
Explicit analytical solutions for the full plane-stress field in

sandwich beams under flexure governed by zigzag warping

Lorenzo Bardella∗

Department of Civil, Environmental, Architectural Engineering and Mathematics,
University of Brescia,

Via Branze, 43 — 25123 Brescia, Italy

Abstract

We provide analytical solutions for the full stress field of straight sandwich beams with

identical skins subject to linear elastic flexure governed by zigzag warping, where all

layers obey Timoshenko’s kinematics. As a main novelty, we make use of a balance

equation for the Cauchy continuum to recover of the through-the-thickness normal stress

component, σy. The new estimates are accurate for a wide range of relative stiffness

between skins and core and suitable boundary conditions, as it can be demonstrated

through the comparison with detailed finite element simulations where the sandwich is

modelled as a two-dimensional continuum. As a main practical result concerned with

the study of delamination, we find that at a core-skin interface of a cantilever sandwich

subjected to a uniformly distributed load, in a region close to the fully-clamped cross-

section, σy is a tensile stress of magnitude larger than that of the shear stress. On this

basis, we infer that the availability of good estimates for σy, along with those for the

longitudinal and shear stresses, may be important for the accurate design of sandwich
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panels.
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1 Introduction

We focus on the model for sandwich beams developed since the pivotal contributions of Yu

[31], Heller [12], and Krajcinovic [15, 16], whose main assumption is that both core and skins

obey Timoshenko kinematics. We call this model the Krajcinovic model because, to the best

of our knowledge, Krajcinovic [15] was the first one to establish a way to provide general

analytical solutions for the case here of interest, that is the accurate evaluation of the linear

elastic flexure of straight sandwich beams with identical skins.

The Krajcinovic model, here summarised in Sect. 2, has been shown to provide good

analytical estimates not only in terms of displacements, but also in terms of longitudinal and

shear stress fields [3, 2]. This holds for a wide range of relative stiffness between core and

skins, where this parameter mainly depends on the elastic moduli and the thicknesses of the

layers [28]. The range of engineering adequacy of Krajcinovic model even becomes extremely

large if the boundary conditions are applied in such a way as to avoid as much as possible

stress concentrations. Otherwise, dealing with “extreme” boundary conditions, in general

referring to forces applied on a single skin with constraints applied on the opposite skins, may

easily require more complex higher-order theories involving soft cores, typically including the

midlayer through-the-thickness deformability [8, 9, 30, 24, 19, 22, 17]. Of course, the more

complex the theory the more difficult finding useful analytical solutions.
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Analytical solutions not only are very important in the optimal design, but may also

be one of the very few reliable tools under specific circumstances, where otherwise powerful

numerical methods fail. This is for instance the case of the stress field in the sandwich

region next to a fully-clamped cross-section, where the displacement-based finite element

(FE) method cannot provide good results when modelling the sandwich as a two-dimensional

(2D) continuum [11, 29, 2].

By focusing on the through-the-thickness normal stress component σy, this contribution

complements our previous efforts [3, 2] where we provided analytical solutions for the longitu-

dinal and shear stresses within Krajcinovic theory. As presented in Sect. 3, we obtain σy by

a double stress recovery. In fact, if one is strictly consistent with the zigzag warping assumed

by the theory, Krajcinovic model delivers very accurate predictions of the longitudinal stress

field only. Obtaining accurate estimates for the shear stress τxy requires one to resort to the

application of a Jourawski-like approach [14] to the longitudinal stress σx ensuing from the

zigzag kinematics, which is actually equivalent to integrate, with respect to the transverse

axis y, the balance equation for the Cauchy continuum

∂σx
∂x

+
∂τxy
∂y

= 0 , (1)

along with averaging over the out-of-plane axis z. This first stress recovery has been adopted

also in some numerical contributions [18, 20], where one has to take care of the required

derivative of σx with respect to the beam axis x, which leads to higher continuity conditions

for the functions adopted to approximate the primal fields.

In this investigation, we adopt a second stress recovery to determine the through-the-
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thickness stress σy, which is just indeterminate on the basis of the kinematics assumed by

Krajcinovic theory, totally disregarding the through-the-thickness normal deformation. To

this purpose, we consider the balance equation for the Cauchy continuum

∂τxy
∂x

+
∂σy
∂y

= 0 , (2)

where we plug the shear stress obtained from the first stress recovery. Hence, this second

stress recovery for σy relies on a stress field, i.e. τxy, that has already been obtained by a

recovery procedure. While there is no problem in our analytical approach, numerical methods

using the foregoing double stress recovery have to deal with high continuity conditions of the

approximating functions, given that σy turns out to depend on ∂2σx/∂x
2. This numerical issue

has been formerly dealt with by Matsunaga [18] for laminated beams governed by a higher-

order shear deformation theory obtained by power series expansions for the displacement

components. In the case of laminated plates [4, 18, 7, 23] the through-the-thickness normal

stress field is recovered after two shear stress fields are obtained by two parallel stress recovery

procedures.

About the role played by σy in laminated beams, here we demonstrate, through the

cantilever benchmark of Sect. 4, that there are important boundary value problems in which

it may not be disregarded. In particular, we show that at the interfaces between core and

skins σy may be a tensile stress of much larger magnitude than τxy, thus surely impacting the

analysis of delamination. Among the earlier studies on the sandwich theory here adopted,

Heller [12] already focused on the interfacial stress, but the focus was restricted to the shear

stress only. Very recently, the interfacial normal stress has been considered as well [26],
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although in the context of a simpler structural model, where the skins are rigid in shear, thus

behaving as Euler-Bernoulli beams. Here, we not only adopt the richer Krajcinovic model,

but we provide explicit analytical solutions for σy over the whole sandwich.

2 Summary of the Krajcinovic model

We adopt the notation and select the independent structural functions as in [3, 2] to describe

the Krajcinovic model. The model relies on the zigzag warping depicted in Fig. 1, where

Figure 1: Zigzag kinematics for a sandwich beam with identical skins. Taken from [2].

v(x) is the transverse displacement (directed as the y axis, such as z is the neutral axis), t

and c are the thicknesses of skins and core, respectively, ϕc(x) and ϕs(x) are the rotations of
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the core and skin cross-sections, respectively. Instead of ϕc(x) and ϕs(x), for the independent

structural variables, Krajcinovic selected a mean rotation of the whole cross-section and a

warping function associated with null bending moment. This allowed Krajcinovic to find

a way to analytically integrate the three Euler-Lagrange equations governing the problem.

The description of the zigzag warping of Fig. 1, which is inspired by the earlier models of

Allen [1], has instead the advantage to turn out to naturally display, as static quantities, the

bending moments related to the variations of ϕs(x) and ϕc(x), along with their derivatives

with respect to the beam axis, which result to be the shear forces developed by the skins and

the core.

The considered Krajcinovic model disregards the through-the-thickness strain εy, such as

the stress component σy remains indeterminate if computed consistently with the assumed

kinematics.

In sandwich beams, the ratios

ϵ =
t

c
, n =

Es

Ec
, φ =

Gs

Gc
(3)

are particularly relevant to select the most appropriate model for a specific problem [28].

In Eq. (3) E and G are the longitudinal modulus and the shear modulus in the xy plane,

respectively, where the indices c and s denote their values assumed in the core and in the

skins, respectively. Differently from other models for sandwich panels [1], Krajcinovic theory

does not impose any particular restriction on the parameters that define the relative stiffness

between skins and core, the latter governing the sandwich flexure. Therefore, the application

of Krajcinovic theory is not limited to thin skins (i.e. ϵ sufficiently close to zero), nor to
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antiplane sandwiches (i.e. n → ∞).

By following [3] and the warping description of Fig. 1, the balance equations governing

Krajcinovic model read

V ′(x) = −q(x) , M ′
c(x) = Vc(x) , M ′

s(x) = Vs(x) , (4)

in which ′ denotes the derivative with respect to x, q(x) is the distributed transverse load

(acting along the y direction) and M(x) = Ms(x) + Mc(x) and V (x) = Vs(x) + Vc(x) are,

respectively, the total bending moment and the total shear force, whose contributions result

to be defined by the structural constitutive equations

Mc = −Esbtc

2
(cϕ′

c + tϕ′
s)−

Ecbc
3

12
ϕ′
c , Ms = −Esbt

3

6
ϕ′
s −

Esbt
2

2
(cϕ′

c + tϕ′
s) , (5)

Vc = Gcbc(v
′ − ϕc) , Vs = 2Gsbt(v

′ − ϕs) , (6)

where b is the sandwich width. While Vc and Vs are the contributions to the shear force

acting in the core and in the skins, respectively, a similar connection does not hold for the

moments Mc and Ms, which are conjugated to the variations of ϕc and ϕs. The three coupled

Euler-Lagrange equations governing the theory, to be solved for v(x), ϕc(x), and ϕs(x), are

obtained by substituting Eqs. (5) and (6) into Eq. (4).

Let us remark that the natural boundary conditions leave the freedom to separately impose

Ms and Mc as related to the variations of ϕs and ϕc, respectively. Hence, the same bending

moment M results from any combination of Ms and Mc such that M = Ms+Mc, each choice

of Ms and Mc corresponding to a different solution in terms of stresses. Because of this

fundamental reason, this model is not “à la De Saint Venant” [28].
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The Krajcinovic solution, as a first step, requires the integration of the differential equation

d6f(ξ)

dξ6
− k2

d4f(ξ)

dξ4
= −β2L

6

β1α2
q(ξ) (7)

to determine the auxiliary structural function f(x). In Eq. (7), L is the beam length,

ξ =
x

L
(8)

is the non-dimensional coordinate along the beam axis, and k, β1, β2, α2 are constant coeffi-

cients conveniently provided below.

Once f(x) is known, the structural functions can be obtained, by combining the relations

presented in [15, 3], leading to

ϕc(ξ) =

(
t− β1α2

β2α1

)
1

L3

d3f(ξ)

dξ3
+

β1β3 − β2
2

α1β2

1

L

df(ξ)

dξ
, (9)

ϕs(ξ) = −
(
c(1 +m)

2
+

β1α2

β2α1

)
1

L3

d3f(ξ)

dξ3
+

β1β3 − β2
2

α1β2

1

L

df(ξ)

dξ
, (10)

v(ξ) =
α2

β2

1

L4

d4f(ξ)

dξ4
−
(
β3 + β1

α2

α1

)
1

β2

1

L2

d2f(ξ)

dξ2
+

β1β3 − β2
2

α1β2
f(ξ) . (11)

In Eqs. (7), (9), (10), and (11), the coefficients α1, α2, β1, β2, β3, m, k turn out to depend

on the heterogeneity coefficients (3) and on other sandwich parameters as

α1 =
bc3Ec

12
ω1 , α2 =

bc5Ec

12

(
2 + 3nϵ(1 + ω1)

n(3 + 4ϵ)2
+ ϵ

)
ϵ ,

β1 = bcGc(1 + 2φϵ) , β2 = bc2Gc

(
φω2

n(3 + 4ϵ)
− ϵ

)
, β3 = bc3Gc

(
φω2

2

2n2ϵ(3 + 4ϵ)2
+ ϵ2

)
,

m =
1 + nϵ(3 + 2ϵ)

nϵ(3 + 4ϵ)
, k =

√
(β1β3 − β2

2)L
2

β1α2
, (12)

where

ω1 = 1 + 2nϵ(3 + 6ϵ+ 4ϵ2) , ω2 = 1 + 6nϵ+ 6nϵ2 .
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Let us mention that the coefficient m in Eq. (12) enters the warping shape function deduced

by Krajcinovic in order to devise a way to analytically integrate the Euler-Lagrange governing

equations [15].

3 The full stress field: analytical expression for the through-
the-thickness normal stress via double stress recovery

In the absence of issues concerned with severe boundary conditions [22] and soft cores [9,

24, 17], the sole stress component that is accurate if computed consistently with the assumed

zigzag kinematics in Krajcinovic theory [3, 2] is normal longitudinal stress, which reads

σx(x, y) =

{
−Es

[
ϕ′
c(x)

c

2
sgn(y) + ϕ′

s(x)
(
y − c

2
sgn(y)

)]
if y ∈ As

−Ecϕ
′
c(x)y if y ∈ Ac

(13)

where As and Ac are the sandwich domains occupied by the skins and the core, respectively.

For what concern the other stress components, consistently with the kinematics, one has

the following piecewise uniform shear stress

τunixy (x) =

{
Gs[v

′(x)− ϕs(x)] if y ∈ As

Gc[v
′(x)− ϕc(x)] if y ∈ Ac

(14)

which obviously violate equilibrium at the interfaces, whereas the through-the-thickness nor-

mal stress σy is even indeterminate because of the assumed rigidity of the cross-section along

the y axis.

Estimate (14) can be largely improved as proposed in [3], by resorting to the application

of the Jourawski approach [14] to the zigzag kinematics, that is the first the stress recovery

discussed about Eq. (1). Hence, the average over the beam width b of the shear stress
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τxy(x, y, z), relying on the zigzag kinematics, reads [3]

τ zzxy(x, y) =


Es

{
ϕ′′
s(x)

1

2

[(
|y| − c

2

)2
− t2

]
− ϕ′′

c (x)
c

2

( c
2
+ t− |y|

)}
if y ∈ As

Ecϕ
′′
c (x)

1

2

(
y2 − c2

4

)
−Es

t

2
[ϕ′′

s(x)t+ ϕ′′
c (x)c]︸ ︷︷ ︸

τ intxy (x)

if y ∈ Ac (15)

where τ intxy(x) = τ zzxy(x, y = |c/2|) is the interfacial shear stress.

As a main novelty of this investigation, we follow a second stress recovery procedure to

determine σy by substituting Eq. (15) into Eq. (2). By also assuming, for simplicity, that

the transverse load q(x) is applied either at y = −t − c/2 or at y = t + c/2 (or even split in

two contributions on these two external boundaries), one can estimate

σrec
y (x, y) = σy(x,−t− c/2)−

∫ y

−t−c/2

∂τ zzxy(x, y
∗)

∂x
dy∗ . (16)

Then, for the three sandwich layers, we obtain

σrec
y (x, y) = σy(x,−t− c/2) + Es

{
ϕ′′′
s (x)

1

2

[
t2
(
y +

c

2
+

2t

3

)
− 1

3

(
y +

c

2

)3]
+ ϕ′′′

c (x)
c

2

[
y
( c
2
+ t+

y

2

)
+

1

2

( c
2
+ t

)2]}
, for y ∈ [−t− c/2,−c/2] , (17a)

σrec
y (x, y) = σrec

y (x,−c/2) + Ecϕ
′′′
c (x)

1

2

(c2y
4

− y3

3
+

c3

12

)
+ Es

t

2

(
y +

c

2

)
[ϕ′′′

s (x)t+ ϕ′′′
c (x)c] , for y ∈ [−c/2, c/2] , (17b)

σrec
y (x, y) = σrec

y (x, c/2) + Es

{
ϕ′′′
s (x)

1

2

[
t2
(
y − c

2

)
− 1

3

(
y − c

2

)3]
+ ϕ′′′

c (x)
c

2

[
y
( c
2
+ t− y

2

)
− c

2

( c
4
+ t

)]}
for y ∈ [c/2, t+ c/2] . (17c)

In the above relations σy(x,−t−c/2) is a known value, while, by evaluating (17a) at y = −c/2,

(17b) at y = c/2, and (17c) at y = t+ c/2, it results

σrec
y (x,−c/2) = σy(x,−t− c/2) + Es

(
ϕ′′′
s (x)

t3

3
+ ϕ′′′

c (x)
ct2

4

)
, (18)
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σrec
y (x, c/2) = σrec

y (x,−c/2) + Ecϕ
′′′
c (x)

c3

12
+ Es

tc

2
[ϕ′′′

s (x)t+ ϕ′′′
c (x)c] , (19)

σrec
y (x, t+ c/2) = σrec

y (x, c/2) + Es

(
ϕ′′′
s (x)

t3

3
+ ϕ′′′

c (x)
ct2

4

)
. (20)

Hence, from the equilibrium of the forces along the y direction for each layer, we deduce

Es

(
ϕ′′′
s (x)

t3

3
+ ϕ′′′

c (x)
ct2

4

)
= −V ′

s

2b
, (21)

Ecϕ
′′′
c (x)

c3

12
+ Es

tc

2
[ϕ′′′

s (x)t+ ϕ′′′
c (x)c] = −V ′

c

b
, (22)

which perfectly agree with the expressions that one can obtain by deriving the second and

third relations of Eq. (4) and substituting in the obtained relations the definitions of the

bending moments in Eq. (5). This check shows that the double stress recovery provides

interfacial σy that can be obtained also by imposing the equilibrium of the free-body diagram

of the layer elements, which delivers balance equations equivalent to those obtained by min-

imising the Total Potential Energy governing the problem [15, 3, 26]. However, the double

stress recovery provides the σy field all over the sandwich, which is worth to be explored. In

particular, on the neutral axis we obtain

σrec
y (x, 0) = σrec

y (x,−c/2) + Ecϕ
′′′
c (x)

c3

24
+ Es

tc

4
[ϕ′′′

s (x)t+ ϕ′′′
c (x)c] .

By setting t = 0, we particularise Eq. (17b) to a homogeneous beam with rectangular cross-

section of height c, thus obtaining

σrec
y (x, y) = σrec

y (x,−c/2) + Ecϕ
′′′
c (x)

1

2

(c2y
4

− y3

3
+

c3

12

)
= σrec

y (x,−c/2) + q(x)
12

bc3
1

2

(c2y
4

− y3

3
+

c3

12

)
= σrec

y (x,−c/2) +
q(x)

b

(3y
2c

− 2y3

c3
+

1

2

)
.
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This result shows that on the neutral axis the through-the-thickness stress on the top surface

is varied by half of the applied load only. Moreover, if q(x) is applied as a compressive load

on the top surface, one has

σrec
y (x, y) = −q(x)

b
+

q(x)

b

(3y
2c

− 2y3

c3
+

1

2

)
,

which correctly vanishes at y = c/2. As expected and well-known in classical structural

mechanics, this component of stress is negligible in homogeneous beams, consistently with

σx/σy ∼ (L/c)2. Hence, the main point of this investigation is to demonstrate that this may

not be the case in laminated structures. In other words, it would be sufficient to show that

the contribution V ′
s/(2b) in Eq. (21) can be large enough to require the evaluation of σy for

a thorough analysis of the stress state in sandwich panels.

In particular, when one has to apply an appropriate criterion to establish whether delam-

ination may occur, σy should be accounted for if it is on the order of magnitude of the shear

stress at the interfaces, that is the ratio

τ intxy(x)

σrec
y (x,−c/2)

=
−Es

t

2
[ϕ′′

s(x)t+ ϕ′′
c (x)c]

σy(x,−t− c/2)− V ′
s

2b

=
ϕ′′
s(x)t+ ϕ′′

c (x)c

2q(x)

Estb
− ϕ′′′

s (x)
2t2

3
− ϕ′′′

c (x)
ct

2

,

obtained from Eqs. (15) and (21), should, in modulus, not be much larger than 1. In Sect. 4

we show that this is surely the case, as σrec
y (x,−c/2) may even be a tensile stress significantly

larger than τ intxy(x). This is of course a further interesting effect due to the heterogeneity

of laminated structures. With this goal in mind, we also provide general relations for the

interfacial shear stress, which can be easily obtained from the relations presented in [3, 2].

Note that, differently from σy, in Krajcinovic model the shear stress at the two interfaces is
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identical. From Eqs. (15), (9), and (10) we obtain

τ intxy(x) = −Es
t

2

{[
−t

(c(1 +m)

2
+

β1α2

β2α1

)
+ c

(
t− β1α2

β2α1

)] 1

L5

d5f(ξ)

dξ5

+ (t+ c)
β1β3 − β2

2

α1β2

1

L3

d3f(ξ)

dξ3

}
. (23)

The evaluation of σy at the interfaces basically corresponds to evaluate V ′
s/(2b) in Eq. (21).

From Eqs. (9) and (10), we obtain

ϕ′′′
c =

(
t− β1α2

β2α1

) 1

L6

d6f(ξ)

dξ6
+

β1β3 − β2
2

α1β2

1

L4

d4f(ξ)

dξ4
, (24)

ϕ′′′
s = −

(c(1 +m)

2
+

β1α2

β2α1

) 1

L6

d6f(ξ)

dξ6
+

β1β3 − β2
2

α1β2

1

L4

d4f(ξ)

dξ4
, (25)

which, if substituted in Eq. (21), deliver

− V ′
s

2b
= Est

2
{[

−β1α2

β2α1

( t

3
+

c

4

)
− ct(1 +m)

6
+

ct

4

] 1

L6

d6f(ξ)

dξ6

+
β1β3 − β2

2

α1β2

( t

3
+

c

4

) 1

L4

d4f(ξ)

dξ4

}
. (26)

Before delving into the numerical results, we provide relations that focus on the important

case of a uniform transverse load q.

3.1 Particularisation to the case of uniform load

For a uniform transverse load q, the general solution of Krajcinovic differential equation (7)

reads

f(ξ) = C1 sinh(kξ) + C2 cosh(kξ) + C0ξ
4 + C3ξ

3 + C4ξ
2 + C5ξ + C6 , (27)

where

C0 =
β2qL

4

24(β1β3 − β2
2)

=
qL4

12bc2Gc

nϵ(3 + 4ϵ)[φω2 − nϵ(3 + 4ϵ)]

φω2
1

(28)
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and the integration constants Ci with i = 1, . . . , 6 must be determined by imposing the

essential and natural boundary conditions of the boundary value problem considered [16, 3, 2].

By substituting Eqs. (27) and (28) into Eqs. (23) and (26), we obtain

τ intxy = −Es
t

2

{
6(t+ c)

β1β3 − β2
2

α1β2

k3

L3
[4C0ξ + C3] + [C1 cosh(kξ) + C2 sinh(kξ)]

×
{[

−t
(c(1 +m)

2
+

β1α2

β2α1

)
+ c

(
t− β1α2

β2α1

)] k5
L5

+ (t+ c)
β1β3 − β2

2

α1β2

k3

L3

}}
, (29)

− V ′
s

2b
=

q

α1

( t

3
+

c

4

)
+ [C1 sinh(kξ) + C2 cosh(kξ)]

× Est
2
{[

−β1α2

β2α1

( t

3
+

c

4

)
− ct(1 +m)

6
+

ct

4

] k6
L6

+
β1β3 − β2

2

α1β2

( t

3
+

c

4

) k4

L4

}
. (30)

The application of Eqs. (29) and (30) to various benchmarks, corroborated with the results

of accurate FE analyses in which the sandwich is modelled as a 2D plane-stress continuum,

has shown that a very interesting boundary value problem is that of the cantilever beam,

where σy may play a very important role. This does not seem to be the case, for instance,

in the propped-cantilever and simply-supported beams, although there might be room for

different conclusions for sandwich parameters outside the ranges that we have explored in our

preliminary analyses. In the following we deal with the cantilever case, while in Appendix

A we provide the analytical results for the simply-supported sandwich beam and skip other

boundary value problems for the sake of brevity.

4 Cantilever sandwich subjected to uniform transverse load

With the fully-clamped section at x = 0, the integration constants Ci with i = 1, . . . , 6 in Eq.

(27) are obtained by imposing the essential boundary conditions

v(ξ = 0) = 0 , ϕc(ξ = 0) = 0 , ϕs(ξ = 0) = 0 ,
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along the natural boundary conditions V (ξ = 1) = 0, Mc(ξ = 1) = 0, Ms(ξ = 1) = 0,

corresponding to

v′(ξ = 1)− φc(ξ = 1) + 2φϵ[v′(ξ = 1)− ϕs(ξ = 1)] = 0 , ϕ′
c(ξ = 1) = 0 , ϕ′

s(ξ = 1) = 0 .

Solving the system results in the expression for the Krajcinovic auxiliary function [2]

f(ξ) =
24C0

k4
k(e−k(2−ξ)− e−kξ)− e−k(1−ξ)− e−k(1+ξ)

1 + e−2k
+ C0ξ

4 − 4C0ξ
3 +

6C0

k2
(k2 + 2)ξ2

− 24C0

k2
ξ + 12C0

(
1

k2
+

α1β3
k2α2β1

+
2

k4
+

2α1β
2
2

k4α2β2
1

1− k + (1 + k) e−2k −2 e−k

1 + e−2k

)
. (31)

Then, by using Eqs. (23), (26), (28), and (31), we obtain

τ intxy(ξ) = −Es
t

2

{{[
−t

(c(1 +m)

2
+

β1α2

β2α1

)
+ c

(
t− β1α2

β2α1

)] k2
L5

+ (t+ c)
β1β3 − β2

2

α1β2L3

}24C0

k

k(e−k(2−ξ)+e−kξ)− e−k(1−ξ)+e−k(1+ξ)

1 + e−2k

+ 24C0(ξ − 1)(t+ c)
β1β3 − β2

2

α1β2L3

}

= −qEs
t

2
L
[1−m

2k
ct

β2
β1α2

k(e−k(2−ξ)+e−kξ)− e−k(1−ξ)+e−k(1+ξ)

1 + e−2k
+

(ξ − 1)(t+ c)

α1

]
, (32)

− V ′
s

2b
= qEst

2
{( t

3
+

c

4

) 1

α1
+

tc

2

(
−1 +m

3
+

1

2

)
× β2

β1α2

k(e−k(2−ξ)− e−kξ)− e−k(1−ξ)− e−k(1+ξ)

1 + e−2k

}
. (33)

Given that the displacement-based FE method in which the sandwich beam is modelled as

a 2D continuum cannot provide reliable results at the fully-clamped cross-section [11, 29, 2],

below we provide explicit analytical expressions for the recovered stresses therein.

4.1 The recovered stresses at the fully-clamped cross-section

Evaluation of the relevant derivatives of Eq. (31) in x = 0 gives

d4f(ξ)

dξ4

∣∣∣∣
ξ=0

= 24C0

(
k(e−2k −1)− 2 e−k

1 + e−2k
+ 1

)
,

d6f(ξ)

dξ6

∣∣∣∣
ξ=0

= 24C0k
2k(e

−2k −1)− 2 e−k

1 + e−2k
,
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such as, from Eqs. (24) and (25), one obtains

ϕ′′′
c (0) =

24C0

L4

{β1β3 − β2
2

α1β2
+

k(e−2k −1)− 2 e−k

1 + e−2k

[β1β3 − β2
2

α1β2
+
(
t− β1α2

β2α1

) k2

L2

]}
, (34)

ϕ′′′
s (0) =

24C0

L4

{β1β3 − β2
2

α1β2
+

k(e−2k −1)− 2 e−k

1 + e−2k

×
[β1β3 − β2

2

α1β2
−
(β1α2

β2α1
+

c(1 +m)

2

) k2

L2

]}
, (35)

to be substituted in Eq. (17) to obtain σrec
y (0, y).

About the recovered shear stress, we report the results in [2], adopting the notation

τ fcxy(y) = τ zzxy(ξ = 0, y). Hence, the shear stress reads

τ fcxy(y) =


qL

bcD1

[
D4 + 12θ0

|y|
c

+ 12D2

(y
c

)2
]

if y ∈ As

qL

bcD1

[
D5 +D3

(y
c

)2
]

if y ∈ Ac

where

θ0 = φω2 − nϵ(3 + 4ϵ) , D1 = 4ϵ2(2 + 3nϵ)(1 + 2φϵ) , D2 = 3nϵ(1− 2φ)− φ ,

D3 = 24ϵ2(3φ− 2) , D4 = 3(1 + 2ϵ)[D2 + 2ϵ(φ+ nϵ)] , D5 = 6ϵ2(2− φ+ 2nϵ) .

4.2 Results and discussion

We consider the following set of parameters, corresponding to a quite large relative stiffness

between skins and core,

n = 1000 , ϵ = 9/140 , νs = 0. and νc = 0.49 ⇒ φ = 1490 , (c+ 2t)/L = 79/800 (36)

and compare the proposed analytical estimates with the results of FE simulations where the

sandwich beam is modelled as a 2D plane-stress continuum. Next, we illustrate this FE

model.
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4.2.1 The FE discretisation of the reference two-dimensional plane-stress con-
tinuum model

The FE model, which is developed within the commercial FE code ABAQUS [6], consists

of 1000 columns of bi-quadratic (8-noded) FEs with reduced integration (4 Gauss points for

each FE), denoted as CPS8R in ABAQUS. In each column, the core is discretised along its

thickness with 70 FEs, and each skin is discretised with 25 FEs. All FEs have the same side

along the x axis, whereas the sides along the y direction are uniform within each layer, thus

being different for core and skins. Overall, the mesh consists of 120,000 8-noded FEs.

The fully-clamped cross-section is realised by setting to zero both displacement compo-

nents of all the nodes belonging to the left side (located at x = 0) and the uniform load is

applied as a pressure to the external surface of the top skin (i.e. at y = −t− c/2).

4.2.2 Comparison between analytical and numerical results

For the sake of brevity we disregard the longitudinal stress σx as given by Eq. (13), which is

well-known to be very well estimated by the considered structural theory [3, 28, 2].

In Fig. (2) we present the analytical results for the cross-sectional profiles of σrec
y and

τ zzxy at three different positions in the clamped sandwich region, ξ = 0., 0.03, 0.06. While

the behaviour of the shear stress is quite well-known [2], that of the through-the-thickness

normal stress constitutes an interesting novelty: after attaining the assigned value −q/b at

y = −t − c/2, it experiences a quite large gradient and assumes a relatively large tensile

value at the interface (y = −c/2). Then, it is subject to an opposite gradient all along the

core thickness, such that at the lower interface (y = c/2) it assumes a compressive value
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Figure 2: Non-dimensional through-the-thickness normal stress (a) and shear stress (b) at
different cross-sections: analytical estimates

of magnitude similar to that at the upper interface. Of course, it finally goes to zero at

y = t + c/2. This type of profile for σy is due to the fast variation of τxy along the beam

axis in the clamped sandwich region, where the shear stress rapidly migrates from the core

to the skins [2]. Hence, in this benchmark, at the upper interface (y = −t − c/2) in the

clamped region, σy counter-intuitively results in a peel stress that may prevent the interface

from developing its intrinsic shear strength.

The foregoing predictions have been validated against the results obtained with the FE

model described in Sect. 4.2.1. Fig. 3 reports the deformed shape, which is characterised

by a change of curvature already observed in [2] for parameters different from those selected

here, as in Eq. (36). Also, in Fig. 3 we display the contour of σy, such contour being limited

in such a way as to give an indication of the behaviour over the whole sandwich. By the way,

the sandwich region where the contour turns out to be cut is that next to the fully-clamped
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Figure 3: Amplified deformed configuration and contour of the through-the-thickness normal
stress for the cantilever sandwich modelled as a plane-stress continuum with the FE code
ABAQUS

sandwich end, in which it is well-known that the adopted displacement-based FEs cannot

capture some important aspects of the exact linear elastic solution of this 2D boundary value

problem, even if one resorts to extremely refined meshes. This is because the longitudinal

stress, σx, turns out to be unbounded at the corner points of the fully-clamped cross-section

[11, 29]. The FE solution is unable to describe this singularity and, as a consequence, it even

does not match the static boundary conditions on a portion of the unconstrained sides ending

in the corner points of the clamped section. This problem is common to other structures

modelled as 2D continua and having a fully-clamped side with corners, as in axisymmetric

functionally-graded plates [25].

Figs. 4 and 5 display the comparison between the analytical and FE results. It is inter-

esting to observe that, because of the extremely fine FE mesh implemented in ABAQUS, the

match is already quite good at ξ = 0.03, that is very close to the encastre. Instead, for the
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Figure 4: Non-dimensional through-the-thickness normal stress at ξ = 0.03 (a) and ξ = 0.06
(b): comparison between the results of the FE simulation as a 2D plane-stress continuum and
the stress recovery in the structural theory relying on the zigzag warping
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Figure 5: Non-dimensional shear stress at ξ = 0.03 (a) and ξ = 0.06 (b): comparison between
the results of the FE simulation as a 2D plane-stress continuum and the stress recovery in the
structural theory relying on the zigzag warping. Note that, for the sake of graphical clarity,
we plot only half of the τxy(y) profiles even though τxy is not perfectly symmetric with respect
to y = 0 in the 2D continuum analysis, because of the load applied at y = −t− c/2
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reasons above explained, at the fully-clamped cross-section (ξ = 0.), the 2D plane-stress con-

tinuum FE model is totally unreliable in terms of all the three stress components, for instance

providing τxy(y/H = 0.5)b/q ≈ 25. and τxy(y/H = −0.5)b/q ≈ 28., instead of vanishing val-

ues. Given the good match in Figs. 4 and 5 at ξ = 0.03, we infer that the structural theory

relying on the zig-zag warping with the double stress recovery provides useful estimates also

at the encastre.

The most important result of this investigation is that we observe that there are portions

of the interfaces where the through-the-thickness normal stress is comparable to, or or even

much larger than, the shear stress, the former remarkably being a tensile stress. We think

that this might important to study delamination, which may be of crucial importance for the

analysis and design of sandwich panels. By entering into further details of the considered

benchmark, at (ξ, y) = (0.03,−c/2) we obtain τ intxyb/q = 6.96941 and σrec
y b/q = 5.7537; at the

clamped section, the zigzag model even predicts much larger σrec
y (ξ = 0, y = −c/2)b/q than

τ intxy(ξ = 0)b/q, which are equal to 15.6 and 1.42, respectively.

Fig. 6 displays the two stress components all along the upper interface (y = −c/2), where

σy is a tensile stress. Note that the particular behaviour of the shear stress is known since

[2]: from the free end to the clamped section it increases almost linearly with the shear force,

until the effect of hampering warping at the clamped section requires a sudden decrease of

τxy in the core, which has then to migrate to the skins.
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Figure 6: Non-dimensional through-the-thickness normal stress and shear stress all along the
upper interface (y = −c/2): analytical estimates relying on Krajcinovic theory and stress
recovery

5 Concluding remarks

In this contribution, we have provided explicit analytical estimates for the through-the-

thickness normal stress component, σy, of sandwich beams with identical skins and governed

by the Krajcinovic theory, which relies on zigzag warping under flexure [15].

The new analytical estimates for σy complement those already established for the lon-

gitudinal stress σx [15, 16] and for the shear stress τxy [3, 2] and rely on a double stress

recovery procedure, already followed in the literature on numerical schemes for equivalent

single layer models (ESLMs) of multilayered structures [4, 18, 7]. In the case of beams, after

τxy is obtained from a first Jourawski-like stress recovery [14, 18, 3], one resorts to the balance

equation ∂τxy/∂x+ ∂σy/∂y = 0 to obtain σy. While this procedure gives no problems if one
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can obtain analytical solutions, it instead requires care in numerical approaches, where the

functions approximating the primal structural variables may need high continuity conditions.

We have validated the obtained analytical results against finite element simulations in

which the sandwich beam is modelled as a two-dimensional plane-stress continuum. The main

practical outcome of this investigation is that there are boundary value problems in which

σy at the interfaces is a tensile stress of magnitude larger than τxy, such as σy should surely

be accounted for when studying delamination. In our study, this happens for a cantilever

sandwich subjected to a uniform transverse load in a region close to the fully-clamped cross-

section.

Alternatively and complementarily to the use of more complex exact linear elastic solutions

for the sandwich panel modelled as a continuum [21], the proposed analytical solutions could

be used to test various higher-order models for laminated composite panels, with the purpose

of assessing an adopted numerical method, a new proposal for a warping function, or both.

Although here we have focused on sandwich beams with identical skins, in this regard, let us

also mention the ESLMs, which can be particularised to our layout even if they are typically

developed to deal with structures constituted by several layers. ESLMs aim at accurate

solutions while maintaining the number of unknown structural variables as limited as possible

and independent of the number of layers, thus opening up to a large number of proposals in

the literature and usually requiring numerical solutions. Within this realm, we mention both

laminated beams [32, 10, 27, 5, 13] and laminated plates (see, e.g., [4, 7, 23], dealing with

the double stress recovery adopted here, and references therein), in which the test could be
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accomplished by subjecting the plate to cylindrical bending (along with substituting, in our

equations, E with E/(1− ν2) for the longitudinal moduli of the layers).
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A Analytical solution at the beam end in a simply-supported
sandwich subjected to uniform transverse load

In this boundary value problem the Krajcinovic auxiliary function results [3]

f(ξ) =
24C0

k4

[
e−k −1

1− e−2k
ek(ξ−1)−1

2
(coth k − csch k + 1) e−kξ

]
+ C0ξ

4 − 2C0ξ
3 +

12C0

k2
ξ2 + C0

(
1− 12

k2

)
ξ +

24C0

k4
. (37)

Evaluation of the relevant derivatives of Eq. (37) in x = 0 gives

d4f(ξ)

dξ4

∣∣∣∣
ξ=0

= 24C0

(
e−k −1

1− e−2k
e−k −1

2
(coth k − csch k + 1) + 1

)
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e−2k

1− e−2k
, (38)

d6f(ξ)

dξ6
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2
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1− e−2k
e−k −1

2
(coth k − csch k + 1)

)
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2 2 e
−2k −1

1− e−2k
. (39)

Therefore, from Eqs. (24) and (25) one has

ϕ′′′
c (0) =
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ϕ′′′
s (0) =
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. (41)

Then, by substituting Eqs. (40) and (41) into Eq. (21), one has
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2

) k2

L2
(2 e−2k −1) +

β1β3 − β2
2

α1β2
e−2k

] t
3

+
[(

t− β1α2

β2α1

) k2

L2
(2 e−2k −1) +

β1β3 − β2
2

α1β2
e−2k

] c
4

}
and, by also accounting for Eqs. (12) and (28), we finally obtain

− V ′
s (0)

2b
=

qEst
2

1− e−2k

{[( 1

α1
+

c(1 +m)β2
2β1α2

)
(1− 2 e−2k) +

e−2k

α1

] t
3

+
[( 1

α1
− tβ2

β1α2

)
(1− 2 e−2k) +

e−2k

α1

] c
4

}
, (42)

which can be studied in order to establish whether, for appropriate sets of parameters, σrec
y (x =

0, y) can result, in modulus, significantly larger than |q/b|.

As already mentioned, both our 2D FE analyses of the sandwich as a plane-stress contin-

uum and the application of the foregoing formulæ suggest that the simply-supported case is

not very much interesting as σy hardly is ever larger than |q/b|.

However, this benchmark unexpectedly displays a feature that, in our opinion, would

deserve to be further studied. It consists in the fact that the 2D FE analysis gives a σy profile

that is in remarkable disagreement with that predicted by Eqs. (17) and (42) in a quite large

sandwich region at the support, the latter being modelled by setting to zero the transversal

displacement component of all the nodes at the beam-end side. In this respect, contrary to

our experience with the longitudinal and shear stress components, the comparison between

analytical estimates and FE results in terms of through-the-thickness stress is “more difficult”

for the simply-supported cross-section than for the fully-clamped cross-section. In practice,

27



this means that, in the simply-supported benchmark, in order to observe agreement between

the results of the analytical and FE models we need to select a cross-section significantly

farther from the beam end than in the case of a fully-clamped cross-section.
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