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We provide analytical solutions for the full stress field of straight sandwich beams with identical skins subject to linear elastic flexure governed by zigzag warping, where all layers obey Timoshenko's kinematics. As a main novelty, we make use of a balance equation for the Cauchy continuum to recover of the through-the-thickness normal stress component, σ y . The new estimates are accurate for a wide range of relative stiffness between skins and core and suitable boundary conditions, as it can be demonstrated through the comparison with detailed finite element simulations where the sandwich is modelled as a two-dimensional continuum. As a main practical result concerned with the study of delamination, we find that at a core-skin interface of a cantilever sandwich subjected to a uniformly distributed load, in a region close to the fully-clamped crosssection, σ y is a tensile stress of magnitude larger than that of the shear stress. On this basis, we infer that the availability of good estimates for σ y , along with those for the longitudinal and shear stresses, may be important for the accurate design of sandwich

Introduction

We focus on the model for sandwich beams developed since the pivotal contributions of Yu [START_REF] Yu | A new theory of elastic sandwich plates -One dimensional case[END_REF], Heller [START_REF] Heller | Interlaminar shear stress in sandwich beams[END_REF], and Krajcinovic [START_REF] Krajcinovic | Sandwich beam analysis[END_REF][START_REF] Krajcinovic | Sandwich beams with arbitrary boundary conditions[END_REF], whose main assumption is that both core and skins obey Timoshenko kinematics. We call this model the Krajcinovic model because, to the best of our knowledge, Krajcinovic [START_REF] Krajcinovic | Sandwich beam analysis[END_REF] was the first one to establish a way to provide general analytical solutions for the case here of interest, that is the accurate evaluation of the linear elastic flexure of straight sandwich beams with identical skins.

The Krajcinovic model, here summarised in Sect. 2, has been shown to provide good analytical estimates not only in terms of displacements, but also in terms of longitudinal and shear stress fields [START_REF] Bardella | Explicit analytic solutions for the accurate evaluation of the shear stresses in sandwich beams[END_REF][START_REF] Bardella | On explicit analytic solutions for the accurate evaluation of the shear stress in sandwich beams with a clamped end[END_REF]. This holds for a wide range of relative stiffness between core and skins, where this parameter mainly depends on the elastic moduli and the thicknesses of the layers [START_REF] Tonelli | A critical evaluation of mechanical models for sandwich beams[END_REF]. The range of engineering adequacy of Krajcinovic model even becomes extremely large if the boundary conditions are applied in such a way as to avoid as much as possible stress concentrations. Otherwise, dealing with "extreme" boundary conditions, in general referring to forces applied on a single skin with constraints applied on the opposite skins, may easily require more complex higher-order theories involving soft cores, typically including the midlayer through-the-thickness deformability [START_REF] Frostig | Bending of sandwich beams with transversely flexible core[END_REF][START_REF] Frostig | High-order theory for sandwich-beam behavior with transversely flexible core[END_REF][START_REF] Vidal | Assessment of the refined sinus model for the non-linear analysis of composite beams[END_REF][START_REF] Phan | Analysis of sandwich beams with a compliant core and with in-plane rigidity -Extended high-order sandwich panel theory versus elasticity[END_REF][START_REF] Mattei | A structural model for plane sandwich beams including transverse core deformability and arbitrary boundary conditions[END_REF][START_REF] Panteghini | Structural theory and finite element modelling of linear elastic sandwich beams subject to severe boundary conditions[END_REF][START_REF] Malkiel | Uncertainty in the flexural behavior of soft-core sandwich beams[END_REF]. Of course, the more complex the theory the more difficult finding useful analytical solutions.

Analytical solutions not only are very important in the optimal design, but may also be one of the very few reliable tools under specific circumstances, where otherwise powerful numerical methods fail. This is for instance the case of the stress field in the sandwich region next to a fully-clamped cross-section, where the displacement-based finite element (FE) method cannot provide good results when modelling the sandwich as a two-dimensional (2D) continuum [START_REF] Gregory | The cantilever beam under tension, bending or flexure at infinity[END_REF][START_REF] Tullini | Logarithmic stress singularities at clamped-free corners of a cantilever orthotropic beam under flexure[END_REF][START_REF] Bardella | On explicit analytic solutions for the accurate evaluation of the shear stress in sandwich beams with a clamped end[END_REF].

By focusing on the through-the-thickness normal stress component σ y , this contribution complements our previous efforts [START_REF] Bardella | Explicit analytic solutions for the accurate evaluation of the shear stresses in sandwich beams[END_REF][START_REF] Bardella | On explicit analytic solutions for the accurate evaluation of the shear stress in sandwich beams with a clamped end[END_REF] where we provided analytical solutions for the longitudinal and shear stresses within Krajcinovic theory. As presented in Sect. [START_REF] Bardella | Explicit analytic solutions for the accurate evaluation of the shear stresses in sandwich beams[END_REF], we obtain σ y by a double stress recovery. In fact, if one is strictly consistent with the zigzag warping assumed by the theory, Krajcinovic model delivers very accurate predictions of the longitudinal stress field only. Obtaining accurate estimates for the shear stress τ xy requires one to resort to the application of a Jourawski-like approach [START_REF] Jourawski | Remarques sur la résistance d'un corps prismatique et d'une pièce composée en bois ou en tôle de fer à une force perpendiculaire à leur longeur[END_REF] to the longitudinal stress σ x ensuing from the zigzag kinematics, which is actually equivalent to integrate, with respect to the transverse axis y, the balance equation for the Cauchy continuum

∂σ x ∂x + ∂τ xy ∂y = 0 , (1) 
along with averaging over the out-of-plane axis z. This first stress recovery has been adopted also in some numerical contributions [START_REF] Matsunaga | Interlaminar stress analysis of laminated composite beams according to global higher-order deformation theories[END_REF][START_REF] Oñate | Simple and accurate two-noded beam element for composite laminated beams using a refined zigzag theory[END_REF], where one has to take care of the required derivative of σ x with respect to the beam axis x, which leads to higher continuity conditions for the functions adopted to approximate the primal fields.

In this investigation, we adopt a second stress recovery to determine the through-the-thickness stress σ y , which is just indeterminate on the basis of the kinematics assumed by Krajcinovic theory, totally disregarding the through-the-thickness normal deformation. To this purpose, we consider the balance equation for the Cauchy continuum

∂τ xy ∂x + ∂σ y ∂y = 0 , (2) 
where we plug the shear stress obtained from the first stress recovery. Hence, this second stress recovery for σ y relies on a stress field, i.e. τ xy , that has already been obtained by a recovery procedure. While there is no problem in our analytical approach, numerical methods using the foregoing double stress recovery have to deal with high continuity conditions of the approximating functions, given that σ y turns out to depend on ∂ 2 σ x /∂x 2 . This numerical issue has been formerly dealt with by Matsunaga [START_REF] Matsunaga | Interlaminar stress analysis of laminated composite beams according to global higher-order deformation theories[END_REF] for laminated beams governed by a higherorder shear deformation theory obtained by power series expansions for the displacement components. In the case of laminated plates [START_REF] Carrera | A priori vs. a posteriori evaluation of transverse stresses in multilayered orthotropic plates[END_REF][START_REF] Matsunaga | Interlaminar stress analysis of laminated composite beams according to global higher-order deformation theories[END_REF][START_REF] Dufour | A cost-effective isogeometric approach for composite plates based on a stress recovery procedure[END_REF][START_REF] Patton | Accurate equilibrium-based interlaminar stress recovery for isogeometric laminated composite kirchhoff plates[END_REF] the through-the-thickness normal stress field is recovered after two shear stress fields are obtained by two parallel stress recovery procedures.

About the role played by σ y in laminated beams, here we demonstrate, through the cantilever benchmark of Sect. 4, that there are important boundary value problems in which it may not be disregarded. In particular, we show that at the interfaces between core and skins σ y may be a tensile stress of much larger magnitude than τ xy , thus surely impacting the analysis of delamination. Among the earlier studies on the sandwich theory here adopted, Heller [START_REF] Heller | Interlaminar shear stress in sandwich beams[END_REF] already focused on the interfacial stress, but the focus was restricted to the shear stress only. Very recently, the interfacial normal stress has been considered as well [START_REF] Schöftner | A verified analytical sandwich beam model for soft and hard cores: comparison to existing analytical models and finite element calculations[END_REF],

although in the context of a simpler structural model, where the skins are rigid in shear, thus behaving as Euler-Bernoulli beams. Here, we not only adopt the richer Krajcinovic model, but we provide explicit analytical solutions for σ y over the whole sandwich.

Summary of the Krajcinovic model

We adopt the notation and select the independent structural functions as in [START_REF] Bardella | Explicit analytic solutions for the accurate evaluation of the shear stresses in sandwich beams[END_REF][START_REF] Bardella | On explicit analytic solutions for the accurate evaluation of the shear stress in sandwich beams with a clamped end[END_REF] to describe the Krajcinovic model. The model relies on the zigzag warping depicted in Fig. 1, where Figure 1: Zigzag kinematics for a sandwich beam with identical skins. Taken from [START_REF] Bardella | On explicit analytic solutions for the accurate evaluation of the shear stress in sandwich beams with a clamped end[END_REF].

v(x) is the transverse displacement (directed as the y axis, such as z is the neutral axis), t and c are the thicknesses of skins and core, respectively, φ c (x) and φ s (x) are the rotations of the core and skin cross-sections, respectively. Instead of φ c (x) and φ s (x), for the independent structural variables, Krajcinovic selected a mean rotation of the whole cross-section and a warping function associated with null bending moment. This allowed Krajcinovic to find a way to analytically integrate the three Euler-Lagrange equations governing the problem.

The description of the zigzag warping of Fig. 1, which is inspired by the earlier models of Allen [START_REF] Allen | Analysis and design of structural sandwich panels[END_REF], has instead the advantage to turn out to naturally display, as static quantities, the bending moments related to the variations of φ s (x) and φ c (x), along with their derivatives with respect to the beam axis, which result to be the shear forces developed by the skins and the core.

The considered Krajcinovic model disregards the through-the-thickness strain ε y , such as the stress component σ y remains indeterminate if computed consistently with the assumed kinematics.

In sandwich beams, the ratios

= t c , n = E s E c , ϕ = G s G c (3) 
are particularly relevant to select the most appropriate model for a specific problem [START_REF] Tonelli | A critical evaluation of mechanical models for sandwich beams[END_REF].

In Eq. ( 3) E and G are the longitudinal modulus and the shear modulus in the xy plane, respectively, where the indices c and s denote their values assumed in the core and in the skins, respectively. Differently from other models for sandwich panels [START_REF] Allen | Analysis and design of structural sandwich panels[END_REF], Krajcinovic theory does not impose any particular restriction on the parameters that define the relative stiffness between skins and core, the latter governing the sandwich flexure. Therefore, the application of Krajcinovic theory is not limited to thin skins (i.e. sufficiently close to zero), nor to antiplane sandwiches (i.e. n → ∞).

By following [START_REF] Bardella | Explicit analytic solutions for the accurate evaluation of the shear stresses in sandwich beams[END_REF] and the warping description of Fig. 1, the balance equations governing Krajcinovic model read

V (x) = -q(x) , M c (x) = V c (x) , M s (x) = V s (x) , (4) 
in which denotes the derivative with respect to x, q(x) is the distributed transverse load (acting along the y direction) and

M (x) = M s (x) + M c (x) and V (x) = V s (x) + V c (x) are,
respectively, the total bending moment and the total shear force, whose contributions result to be defined by the structural constitutive equations

M c = - E s btc 2 (cφ c + tφ s ) - E c bc 3 12 φ c , M s = - E s bt 3 6 φ s - E s bt 2 2 (cφ c + tφ s ) , (5) 
V c = G c bc(v -φ c ) , V s = 2G s bt(v -φ s ) , ( 6 
)
where b is the sandwich width. While V c and V s are the contributions to the shear force acting in the core and in the skins, respectively, a similar connection does not hold for the moments M c and M s , which are conjugated to the variations of φ c and φ s . The three coupled Euler-Lagrange equations governing the theory, to be solved for v(x), φ c (x), and φ s (x), are obtained by substituting Eqs. ( 5) and (6) into Eq. ( 4).

Let us remark that the natural boundary conditions leave the freedom to separately impose M s and M c as related to the variations of φ s and φ c , respectively. Hence, the same bending moment M results from any combination of M s and M c such that M = M s + M c , each choice of M s and M c corresponding to a different solution in terms of stresses. Because of this fundamental reason, this model is not "à la De Saint Venant" [START_REF] Tonelli | A critical evaluation of mechanical models for sandwich beams[END_REF].

The Krajcinovic solution, as a first step, requires the integration of the differential equation

d 6 f (ξ) dξ 6 -k 2 d 4 f (ξ) dξ 4 = - β 2 L 6 β 1 α 2 q(ξ) (7) 
to determine the auxiliary structural function f (x). In Eq. ( 7), L is the beam length,

ξ = x L (8) 
is the non-dimensional coordinate along the beam axis, and k, β 1 , β 2 , α 2 are constant coefficients conveniently provided below.

Once f (x) is known, the structural functions can be obtained, by combining the relations presented in [START_REF] Krajcinovic | Sandwich beam analysis[END_REF][START_REF] Bardella | Explicit analytic solutions for the accurate evaluation of the shear stresses in sandwich beams[END_REF], leading to

φ c (ξ) = t - β 1 α 2 β 2 α 1 1 L 3 d 3 f (ξ) dξ 3 + β 1 β 3 -β 2 2 α 1 β 2 1 L df (ξ) dξ , (9) 
φ s (ξ) = - c(1 + m) 2 + β 1 α 2 β 2 α 1 1 L 3 d 3 f (ξ) dξ 3 + β 1 β 3 -β 2 2 α 1 β 2 1 L df (ξ) dξ , (10) 
v(ξ) = α 2 β 2 1 L 4 d 4 f (ξ) dξ 4 -β 3 + β 1 α 2 α 1 1 β 2 1 L 2 d 2 f (ξ) dξ 2 + β 1 β 3 -β 2 2 α 1 β 2 f (ξ) . (11) 
In Eqs. ( 7), ( 9), [START_REF] Ghugal | A review of refined shear deformation theories for isotropic and anisotropic laminated beams[END_REF], and ( 11), the coefficients α 1 , α 2 , β 1 , β 2 , β 3 , m, k turn out to depend on the heterogeneity coefficients (3) and on other sandwich parameters as

α 1 = bc 3 E c 12 ω 1 , α 2 = bc 5 E c 12 2 + 3n (1 + ω 1 ) n(3 + 4 ) 2 + , β 1 = bcG c (1 + 2ϕ ) , β 2 = bc 2 G c ϕω 2 n(3 + 4 ) - , β 3 = bc 3 G c ϕω 2 2 2n 2 (3 + 4 ) 2 + 2 , m = 1 + n (3 + 2 ) n (3 + 4 ) , k = (β 1 β 3 -β 2 2 )L 2 β 1 α 2 , (12) 
where

ω 1 = 1 + 2n (3 + 6 + 4 2 ) , ω 2 = 1 + 6n + 6n 2 .
Let us mention that the coefficient m in Eq. ( 12) enters the warping shape function deduced by Krajcinovic in order to devise a way to analytically integrate the Euler-Lagrange governing equations [START_REF] Krajcinovic | Sandwich beam analysis[END_REF].

3 The full stress field: analytical expression for the throughthe-thickness normal stress via double stress recovery

In the absence of issues concerned with severe boundary conditions [START_REF] Panteghini | Structural theory and finite element modelling of linear elastic sandwich beams subject to severe boundary conditions[END_REF] and soft cores [START_REF] Frostig | High-order theory for sandwich-beam behavior with transversely flexible core[END_REF][START_REF] Phan | Analysis of sandwich beams with a compliant core and with in-plane rigidity -Extended high-order sandwich panel theory versus elasticity[END_REF][START_REF] Malkiel | Uncertainty in the flexural behavior of soft-core sandwich beams[END_REF], the sole stress component that is accurate if computed consistently with the assumed zigzag kinematics in Krajcinovic theory [START_REF] Bardella | Explicit analytic solutions for the accurate evaluation of the shear stresses in sandwich beams[END_REF][START_REF] Bardella | On explicit analytic solutions for the accurate evaluation of the shear stress in sandwich beams with a clamped end[END_REF] is normal longitudinal stress, which reads

σ x (x, y) = -E s φ c (x) c 2 sgn(y) + φ s (x) y - c 2 sgn(y) if y ∈ A s -E c φ c (x)y if y ∈ A c (13) 
where A s and A c are the sandwich domains occupied by the skins and the core, respectively.

For what concern the other stress components, consistently with the kinematics, one has the following piecewise uniform shear stress

τ uni xy (x) = G s [v (x) -φ s (x)] if y ∈ A s G c [v (x) -φ c (x)] if y ∈ A c (14) 
which obviously violate equilibrium at the interfaces, whereas the through-the-thickness normal stress σ y is even indeterminate because of the assumed rigidity of the cross-section along the y axis.

Estimate ( 14) can be largely improved as proposed in [START_REF] Bardella | Explicit analytic solutions for the accurate evaluation of the shear stresses in sandwich beams[END_REF], by resorting to the application of the Jourawski approach [START_REF] Jourawski | Remarques sur la résistance d'un corps prismatique et d'une pièce composée en bois ou en tôle de fer à une force perpendiculaire à leur longeur[END_REF] to the zigzag kinematics, that is the first the stress recovery discussed about Eq. ( 1). Hence, the average over the beam width b of the shear stress τ xy (x, y, z), relying on the zigzag kinematics, reads [3]

τ zz xy (x, y) =            E s φ s (x) 1 2 |y| - c 2 2 -t 2 -φ c (x) c 2 c 2 + t -|y| if y ∈ A s E c φ c (x) 1 2 y 2 - c 2 4 -E s t 2 [φ s (x)t + φ c (x)c] τ int xy (x) if y ∈ A c ( 15 
)
where

τ int xy (x) = τ zz xy (x, y = |c/2|) is the interfacial shear stress.
As a main novelty of this investigation, we follow a second stress recovery procedure to determine σ y by substituting Eq. ( 15) into Eq. ( 2). By also assuming, for simplicity, that the transverse load q(x) is applied either at y = -tc/2 or at y = t + c/2 (or even split in two contributions on these two external boundaries), one can estimate

σ rec y (x, y) = σ y (x, -t -c/2) - y -t-c/2 ∂τ zz xy (x, y * ) ∂x dy * . (16) 
Then, for the three sandwich layers, we obtain

σ rec y (x, y) = σ y (x, -t -c/2) + E s φ s (x) 1 2 t 2 y + c 2 + 2t 3 - 1 3 y + c 2 3 + φ c (x) c 2 y c 2 + t + y 2 + 1 2 c 2 + t 2 , for y ∈ [-t -c/2, -c/2] , (17a) 
σ rec y (x, y) = σ rec y (x, -c/2) + E c φ c (x) 1 2 c 2 y 4 - y 3 3 + c 3 12 + E s t 2 y + c 2 [φ s (x)t + φ c (x)c] , for y ∈ [-c/2, c/2] , (17b) 
σ rec y (x, y) = σ rec y (x, c/2) + E s φ s (x) 1 2 t 2 y - c 2 - 1 3 y - c 2 3 + φ c (x) c 2 y c 2 + t - y 2 - c 2 c 4 + t for y ∈ [c/2, t + c/2] . (17c)
In the above relations σ y (x, -t-c/2) is a known value, while, by evaluating (17a) at y = -c/2, (17b) at y = c/2, and (17c) at y = t + c/2, it results

σ rec y (x, -c/2) = σ y (x, -t -c/2) + E s φ s (x) t 3 3 + φ c (x) ct 2 4 , (18) 
σ rec y (x, c/2) = σ rec y (x, -c/2) + E c φ c (x) c 3 12 + E s tc 2 [φ s (x)t + φ c (x)c] , (19) 
σ rec y (x, t + c/2) = σ rec y (x, c/2) + E s φ s (x) t 3 3 + φ c (x) ct 2 4 . (20) 
Hence, from the equilibrium of the forces along the y direction for each layer, we deduce

E s φ s (x) t 3 3 + φ c (x) ct 2 4 = - V s 2b , (21) 
E c φ c (x) c 3 12 + E s tc 2 [φ s (x)t + φ c (x)c] = - V c b , (22) 
which perfectly agree with the expressions that one can obtain by deriving the second and third relations of Eq. ( 4) and substituting in the obtained relations the definitions of the bending moments in Eq. ( 5). This check shows that the double stress recovery provides interfacial σ y that can be obtained also by imposing the equilibrium of the free-body diagram of the layer elements, which delivers balance equations equivalent to those obtained by minimising the Total Potential Energy governing the problem [START_REF] Krajcinovic | Sandwich beam analysis[END_REF][START_REF] Bardella | Explicit analytic solutions for the accurate evaluation of the shear stresses in sandwich beams[END_REF][START_REF] Schöftner | A verified analytical sandwich beam model for soft and hard cores: comparison to existing analytical models and finite element calculations[END_REF]. However, the double stress recovery provides the σ y field all over the sandwich, which is worth to be explored. In particular, on the neutral axis we obtain

σ rec y (x, 0) = σ rec y (x, -c/2) + E c φ c (x) c 3 24 + E s tc 4 [φ s (x)t + φ c (x)c] .
By setting t = 0, we particularise Eq. (17b) to a homogeneous beam with rectangular crosssection of height c, thus obtaining

σ rec y (x, y) = σ rec y (x, -c/2) + E c φ c (x) 1 2 c 2 y 4 - y 3 3 + c 3 12 = σ rec y (x, -c/2) + q(x) 12 bc 3 1 2 c 2 y 4 - y 3 3 + c 3 12 = σ rec y (x, -c/2) + q(x) b 3y 2c - 2y 3 c 3 + 1 2 .
This result shows that on the neutral axis the through-the-thickness stress on the top surface is varied by half of the applied load only. Moreover, if q(x) is applied as a compressive load on the top surface, one has

σ rec y (x, y) = - q(x) b + q(x) b 3y 2c - 2y 3 c 3 + 1 2 ,
which correctly vanishes at y = c/2. As expected and well-known in classical structural mechanics, this component of stress is negligible in homogeneous beams, consistently with

σ x /σ y ∼ (L/c) 2 .
Hence, the main point of this investigation is to demonstrate that this may not be the case in laminated structures. In other words, it would be sufficient to show that the contribution V s /(2b) in Eq. ( 21) can be large enough to require the evaluation of σ y for a thorough analysis of the stress state in sandwich panels.

In particular, when one has to apply an appropriate criterion to establish whether delamination may occur, σ y should be accounted for if it is on the order of magnitude of the shear stress at the interfaces, that is the ratio

τ int xy (x) σ rec y (x, -c/2) = -E s t 2 [φ s (x)t + φ c (x)c] σ y (x, -t -c/2) - V s 2b = φ s (x)t + φ c (x)c 2q(x) E s tb -φ s (x) 2t 2 3 -φ c (x) ct 2 
, obtained from Eqs. ( 15) and ( 21), should, in modulus, not be much larger than 1. In Sect. 4

we show that this is surely the case, as σ rec y (x, -c/2) may even be a tensile stress significantly larger than τ int xy (x). This is of course a further interesting effect due to the heterogeneity of laminated structures. With this goal in mind, we also provide general relations for the interfacial shear stress, which can be easily obtained from the relations presented in [START_REF] Bardella | Explicit analytic solutions for the accurate evaluation of the shear stresses in sandwich beams[END_REF][START_REF] Bardella | On explicit analytic solutions for the accurate evaluation of the shear stress in sandwich beams with a clamped end[END_REF].

Note that, differently from σ y , in Krajcinovic model the shear stress at the two interfaces is identical. From Eqs. ( 15), [START_REF] Frostig | High-order theory for sandwich-beam behavior with transversely flexible core[END_REF], and (10) we obtain

τ int xy (x) = -E s t 2 -t c(1 + m) 2 + β 1 α 2 β 2 α 1 + c t - β 1 α 2 β 2 α 1 1 L 5 d 5 f (ξ) dξ 5 + (t + c) β 1 β 3 -β 2 2 α 1 β 2 1 L 3 d 3 f (ξ) dξ 3 . (23) 
The evaluation of σ y at the interfaces basically corresponds to evaluate V s /(2b) in Eq. ( 21).

From Eqs. ( 9) and ( 10), we obtain

φ c = t - β 1 α 2 β 2 α 1 1 L 6 d 6 f (ξ) dξ 6 + β 1 β 3 -β 2 2 α 1 β 2 1 L 4 d 4 f (ξ) dξ 4 , (24) 
φ s = - c(1 + m) 2 + β 1 α 2 β 2 α 1 1 L 6 d 6 f (ξ) dξ 6 + β 1 β 3 -β 2 2 α 1 β 2 1 L 4 d 4 f (ξ) dξ 4 , (25) 
which, if substituted in Eq. ( 21), deliver

- V s 2b = E s t 2 - β 1 α 2 β 2 α 1 t 3 + c 4 - ct(1 + m) 6 + ct 4 1 L 6 d 6 f (ξ) dξ 6 + β 1 β 3 -β 2 2 α 1 β 2 t 3 + c 4 1 L 4 d 4 f (ξ) dξ 4 . (26) 
Before delving into the numerical results, we provide relations that focus on the important case of a uniform transverse load q.

Particularisation to the case of uniform load

For a uniform transverse load q, the general solution of Krajcinovic differential equation [START_REF] Dufour | A cost-effective isogeometric approach for composite plates based on a stress recovery procedure[END_REF] reads

f (ξ) = C 1 sinh(kξ) + C 2 cosh(kξ) + C 0 ξ 4 + C 3 ξ 3 + C 4 ξ 2 + C 5 ξ + C 6 , (27) 
where

C 0 = β 2 qL 4 24(β 1 β 3 -β 2 2 ) = qL 4 12bc 2 G c n (3 + 4 )[ϕω 2 -n (3 + 4 )] ϕω 2 1 ( 28 
)
and the integration constants C i with i = 1, . . . , 6 must be determined by imposing the essential and natural boundary conditions of the boundary value problem considered [START_REF] Krajcinovic | Sandwich beams with arbitrary boundary conditions[END_REF][START_REF] Bardella | Explicit analytic solutions for the accurate evaluation of the shear stresses in sandwich beams[END_REF][START_REF] Bardella | On explicit analytic solutions for the accurate evaluation of the shear stress in sandwich beams with a clamped end[END_REF].

By substituting Eqs. ( 27) and ( 28) into Eqs. ( 23) and ( 26), we obtain

τ int xy = -E s t 2 6(t + c) β 1 β 3 -β 2 2 α 1 β 2 k 3 L 3 [4C 0 ξ + C 3 ] + [C 1 cosh(kξ) + C 2 sinh(kξ)] × -t c(1 + m) 2 + β 1 α 2 β 2 α 1 + c t - β 1 α 2 β 2 α 1 k 5 L 5 + (t + c) β 1 β 3 -β 2 2 α 1 β 2 k 3 L 3 , (29) 
- V s 2b = q α 1 t 3 + c 4 + [C 1 sinh(kξ) + C 2 cosh(kξ)] × E s t 2 - β 1 α 2 β 2 α 1 t 3 + c 4 - ct(1 + m) 6 + ct 4 
k 6 L 6 + β 1 β 3 -β 2 2 α 1 β 2 t 3 + c 4 k 4 L 4 . ( 30 
)
The application of Eqs. ( 29) and ( 30) to various benchmarks, corroborated with the results of accurate FE analyses in which the sandwich is modelled as a 2D plane-stress continuum, has shown that a very interesting boundary value problem is that of the cantilever beam, where σ y may play a very important role. This does not seem to be the case, for instance, in the propped-cantilever and simply-supported beams, although there might be room for different conclusions for sandwich parameters outside the ranges that we have explored in our preliminary analyses. In the following we deal with the cantilever case, while in Appendix A we provide the analytical results for the simply-supported sandwich beam and skip other boundary value problems for the sake of brevity.

Cantilever sandwich subjected to uniform transverse load

With the fully-clamped section at x = 0, the integration constants C i with i = 1, . . . , 6 in Eq. ( 27) are obtained by imposing the essential boundary conditions

v(ξ = 0) = 0 , φ c (ξ = 0) = 0 , φ s (ξ = 0) = 0 ,
along the natural boundary conditions V (ξ = 1) = 0, M c (ξ = 1) = 0, M s (ξ = 1) = 0, corresponding to v (ξ = 1)ϕ c (ξ = 1) + 2ϕ [v (ξ = 1)φ s (ξ = 1)] = 0 , φ c (ξ = 1) = 0 , φ s (ξ = 1) = 0 .

Solving the system results in the expression for the Krajcinovic auxiliary function [START_REF] Bardella | On explicit analytic solutions for the accurate evaluation of the shear stress in sandwich beams with a clamped end[END_REF] 

f (ξ) = 24C 0 k 4 k(e -k(2-ξ) -e -kξ ) -e -k(1-ξ) -e -k(1+ξ) 1 + e -2k + C 0 ξ 4 -4C 0 ξ 3 + 6C 0 k 2 (k 2 + 2)ξ 2 - 24C 0 k 2 ξ + 12C 0 1 k 2 + α 1 β 3 k 2 α 2 β 1 + 2 k 4 + 2α 1 β 2 2 k 4 α 2 β 2 1 1 -k + (1 + k) e -2k -2 e -k 1 + e -2k . (31) 
Then, by using Eqs. ( 23), ( 26), [START_REF] Tonelli | A critical evaluation of mechanical models for sandwich beams[END_REF], and (31), we obtain

τ int xy (ξ) = -E s t 2 -t c(1 + m) 2 + β 1 α 2 β 2 α 1 + c t - β 1 α 2 β 2 α 1 k 2 L 5 + (t + c) β 1 β 3 -β 2 2 α 1 β 2 L 3 24C 0 k k(e -k(2-ξ) + e -kξ ) -e -k(1-ξ) + e -k(1+ξ) 1 + e -2k + 24C 0 (ξ -1)(t + c) β 1 β 3 -β 2 2 α 1 β 2 L 3 = -qE s t 2 L 1 -m 2k ct β 2 β 1 α 2 k(e -k(2-ξ) + e -kξ ) -e -k(1-ξ) + e -k(1+ξ) 1 + e -2k + (ξ -1)(t + c) α 1 , (32) 
- V s 2b = qE s t 2 t 3 + c 4 1 α 1 + tc 2 - 1 + m 3 + 1 2 × β 2 β 1 α 2 k(e -k(2-ξ) -e -kξ ) -e -k(1-ξ) -e -k(1+ξ) 1 + e -2k . (33) 
Given that the displacement-based FE method in which the sandwich beam is modelled as a 2D continuum cannot provide reliable results at the fully-clamped cross-section [START_REF] Gregory | The cantilever beam under tension, bending or flexure at infinity[END_REF][START_REF] Tullini | Logarithmic stress singularities at clamped-free corners of a cantilever orthotropic beam under flexure[END_REF][START_REF] Bardella | On explicit analytic solutions for the accurate evaluation of the shear stress in sandwich beams with a clamped end[END_REF],

below we provide explicit analytical expressions for the recovered stresses therein.

The recovered stresses at the fully-clamped cross-section

Evaluation of the relevant derivatives of Eq. ( 31) in x = 0 gives

d 4 f (ξ) dξ 4 ξ=0 = 24C 0 k(e -2k -1) -2 e -k 1 + e -2k + 1 , d 6 f (ξ) dξ 6 ξ=0 = 24C 0 k 2 k(e -2k -1) -2 e -k 1 + e -2k ,
such as, from Eqs. ( 24) and ( 25), one obtains

φ c (0) = 24C 0 L 4 β 1 β 3 -β 2 2 α 1 β 2 + k(e -2k -1) -2 e -k 1 + e -2k β 1 β 3 -β 2 2 α 1 β 2 + t - β 1 α 2 β 2 α 1 k 2 L 2 , ( 34 
)
φ s (0) = 24C 0 L 4 β 1 β 3 -β 2 2 α 1 β 2 + k(e -2k -1) -2 e -k 1 + e -2k × β 1 β 3 -β 2 2 α 1 β 2 - β 1 α 2 β 2 α 1 + c(1 + m) 2 k 2 L 2 , ( 35 
)
to be substituted in Eq. ( 17) to obtain σ rec y (0, y).

About the recovered shear stress, we report the results in [START_REF] Bardella | On explicit analytic solutions for the accurate evaluation of the shear stress in sandwich beams with a clamped end[END_REF], adopting the notation τ fc xy (y) = τ zz xy (ξ = 0, y). Hence, the shear stress reads

τ fc xy (y) =        qL bcD 1 D 4 + 12θ 0 |y| c + 12D 2 y c 2 if y ∈ A s qL bcD 1 D 5 + D 3 y c 2 if y ∈ A c
where

θ 0 = ϕω 2 -n (3 + 4 ) , D 1 = 4 2 (2 + 3n )(1 + 2ϕ ) , D 2 = 3n (1 -2ϕ) -ϕ , D 3 = 24 2 (3ϕ -2) , D 4 = 3(1 + 2 )[D 2 + 2 (ϕ + n )] , D 5 = 6 2 (2 -ϕ + 2n ) .

Results and discussion

We consider the following set of parameters, corresponding to a quite large relative stiffness between skins and core, n = 1000 , = 9/140 , ν s = 0. and ν c = 0.49 ⇒ ϕ = 1490 , (c + 2t)/L = 79/800 (36)

and compare the proposed analytical estimates with the results of FE simulations where the sandwich beam is modelled as a 2D plane-stress continuum. Next, we illustrate this FE model.

The FE discretisation of the reference two-dimensional plane-stress continuum model

The FE model, which is developed within the commercial FE code ABAQUS [START_REF]Dassault Systèmes: ABAQUS User's & Theory Manuals -Release 6.13-1[END_REF], consists of 1000 columns of bi-quadratic (8-noded) FEs with reduced integration (4 Gauss points for each FE), denoted as CPS8R in ABAQUS. In each column, the core is discretised along its thickness with 70 FEs, and each skin is discretised with 25 FEs. All FEs have the same side along the x axis, whereas the sides along the y direction are uniform within each layer, thus being different for core and skins. Overall, the mesh consists of 120,000 8-noded FEs.

The fully-clamped cross-section is realised by setting to zero both displacement components of all the nodes belonging to the left side (located at x = 0) and the uniform load is applied as a pressure to the external surface of the top skin (i.e. at y = -tc/2).

Comparison between analytical and numerical results

For the sake of brevity we disregard the longitudinal stress σ x as given by Eq. ( 13), which is well-known to be very well estimated by the considered structural theory [START_REF] Bardella | Explicit analytic solutions for the accurate evaluation of the shear stresses in sandwich beams[END_REF][START_REF] Tonelli | A critical evaluation of mechanical models for sandwich beams[END_REF][START_REF] Bardella | On explicit analytic solutions for the accurate evaluation of the shear stress in sandwich beams with a clamped end[END_REF].

In Fig.

(2) we present the analytical results for the cross-sectional profiles of σ rec y and τ zz xy at three different positions in the clamped sandwich region, ξ = 0., 0.03, 0.06. While the behaviour of the shear stress is quite well-known [START_REF] Bardella | On explicit analytic solutions for the accurate evaluation of the shear stress in sandwich beams with a clamped end[END_REF], that of the through-the-thickness normal stress constitutes an interesting novelty: after attaining the assigned value -q/b at y = -tc/2, it experiences a quite large gradient and assumes a relatively large tensile value at the interface (y = -c/2). Then, it is subject to an opposite gradient all along the core thickness, such that at the lower interface (y = c/2) it assumes a compressive value 

y = t + c/2
. This type of profile for σ y is due to the fast variation of τ xy along the beam axis in the clamped sandwich region, where the shear stress rapidly migrates from the core to the skins [START_REF] Bardella | On explicit analytic solutions for the accurate evaluation of the shear stress in sandwich beams with a clamped end[END_REF]. Hence, in this benchmark, at the upper interface (y = -tc/2) in the clamped region, σ y counter-intuitively results in a peel stress that may prevent the interface from developing its intrinsic shear strength.

The foregoing predictions have been validated against the results obtained with the FE model described in Sect. 4.2.1. Fig. 3 reports the deformed shape, which is characterised by a change of curvature already observed in [START_REF] Bardella | On explicit analytic solutions for the accurate evaluation of the shear stress in sandwich beams with a clamped end[END_REF] for parameters different from those selected here, as in Eq. (36). Also, in Fig. 3 we display the contour of σ y , such contour being limited in such a way as to give an indication of the behaviour over the whole sandwich. By the way, : Amplified deformed configuration and contour of the through-the-thickness normal stress for the cantilever sandwich modelled as a plane-stress continuum with the FE code ABAQUS the sandwich region where the contour turns out to be cut is that next to the fully-clamped sandwich end, in which it is well-known that the adopted displacement-based FEs cannot capture some important aspects of the exact linear elastic solution of this 2D boundary value problem, even if one resorts to extremely refined meshes. This is because the longitudinal stress, σ x , turns out to be unbounded at the corner points of the fully-clamped cross-section [START_REF] Gregory | The cantilever beam under tension, bending or flexure at infinity[END_REF][START_REF] Tullini | Logarithmic stress singularities at clamped-free corners of a cantilever orthotropic beam under flexure[END_REF]. The FE solution is unable to describe this singularity and, as a consequence, it even does not match the static boundary conditions on a portion of the unconstrained sides ending in the corner points of the clamped section. This problem is common to other structures modelled as 2D continua and having a fully-clamped side with corners, as in axisymmetric functionally-graded plates [START_REF] Sburlati | Three-dimensional elastic solutions for functionally graded circular plates[END_REF]. : comparison between the results of the FE simulation as a 2D plane-stress continuum and the stress recovery in the structural theory relying on the zigzag warping. Note that, for the sake of graphical clarity, we plot only half of the τ xy (y) profiles even though τ xy is not perfectly symmetric with respect to y = 0 in the 2D continuum analysis, because of the load applied at y = -tc/2 match is already quite good at ξ = 0.03, that is very close to the encastre. Instead, for the reasons above explained, at the fully-clamped cross-section (ξ = 0.), the 2D plane-stress continuum FE model is totally unreliable in terms of all the three stress components, for instance providing τ xy (y/H = 0.5)b/q ≈ 25. and τ xy (y/H = -0.5)b/q ≈ 28., instead of vanishing values. Given the good match in Figs. 4 and5 at ξ = 0.03, we infer that the structural theory relying on the zig-zag warping with the double stress recovery provides useful estimates also at the encastre.

The most important result of this investigation is that we observe that there are portions of the interfaces where the through-the-thickness normal stress is comparable to, or or even much larger than, the shear stress, the former remarkably being a tensile stress. We think that this might important to study delamination, which may be of crucial importance for the analysis and design of sandwich panels. By entering into further details of the considered benchmark, at (ξ, y) = (0.03, -c/2) we obtain τ int xy b/q = 6.96941 and σ rec y b/q = 5.7537; at the clamped section, the zigzag model even predicts much larger σ rec y (ξ = 0, y = -c/2)b/q than τ int xy (ξ = 0)b/q, which are equal to 15.6 and 1.42, respectively. Fig. 6 displays the two stress components all along the upper interface (y = -c/2), where σ y is a tensile stress. Note that the particular behaviour of the shear stress is known since [START_REF] Bardella | On explicit analytic solutions for the accurate evaluation of the shear stress in sandwich beams with a clamped end[END_REF]: from the free end to the clamped section it increases almost linearly with the shear force, until the effect of hampering warping at the clamped section requires a sudden decrease of τ xy in the core, which has then to migrate to the skins. In this contribution, we have provided explicit analytical estimates for the through-thethickness normal stress component, σ y , of sandwich beams with identical skins and governed by the Krajcinovic theory, which relies on zigzag warping under flexure [START_REF] Krajcinovic | Sandwich beam analysis[END_REF].

The new analytical estimates for σ y complement those already established for the longitudinal stress σ x [START_REF] Krajcinovic | Sandwich beam analysis[END_REF][START_REF] Krajcinovic | Sandwich beams with arbitrary boundary conditions[END_REF] and for the shear stress τ xy [START_REF] Bardella | Explicit analytic solutions for the accurate evaluation of the shear stresses in sandwich beams[END_REF][START_REF] Bardella | On explicit analytic solutions for the accurate evaluation of the shear stress in sandwich beams with a clamped end[END_REF] and rely on a double stress recovery procedure, already followed in the literature on numerical schemes for equivalent single layer models (ESLMs) of multilayered structures [START_REF] Carrera | A priori vs. a posteriori evaluation of transverse stresses in multilayered orthotropic plates[END_REF][START_REF] Matsunaga | Interlaminar stress analysis of laminated composite beams according to global higher-order deformation theories[END_REF][START_REF] Dufour | A cost-effective isogeometric approach for composite plates based on a stress recovery procedure[END_REF]. In the case of beams, after τ xy is obtained from a first Jourawski-like stress recovery [START_REF] Jourawski | Remarques sur la résistance d'un corps prismatique et d'une pièce composée en bois ou en tôle de fer à une force perpendiculaire à leur longeur[END_REF][START_REF] Matsunaga | Interlaminar stress analysis of laminated composite beams according to global higher-order deformation theories[END_REF][START_REF] Bardella | Explicit analytic solutions for the accurate evaluation of the shear stresses in sandwich beams[END_REF], one resorts to the balance equation ∂τ xy /∂x + ∂σ y /∂y = 0 to obtain σ y . While this procedure gives no problems if one can obtain analytical solutions, it instead requires care in numerical approaches, where the functions approximating the primal structural variables may need high continuity conditions.

We have validated the obtained analytical results against finite element simulations in which the sandwich beam is modelled as a two-dimensional plane-stress continuum. The main practical outcome of this investigation is that there are boundary value problems in which σ y at the interfaces is a tensile stress of magnitude larger than τ xy , such as σ y should surely be accounted for when studying delamination. In our study, this happens for a cantilever sandwich subjected to a uniform transverse load in a region close to the fully-clamped crosssection.

Alternatively and complementarily to the use of more complex exact linear elastic solutions for the sandwich panel modelled as a continuum [START_REF] Pagano | Exact solutions for composite laminates in cylindrical bending[END_REF], the proposed analytical solutions could be used to test various higher-order models for laminated composite panels, with the purpose of assessing an adopted numerical method, a new proposal for a warping function, or both.

Although here we have focused on sandwich beams with identical skins, in this regard, let us also mention the ESLMs, which can be particularised to our layout even if they are typically developed to deal with structures constituted by several layers. ESLMs aim at accurate solutions while maintaining the number of unknown structural variables as limited as possible and independent of the number of layers, thus opening up to a large number of proposals in the literature and usually requiring numerical solutions. Within this realm, we mention both laminated beams [START_REF] Zuo | Piecewise linear warping theory for multilayered elastic beams[END_REF][START_REF] Ghugal | A review of refined shear deformation theories for isotropic and anisotropic laminated beams[END_REF][START_REF] Tessler | A refined zig-zag beam theory for composite and sandwich beams[END_REF][START_REF] Carrera | Laminated beam analysis by polynomial, trigonometric, exponential and zig-zag theories[END_REF][START_REF] Icardi | Assessment of recent zig-zag theories for laminated and sandwich structures[END_REF] and laminated plates (see, e.g., [START_REF] Carrera | A priori vs. a posteriori evaluation of transverse stresses in multilayered orthotropic plates[END_REF][START_REF] Dufour | A cost-effective isogeometric approach for composite plates based on a stress recovery procedure[END_REF][START_REF] Patton | Accurate equilibrium-based interlaminar stress recovery for isogeometric laminated composite kirchhoff plates[END_REF], dealing with the double stress recovery adopted here, and references therein), in which the test could be accomplished by subjecting the plate to cylindrical bending (along with substituting, in our equations, E with E/(1ν 2 ) for the longitudinal moduli of the layers).

A Analytical solution at the beam end in a simply-supported sandwich subjected to uniform transverse load

In this boundary value problem the Krajcinovic auxiliary function results [START_REF] Bardella | Explicit analytic solutions for the accurate evaluation of the shear stresses in sandwich beams[END_REF] f (ξ) = 24C 0 k 4 e -k -1 1 -e -2k e k(ξ-1) - Therefore, from Eqs. [START_REF] Phan | Analysis of sandwich beams with a compliant core and with in-plane rigidity -Extended high-order sandwich panel theory versus elasticity[END_REF] and ( 25) one has

φ c (0) = 24C 0 L 4 t - β 1 α 2 β 2 α 1 k 2 L 2 2 e -2k -1 1 -e -2k + β 1 β 3 -β 2 2 α 1 β 2 e -2k 1 -e -2k , (40) 
φ s (0) = 24C 0 L 4 - β 1 α 2 β 2 α 1 + c(1 + m) 2 k 2 L 2 2 e -2k -1 1 -e -2k + β 1 β 3 -β 2 2 α 1 β 2 e -2k 1 -e -2k . (41) 
Then, by substituting Eqs. ( 40) and (41) into Eq. ( 21), one has

- V s (0) 2b = 24C 0 E s t 2 L 4 (1 -e -2k ) - β 1 α 2 β 2 α 1 + c(1 + m) 2 k 2 L 2
(2 e -2k -1) +

β 1 β 3 -β 2 2 α 1 β 2 e -2k t 3 + t - β 1 α 2 β 2 α 1 k 2 L 2
(2 e -2k -1) +

β 1 β 3 -β 2 2 α 1 β 2 e -2k c 4 
and, by also accounting for Eqs. ( 12) and ( 28), we finally obtain

- V s (0) 2b = qE s t 2 1 -e -2k 1 α 1 + c(1 + m)β 2 2β 1 α 2 (1 -2 e -2k ) + e -2k α 1 t 3 + 1 α 1 - tβ 2 β 1 α 2 (1 -2 e -2k ) + e -2k α 1 c 4 , (42) 
which can be studied in order to establish whether, for appropriate sets of parameters, σ rec y (x = 0, y) can result, in modulus, significantly larger than |q/b|.

As already mentioned, both our 2D FE analyses of the sandwich as a plane-stress continuum and the application of the foregoing formulae suggest that the simply-supported case is not very much interesting as σ y hardly is ever larger than |q/b|.

However, this benchmark unexpectedly displays a feature that, in our opinion, would deserve to be further studied. It consists in the fact that the 2D FE analysis gives a σ y profile that is in remarkable disagreement with that predicted by Eqs. ( 17) and (42) in a quite large sandwich region at the support, the latter being modelled by setting to zero the transversal displacement component of all the nodes at the beam-end side. In this respect, contrary to our experience with the longitudinal and shear stress components, the comparison between analytical estimates and FE results in terms of through-the-thickness stress is "more difficult"

for the simply-supported cross-section than for the fully-clamped cross-section. In practice,
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 2 Figure 2: Non-dimensional through-the-thickness normal stress (a) and shear stress (b) at different cross-sections: analytical estimates
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 3 Figure3: Amplified deformed configuration and contour of the through-the-thickness normal stress for the cantilever sandwich modelled as a plane-stress continuum with the FE code ABAQUS
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 445 Figs. 4 and 5 display the comparison between the analytical and FE results. It is inter-
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 6 Figure 6: Non-dimensional through-the-thickness normal stress and shear stress all along the upper interface (y = -c/2): analytical estimates relying on Krajcinovic theory and stress recovery

1 2 (k 2 ξ 2 + C 0 1 - 12 k 2 ξ + 24C 0 k 4 . 6 ξ=0= 24C 0 k 2 e 2 (

 1224622 coth kcsch k + 1) e -kξ + C 0 ξ 4 -2C 0 ξ 3 + 12C 0 (37)Evaluation of the relevant derivatives of Eq. (37) in x = -k -1 1 -e -2k e -k -1 coth kcsch k + 1) = 24C 0 k 2 2 e -2k -11 -e -2k . (39)
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