The following formulation is based on the non-differentiable functional expressions (7), 

(11) and (12) of the contact and friction laws. For convenience, we will also assume the
existence of a differentiable strain energy functional to characterize the elastic response of the 
(two) separated bodies, but it is emphasized that most of the following results will not depend 
on this assumption. Accordingly, the equilibrium of the two discretized bodies in the absence 
of contact is written as 

u = argmin [cp(v)] � cp(u) � cp(v) 'Vu , (20) 

where cp( v) is the (elastic) strain energy potential in terms of the global displacement vector v. 
A necessary condition, which becomes sufficient if <p is strictly convex, for this equilibrium to
hold, is 

G(u) = V'cp(u) = K(u) - q = 0, (21) 

where V' denotes the gradient operator, K(u) is the internal force vector and q the external
one. 

If one treats contact and friction separately, then two new optimisation problems are
obtained. Unilateral contact problem: 

u = argmin {cp(v) + l/J�P(dn(v))} , 
+ 

where IR� is the positive cone of !RP.Pure friction problem: 
u = argmin {cp(v) + t/!��(d81(v))},

(22) 

(23) 

where c: is the cartesian product of the p local discs C of fixed radius k. c: in (23) does not
depend on the solution u through An. This assumption still allows to define the friction
problem (23) as an optimisation problem. 

Classically, the solution u of the above problems is characterized by variational inequalities 
(VI) [15, 16]. Formally, coupling contact and friction reduces to adding the two corresponding
pseudo-potentials to the elastic potential cp. 
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Frictional contact problem: 
(24) 

where C� is now the cartesian product of the local discs C( .AJ of variable radius - µ,.An. It
must be stressed that the above problem is not a standard optimisation problem but only a 'quasi' -optimisation problem because the convex set C� depends on the solution u through .An. 
The solution u of this coupled problem is now characterized by quasi-variational inequalities
(QVI) [17]. We coined the term quasi-optimization by analogy. The absence of a genuine 
potential for this frictional contact problem reflects the non-associated character of the slip 
rule. 

3. Mixed operators by augmented Lagrangian approach

The purpose of this section is to construct frictional contact operators which are smooth 
enough to use Newton like solution methods. Newton's method can be formally extended to 
Lipschitz continuous operators [1] by using the notion of generalized Jacobian [18]. This 
possibility has been investigated in [20] using penalty methods. But the resulting algorithms 
are subject to troublesome numerical instabilities (illustrated therein), calling for alternatives. 

In what follows, we propose a mixed penalty-duality approach based on the augmented
Lagrangian method. For didactic reasons, we first derive the pure contact and friction 
operators associated to problems (22) and (23) from their respective augmented Lagrangian. 
We then show how to construct a Lipschitz continuous unsymmetric operator for the frictional 
contact problem (24 ), starting from a 'quasi-' rather than a genuine augmented Lagrangian. 

3.1. Unilateral contact operator 
Problem (22) can be formulated as a classical constrained convex optimisation problem: 

minimize <p(v) over all v such that dn(v) E IR�, more synthetically written as

inf <p(v). d11EfR � 
(25) 

The standard Lagrangian associated to this problem is 

L(v, y,J = <p(v) + (dn(v), )'11), (26)

where ( , ) denotes the scalar product in IR P and y11 the Lagrange multipliers (dual variables).
Problem (25) may be replaced by the equivalent minimax problem [19] 

inf sup L(v, )'11). (27)
v y11EfRf_!_ 

Thus, the constraints have been transferred from the primal variables v to the dual variables
y11, using IR� the polar cone of IR� in the sense of Moreau. The augmented Lagrangian is more
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complicated [16]: 

L,(u, yJ = cp(u)- ;, llYJ2 + ;, dist2(yn + rdn(u), IR�), (28) 

where r is a positive 'penalty' factor and dist(x, C) denotes the distance from x to C. The
augmented Lagrangian includes a Lagrange multiplier term as well as a penalty term and the 
method is called a mixed or penalty-duality method . Remark that when Yn is zero, one 
recovers a penalty method 

(29) 

In order to obtain additional insight in the augmented Lagrangian expression (28), it is useful 
to look at the particular case of a single contact element ( p = 1) and to split the distance term 
according to the contact status: 

{cp(u) - ; Y� if Yn + rdn > 0 (gap) ,
L,(u , yn)= r r 

2 cp(u) + Yndn(u) + 2 dn(u) if Yn + rdn � 0 (contact).
(30) 

Thus, when contact occurs, the standard augmented Lagrangian [2, 3] for equality constraints
is recovered, whereas, when there is a gap, we discover a concave term ensuring the continuity 
(and differentiability) along the border line Yn + rdn = 0. Another expression of L, uses IR�
instead of IR� : 

(31) 

This alternative form will serve as a reference later. The minimax problem associated to the 
augmented Lagrangian (28) or (31) turns out to be unconstrained: 

inf sup L,(u, yJ. v 'Yn 
(32) 

This is a feature of the augmented Lagrangian technique. Moreover, L, is continuously 
differentiable with respect to u and Yn as soon as cp is continuously differentiable with respect 
to u as already inferred. Consequently, the unique (due to strict convexity of cp) saddle-point (u, AJ verifies the stationary condition

Vv.y" L,(u, AJ = 0.

Using (17), (33) can be resolved into two equations 

VvLr(u, An)= Vcp(u) + A�P(An + rdn(u)) = 0,

1 V'I L,(u, An)= - - {An -P(An + rdn(u))} = 0,
n r 

(33) 

(34a) 

(34b) 

where P(x) : = projiRI' (x) is the projection of x on IR�. From a mechanical standpoint (34a) is
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the equilibrium equation, and (34b) the contact equation. For clarity it is useful to separate the
contact part Fn from the structural part G in (34):

where 
(35) 

(36a) 

(36b) 

F,, is called a mixed contact operator; it is conewise linear and continuous because of the
properties of the projection on a cone. It is instructive to reduce again Fn to one contact 
element ( p = 1) as follows:

(37a) 

(37b) 

Thus another feature of the augmented Lagrangian technique is that contact is detected with a 
linear combination of primal and dual variables: An + rdn. This is particularly crucial for
programming purposes. Linearity regions of Fn are delimited by a line as illustrated in Fig. 2.
Each region corresponds to a specific contact status (contact, gap) and contains the half-line of 
the graph of the contact law (7), associated to this status. Note that (34b) conveys the 
complementary condition And,,= 0. Finally, the operator F,, being piecewise linear, it is not
differentiable everywhere. At singular points, it possesses a weak notion of derivative called 
the generalized Jacobian [18]. Locally ( p  = 1) it is the convex hull of the classical Jacobians on
the adjacent regions: the gap Jacobian Jg and the contact one Jc. The application of this notion
is investigated in [20, 21]. 

3.2. Pure friction operator 
J = [ rnn1 n J c nt 0 

. (38) 

The non-differentiable convex optimisation problem (23) can be treated in almost the same 
way as (22) upon replacing d,,(u) by d tSr(u) , A,, by Ar, An by Ar and IR� by C�. The major
difference is that the only expression of the augmented Lagrangian which remains valid in this
case is the one analog to ( 31), because C � is no longer a cone:

Lr(v, Yr)= L(v, yJ + � IJd8,(v)l12 - ;r dist\ A, +  r d5r(v), C�).
The friction operator deriving from this augmented Lagrangian and analog to (36) is 

(39) 

(40a) 

(40b) 
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where Pc(x) = proj cP (x). Analytic expressions for this projection are available only for specific 
forms of the friction' convex set C", and these are dimension dependent, as illustrated below.
2D anisotropic friction: The convex set C" is a segment [- R 1' R2], where R 1 and R2 are the
non-negative backward and forward thresholds. The projection is trivial. The operator F1 is 
then piecewise linear. The local linearity regions are drawn in Fig. 3. The local slip contact
and adherent contact Jacobians }5 and la can be deduced from the gap and contact Jacobians 1 ... 
and Jc, respectively, by simply replacing n by tin (38). 
JD isotropic friction: C" is a disk of radius k. The projection may be written as follows:

Pc(x) = proL(x) = {x 

kx/llxll 

if llxll:::; k, 

if llxll > k. 

(41a) 

(41b) 

The operator F1 is thus piecewise differentiable and the Jacobian matrices are similar to the 2D
expressions, with the unit slip vector equal to 

(42) 

3.3. Frictional contact operator 
As in the previous cases, the incremental problem (24) can be formally written as an

optimisation problem: 

(43) 

Remember that the solution u enters the objective function as a parameter though. To begin
with, we define a standard Lagrangian, 

(44) 

Given the fact that the friction convex set CP depends on the solution u through the normal
contact forces A11 (identified to dual variables) we obtain a 'quasi' -minimax problem in the
form 

inf sup sup L( v, 'Yn, '}'1) • (45)
v y11EIRI'. y1ECP(A11) 

At this stage, we postulate a 'quasi'-augmented Lagrangian for the frictional contact problem: 

L, (v, 'Yn y1) = cp(v) + (d11(v), '}'11) + (do1(v), yJ

+ � jjd"(v)jj2 - ;r dist2{y" + rd"(v), !R�} + � jjdo1(v)ll2

1 2 'A 

- 2r dist { '}'1 + r do1(v), C[A" + rd11 (u)]}, (46) 

where, unlike the standard convex C P (A") which is defined only for A" belonging to [R � , the'augmented' convex set C[A,, + rdn(u)] is defined for all A" and d" as follows: 
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C[A,, + rd,,(u)] := cp {proj�p [A,, +  rd,,(u)]}. (47)

In words, we replace the standard multiplier A ,, by the augmented one A,, + rd,,(u) and project
it on IR�. This operation consists in prolongating the multivalued function C( A,,) graph (which
is the friction cone) by the positive half-line, as illustrated in Fig. 5 (this operation is rather 
technical but it is the price to pay for getting an unconstrained problem). 

A solution (u, A11, A1) of the quasi-minimax problem is then characterized by the system of
stationarity conditions: 

VuL,(u, A11, A1) = Vcp + A:P( A11 + rd,,(u)) + A;P( ,\1 + r do1(u)) = 0, 
1 V-r L,(u, A11, AJ = -- { A ,, - P( A,, + rd11(u)} = 0, 

• r 

(48a) 

(48b) 

(48c) 

where Pis the projection on the 'augmented' convex set C(A11 +rd,,). Note that (48b) implies
that C( A,, + rd 11) = C( A,,) at the solution A,,. The 'augmented' projection is crucial to ensure
the continuity of the frictional contact operator at hand. Moreover, this operator is conewise 
linear (CL) in 2D and (provided friction is assumed isotropic) raywise linear (RL) in 3D. As 
such it is Lipschitz continuous. We refer to [21, 20] for the development of these notions.

Once again, it is instructive to write the contribution of one contact element ( p = 1) to the 
global frictional contact operator. We can use this opportunity to obtain an intrinsic formula­
tion by aggregating A,, and ,\1 in a vector,\= A,,n + A1 (thus VAA1 =I- nn1) and derive L,(v, y)
with respect to it. Observe that the unilateral contact and friction constraints are now 
compacted in a single line. To simplify the expressions we note a,, = A,, + rd,, and a1 = 

,\ 1 + r dor The expression of F(u, A) in each case is 

[-( l�r)AJ if a 11� 0 (gap) ,[ a,,n + ( I - nn1)a1 l
d,,n +( I - nnt) dot if lla1 ll + µ,a,,< 0 (stick) '

[ a,,n - µ,a,,( I - nn1)t l if II a1 ll + µ,a,,� 0 (slip) ,d,,n - (1 /r){( I  - nn1)( A1 + µ,a,,t)} 
An+rdn(U) 

Fig. 5. Prolongation of Coulomb's cone. 

(49a) 

(49b) 

(49c) 
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where t, defined in (42), is the slip direction unit vector. Due to the identity (nn1)t = (n1t)n = 
0, F(u, A) can be further simplified into

[ -(l� r)A J if <rn �O (gap) ,

l cr11 (n - µt) Jdn (n - µt)- (1 /r)( A1 +µAn t) if II <Tl II + µall � 0 (slip) .

(50a) 

(50b) 

(50c) 

The Jacobian matrices associated to the operator ( 49) are, according to the contact status, 

Jg=[ � -(lo/ r)I ] gap ' (51a) 

[ rl J" =Jg + I ( l ;r)I ] stick , (51b) 

['M J, =Jg+ M (1 t:)M] slip , (51c) 

where M = (n - µt)n1 + p ( I  - nn1 - tt1) and pis a scaling factor defined by

(52) 

It is checked that the slip contact Jacobian is not symmetric (except ifµ= 0). The projection 
scaling factor p comes from a correct linearisation of the projection on a disk [1]. Its influence 
disappears in 2D discretisation because I - nn1 - tt1 = 0, but we must distinguish backward
and forward slip matrices in that case. 

3.4. Uniqueness condition 
Investigation of the mathematical notions mentioned above (conewise and raywise linearity,

generalized Jacobian) leads to a necessary and sufficient condition for uniqueness of a solution
of the problem (45) [21]. 

The main conclusion is that positiveness of the determinant of all possible classical 
Jacobians gives a uniqueness condition on the friction coefficient. Readers interested in a 
precise statement of these theorems are referred to [20], where their proofs can also be found. 
To understand the discussion about convergence in the following section, it is helpful however 
to illustrate this condition on a simple example. Consider the 2D truss depicted in Fig. 6, with 
its only free node in grazing contact with a rigid plane. K denotes the stiffness matrix of the
truss condensed at the fref node. Adding the constraint equations, the Jacobian matrix of G 
defined in (21) is Vv.yG = l � �]. Then the matrices VG + J, associated to slip contact status
have a positive determinant if and only if 

tK-1 /I tK-1 I µ<n n n  t .  (53) 
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Fig. 6. 20 truss example. 

4. Newton t}_'.pe methods for non-smooth operators 

The algorithms usually applied to augmented Lagrangian problems in optimisation (e.g.
Uzawa's scheme) are stable but very slow because they are based on an alternate treatment of 
the primal and dual variables. Here, we will show that a simultaneous treatment of both 
variables by Newton's method converges much faster and that (unlike for penalty based 
operators [20]) the method remains stable without any damping scheme. We begin our 
presentation with a modified Newton method, because its stability analysis is simpler, and then 
we proceed with Newton's method. 

To start, note that the contact, friction and frictional contact problems formulated in the 
previous section are all three governed by a non-linear (non-smooth) equation in the form 

G(u) + F(u, A)= 0 , (54) 

where G and Fare defined in (21)-(35) and (50 ), respectively.

4.1 Modified Newton algorithm 
The basic idea underlying the Zincenko modified Newton method [22] is to resolve (54) in 

two parts, a differentiable part G and a non-differentiable part ft, 

G(u, A)+ F(u, A)= 0, 
where 

- 1 [OJ G(u, A)= G(u) - -;: 
A 

A 1 [o J 
and F(u, A)= F(u, A) + -;: ,\ .

(55) 

The next step is to use the only well defined Jacobian K = grad G, as a slope matrix. If x 
denotes (u, A)1, Zincenko's method consists in generating the following sequence of approxi­
mations: 

(56) 

For the uncoupled problems (22) and (23), this method can be identified with a classical 
duality algorithm as follows. 
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4.1.1. Modified Newton algorithm for uncoupled contact and friction problems 
Firstly, assume that cp is quadratic, i.e. cp(u) = !u1Ku - q1u. The contact and friction

operators have the same form: 

, [ A1 ] F( u, ,\) = 
1 

/ r Pc ( ,\ + r Au) ,
where C is the global non-positive orthant _s:one for the contact operator and the global friction
convex set for the friction operator. As K is 'bloc diagonal', the ith iteration of Zincenko's 
algorithm can be divided into two subiterations identified with Uzawa's method applied to the 
standard minimax problem: 

Given ,\0 E C, 
(i) Solve Ku;= q - A1,\;, 

(ii) Project ,\;+i =Pc(,\; + rAu;). (57) 

If cp is not quadratic but only convex, the above algorithm is a duality method with incomplete
resolution of subiteration ( i). This equivalence between the two methods provides a stability 
condition for Zincenko's method, classically known for Uzawa's method [ 19]: the convergence 
of the Zincenko modified Newton method (56) occurs for r satisfying 

0< r< 2,\min(K)/llAll , (58) 

where ,\min(K) denotes the smallest eigenvalue of Kand llAll is the Euclidian matrix norm of
A (equal to 1 in our cases). The rate of convergence is often very poor however, because it is 
governed by the biggest to smallest eigenvalue ratio of K which is very big. 

4.1.2. Modified Newton algorithm for frictional contact problem 
The algorithm (56) can no longer be identified with a duality method because no classical 

minimax problem can be associated with it. As a consequen_se, a convergence condition 
cannot be given rigorously. However, the particular form of K suggests to decompose the 
iteration (56) in three subiterations and to classify them: 

(59) 

The friction projection in (iii) is effected using the convex set evaluated at the end of 
subiteration (ii) associated with unilateral contact. This algorithmic hierarchisation of the 
contact conditions is physically sound. 
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4.2. Generalized Newton method (GNM) 
A rigorous and straightforward extension of Newton's method to non-differentiable but 

continuous equations such as ( 54) consists in

(60) 

where aF(x;) is the generalized Jacobian of Fat x; [18). This notion is not pursued further
because x; always falls inside a region of linearity in practice and aF(x;) is thus reduced to a
classical Jacobian. Unlike the modified algorithm, the GNM cannot be connected to other 
classical methods for obtaining convergence results. However, a heuristic approach leads to 
the following conjectures. 

4.2.1. GNM applied to uncoupled problems 
We ought to distinguish the contact problem and the friction problem. The GNM applied to 

the unilateral contact problem (22) always converges in practice. Without having a conver­
gence theorem, partial results can be obtained [23): 
-The path of the iterates does not depend on the factor rand the GNM performs better than 

Lemke's method applied to linear complementarity problems [24). If p denotes the number
of contact elements, the maximum number of iterations to obtain the solution is 2p-J (2P for
Lemke's method [25, 26)) if convergence occurs). 

- No simple cycle (order 2) can occur. 
When applied to the pure friction problem, the GNM may be unstable. For instance the 

method may cycle between forward and backward slip (when solution is stick) even on the 
simple problem as represented in Fig. 7 with q1 = 0. In this case, we can determine easily how
to choose the factor r to avoid cycling: 

r<2k. (61) 
It is the same condition as (58) for the modified Newton method restricted to this example, for
which II A II = 1. The following inequality is thus proposed to ensure convergence of GNM
applied to the friction problem (23). 

0 < r < 2Amin(K) . (62) 
A study of more complicated examples leads to sharper conditions [23), which validate the
relation (62) . 

/. 

-mg= An 

Fig. 7. Elementary friction pad problem. 
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4.2.2. GNM applied to frictional contact problems 
Using a penalty method, we showed in [20] that Newton's method can cycle on simple

problems. The order of the cycle increases fastly with the number of contact elements. But the 
local resolution of the elementary cycle, forward slip-backward slip, is always sufficient in 
practice. This fact justified the slip reversal control technique presented in [1]. Based on this
experience, we limit the present study to a simple model containing only one contact element 
(master node) to assess the GNM convergence when applied to mixed operators. Reconsider
the truss of Fig. 6 for example. The worst loads for convergence are q11 = n1q � 0, q1 = t1q = 0. 
Starting from the backward slip status, the first iterate x1 

= (u1, A1)1 satisfies 

Solving for A11 yields

A11 is non-positive in view of the uniqueness condition (53). The status associated to x1 will be
stick (and cycling will be prevented) if 

This leads to the sufficient stability conjecture 
(63) 

The following bounds show that the above restriction is a relaxed version of the condition (62) 
for the friction operator 

(64) 

Moreover, (63) degenerates exactly into (61) for the 2D truss of Fig. 6 because r max= 2t1Kt. 
Condition (62) seems thus sufficient to enforce convergence of the GNM applied to frictional 
contact problems. Unlike the damping method and the control technique presented in [1], the
above approach reduces to a good choice of the factor r, while preserving the fast rate of
convergence of Newton's method. This is the most important characteristic of this method for 
problem solving. 

5. Cylindrical contact problem with friction 

The contact between a disk and a bore of comparable radius with Coulomb's friction at the
interface is a good problem to test the capacity of the formulation and algorithm to cope with 
curved contacts since analytical solutions to the frictionless case [27] and the frictional case[28] are available. The main objectives are to determine the pressure and shear distributions

18



p( <P) and q( <P) at the interface and in particular the half contact angle a and the halfadherence angle {3. The numerical solution is obtained with the contact analysis program
TACT [ 12]. 

5.1. Definition of the problem 
a. Analytical data

An elastic disk of unit thickness is pressed, by means of a concentrated load applied along 
its axis, against a cylindrical bore of almost the same diameter, drilled in a plate of unit 
thickness too and infinite extent, as shown in Fig. 8. The mechanical and material data are 
specified besides. The coefficient of friction is taken equal to µ = 0.4.

b. Numerical data
The mesh, which takes advantage of the symmetry is shown in Fig. 9. A total number of 16 

contact nodes proves adequate to reach a satisfactory accuracy. Contact nodes between 0 and 
60° are evenly distributed (5° apart). The disk and the half space are modeled with 96 and 84 
four-node linear isoparametric plane stress elements, respectively. An arc of 2 1  infinite 
elements is used to simulate the half-space influence. 

5.2. Solution discussion 
a. Loading case

The closed form solution found by Klang [28] is rather complicated. It involves integrals 
which must be evaluated numerically. Instead of reproducing the formulas, we prefer to 
tabulate and display the pressure and shear distributions for the selected data, cf. Table 1 and 

y R= 6cm 
r= 5.999 cm E = 2.1x106 daN/cm2 
v =0.3 µ=0.4 Q = 1875 daN/cm 

plane stress 
a= contact angle 13 =slip angle 

Fig. 8. Cylindrical contact with friction on a disc in a 
bored plate. 

y - symmetry plane stress 

contact ----11� (16 N-N elts) 
plate � 11 (84 4N elts) 8\ 

1/2space � (21 �elts) 

y 

Fig. 9. Finite element mesh.

x 
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Table 1 
Exact and FEM results to cylindrical contact problem with friction 

Ex angle Ex pressure Ex press 0.4 Ex shear 0.4 FE angle FE pressure FE press 0.4 FE shear 0.4 

0 232.89 1 78.13 0. 00 0 235.40 191.70 0.00 
3 232.57 178.13 7.00 5 234.50 191.20 7.65 
6 231.59 177.50 14.06 10 231.80 1 89.30 15.10 
9 229.62 176.88 21.22 15 227.00 1 86.30 22.00 

12  227.34 175.94 28.50 20 220.10 181 .80 26.80 
15 224.39 174.70 35.94 25 210.90 175.50 36.50 
1 8  220.46 173.12 43.75 30 199.10 1 67.60 48.10 
21 215.87 171.25 51 .88 35 184.60 158.00 55.20 
24 210.65 169.06 60.30 40 166.90 1 45.70 58.30 
27 204.43 166.56 66.56 45 145.20 129.40 51.70 
30 197 .57 163.43 65.31 50 118.40 107.60 43.10
33 189.72 159.37 63.75 55 79.89 73.84 29.60 
36 180.89 154.06 61.56 60 6.58 6.20 2.48 
39 170. 75 147.81 59.06 
42 159.63 140.31 55.94 
45 147.19 130.94 52.50 
48 132.48 119.69 47.81 
51  115.47 105.93 42.50 
54 94. 86 88.12 35.31 
57 67.71 63.75 25.46 
60 0.00 0.00 0.00 

Fig. 10,  respectively. The pressure distribution is nearly elliptical. The maximum pressure
decreases as the coefficient of friction increases, because the shear stresses carry increasing 
parts of the load. The contact arc is divided into an inner stick region and an outer slip region
(the disc slips 'down'). The contact angle is a = 60° and the slip angle f3 = 26. 2°. Because the
contact is advancing under a monotonic loading and because friction is path dependent but
rate independent, the analytical solution is independent of the loading rate. The numerical 
solution is tabulated besides the exact one in Table 1 and plotted over it in Fig. 1 0. The 
frictionless pressure is in good agreement with the exact one. The pressure and shear 
distributions are not as accurate when friction is present because the solution is very sensitive 
to nodal impact location accuracy. In particular, the numerical solution depends on the 
incremental loading rate, due to the finite accuracy of the impact detection strategy. The 
solution displayed in Fig. 10 was obtained after applying the load in four uneven increments, 
following the parabolic law Q(t) = t2Q, i.e. Qn = nQ/16, n = 1, . . .  , 4. The contact angle
a =  60° is well approximated but the slip angle f3 = 37° is far from being precise. On the
contrary, the algorithm stability is excellent. Convergence occurs in a few iterations (less than
5) regardless of the size of the increment and the value of the friction coefficient (the value
µ = 0.7 was also used as a check).

b. Unloading case
We do not know of any closed form solution to the unloading receding contact problem. 

The numerical solution shown in Fig. 11 corresponds to a load equal to 75% of the original
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Fig. 10. Pressure and shear distributions. 

200 

E' -"' � 150 ::: 
� 100 " � � 
� 50 
� � 

� c. 

.50 0 15 30 

FE curves (p =0.4) 
---o- pressure 
� shear ---....---· p.• pres 

45 
half angle (deg) 

60 

Fig. 11. Pressure and shear distributions after unload­
ing to 3/4. 

load. For this moderate unloading the contact angle decr�ases from a = 60° to a = 55°. The 
inward slip angle f3 = 37° is virtually unchanged. The solution is characterized by another upward (opposite) slip region at the contact edge, in analogy with flat and parabolic punch
problems solutions [1]. This pattern subsists if the load is further decreased, but the upward 
slip band reduces to a negative shear zone. The algorithm capacity to cope with severe 
unloading is verified. 

Conclusions 

In this article, a mixed penalty-duality formulation of the frictional contact problem, 
inspired from the augmented Lagrangian approach has been proposed. The continuity of the
resulting conewise linear operator has been used to establish a uniqueness condition on the
coefficient of friction. Modified and generalized Newton methods have been examined and
sufficient conditions for their convergence conjectured. The cylindrical frictional contact
problem of a disk in a bore has shown the stability of the generalized Newton method. 

In our opinion, mixed penalty-duality methods are so much more robust than primal
penalty methods that it is worthwhile undertaking the extra complexity inherent to their 
formulation. Indeed, mixed penalty-duality methods are both more accurate and stabler than 
penalty methods. Moreover, contrary to a wide-spread idea, they do not require more storage 
if that needed to stabilize the penalty algorithm is taken into account. More specifically, the 
place necessary to store the additional dual multiplier unknowns is not larger than the place 
taken by the extra primal history variables necessary to stabilize the penalty method, whether 
they are previous displacements vectors as in a damping method or past slip hidden variables 
as with the slip reversal control technique [ 1]. The next step will be to extend these 
formulations to large slip problems using node-on-facet elements. 
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Note added in proof 

In their recent book of 1988, Kikuchi and Oden [29) give a fairly extensive bibliography on 
the subject, albeit omitting some major references of the European school such as Moreau, 
Panagiotopoulos, Klarbring or Ciarlet-Necas. Therein, they mention (and we agree!) that the 
frictional contact problem between continuous deformable solids involves formidable mathe­
matical difficulties. They add further on that many of the techniques developed to solve the 
corresponding discrete problems are based on Lagrange multipliers or penalty methods. 
Following Martins, they advocate normal compliance models which correspond to penalty 
methods and which have been suggested by Cumier [30) as early as 1984, extensively used 
afterwards [12, 1) and recently dropped for their lack of numerical robustness [1, 20). In their 
bibliography, Kikuchi and Oden do not mention augmented Lagrangian formulations how­
ever, nor do they use them in their own treatment of the subject. 

If the augmented Lagrangian technique can now be considered as straightfoward for the 
frictionless contact problem [31], its application to the pure friction problem with given 
constant pressure is not so obvious and the augmented multiplier technique introduced in this 
paper for the non-associated frictional contact problem with unknown pressure is believed to 
be original and powerful. Since the submission of the present paper, it has been extended with 
success to 2D and 3D large slip discrete contact problems, without friction in the case of two
deformable bodies and with friction in the case of a deformable body against a rigid obstacle. 
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