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Abstract: 
In computational surface catalysis, the calculation of activation energies of chemical reactions is 
expensive, which in many cases limits our ability to understand complex reaction networks. Here, 
we present a universal, machine learning-based approach for the prediction of activation 
energies for reactions of C, O, and H containing molecules on transition metal surfaces. We rely 
on generalized Bronsted-Evans-Polanyi relationships in combination with machine learning-
based multiparameter regression techniques to train our model for reactions included in the 
University of Arizona Reaction database. In our best approach, we find a Mean Absolute Error for 
activation energies within our test set of 0.14 eV if the reaction energy is known and 0.19 eV if 
the reaction energy is unknown. We expect that this methodology will often replace the explicit 
calculation of activation energies within surface catalysis when exploring large reaction networks 
or screening catalysts for desirable properties in the future. 
 
 

Introduction: 

Obtaining accurate activation energies for reactions is the most challenging aspect in 

electronic structure calculations of molecular interactions with metal surfaces. The difficulties in 

this task are related to the presence of many local minima for surface adsorbates on metal 

surfaces and the concept that the activation energy for a reaction is the lowest saddle point on 

the potential energy surface for the transition between any of the potential local minima of 

reactants and products. Due to these challenges, obtaining accurate activation energies for even 

a single surface reaction requires experienced researchers and a computational cost of 

approximately 10000 CPUh. At the same time, an understanding of the performance or the 
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computational design of heterogeneous catalysts requires the description of complex reaction 

networks and the calculation of a large number of activation energies1. 

Due to its excessive computational cost, the explicit calculation of all activation energies for 

complex reaction networks on multiple metal surfaces is in many cases not feasible and has been 

identified as limiting factor in applications such as the automated exploration of reaction 

networks2–4. Therefore, methods that rely on descriptors rather than electronic structure 

calculations for the prediction of activation energies have been developed. These methods are 

most commonly based on Brønsted-Evans-Polanyi relationships (BEPs)5–8, which establish a linear 

correlation between the activation energy of a reaction and its reaction energy9,10,19–22,11–18. 

Additionally, improving BEPs by including additional parameters and utilizing machine learning 

has been attempted23–26. BEP-based methods have become a staple in activation energy 

predictions and can be highly accurate when studying one specific type of reaction on one specific 

surface17. However, BEPs need to be reparametrized for every reaction studied, which requires 

a significant number of activation energy calculations using electronic structure theory. To 

further reduce computational cost, a generally applicable approach to predicting activation 

energies for any surface reaction is highly desirable27.  

Here, we develop a machine learning-based approach for the prediction of activation 

energies for reactions of C, O, and H-containing molecules on transition metal surfaces. We first 

present the University of Arizona Reaction (UAR) database, a database of surface reactions based 

on literature data. Subsequently, we generalize BEPs, by establishing a set of descriptors for each 

reaction and use it as input for machine learning based, multi-parameter regression methods to 

predict activation energies within the UAR database. Finally, we analyze the importance of 

different descriptor sets on the accuracy of the model.  
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The University of Arizona Reaction Database 

The first step in our work is to develop a database for surface reactions of C, O and H- 

containing molecules on monometallic late transition metal surfaces. We construct the 

University of Arizona Reaction database from literature data and include a total of 7161 reactions 

published in 79 different papers. All energies were converted to eV and forward and backward 

reactions were added to the database for each datapoint. All datapoints with negative activation 

energies or activation energies lower than the reaction energies were removed from the 

database. Furthermore, obvious typos leading to an incorrectly reported reaction stoichiometry 

were corrected wherever possible.  

A statistical overview of the database is given in Figure 1. The datapoints were obtained using 

seven different electronic structure codes (with localized or plane wave basis sets, different 

flavors of pseudo-potentials, different computational setups, etc.) and six different density 

functionals. The included species range from monoatomic molecular fragments to molecules as 

large as benzalacetone. The reactions range over all possible bond breaking and formation 

reactions in  C, O and H containing molecules, but also include adsorption and functional group 

transfers. All late transition metals are represented by at least 2% of the set.  
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Figure 1: This work relies on the University of Arizona Reaction (UAR) database. This 

database contains 7161 datapoints obtained from the computational, heterogeneous catalysis 

literature. Here, a statistical overview of the UAR database is presented.  

*PBE+X refers to PBE calculations with different dispersion corrections, such as +D228, +D329, 

+TS30, or +dDsC31.  

 

The Model: 

In this contribution, we rely on generalized BEP relationships26 to predict activation energies 

of reactions catalyzed by a metallic surface. In this approach, we correlate the activation energy 

to the reaction energy as well as descriptor sets related to the reaction type, the reactants and 

products, the catalytically active metal surface, and the computational setup. The different 

descriptor sets are schematically represented in Scheme 1. 
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Scheme 1: Schematic representation of the different descriptor sets included in the model for 

the prediction of activation energies. Details considering the mathematical definition of the 

descriptors used are given in the main text and the Supporting Information, section S2. 

 

In order to describe the reactants and products, we rely on scaling relationships32,33. Scaling 

relationships are based on bond order parameters, which describe the potential of each atom in 

a molecule to bind to the surface. Here, the adsorption energy (𝐸!"#) of a molecule is expressed 

as26  

𝐸!"# = $ %𝑎$𝑝$ + 𝑛$𝑝%! + $ 𝑎$,'𝑝$,'
'(),)",*,+

*
$(),)",*,+

.																			(1) 

In this expression, 𝑎$ is the sum over all bond order parameters of atoms of type X (X=C,  CO, O, 

H ; C stands for C atoms next to C or H, while CO stands for C atoms adjacent to at least one O 

atom) in molecule A, 𝑛$ counts the number of atoms of type X in molecule A, and 𝑎$,' is obtained 

as the sum over all products of bond order parameters of adjacent atoms of type X and Y and is 

related to the strain on the molecule caused by adjacent atoms bonding to the surface. 𝑝$, 𝑝%!, 

and 𝑝$,' are parameters that describe the contribution of 𝑎$, 𝑛$, and 𝑎$,' to the adsorption 

strength. It is furthermore expected that the nature of the reactants and products impacts 

activation energies of surface reactions. The 𝑎$, 𝑛$, and 𝑎$,' describe the chemical identity of 
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any surface adsorbate, and to describe the reactants and products in our model, we include the 

maximum value of 𝑎$ , 𝑛$ , and 𝑎$,' over all reactants/products as descriptors in our model. This 

choice allows to capture the nature of the reactants and products and keep the number of 

included descriptors in our model tractable. 

Furthermore, inserting equation 1 for each reactant and product into the expression for the 

reaction energy (𝐸,) leads to 

𝐸, = $ %∆𝑎$𝑝$ + ∆𝑛$𝑝%! + $ ∆𝑎$,'𝑝$,'
'(),)",*,+

*
$(),)",*,+

,																						(2) 

where ∆𝑎$, ∆𝑛$, and ∆𝑎$,'show the change in surface bonding, the number of atoms adsorbed 

to the surface and internal strain during a reaction. Since equation 1 describes the chemical 

identity of each reactant and product, equation 2 describes the change of chemical identity 

during a reaction. The type of reaction is described by the change of chemical identity of the 

reactants during a reaction. We therefore include all ∆𝑎$, ∆𝑛$, and ∆𝑎$,' as descriptors for the 

reaction type to our model26.  

Additionally, we rely on the type of metal as given by the column and row in the periodic 

table and the surface structure as described by the generalized coordination number (gCN)34,35 

for surface atoms involved in the adsorption of reactants and products as descriptors for the 

catalytically active surface metal.   

Furthermore, it is not clear to what degree the computational setup impacts results. 

Therefore, descriptors related to the computational setup are included, namely, the electronic 

structure code, the used density functional, and the energy type. Since these three descriptors 

are poorly described using numerical values, we use one-hot encoding to include them in our 

model. Overall, this leads to a model with 51 descriptors for each reaction. A summary of all 

descriptor sets is shown in scheme 1 and their mathematical definitions as well as descriptor 

values for all molecules studied are given in the Supporting Information, sections S1 and S2. 

Additionally, a practical example is given in the Supporting Information, section S3.  

Subsequently we used Python’s scikit-learn package36 to parameterize three machine 

learning-based regression methods, namely  Random Forest Regression (RFR), Support Vector 
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Regression (SVR), and Gradient Boosted Regression (GBR). We parameterize these three 

methods using a training set, test set, and validation set split. Details about the parameterization 

and the parameters for each method are given in the Methods section. 

using a test set size of one datapoint and repeat this procedure for all datapoints. This 

approach allows us to assign an unambiguous error to each datapoint, and the test set error is 

reported as an average over all single datapoint test set runs. To avoid overfitting, we 

parameterize the machine learning-based methods in such a way, that the mean absolute error 

(MAE) for the test set is minimized.  

Results: 

During parameterization, we perform a 80%/10%/10% training set/test set/validation set 

split and find mean absolute errors (MAE) of 0.07 eV/0.19 eV/0.19 eV, 0.11 eV/0.18 eV/ 0.18 eV, 

and <0.01 eV/0.16 eV/0.16 eV for the training set/test set/validation set for RFR, SVR, and GBR, 

respectively. However, in a realistic application our model will be trained using the full dataset 

and will be used to predict activation energies for reactions it was not trained with. If not 

indicated otherwise, we will focus on our analyses on an approach, where we use a test set size 

of one datapoint and repeat this procedure for all datapoints. This approach allows us to assign 

an unambiguous error to each datapoint, and the test set error (MAEtest, the MAE for the test) is 

reported as an average over all single datapoint test set runs. We will use MAEtest, the MAE for 

the test set, as a metric for assessing the quality of each method. Parity plots and error 

distributions for all methods, as well as the MAEs are shown in Figure 2 and predicted values for 

each datapoint are given in the Supporting Information. We find that GBR leads to the lowest 

MAE for the test set (MAEtest=0.15 eV), followed by SVR (MAEtest=0.17), and RFR (MAEtest=0.17 

eV). At the same time, linear regression using the same descriptors leads to an MAEtest of 0.28 eV 

for the UAR dataset, which shows the importance of machine learning based regression. 

Additionally, the methodology described here significantly outperforms previous formulations of 

gBEPs26, which lead to a MAEtest of 0.23 eV when applied to the UAR database. If not stated 

otherwise, we will use GBR, the best performing method, in further analysis.  
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Figure 2: Parity plots (top), error distributions (bottom), and MAEtest values for a test set of one 

datapoint obtained via Random Forest Regression (RFR, brown), Support Vector Regression 

(SVR, green), and Gradient Boosted Regression (GBR, blue). Each datapoint is shown as a 

square, distributions are calculated using a grid of 0.01 eV and a line between datapoints is 

added to guide the eye.   

 

To better understand how the inclusion of different descriptor sets affects the performance 

of our model, we then remove one set of descriptors shown in Scheme 1 at a time and report 

MAEtest values for all methods (see Figure 3 (a)). As expected, removing descriptors for the 

reaction energy leads to the largest increase in MAEtest, even though values still lie below 0.19 

eV. Despite the increase in MAEtest, it is fascinating to see that our model can predict activation 

energies for a reaction with an MAEtest of 0.19 eV without the prior knowledge of the reaction 

energy and therefore without performing any electronic structure calculations. Since this is a very 

important finding to accelerate the screening of large reaction networks, we will also include the 

model without Er in our analysis for the remainder of this text (no Er model). Besides Er, only the 

nature of the metal (Pt vs. Rh for instance), the maximum number of surface bonds, and the 

change in chemical identity leads to an increase in errors significantly larger than 0.01 eV. 

However, the relatively small increase in MAEtest after removing information about the surface 

metal raises hope that this approach might also be applicable for metal alloy surfaces. All other 
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descriptor sets on their own only have a small impact on the overall errors. The computational 

setup barely influences MAE values at all, which is reflected in the minimal impact of the reported 

energy type and the choice of density functional on overall MAEtest values. Furthermore, the lack 

of impact of electronic structure code on MAEtest values agrees with reports in the literature for 

comparisons between different electronic structure codes37.  

 

Figure 3: (a) MAEtest values calculated using GBR after the removal of one set of parameters 
shown in Scheme 1. Blue bars refer to the full model, while brown bars are obtained for the 
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model where Er was removed. Labels on the x-axis are defined in Scheme 1. (b) Comparison 
between MAE values for adsorption (ads) and bond-breaking reactions, using GBR (“full model”, 

blue), GBR without knowledge of the reaction energy (“no Er” model, brown) and BEP 
relationships (“BEPs”, green) for different types of reactions. For the full model and the no Er 

model, MAEtest values are reported, while for BEPs, MAE values for fitting the full database are 
given. (c) MAEtest values for different methods for different training set/test set sizes. Squares 
were explicitly calculated, and lines were added to guide the eye. Values for RFR are shown in 

brown, for SVR in green, for GBR in blue. 
 xFor the full dataset, two BEP error values are reported, one calculated for the full dataset (right 

column) and one as weighted average over all reaction types (left column).  

*The 100%/0% training/test set size corresponds to a test set size of 1 datapoint. 
 

For the no Er model, MAEtest increases to almost 0.40 eV when the descriptor set describing 

the change in chemical identity is removed (see brown bars in Figure 3 (a)). Otherwise, only 

information considering the surface metal significantly increases MAEtest values in this model. 

We compared the performance of our two models (with and without Er) with the 

performance of BEP relationships (see Figure 3 (b) and the supporting information Figure S2). It 

is well known that BEP relationships only work for a set of closely related reactions15. We 

therefore split our dataset into the following subsets for this analysis: C-C, C-CO, CO-CO, CO-O, O-

O, C-H, CO-H, O-H, and H-H bond-breaking and bond formation reactions, adsorption, and 

desorption reactions. We then categorize the remaining reactions, which consist mainly of H and 

O transfer reaction between adsorbates or molecular rearrangement reactions on the surface, 

as “other” reactions. Bond-breaking and adsorption reactions are shown in Figure 3 (b); bond 

formation reactions, desorption and other reactions are shown in the supporting information, 

Figure S2, parameters for BEPs and numerical error values are given in the supporting 

information, section S5, Figures S3-S6.  

We see that our two models (with and without Er) globally outperform typical BEP 

relationships with MAEtest values for the entire database of 0.15 eV , 0.19 eV and 0.37 eV 

respectively and only for H-H bond-breaking reactions, a very small subset of reactions, BEPs 

marginally outperform the no Er model. Differences are most apparent for C-C and CO-O  bond-

breaking and adsorption reactions. Such a behavior is expected, since these reaction categories 
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include the most diverse sets of reactions38. Even though errors increase when the Er unknown, 

this approach still outperforms BEP relationships.  

Given these encouraging results, we then analyzed the impact of the training set/test set split 

on obtained results. We choose test set sizes ranging between 10% and 90% and performed 1000 

different training set/test set splits and MAEtest values are reported as averages over all runs in 

Figure 3 (c). It is immediately apparent that MAEtest values drop with increased training set size. 

However, already for training set sizes of only 40% of the total data set, MAEtest values drop below 

0.2 eV using GBR (see Figure 3 (c)). Similar trends are observed for our model without Er (see 

supporting information Figure S7). However, overall error values are about 0.04 eV in errors 

higher, RFR moves closer to GBR, and SVR performs significantly worse than the other methods.  

 
Figure 4: MAEtest values for GBR using a fraction of the metal datapoints as the test set. Squares 
were explicitly calculated, and the line was added to guide the eye. The shaded area shows the 

variation in MAEtest values for different training- and test set splits. The legend indicates the 
surface metal and n gives the number of datapoints for each metal.  
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values as an average over 1000 training/test set splits. Results are shown in Fig. 4. We find that 

for all surface metals, results converge quickly and already after including 20%-30% of the metal 

datapoints a significant drop in activation energies can be observed. Again, similar trends are 

observed for our model without knowledge of Er (see supporting information Figure S8), with 

overall errors about 0.04 eV higher than for the full model. A thorough analysis for the larger 

metal datasets (Pt, Pd, Rh) implies that the inclusion of roughly 10%-20% of the datapoints (~150 

datapoints) for a new metal might be sufficient to arrive at a reasonably high accuracy for the 

prediction of activation energies.  

As a next step, we performed a similar analysis for different reaction types and focus on 

reactions where we have more than 300 datapoints available (see Figure 5). As indicated in Figure 

3 (b), different reaction types show significant differences in errors. However, for all the reaction 

types we observe the largest reduction in errors after 10%-20% of the datapoints are included. 

Even though errors still decrease with increased data, a reasonable accuracy can already be 

achieved after 20%-30% of the data are included in the training set. These results are 

encouraging, since it indicates that it might be sufficient to include only a few hundred datapoints 

for each reaction type when adding a new element such as N or S in our model. Again, errors for 

a model without knowledge of Er (see supporting information Figure S9) increase by about 0.04 

eV. 
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Figure 5: MAEtest values for GBR using a fraction of the reaction datapoints as the test set. 
Squares were explicitly calculated, and the line was added to guide the eye. The shaded area 

shows the variation in MAEtest values for different training- and test set splits. The legend 
indicates the surface metal and n gives the number of datapoints for each metal.  

 

Discussion: 

So far, we have demonstrated that gBEPs can lead to a prediction of activation energies with 

an MAEtest of 0.14 eV if the reaction energy is known and an MAEtest of 0.19 eV if the reaction 

energy is unknown. Our approach significantly outperforms other approaches reported in the 

literature23,25,26, which have focused on significantly smaller databases. However, it is important 

to note that the reported errors are errors with respect to the DFT data used to train the model, 

which are typically assumed to show errors of ~0.20 eV39. As shown in Figure 3 (c), this increase 

in accuracy is linked to a significant increase in the number of training data available within the 

UAR database. The UAR database, however, is obtained from datamining the literature, which 

leads to a diverse set of data, which has been calculated using different methods and 

computational setups. While we attempted to capture some of these differences by including 

descriptors for the functional, electronic structure code, and the reported energy type, other 

technical aspects, such as the number of layers used in DFT calculations, the energy cut-offs, or 

convergence criteria were not considered in our analysis. Additionally, we cannot exclude that 

some of the data included in the UAR database was just misreported in the peer reviewed 

literature. These differences become apparent when analyzing data for the dehydrogenation of 

methane over Pt(111) (datapoints 1, 2173, 4203, 5826, and 6311 in the UAR database). Here, the 

calculated activation energies vary between 0.53 eV and 0.76 eV, while reaction energies vary 

between -0.30 eV and -0.10 eV. Based on all these factors, we would estimate that data in the 

UAR database contains noise on the order of 0.05 eV-0.1 eV.  

The noise is a measure for errors that can be expected due to differences in the 

computational strategy in DFT calculations reported in the literature, but also leads to a lower 

bound for the MAEtest of any machine learning based model trained on the UAR dataset. At the 

same time, the noise in the UAR dataset might be too large to identify small effects on activation 
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energy predictions, such as the choice of functional, the reported energy type, or the used 

electronic structure code. However, it might be possible to extract this information training gBEPs 

on a more uniform dataset, which is expected to be affected with less noise. 

Throughout this work, we have chosen a formulation of gBEPs that relies on descriptors for 

the surface metal and the surface termination. This formulation is ideally suited to describe 

chemical reactions on monometallic surfaces and can be used in the automated exploration of 

reaction networks or screening of monometallic surfaces or nanoparticles. However, 

conventional screening studies of heterogeneous surface catalysts rely on the adsorption 

energies of molecules or molecular fragments1,18,40, and can be applied irrespective of the type 

of surface metal or the surface termination. To explore whether the gBEPs developed in this work 

are applicable in such a scenario, we replaced the descriptors for the surface metal and the 

surface termination by the adsorption energies of C, O, H, and CO. All numerical values and details 

on how adsorption energies were calculated are given in the Supporting Information, section S7. 

Again, we find similar accuracy in our predictions with MAEtest=0.14 eV for the full model and 

MAEtest=0.19 eV for the no Er model. This demonstrates that gBEPs are flexible in terms of their 

formulation and can be seamlessly integrated into conventional catalyst screening methodology. 

Given the accuracy of our approach, we believe that it can directly replace BEPs in catalyst 

screening studies.  Additionally, it might be useful in a pre-screening step, to identify potential 

rate determining steps. However, it might not be suitable to construct a quantitatively accurate 

microkinetic model or kinetic Monte-Carlo model for complex surface reactions. 

Conclusions: 

Overall, we present a machine learning-based approach for the prediction of activation 

energies for chemical reactions on metal surfaces. The calculation of activation energies using 

the approach developed in this work is fast, accurate, and easy to apply. Initial tests raise hope 

that our approach can be extended beyond the single metal surfaces studied here. We expect 

that this methodology will in many cases, such as the automated exploration of reaction 

networks or the computational screening of the materials space, replace the explicit calculation 
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of activation energies in surface catalysis. It will accelerate the understanding of the functioning 

of surface catalysts and will act as an enabling approach in the design of heterogeneous catalysts. 

 

Methods: 

In this work, three different machine-learning based multi-parameter regression techniques 

were applied, namely Random Forest Regression (RFR), Support Vector Regression (SVR), and 

Gradient Boosted Regression (GBR). Multiparameter regression analyses were performed using 

Python’s scikit-learn module36, a part of the Python scikit package. We parameterized these 

methods by first dividing the dataset into 10 random parts. For each of the part, we split the 

remaining data into training set (80% of the full data set) and test set (10% of the full data set). 

To avoid overfitting, we optimized hyperparameters in a way that minimized MAEtest over 100 

different training/test set splits. The most common parameterization among the ten different 

datasets was chosen to report the final validation set error. After careful testing, RFR was 

performed for a total of 1600 trees. SVR was performed using the “rbf” kernel, with the “auto” 

setting for gamma, an epsilon of 0.01 and a penalty parameter of 160 for C. In GBR, we chose the 

least squares loss function, a learning rate of 0.1 and a total of 3000 boosting stages and a 

maximum depth of 7 for each individual boosting estimator. All other parameters were left as 

the default values. 

 

Data and Software availability: Version 1.0 of the University of Arizona reaction database is 

accessible at https://github.com/floriangoeltl/The-University-of-Arizona-Reaction-Database . 

Error values for each datapoint are available in the Supporting Information. All regression 

analyses were performed using python’s scikit-learn package, freely available at https://scikit-

learn.org/stable/install.html .  
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