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THE L?>-NORM OF THE FORWARD STOCHASTIC INTEGRAL
W.R.T. FRACTIONAL BROWNIAN MOTION H >%

ALBERTO OHASHI! AND FRANCESCO RUSSO?

ABSTRACT. In this article, we present the exact expression of the LZ-norm of the
forward stochastic integral driven by the multi-dimensional fractional Brownian mo-
tion with parameter % < H < 1. The class of integrands only requires rather weak
integrability conditions compatible w.r.t. a random finite measure whose density is
expressed as a second-order polynomial of the underlying driving Gaussian noise.
A simple consequence of our results is the exact expression of the L?-norm for the
pathwise Young integral.

1. INTRODUCTION

Let B = (BW, ..., BY) be a d-dimensional Fractional Brownian motion (henceforth
abbreviated by FBM) with exponent % < H< % on a probability space (2, F,P). That
is, B is a d-dimensional Gaussian process with covariance

) . 1
E[BOBY] = {4+ s — |t — s}

for 1 <i,j <dand 0 < s,t < oo. We set R(s,t) = {t* + s — |t — s>} for
(s,t) € RZ. In the sequel, increments of paths ¢ — f; will be denoted by fs; := f; — fs.

For a given positive constant T, let g : [0,T] x R? — R be a Borel function, where
R? is equipped with the usual inner product (-,-). For a given € > 0, let us denote

iJ

I (ea(B)dB) = ¢ [ {ols.B). Busids (1.1)

€
In this paper, we study the existence of the forward stochastic integral in the sense of
stochastic calculus of regularization (see e.g. [20] and [23] and other references therein):

T
/ g(t, B;)d” B; := hgl]_(e,g,dB) (1.2)
0 €.

in L?(P). More importantly, we present the exact expression of the L?(IP)-norm of
(1.2) in terms of an explicitly second order-polynomial of the underlying FBM. In fact
the techniques we develop in this article are not limited to FBM and can be used
to treat other Gaussian noises admitting a covariance measure structure in the sense
of [11]. Those processes are finite quadratic variation processes in the sense of [21],
where relations between the quadratic variation and the covariance structure was first
investigated. For the sake of simplicity, in this paper, we will not discuss the technical

aspects of this point further.
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2 ALBERTO OHASHI' AND FRANCESCO RUSSO?

There are essentially three different approaches to construct stochastic integrals
w.r.t. FBM with % < H < 1: pathwise, Malliavin calculus and, more recently, sto-
chastic sewing lemma. Since B has «-Holder continuous paths for v < H, then one can
make use of a pathwise approach to define a stochastic integral in the sense of Young
[25]. Indeed, if a stochastic processes {u;,t > 0} whose trajectories are A\-Holder con-

tinuous with A > 1 — H, then the Riemann-Stieltjes integral fOT usdB; exists for each
trajectory (see [25]). Another pathwise approach was proposed by M. Zahle in [26] who
introduced a generalized Stieltjes integral using the techniques of fractional calculus.
The Malliavin calculus approach has been extensively studied by many authors over
the last years: the divergence operator associated with the Gaussian space of FBM
provides an isometry between the Reproducing Kernel Hilbert space (henceforth ab-
breviated by RKHS) associated with FBM and the first chaos, and this is precisely the
so-called Paley-Wiener integral for the class of deterministic functions in the RKHS.
Recall that in the classical Brownian motion case H = %, the divergence operator
coincides with the classical It6 integral when the integrand is adapted and this moti-
vated many authors to develop a Malliavin calculus approach for a stochastic calculus
w.r.t. FBM driving noise. In this direction, we refer the reader to e.g [15], [7], [1], [11],
[4] and the monograph [3] for a very complete list of works in this topic.

One standard strategy for the obtention of L?*(PP)-bounds for stochastic forward inte-
grals of the type (1.2) and also the similar object computed in terms of Riemann sums
is the identification with the divergence operator plus a trace term associated with a
Gaussian driving noise B. The key point is the multiplication rule between smooth
random variables and the increments B sy (see e.g. Prop. 1.3.3 in [17]),

YsBs,s-i—e = Yts/ ﬂ[s,s+e}(r)6Br (13)
0

= / 3/8]]-[8,8-‘1-5] (T)(sBr + <D3/87 ]]-[S,S+E]>Ha (14>
0

where D denotes the Malliavin derivative operator, & is the divergence operator and
(-, )% is the inner product of the underlying RKHS H. We refer the reader to e.g. [17]
for the definitions of the basic objects D, § and H above. The passage from (1.3) to
(1.4) requires very strong regularity conditions from the integrands which prevents this
framework of solving SDEs. The connection between the forward stochastic integral in
the sense of stochastic calculus via regularization [20], pathwise Young and divergence
operator was established in [2] and [22]. In this direction, see also [11], Chapter 5 in
[3] and [17] and the monograph [23].

More recently, Matsuda and Perkowski [14] have obtained some progress beyond the
standard Young pathwise interpretation by using the Mandelbrot-Van Ness represen-
tation [13] in terms of a two-sided Brownian motion. Based on an extension of the
stochastic sewing lemma [12], [14] has proved the existence of the limit



T
/ g(BS)st = hm g(Bti>Bti7ti+l (15)
0

in LP(P) for every p > 1, as the mesh |II| of an arbitrary partition II of [0, 7] vanishes,
where g is bounded. The contributions [24] and [8] proved previously existence of (1.5)
when ¢ is a bounded variation function.

This article aims to produce the exact L?(P)-norm of the forward integral (1.2) under
rather weak conditions of integrand processes of the form Y. = g(-, B.), where g is a
time-space Borel function satisfying only integrability conditions w.r.t. a random field
of the form

O*R

atas(s7t)IdXd+W(8at)7 (16)
where W(s,t) is a second-order polynomial of the underlying Gaussian noise. For a
given Borel function ¢ : [0,7] x R? — RY, (¢,8) € (0,1)? and Y. = g(-, B.), we shall
write

<I‘&J@dBL]‘@&YﬂM%>B@):H?/‘ (Y, ®Y;, A" (€,0; 5, 1) )dsdt (1.7)

0,71

where ® denotes the tensor product in R? and A~ (e, ;) = (A~ (¢, 5;+)) with

y 1 ; ,
A~ (e, 055,1) = =E|BL), B 4| B, B, (1.8)

for (s,t) € [0,7]* and 1 < i,j < d. The main novel idea presented in this article is to
explore the regularity inherited from the projection operator A~ (e, d; -) which allows us
to calculate explicitly the L?(P)-norm of the forward stochastic integral under rather
weak integrability conditions w.r.t. the random field (1.6). The investigation of the
double limit (¢,4) | 0 (simultaneously to zero) of (1.7) and (1.8) provides the existence
of (1.2) and (1.6), respectively, and as a by-product it gives the exact L?(IP)-norm of
the forward stochastic integral.

Theorem 2.2 presents the main result of this article: the explicit description of
the L?(P)-norm of (1.2) under rather weak regularity conditions on integrands of the
form Y. = g(-, B.). The fundamental object is the random field W described in (2.2)
and constructed in Theorem 2.1. The process W is a second-order polynomial of the

201 2—2H
Based on the g-integrability of W, our condition on Y. = ¢(-, B.) in Theorem 2.2

underlying FBM and it is a ¢-integrable random field for 1 < ¢ < min{ 1 ;}

(5,t) = Y, ®Y; € LP(Q2 x [0, T]* R™9) (1.9)

depends on a integrability parameter p € (max {ﬁ, ﬁ}, +oo} which is the con-
jugate exponent of ¢q. Clearly Y is allowed to be unbounded, see in particular Example
2.1, but also not locally bounded, therefore discontinuous.
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By means of a standard completion argument, we stress that the exact L?*(P)-norm
expression of the forward stochastic integral given in Theorem 2.2 allows us to extend
(1.2) to a larger class of integrands as elements of a natural Hilbert space of processes
equipped with the inner-product inherited from the right-hand side of (2.5). We refer
the reader to [18] for this procedure in the singular case ;11 < H < % In the present
regular case % < H < 1 of this article, the resulting Hilbert space will be a space
which contains not only integrable functions but also distributions in time and space.
We leave the complete analysis of this extension and the associated stochastic calculus
arising from Theorem 2.2 to a future project. A step in this direction was done in [9].

Finally, we mention that we have chosen to consider only state-dependent integrands,
though we believe an extension of Theorem 2.2 to more general integrands should be

possible.
Notation: In this article, 0 < T < oo is a positive finite terminal time,

0,72 :={(s,t) € [0,T)*; s #t,s > 0,t > 0},

Ar:={(s,t) €[0,T)30<s<t<T},
and the increment of a one-parameter function f is denoted by fs; := f; — f, for
(s,t) € R% Throughout this article, we write (e,6) } 0 to denote € | 0 and § | 0
simultaneously. We further write A < B for two positive quantities to express an
estimate of the form A < C'B, where C' is a generic constant which may differ from
line to line. To emphasize the dependence of C' on some parameters a, b, . . ., we write
A Sa,b B.

The sign function is denoted by sgn. We also write a A b = min{a;b} and a Vb =
max{a; b} for any real numbers a,b. Moreover, for any two natural numbers (i, j), we
write 0;;, = 1 when ¢ = j and d;; = 0, otherwise. The identity matrix of size d is
denoted by I;.q and T denotes the transpose of a matrix.

If a = (a')l),b = ()], € R% then the matrix (a'0’)1<; j<q is the tensor product
a®b. (-,-) denotes the standard Frobenius inner product on the space of r x g-matrices
for r,¢ > 1. Whenever clear from the context, |- | denotes a norm of a finite-dimension
vector space. For a given column vector a, a' denotes the transpose of a. For a random
variable X, we denote || X||? := E[X P for 1 < p < co. Let LP(Q2 x [0, T]* R") be the L?
space of R"-valued two-parameters processes w.r.t to the measure dPP x dsdt, n > 1 and
1 < p < oco. With a slight abuse of notation, we write || Z|) = Ef[O,T]Z |Z(s,t)[Pdsdt
whenever clear from the context.

If 6 = (0;){, and & = (&)9_, are two column random vectors, then the joint covari-
ance matrix of (6, ¢) is denoted by

Cov(@,g) = cov(&i,éj);l <i<k 1<j5</,
where cov is the covariance operation. We will denote

©o(s,t) == R(s,t) —v(s),
for (s,t) € Ar, where v(s) := R(s, s).



2. MAIN RESULTS

This section presents and discusses the main results of this paper. In the sequel, O,
is the determinant of the covariance matrix of the Gaussian vector (Bgl), Bt(l)). The
first main result of this paper is the following.

Theorem 2.1. If% < H <1, then

1
Ast) = lim K B&HE@Bt,H(g\BS,Bt] (2.1)
2R
= W(s,t)+ (s,t)I4xa; s Ft.

O0tos
The limit in (2.1) is considered in LI(2 x [0, T]?; R¥>9) for 1 < ¢ < min {ﬁ, ﬁ},
where W = (W?Y) is given by

WH(s,1) = Ao Dar(s. 1) (BOBY — con(BY; BY)) 2.2)
Al Do, (BOBY — con( B BY)
+ )\12(57 t))\gl(s, t) (BISZ)ng) _ COU(B?); ng)))
+ )\12(3,t))\22(8,t> (Bt(l)Bt(]) _ CO’U(Bt(i);Bt(j))),
Jor 1 <,j <d, where
1 (1,
Mils1) = {5700 = R0 (5.0},
1 (OR 1,
A2(s,t) == @SJ{E(S,t)v(s) - R(57t)§1) (3)}’
1 (OR 1,
)\21(57 t) @s,t {E(ta S)’U(t) — R(S, t)§1) (t)}’
L, OR
hals 1) = {5 (00(6) = R(s ) (6:9)]

for (s,t) € [0, T,
The two-parameter process W on [0, T2 might be interpreted as a zero-mean product
of (non-Markovian) Nelson-type derivatives [16] of the form
D4 B, @ DA B, — ]E[DA“BS ® DA“BJ . (s,1) € [0, T]2 (2.3)

Here A, is the sigma-algebra generated by the pair (B, B;) and D=t is the stochastic
deriative w.r.t. A, in the sense of Darses and Nourdin [5] and Darses, Nourdin and
Peccati [6] defined by the almost sure limit

1
DAS’tBs = lgigl EE I:BS,S+E‘BSJ Btj| )

for every (s,t) € [0, T)2.
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Theorem 2.1 plays an important role in the obtention of exact L?(P)-norm of the
stochastic forward integrals as demonstrated by the following result. Let H be the
RKHS equipped with the inner product

0’R
o= [ {0 g (s ot (2.4

for f,g:10,T] — R% € H. See e.g. [11] and [19] for further details on the space H.
In the sequel, in order to shorten notation, for Y. = ¢(-, B.), we denote
Y®2(s,t) =Y, ®Y,,

for (s,t) € [0, T)>.
Below, we recall that I~ (e, Y, dB) is the forward approximation given by (1.1).

Theorem 2.2. Let g : [0,7] x R — R be a Borel function and Y. = g(-, B.).
Assume that Y®2 € LP(Q x [0, T]%R>) for max {52715} < p < oo. Then,
limeyo I~ (e,Y, B) exists in L*(P) and

T 2
|[ s
0 2

= E||Y||${+]E/ (Y®2(s,t), W(s, t))dsdt (2.5)
0,71

— IE/ (Y®2(s,t), A(s, t) )dsdt,
[0,7]2

where A has been defined in (2.1).

Corollary 2.1. Let g : [0,T] x R? — R? be a Borel function and Y. = g(-, B.).
Assume that Y®2 € LP(Q x [0,T]%R™) for max {5=457;55—=} < p < oo and let

1 < ¢ < min {2 12H, ST 1} be the conjugate exponent of p. Then,

v 2 5
— 20H-1)+=
H/ r r 9 N »q, p - Ul ( )+q’ (26)

for every (u,v) € [0, T]?.

As we have mentioned earlier, Theorem 2.2 and Corollary 2.1 can be applied to a
large class of locally unbounded (therefore discontinuous) processes. Concerning the
case of the classical pathwise Young integral we have the following.

Example 2.1. Fiz 1 < H <1 and max {35+ 57—~} <p <oo. Let g : [0,T] x R" —
R? be a Borel function and Y. = g(-, B.) satisfies the following:
o t— Y, is 0-Holder continuous a.s. for 6 + H > 1

Ys, 2
® SUDp<s<i<T \L ;|L € L*(P).

Then, the forward stochastic integral fOT Yid~ By is a pathwise Young integral (see e.g.
Proposition 3 in [22]).
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In this case the L*(P)-norm of the Young integral is given by the right-hand side of
(2.5). Indeed the classical Young’s reqularity condition immediately implies

YV, @Yy <80 + 10 + 5°, (2.7)

for some 6 > 0 such that § + H > 1. Property (2.7) implies (1.9) for Y. = g(-, B.) and
therefore Y fulfills the assumption of Theorem 2.2.

At this point, we explain some differences w.r.t. the singular case treated in [18]. In
the singular case i < H < %, the convergence of the Stratonovich version A%(e, §; s, t) of
(1.8) takes place only pointwise for each (s,t) € [0,T]? a.s., while Theorem 2.1 shows
that we do have functional L9 convergence of A~(¢,d;-) to the process A if H > %
Moreover, in contrast to the singular case, the random measure A in Theorem 2.1
is finite over the rectangle [0, T]?. This allows us to get rid of additional regularity
conditions on the increment of the integrand processes reminiscent from the Young’s
pathwise approach. We stress this phenomenon is related to the presence (or lack of)
of the covariance measure structure studied in the articles [11] and [10] for the regular

and the singular case, respectively.

3. PRELIMINARIES

In this section we present some basic objects related to (1.8). The projection operator
A~ (e, d; ) onto the sigma-algebra generated by B, By can be completely characterized
by Gaussian linear regression which we now describe in detail. Let us denote

1)
) (B P
Bs,t = B(z) Bs,t = )
t B.
for (s,t) € [0,T]? and 1 < i < d. Observe
_ 1
A (€,6;5,1) = QE[Bs,sﬁ ® Bt,t+6|Bs,t}

for (s,t) € [0, T)2.
For each 1 <4, j < d, we observe (B],, BS@ o Bt(,jt)w) is a 2d+2-dimensional Gaussian
vector. Therefore, the classical linear regression analysis yields the representation

BS;-&-E _ B§2+5
g | =ELL 507 | | Bes
t+6 t+6

where N;.(¢,6) is a (zero-mean) 2-dimensional Gaussian vector independent from the
sigma-algebra generated by B, ;. Moreover, we have the following representation

i)
D) [
B, )P

+ Ns,t(€75)7 (31>

E = N (i, 5)E, 1 By, (3.2)

where
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N (G g) = Cov (B0 BY,5) T Bur ).

Es,t = COV <B57t; Bs,t) .

We can represent /\/’;f(i, j) and X} as follows: ¥, is a 2d x 2d-square matrix parti-
tioned into a block diagonal form

Ysi(1,1) 0 e 0
0 Y.0(2,2) ... 0
Es,t - . 7t(. ) . . )
0 0 Ysi(d,d)

where
Sua(i,1) = Cov (B} B).
for (s,t) € [0,T)* and 1 < i < d. By the very definition, for (s,t) € [0,T]?, we have
. v(s)  R(s,t)
Sui) = (sl o)
det(X,(i,7)) = v(s)v(t) — R*(s, 1),

NN | v(t)  —R(s,t)
Zeelhi) =g < “Ris,t)  u(s) > :

Here, in order to keep notation simple, we denote

®s,t = det(Zsyt(z’, Z)),
for (s,t) € [0, T)?. By construction,

Yor(1,1) 0 0
0 Y. 12,2 0
S5 = e
0 0 D Y ()

By the independence between B® and BY) for i # j, we observe we can represent

NG (i, 5) as

o o [ ailest) o al(est) .. ajle s, t)
M’t(z’])_<5{1(5,s,t) Bl t) 55(5,5,15))'

Here, the first row is represented by a’(e, s, t) := (0,0) for every ¢ # i and
alfers.0) = (cou (B, BLY) con(BLY,. BY)).

The second row is represented by 37 (6, s,t) := (0,0) for every m # j and



' 1 1 1
30,5,1) i= (cov(BUL s BY), cov(Bs BY) ).

From (ai(s,t), 37(s,t), we can construct the submatrix of N (i, §), given by
NS nii(€6,s) M s,t)
st o ((5, S, t) Il22((5, S, t) ’
where

ni(e,s) := R(s,s +¢€) — R(s,s), mnia(e,s,t):=R(s+et)— R(s,t),
and
1121((5, S, t) = R(‘S’t + 6) - R(S, t), n22<57 S, t) = R(t + 9, t) - R<t7 t)v

for (¢,0) € (0,1)% and (s,t) € [0,T)%.
Bg;-ﬁ-e B
) at
t+5

Let us denote
Zslt” (€) — (3.3)
ZE(8) ) ’ ‘

for (s,t) € [0,T]2. From (3.2), the coordinates of the conditional expectation (3.3) are
given by

ZE9(e) = A, s, ) B + \a(e, s, 1) By (3.4)
and
ZE3(8) = A1 (8, 5,8) BY) + Aga (8, 5,1) BY, (3.5)
where we set
(e 5 ) = — {nn(e $)o(t) — nale, s, t)R(s t)}
Y ) (_)SJ ) ) ) ) )
Male,5,1) = g {male, s, B)uls) — mus(e,9)R(s. 1)}
12\€, S, T @s,t niol€, s,1)v(S nile, s S, )
1
An(6.5,1) = o {n21<5,s,t)v<t)—n22(5, s,t)R(s,t)},
s,t
1
A2 (0, 8,1) := 5 {n22(5, s, t)u(s) — ngl(é,s,t)R(s,t)},
st

for (s,t) € [0,T]2. We shall represent A~ (¢, d; ) as follows.

Lemma 3.1. For any (¢,0) € (0,1)?,
A (e, b5 1) = = | 2500220 (0) — BIZL () 220 0)]]
1

for (s,t) € [0,T)? and 1 <4, < d.



10 ALBERTO OHASHI' AND FRANCESCO RUSSO?

Proof. The proof follows the same lines of the proof of Lemma 3.1 in [18] and hence

we omit the details.

O

Remark 3.1. Since R vanishes on the azis R(x,0) = R(0,y) = 0 for every x,y and

PR s continuous on Ri outside the diagonal, then

Otds
R(s,t) // s (a, b)dadb.
2

() ( t+6 8+E 8 R

B,"”,. B’

65 BB Bienl = 55 / / 8t8 (a, b)dadbdi; = 752(5, )0
as (€,0) L 0 for each (s,t) € [0,T]? and 1 < i,j < d.

Therefore,

Lemma 3.2. For each (s,t) € [0,T]%, we have
. 92
A, 1) 1= lim A™(€,055,8) = W(s,t) + (5 Dl
almost surely, where
Wi(s,t) o= A(s. (s, 0) (B BY — cou BY: BY))
Al Ol O (BOBY — con(B9; B9)
+ )\12<S,t)/\21(8,t) (Bt(Z)ng) _ COU(B§i);B§j)))
+ )\12(3,t))\22(8,t> (Bt(Z)Bt(]) _ CO’U(Bt(i);Bt(j))),
and
A (5 t) 1 {11}’(3)’0@) R(S t)@(s t)}
11\~ @s7t 2 ’ Os ) >
OR 1
Aia(s,t) = @&t{%(s,t)v(s) — R(S,t)ﬁv’(s)}
1 (OR 1,
Aoi(s,t) = @S7t{§(s,t)v(t) — R(S’t)iv (t)},

)\22(8, t) =

for (s,t) € [0,T)? and 1 < 14,5 < d.

(3.6)

(3.7)

Proof. Just apply Remark 3.1, Lemma 3.1, (3.4), (3.5) and use the pointwise differen-

tiability of the covariance kernel R. In this case,

.1 o1
(s, t) = 161%1 Z)\ll(@S?t)a Aia(s,t) = 1€1f0n E)\12(€a 5,t),
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1 o1
A1 (s, t) = 1(%&)1 5)\21((5, s,t),  Aaa(s,t) = 1;{51 5)\22((5, s, 1),
for each (s,t) € [0, T2 O
In the sequel, let us denote
7’]11(8, t) = )\11(S,t) —f- )\12(S7t), nlg(S,t) = )\12(S,t)
N21(8,t) 1= A1 (s, 1) + Aaa(s, 1), Ma2(s, 1) 1= Aaa(s, 1),

for (s,t) € [0,T])2. By using the fact that A1(s,t) = Aaa(t,5) and Aja(s,t) = Aa1(¢, 5)
for every (s,t) € [0,T]?, we can also represent

Wi(s, ) = (mals, 0B + ma(s, /B (e (s, ) BY + mpa(s, )BY))  (38)

- E[(WH(S, £) B + mia(s, t)BEfE) (7721(57 t)BY) + oo (s, t)Bif?ﬂ,
for 0 < s <t <T and

Wis, ) = (ma(t,s) B+ ma(t,5) B ) (a5 B + a(t, ) BLY) - (3.9)

— E[(Wn(t, $)BY + malt, S)Bt(fs)> <7721(f7 $)BY + st S)Bt(,?)],

for 0 <t < s < T. The appearance of the increments Bs; and B, and the more
regular functions 7y, and 7; in representations (3.8) and (3.9) will be more convenient
in the proof of Theorem 2.1.

3.1. The projection operator over the 2-simplex. The above discussion motivates
us to view A~ (€, ;) in terms of increments By, rather than By, B; as follows. In case
0 < s < t, we will express (1.8) as

1
A (e,8;8,t) = JE[B&W ® By yy5|Bs, Bsy]. (3.10)
In case 0 < t < s, we will write
1
A" (e,0;5,t) = S]E[Bs,s—l-e ® By 5| B, Bt,s] (3.11)

For this reason, we collect some important objects of the projection operator over
Ar ={(s,t) € [0,T]%0 < s <t < T} which will play a key role in our analysis. In this
section, we restrict the discussion to the 2-simplex Ar. The representation of (3.11)
over the other 2-simplex of [0, T2 is totally analogous. Let us consider

O;:f — < 011(67 S) 012(6,S7t) > :

091 (5, S, t) 022(5, S, t)

where the elements 011,012,021, 099 are given by

011(€, 8) 1= COV(B(I) BY) = R(s,s +¢€) — R(s, s),

s,8+€r s
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o12(€,8,t) = COV(BSS)“; Bs(}t)) = R(s +¢€,t) — R(s,t)
- [R(S T+ 6 S) - R<S7 S)]a

051(9, s,t) := COV(BIE?_HS; BW) = R(s,t+ ) — R(s,1)
and

092(0,8,t) = cov(Bt(;)*_é; Bst)) = R(t+6,t) — R(t,t)
— [R(s,t+0) — R(s,1)],

for (¢,0) € (0,1)* and (s,t) € Ar. Gaussian linear regression yields the following
representation

Zsl,;tij(e) - 7711<€> S, t)BLgZ) + 7712(67 S, t)Bs(,,Zz (312)
and
ZSQ,;tij (5) =721 (57 S, t)ng) + 7722(57 S, t>B§,]t)> (313)
where we set
1 2H
mi(e, s, t) = 5 {011(6,3)|t i olg(e,s,t)gp(s,t)},
s,t
1
mal(e, s, t) = 5 {012(€,S,t)82H — 011 (€, s)go(s,t)},
s,t
1 2H
M (8,5.1) == 5 {021(5, s, )|t — 8|2 — 09 (6, s,t)w(s,t)},
s,t

1
M22(0, 5, t) 1= 5 t{OQQ(é,s,t)SQH — 091(9, s,t)cp(s,t)},

for (s,t) € Ap. By identification with (3.4) and (3.5) one easily gets n1(€, s,t) =
)\11(6, S, t) + )\12(6, S, t), 7]21(57 S, t) = )\21((5, S, t) + )\22(5, S, t), 7712(6, S, t) = )\12(6, S, t) and
N22(8, 8,1) = Xaa(6, 5, 1), for (s,t) € Ar and (e,6) € (0,1)%

In the sequel, it will be convenient to introduce the following functions:

Oi(@) = 1+ a2 =1 — 2,

Ig(z) =1 +z|* —1; x € R.

One can easily check we can write

S0(5) S0 ()
0575 _ 2 191 s 2 191 t—s
st T t2H s|2H |t—s\2H 9
- 1

for (s,t) € Ap. Then,
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Oumlerst) = oo (- + B oo (- 2). s
Osma(€, s, 1) = —?191 <§>g0(s,t) — @s%’ﬂl( — 7 i 8), (3.15)
ot = {rn(2) - (Y
~ el _2‘9'2H¢91(t 0 ). (3.16)
oumtsnt) = ~{n(®) - () et
el —23|2H191(t f S), (3.17)

for (s,t) € Ap. Recall that $ < H < 1 implies

o(s,t) >0; (s,t) € Ap.
Remark 3.2. Since,

da(x) = ¥ (2) + o,
we can write (’)z”f only in terms of V1. Indeed, we notice that

Toulp) - ()

t2H

<T@

Next, we recall the following important Lemma 3.4 in [18].

for (s,t) € Ar.

Lemma 3.3. Fiz H € (0,1). The following representation holds:

O, = |t — s A(s, 1), (3.18)
where ol aH
1 $2H _
A(s,t) = 1{2521{ + 2625 |t — 5P — %},
—s
for (s,t) € [0,T)?. Moreover,
§2H A $2H 92-2H ,
e S s (0 € T
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Therefore,

1 1
<H )
&7, 1 i ST A )

(3.19)

for every (s, t) € [0,T)?.
Lemma 3.4. If% < H <1, then

[V1(z)| < 4H x|,
for every x € R.

Proof. At first, we consider the case —1 < x < 1. We observe ¢ is smooth except on
the origin. The first derivative is

V() =2H[(1+2)*" ' =20 <2 <1

and

Vy(z) =2H[(1+ 2)*" " 4 (—2)* ;-1 <z <.

Then, |V (z)| < max{4H, H2*"} for every —1 < x < 1 with = # 0.
We observe 9 (z) > 0 for x > 1 and v,(z) < 0 for + < —1. Next, we consider the
case z > 1. Applying mean value theorem along the interval (1,1 + z~'), we have

[<1+x)2H_1] - [<1+£>2H— 12 < 2H<1+£>2H11’

T x
so that
() 1 [(1 +575>2Hx2H—1 1 I2H—1}
9Hx  2H T T
1 1+ x\2H
< sy ()
- 2Hm T
2H-1
< (@il = (T e
T T
Therefore,
191(95)) < 92H-1
2Hz | — ’

for every x > 1. The analysis for x < —1 is similar. For sake of completeness, we give
the details. We have |9 (z)] = (—2)* +1 — (=1 — 2)*# for z < —1. Therefore,

191(1‘) - 1 2H-1 1 (_1 - x)QH .
2Hzx ‘ B ﬁ[( 7) - (—x) (—x) ],x =L
Consider the function
_ 1 orr—1 , 1 (Z/ - 1)2H
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-1

Applying mean value theorem along the interval (1 —y~', 1), we have

2H -1 2H -1
12 (1—y <2Hy™,

so that
2H 1
2Hh(y) = [121{ _ (1 _ y*1> ]yszl 42
Yy
< 2Hy*H 4 ;
< 2H 41,

for every y > 1. Therefore,

V1 ()
2Hzx

for every x < —1. Since 2H + 1 < 4H and H2*! < 4H for every % < H <1, we
conclude the proof.

1
<1+ —
<13

O

4. PROOF OF THEOREMS 2.1 AND 2.2

This section presents the proofs of Theorems 2.1 and 2.2. We split the matrix
A~ (e, d; ) according to Lemma 3.1 as
A" 6y t) = = [ZSI’Z](G)ZE’ZJ@) —E[Z,]() 2.7 ()] (4.1)
6 b b K b
P
+ JE[B§,2+EB§;1L51|7
for (s,t) € [0,7)? and 1 <, < d. In view of (3.8) and (3.9) (that is symmetry), it is
sufficient to prove

0°R
lim A (e,6;-) = —1
(e,la)nio (€,0;) =W+ otds ¢

in LY(ApxQ; R4 for 1 < ¢ < min {2}}71; s } The analysis over the other simplex

of [0,T]? is entirely analogous. We will divide the proof into two separate parts:

1w L
—]E[B;i JFEBt(ft)Jr 5] (deterministic component)

€

and
s [Zsl’t”(e)Zf’Z] (8) —R[Z57 (e) 257 (6)]] (random component)
. : : : :

in (4.1).
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4.1. The analysis of the deterministic component. If (s,t) € Ay, then we can
express

1 (@) (4) Oij 2H 2H 2H 2H
—E[BY, B 26%{#—5—6\ s+ P —t—s+6— e —|t— }
it — s|? ) €
— 5 @( , ) 42
2ed t—s't—s (4.2)
where

2H
O(z,y) =1+ =1+ @—-y)|" —1+[1-y"; (z,y) eR™.

Lemma 4.1. .
sup —@(m,y)‘ < 00,
(zy)eQ ' TY

where Q = {(z,y) e RI;0<azVy<lorO<zAy<l<azVy}.

Proof. We set f(z,y) = |1+ z|*! — [1+ (z — y)‘2H By Taylor’s theorem, we observe
for each (z,y) € R? such that 0 <z Ay <z Vy <1, we have

B(a,y) = flr.) ~ 10.9) = L@ 9

for some 7 satisfying 0 < ¥ < x. Here,
of
Ox
for 0 <z Ay <azVy<1l We observe a — [(1 +a)? 1 — (1+ (a— y))QH_l] is a
positive decreasing function on [0, 1] for each 0 < y < 1. Then,

(z,y) =2H |(1 +2)*1 — (1 + (z — y))QH_l},

max [(1+0)% = (14 (a =)™ ] = [1= (1 =),

for each 0 < y < 1. Therefore, we can safely state

1—(1- y)2H_1]

Y

)
for 0 <z Ay <z Vy<1. By L’Hospital rule, we have

[1 —(1—y)*"!

Y

1
—a(zy)| < 2H[
Ty

lim
yJ0

= (2H — 1)lim(1 — y)*# 2 =2H — 1.
yJ0

Now, we check

sup
O<zr<l<y

1
—@(m,y)‘ < 00.
Y

and
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1
—@(x,y)‘ < 00.
Y

sup
O<y<l<z

We observe we can always write

1 1
= d(z, ‘:-@ ) — B0,
0| = () - 2(0.0)

and

1 1
= d(, ‘z—(I) ) — ®(x,0)|,
2| = (B y) (0]

for x,y > 0. We observe there exists a constant C' which only depends on H such that

0P _ _
gy 9)| = [H[ ey g
< C2H|z[*
< (C2Hz,

for 0 <y <1< x. Then,

1
—~a(,y)| < com,
Ty
for every 0 < y < 1 < z. Finally, we observe

0D r _ o
o (@ y) =2H|(1 +a) = (L a =y

for0<zr<l<y<l+zand

0P r T

So(wy) = 2H (L 2P (g — o = 1],
x i 1

for 0 <2 < 14 x < y. Since 2H — 1 < 1, we observe there exists a constant C' which

only depends on H such that

0P -
for every 0 < x < 1 < y. This concludes the proof. 0
Lemma 4.2. If1 < p < 5= then

2—2H’
/AlT(e,a)

1 , 4
E[B(l) B(J)
as (€,8) 1 0, for every 1 <i,j <d. Here,

p
s,5+¢€ t,t+5]’ dsdt S (6 A 5)2H+%_2 Lo,

€

AL(e,8) = {(s,t) € Ap; (t — (e At < s <t}U{(s,t) € Agis < e AS).
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Proof. Fix i # j. Jensen and Holder’s inequality yield

/ / (€r9)) 65 ss+6 tt+6]) dsdt S ( ) ss+e tt+6|p/ / (eAD) det
H(;H
- ( /‘ﬁ—-t— (€ A 0))* )t
H(;H
< ( ) eND)
where
H§H 2H+1-2. .
€ ((5/\6)%,3 62H ;L ?f(5<6
€l e i > e
In other words, H‘SH (6 A e)% S (eN 5)2H+%_2 — 0 as (d,¢) | 0. Similarly,

65 ss+6Bt(Jt+5]‘ dsdt S ( ) E|Bs s+e t+5|p/ / det
eH ot \p

( = > (eNd) =0

o

as (€,9) J 0.

Proposition 4.1. For eachi,j =1,...,d, we have

N

1 ; i 82R p
/[;T E[Blf(,]t)-k5B§,g+6:| - asat (S)t) i
as (€,0)
Proof. Fix ¢ = j. By symmetry, it is sufficient to prove
1 O?R P
~E[BY, BV 1) dsdt -0
/AJECS [ t,t+48 sere] 85(%(3’ ) S )
as (6,0) L 0 for 1 < p < 5=5. Fix (¢,0) € (0,1)*. We decompose

AT = {(S,t)EAT,lé(E/\(S(t—S)

) <(evo)(t—s)'}
() €Ar 0 < (At —35) <1< (e

) < (eV

(€

U Vo) (t—s)}
U {(s,t) € Ari0 < (e AS)(t—s)7 8)(t—s)t < 1}
= Al(E (5) UA2(€,5> UA3 €, )

By Lemma 4.2, if 1 < p < 5= 2H,we have

1 i
/A ) ‘ 5E [BéjtléBs L)eJrJ
1(e,

as €,0 | 0. By using (4.2) and Lemma 4.1, we observe

dsdt — 0,
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1
/ ‘ 5E[Bt(t+5BS’ ] Cdsdt < / It — s|H=2Pdsdt,
Aa(e,6)UAs(e,8) | € Ar

for p > 1 such that (2H —2)p+1 > 0. We do have pointwise convergence (see Remark
3.1)

i O*R
T;E[Bt t+6B£,l+e} — 0t (s:1),
as (€,0) | 0, for each (s,t) € A and hence, we conclude the proof by uniform integra-
bility. O

4.2. The analysis of the random component. In the sequel, we denote
W (€,0;8,t) = (W (e, d; s,t)), where
W (e, 055,1) = — | 2N (220 (9) — B2 (9 220 9)]).

for (s,t) € [0,T)? and 1 < 4,5 < d.
The aim of this section is devoted to the proof of the following result.

Proposition 4.2. For— <H<landl1<qg< m1n{2H1 I35 12H}, we have

]E/ (W™ (e, 6;5,t) — W(s,t)|%dsdt — 0,
0,772

as (€,8) 1 0.
Before starting the proof of Proposition 4.2, it is convenient to say a few words about

the strategy. By Lemma 3.2, we know that

lim W™ 0;8,t) = W(s,t
(615)1110 (e, 0;5,t) = W(s, 1)

a.s. for each ( ,t) € [0,T]2. By using representations (3.12), (3.13), (3.14), (3.15),
(3.16) and (3.17), we have

y 1
W€ dis,t) = e, s, (0, 5,1)
1
+ 57712(6 S t)021(5787t)

1 A
+ (57711(6 s,t)121(0, 5, ) [BYBY — s*76,5]

1 i ,
+ 57712(6 S, 1)n22(0, 8, 1) [BQBS(?B — |t - s|2H5ij}

for (s,t) € Ap. In Lemmas 4.4, 4.5 and 4.6, we will show there exist fi, fo, f3, f1 €

Li(Ar) for 1 <q<mm{2H1 1,%} such that

1
’57711(6, s, )22 (0, SJ)‘SHH — sl Sur fi(s,t), (4.3)
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1
’57712(67 5, 1)m21 (0, S,t)‘SH’t —s|" Spr fals,t), (4.4)
1
e, s, (6.5,8)|s S fols, ) (45)
1
’5”12(67 S, t)7722(57 S, t)“t - S|2H SJH,T f4(87 t)7 (46>

for every (s,t) € Ar and (¢,8) € (0,1)%. Observe that (s, t) > 0 and

o(s,t) Sy min{st*? 1 |t — st sH |t — 5|}, (4.7)
for (s,t) € Ar. Moreover,

sup [|BYBY) s |t —s| 7|2+ sup [|BYBWsH|P < oo, (4.8)
(S,t)EAT (S,t)EAT
sup | BBy It = s 2 < oo, (4.9)
(Svt)eAT

for every p > 1 and 1 < i,5 < d. The estimates (4.3), (4.4), (4.5), (4.6), (4.7), (4.8),
(4.9) combined with the symmetry described in (3.8) and (3.9) will allow us to conclude
the proof of Proposition 4.2. In order to shorten notation, we set

tQH

d(8,s,t) = 701(%) B !t—23|2H191<t f S)

for (s,t) € Ar.

Lemma 4.3.
|d(0,5,1)| Su 53(15_1 + 1),
for0 < s <t.

Proof. Mean value theorem and the fact that 2H — 1 > 0 imply
(tQH (- S)QH) < QHEH g

whenever 0 < s < t. Then, Lemma 3.4 and triangle inequality yield
t2H 5 [t — s|?H 5
71 -7 (=)

d 2H ) )
s|@ == ()] + - () -0 ()]
S| = =P (3)] + =9 (5) -0 ()

4] )
§$t2H_2(5+ (t—S)QH"L%(g) —7.91<t >’,
-5
for 0 < s < t. The function ¥ is strictly increasing and hence by applying again Mean
value theorem and using the fact that 2H — 1 > 0, we get

0 (7) =075 —)-n(5)
- () -0+

|
<
—
/
~
|
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< (1+ 0 )2H—(1+§>2H

t—s t
Ss 5 \2H-1
< (1+7=)
~ott— s * t—s
Js s §2H

<
~tE— s * tit — s| |t — s|PH-V’
whenever 0 < s < t. Then,

1d(6,5,8)] <u 5st2H-2+5§|t—s|2H-1+52H§
Sy 6t 4 2 gt
<g s6(t7'+1),
for 0 < s < t, because 2 —2H < 1 and 2H > 1.
O
Lemma 4.4.
%7712(6, S, t)%mg((s, s Ot =P Spp #71 +sH e — s 4 s12H (22 )

+ |t — s (4.10)
for every (¢,0) € (0,1)* and (s,t) € Arp. Moreover, the right-hand side of (4.10) is
q-Lebesque integrable over Ar for every 1 < g < min {ﬁ, ﬁ .

Proof. By using Remark 3.2, we write
%mg(e, s, t)%nm(a, st — s = 9”2(8’2&: o7 SZHﬁI (€)de.5.1)

It — s|PH s2H ey 52 - s
02, S5 0(5) = P (=)ot
|t — s |t — s oy, [ —€
L Pl p2eHy (5
65@§,t 2 1<t — s)
2
—€ 5 |t _ S|2H82H |t o S|2H
- 0
(o) ()
= [1(e,0,s,t) + I(€,0,5,t) + I3(€,0,8,t) + I4(€,0, s, t).

+ (s, t)d(0,s,t)

By definition
O, = |t — s A(s, 1),
where A is the function defined in Lemma 3.3. By Lemmas 3.4, 3.3 and (4.7), we
observe

|I4(675737t)| S |t_3|2H_2 (411)
and
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|[2(€75?57t)| 5 ’t_s|71$71|90(5?t)‘
< s — s (4.12)

[

for (s,t) € Ar. Similarly, Lemmas 3.4, 3.3, 4.3 and (4.7) yield

d(d, s,t
nessnl 5 |20 g - s
< st 1) (s, )|t — 5|2 s
+ (TN D) (s )|t — 8| T2HsT2H
S 41,
and
d(d,s,t
hedst) 5 [TE2D o pje - s
< st Dp(s, )|t — 8| s
§ 8172H(t2H72 4 1)7

for (s,t) € Ap. This shows the estimate (4.10). It is straightforward to check that
the right-hand side of (4.10) is ¢-Lebesgue integrable over Ap for every 1 < ¢ <
min {Wl_l = } -
Lemma 4.5.

1 1
‘—7711(6, 8, 1) =21 (9, s,t)32H| Sur (D) £ T — s 4 g2 (22 )
€

o
+ |t — s (4.13)
for every (¢,0) € (0,1)* and (s,t) € Ar. Moreover, the right-hand side of (4.13) is
q-Lebesgue integrable over Ar for 1 < ¢ < min {ﬁ, ﬁ .

Proof. Recall (apply Remark 3.2),

1 1
27711(67 S, t)gﬁm((sy S, t)32H =

2H

2H
_o2EST f) _o2e S
A0, 5, 1)t = s >-1 (5 )t — S,

S|2H

|t _ 2H
+d(0, s,t)|t — s|2HT

€ s
()
#(s,t)0h t—s/ €002,

It — s|2H 2H 2H

2 o (t ﬁ 3>g0<s’ ) x 87191 (g) It= S’2H€§@§,t

It — S|2H 2H

— (s, t)191< - ﬁ) 5—%
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=:1(€,0,s,t) + I3(€,0,8,t) + I3(€, 6, 8, t) + I4(¢, d, s, 1).
Lemmas 3.4 and 4.3 yield

s sl 5 [1080]

0
1,

and

WD) gyt s,1
sSEEGETE 1)t — 8) (s, 1)
1R (212 4 1)

for (s,t) € Ar. From Lemmas 3.3, 3.4 and (4.7), we also have

|IQ(€7 57 S, t)|

AR VAR VAR YA

) ()0

(1 — )1 p(s, 1))

Iyfe,ds. 0] S | = s | (

<
~ (t — s)4H g1l
= st —s"lo(s,)
5 SH_1|t— S’H_17
and
[1u(e, 0,5, 6)] S [t = ]2,
for (s,t) € Ap. This concludes the proof. O

Lemma 4.6.

1 1 _ _ _
’27711(6, 3,25)57722((5, s,t)sH(t — S)H‘ Ser st Nt — S\H Lt — S\QH 2 (4.14)
+ D= ),

and

1 1 _ _ _
‘27’]12(6,S,t)gngl(é,s,t)SH(t—S)H‘ <HT st 1|t—s\H 1—|—|t—3\2H 2 (4.15)

S G VR (R O
for every (e,0) € (0,1)? and (s,t) € Ar. Moreover, the right-hand side of (4.14) and

(4.15) are q-Lebesgue integrable over Ar for 1 < ¢ < min {ﬁ, 2}.
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Proof. By definition,

1 1
_7711(65 S, t)57722(57 S, t) X SH(t - S)H =
€

_<p(s,t) ﬁ Ny N2H o Hyp  NH
@itead(d,s,t) 5 791(8)(1; ) x st (t — )

o(s,1)? (t—s)*" —€ Hi,  N\NH
et (0, 5,1)— ﬁl(t_s> x st (t— )
s (t — 5)2H 5 o\ s € ol I I
ez, (=) T () =)
s (t — ) § \(t—s)H —€ " "
* 26002, ﬁl(t—s> 2 ﬁl(t—s>¢(8’t) x st (t=s)

=:11(€,0,s,t) + I5(€,0,8,t) + I3(€, 0, 8, t) + I4(€, 5, s, 1).
Lemmas 3.4, 3.3 and (4.7) yield

’[3(67 57 S7t)| S SH_1|t - SIH_l
and

Lu(e, 05, )] S st = s|"P0(s, 8)
< ft—sP

for (s,t) € Ar. Lemmas 3.4, 3.3, 4.3 and (4.7) yield

d(d.s.t
nesstl S |22 o ns ity - o
< s7HE— s Ho(s, )t +1)
< (T +1),
and
d(d. s.t
nedst)l 5 |22 g ey g
< S| s H G2 (s ) (7 4 1)
< 31_H|t—s|H_1(t_1+1)
< T HpE— s |t — 5P

for (s,t) € Ar.
Next, we evaluate

1 1
_7]12(65 Sat)57721(57 S>t) X SH(t - S)H =
€

1
207 €0

2y, <§>g0(s, 1)d(8, s, )|t — s[2H x st (t — )"
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1
202 €6

2H . (€ L. ow 0 Hip  N\H
S 191<8)g0(s,t)2|t s| 191<t S)gp(s,t)XS (t—s)

+

t— 3|2H52H"§1(_—68)d(6, s, )|t — s[2H x st (t — )"

-

- 5
It — s[2H 2Hy, (—E) = s|2H191<
t—s t

+ >g0(s,t) x st (t —s)H

1
402 €l
=: Ji(€,0,8,t) + Ja(€, 8,8, t) + J3(€, 0, s, 1) + Ju(€, 0, s, 1),
for (s,t) € Ar. Lemmas 3.3, 3.4 and (4.7) yield

[Ta(e,0,8,1)] S (s, )s™ |t — |7

S
S 8H71|t_8‘H71
and
[ Ja(e, 6,5, 8)] S (s, t)s [t —s[72
< t_ S|2H727

|
for (s,t) € Ar. Lemmas 3.3, 3.4, 4.3 and (4.7) yield

d(s,s,t
Ti(e,8,5,0)] S ]%)gp(s,ws—ff—lu—srﬂ
S st =T els, (T + 1)
St
and
d(s,s,t
ed s 5 |20y g

5 Sl_H’t o $|H_1(t_1 + 1)
< =S+,
1

< =7 and hence the right-hand side of (4.14)

for (s,t) € Ap. Now, observe that 5—

and (4.15) are ¢-Lebesgue integrable over At for 1 < ¢ < min {ﬁ, 2}. O

Proof of Proposition 4.2: Observe ﬁ <2< ﬁ for % < H < 1 and
5

ﬁ <2< 2H171 for % < H< %. Summing up Lemmas 3.2, 4.4, 4.5 and 4.6, we then

conclude that

lim E / W (€, 8: 5, £) — W(s, £)|“dsdt = 0, (4.16)
(,6)40 Ar
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1 .1
2H-1’ 2—2H

simplex A% = {(s,t) € [0,T)%0 <t < s < T} and using (3.9), we conclude the proof
of Proposition 4.2.

for 1 < g< min{ } By representing A~ (e, d;s,t) as in (3.11) on the other

Proof of Theorem 2.1: Apply Propositions 4.1 and 4.2.

Proof of Theorem 2.2: Let us assume that Y®? € LP(Q x [0,T]%R%*9) for

max{ﬁ; ﬁ} < p < oo. Then, for the conjugate exponent ¢ of p, we have

1 < ¢ < min {ﬁ, ﬁ} We recall that A was defined in (2.1). By using (1.7) and

applying Cauchy-Schwarz, Hoélder’s inequality and Theorem 2.1, we have

<r(e, Y,dB), 17 (4,Y, dB)>L2(]P) _ IE/ (Y. @ Yi, A(s, ) )dsdt

(0,77

E/ <Y; ® Y, A (,0;s,t) — A(s,t)>dsdt
[0,T]2

<E / (
0,772

SE/ Y, @ Yi||[A™ (e, 65 5,t) — A(s, t)|dsdt
[0,7]?

< / E|Y; ® Y, ["dsdt / E|A™ (e, 0;5,t) — A(s, t)|"dsdt | — 0,
[0,T]2 [0,7]2

as (€,0) J 0. This concludes the proof.

dsdt

Y, ® Y;HA_(Q(S; S7t) - A(87t>>

1

3=

5. PROOF OF COROLLARY 2.1

This section is devoted to the proof of Corollary 2.1. At first, we need the following
LP-estimate for A defined in (2.1).

Proposition 5.1. Fiz ¢ > 1, v € (0,T] and the FBM of dimension d. Then,
IA(s, D)llq Strag [t = s 72+ (s AOTHE— 5|77,

for (s,t) € [0,v)> with s #t and s Nt > 0.

Proof. Fix v € (0,T], ¢ > 1. By definition,

IA(s,)|7 Saqm [t — 8|72 4+ (W(s, )9,

for s # t and s At > 0. By the equivalence of the L"(P)-norms on the second-Wiener
chaos, it is sufficient to estimate ||W(s,t)||2. By definition (2.2) (see (3.8) and (3.9)),
we can write
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Wij(s,t) = nll(s,t)ngl(s,t)(Bgi)ng) —SQH&J)
+ 7711(5775)7722(5775) (Bﬁi)Bﬁft) - 90(3>t)5z])
+ 7712($>t)7721(57t)(Béj)Bs? ©(s,1)0;)
+ 7712(5>t)7722(3»t) (Bnggt) |t 3|2H61])7
for 1 <i,7 <d for (s,t) € Ap. Here,
2H -1 2H om—1\ H
(s, ) = {521 = 82— (s, )t — 521 2
®s,t
2H -1 2H -1 2H orr—1| H
mor(s,8) = { [ 2770 = [t = 57|t = o2 — (s, )t — 51 o
s,t
2H 2H-1  2H-1 H
Mo(s,t) = {s |t — s — 5 gp(s,t)}
@s,t
2H 2H—1 2H -1 a1\ H
Moa(s.1) = {1t = o171 — p(s.8) |27 — |t — o] o=,
s,t

for 0 < s <t <wu <T. By symmetry, Holder’s inequality and using the Gaussian
property of B, it is sufficient to estimate

711 (8, )n21 (5, 25)|82H + [m2(s, t)naa (s, t)||t — S|2H

+|ma(s, t)maa(s, ) + ma(s, t)nar (s, t) |7t — |
for 0 < s <t <wu <T. Mean value theorem yields

t2H71 . |t o S‘2H71 SH S‘t o S’2H72’ (51)

for 0 < s <t <wu<T. By using Lemma 3.3, we observe

< = s (s, O — |t — sPH Y x s — s
+ st —s| (s, t)
+ S_QH_I(,DQ(S,tNtQH_I . |t . S|2H_1||t . S|_2H7
0<s<t<u<T. By using (4.7), we observe
(s, t)
sup  —m——— < 00. 5.2
0<S<It)§u s2H=1t — | (5:2)

The estimates (5.1) and (5.2) yield

|2 (s, t)nea(s, t)||t — 3|2H

2H 1 2H -1 —9H —1 2H—2 ©(s,1)
o(s,t)[t — |t — s | x 8757t — s S ft—s ey r—

SH ’t . S|2H72,

for 0 < s <t <wu<T. By using (4.7), we observe
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QO(S,t) < t2H72 (53)
slt—s] ™
[t — s|PH2g2H =2 220
5 ’t - SPH?Q?
0<s<t<u<T. By using (5.3), we observe

SR, R — e PHYE— | < s AR (s, 1)t — 8| 2t — P

t2H_2

IZANRVANRYANRVAN

|t . S|2H_27
for 0 < s <t <wu <T. Similarly, one can easily check

[ (s, ) (s, )| S |t = 5172,
for 0 < s <t <u<T. By using Lemma 3.3, (5.1) and (4.7), we observe

st — s|H7t 4 s7Hop(s, t)|t — 5|72
st — s (s, O — (t = 5)*]
S_3Hcp2(87t)|t2H_1 _ (t _ S)QH—IHt . S|—H—1

SH_1|t o $|H—1 =+ It - S|2H_2,

11 (s, t)maa(s, t)s™ |t — s|"|

IN + + A

for 0 < s <t <wu<T. Similarly,

[ma(s, )nar(s, t)s |t — s | < sH7HE — s|H71 4 |t — 5272,
for 0 < s <t <wu<T. Summing up all the above estimates, we get
V(s )llg Srrag s M= |70+ [t = s[P172,

for 0 < s <t <wu <T. This concludes the proof. O

Let us consider an integrand Y. = g(-, B.) € LP(Q2 x [0, T)* R%*4) with exponent
max{(2H — 1)7%(2 — 2H)™'} < p < oo and let g be the conjugate exponent of
p satisfying 1 < ¢ < min{(2H — 1)7';(2 — 2H)™'}. Since our setup is translation
invariant, we restrict ourselves to the case u = 0 for the proof of Corollary 2.1 without

any loss of generality. In this case, a direct application of Theorem 2.2, Cauchy-Schwarz
and Holder’s inequalities yield

|[ s

A(s,t) = H(2H — 1)|t — s*" 21 4q + W(s, 1);

2 q
< HY®2HP< / E!A(s,qudsdt) (5.4)
2 [071,]2

where
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for (s,t) € [0,v]? with s # ¢ and s At > 0. Proposition 5.1 yields

/ [A(s, t)|[2dsdt  Spga / |t — 5|9 =D qsdt + / s1UH=D | — g|aH =D gsqt
(0,v]? [0,v]?

[0,0]?

SH,q,d Uq(2H—2)+2+v2q(H—1)+2 (55>

and hence by applying (5.5) into (5.4), we conclude the proof of Corollary 2.1.
Remark 5.1. From Proposition 5.1 and the fact that ﬁ > o forl < H <1,

2—2H 2
we observe A € LI(Q2 x [0, T)*R>4) for 1 < q < ﬁ However, we are not able to
prove Li-convergence of A~ (€,6,-) to A for every 1 < ¢ < ﬁ in Theorem 2.1. As

mentioned in the Introduction, Theorem 2.2 allows us to construct a natural Hilbert
space of processes Hr as the completion of processes of the form Y. = g(-, B.) w.r.t.
semi-inner product

(V. Z) > E/ (Y @ 7, A(s, 1)) dsdt
(0,772
and one can naturally extend the forward integral to Hgr. In this case, it is possible to

prove that any Y. = g(-, B.) € LY(Q2 x [0, T)%;R¥9) for 1 < ¢ < ﬁ will be an element

of Hr. In this paper, we do not make this extension and we leave a detailed analysis
to a future work.
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