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Explicit analytical solutions for the full plane-stress field in
sandwich beams under flexure governed by zigzag warping
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Abstract

We provide analytical solutions for the full stress field of straight sandwich beams with
identical skins subject to linear elastic flexure governed by zigzag warping, where all
layers obey Timoshenko’s kinematics. As a main novelty, we make use of a balance
equation for the Cauchy continuum to recover of the through-the-thickness normal stress
component, o,. The new estimates are accurate for a wide range of relative stiffness
between skins and core and suitable boundary conditions, as it can be demonstrated
through the comparison with detailed finite element simulations where the sandwich is
modelled as a two-dimensional continuum. As a main practical result concerned with
the study of delamination, we find that at a core-skin interface of a cantilever sandwich
subjected to a uniformly distributed load, in a region close to the fully-clamped cross-
section, o, is a tensile stress of magnitude larger than that of the shear stress. On this
basis, we infer that the availability of good estimates for o, along with those for the

longitudinal and shear stresses, may be important for the accurate design of sandwich
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panels.

Keywords: Sandwich beam; Zigzag warping; Through-the-thickness stress; Analytical

solution; Fully-clamped cross-section; Finite element method.

1 Introduction

We focus on the model for sandwich beams developed since the pivotal contributions of Yu
[31], Heller [12], and Krajcinovic [15, 16], whose main assumption is that both core and skins
obey Timoshenko kinematics. We call this model the Krajcinovic model because, to the best
of our knowledge, Krajcinovic [15] was the first one to establish a way to provide general
analytical solutions for the case here of interest, that is the accurate evaluation of the linear
elastic flexure of straight sandwich beams with identical skins.

The Krajcinovic model, here summarised in Sect. 2, has been shown to provide good
analytical estimates not only in terms of displacements, but also in terms of longitudinal and
shear stress fields [3, 2]. This holds for a wide range of relative stiffness between core and
skins, where this parameter mainly depends on the elastic moduli and the thicknesses of the
layers [28]. The range of engineering adequacy of Krajcinovic model even becomes extremely
large if the boundary conditions are applied in such a way as to avoid as much as possible
stress concentrations. Otherwise, dealing with “extreme” boundary conditions, in general
referring to forces applied on a single skin with constraints applied on the opposite skins, may
easily require more complex higher-order theories involving soft cores, typically including the
midlayer through-the-thickness deformability [8, 9, 30, 24, 19, 22, 17]. Of course, the more

complex the theory the more difficult finding useful analytical solutions.



Analytical solutions not only are very important in the optimal design, but may also
be one of the very few reliable tools under specific circumstances, where otherwise powerful
numerical methods fail. This is for instance the case of the stress field in the sandwich
region next to a fully-clamped cross-section, where the displacement-based finite element
(FE) method cannot provide good results when modelling the sandwich as a two-dimensional
(2D) continuum [11, 29, 2].

By focusing on the through-the-thickness normal stress component o, this contribution
complements our previous efforts [3, 2] where we provided analytical solutions for the longitu-
dinal and shear stresses within Krajcinovic theory. As presented in Sect. 3, we obtain o, by
a double stress recovery. In fact, if one is strictly consistent with the zigzag warping assumed
by the theory, Krajcinovic model delivers very accurate predictions of the longitudinal stress
field only. Obtaining accurate estimates for the shear stress 7, requires one to resort to the
application of a Jourawski-like approach [14] to the longitudinal stress o, ensuing from the
zigzag kinematics, which is actually equivalent to integrate, with respect to the transverse

axis y, the balance equation for the Cauchy continuum

0oy OTyy
or oy

=0, (1)

along with averaging over the out-of-plane axis z. This first stress recovery has been adopted
also in some numerical contributions [18, 20|, where one has to take care of the required
derivative of o, with respect to the beam axis x, which leads to higher continuity conditions
for the functions adopted to approximate the primal fields.

In this investigation, we adopt a second stress recovery to determine the through-the-



thickness stress o,, which is just indeterminate on the basis of the kinematics assumed by
Krajcinovic theory, totally disregarding the through-the-thickness normal deformation. To

this purpose, we consider the balance equation for the Cauchy continuum

OTyy | Ooy
or Ty = (2)

where we plug the shear stress obtained from the first stress recovery. Hence, this second
stress recovery for o, relies on a stress field, i.e. 7, that has already been obtained by a
recovery procedure. While there is no problem in our analytical approach, numerical methods
using the foregoing double stress recovery have to deal with high continuity conditions of the
approximating functions, given that o, turns out to depend on 0?0, /0z%. This numerical issue
has been formerly dealt with by Matsunaga [18] for laminated beams governed by a higher-
order shear deformation theory obtained by power series expansions for the displacement
components. In the case of laminated plates [4, 18, 7, 23] the through-the-thickness normal
stress field is recovered after two shear stress fields are obtained by two parallel stress recovery
procedures.

About the role played by o, in laminated beams, here we demonstrate, through the
cantilever benchmark of Sect. 4, that there are important boundary value problems in which
it may not be disregarded. In particular, we show that at the interfaces between core and
skins o, may be a tensile stress of much larger magnitude than 7, thus surely impacting the
analysis of delamination. Among the earlier studies on the sandwich theory here adopted,
Heller [12] already focused on the interfacial stress, but the focus was restricted to the shear

stress only. Very recently, the interfacial normal stress has been considered as well [26],



although in the context of a simpler structural model, where the skins are rigid in shear, thus
behaving as Euler-Bernoulli beams. Here, we not only adopt the richer Krajcinovic model,

but we provide explicit analytical solutions for o, over the whole sandwich.

2 Summary of the Krajcinovic model

We adopt the notation and select the independent structural functions as in [3, 2] to describe

the Krajcinovic model. The model relies on the zigzag warping depicted in Fig. 1, where

Figure 1: Zigzag kinematics for a sandwich beam with identical skins. Taken from [2].

v(x) is the transverse displacement (directed as the y axis, such as z is the neutral axis), ¢

and ¢ are the thicknesses of skins and core, respectively, ¢.(x) and ¢4(x) are the rotations of



the core and skin cross-sections, respectively. Instead of ¢.(x) and ¢s(x), for the independent
structural variables, Krajcinovic selected a mean rotation of the whole cross-section and a
warping function associated with null bending moment. This allowed Krajcinovic to find
a way to analytically integrate the three Euler-Lagrange equations governing the problem.
The description of the zigzag warping of Fig. 1, which is inspired by the earlier models of
Allen [1], has instead the advantage to turn out to naturally display, as static quantities, the
bending moments related to the variations of ¢s(x) and ¢.(x), along with their derivatives
with respect to the beam axis, which result to be the shear forces developed by the skins and
the core.

The considered Krajcinovic model disregards the through-the-thickness strain €,, such as
the stress component o, remains indeterminate if computed consistently with the assumed
kinematics.

In sandwich beams, the ratios

L @:% (3)

are particularly relevant to select the most appropriate model for a specific problem [28].
In Eq. (3) F and G are the longitudinal modulus and the shear modulus in the zy plane,
respectively, where the indices ¢ and s denote their values assumed in the core and in the
skins, respectively. Differently from other models for sandwich panels [1], Krajcinovic theory
does not impose any particular restriction on the parameters that define the relative stiffness
between skins and core, the latter governing the sandwich flexure. Therefore, the application

of Krajcinovic theory is not limited to thin skins (i.e. € sufficiently close to zero), nor to



antiplane sandwiches (i.e. n — c0).
By following [3] and the warping description of Fig. 1, the balance equations governing

Krajcinovic model read

V(@) = —q(x), Miz)="Ve(x), Mz)="Vi(z), (4)

in which ’ denotes the derivative with respect to x, ¢(z) is the distributed transverse load
(acting along the y direction) and M (x) = Ms(z) + M.(x) and V(z) = Vi(z) + Ve(z) are,
respectively, the total bending moment and the total shear force, whose contributions result

to be defined by the structural constitutive equations

E,btc E b3 Ebt3 E,bt?
M, =— (col. + t),) — ¢, Mg=— Py — (col. +td)) (5)
2 12 6 2
Vo= Gebe(v' — pe), Vi=2G:bt(v' — ¢s), (6)

where b is the sandwich width. While V. and V; are the contributions to the shear force
acting in the core and in the skins, respectively, a similar connection does not hold for the
moments M. and M, which are conjugated to the variations of ¢. and ¢s. The three coupled
Euler-Lagrange equations governing the theory, to be solved for v(z), ¢.(x), and ¢s(z), are
obtained by substituting Eqgs. (5) and (6) into Eq. (4).

Let us remark that the natural boundary conditions leave the freedom to separately impose
Mg and M, as related to the variations of ¢ and ¢., respectively. Hence, the same bending
moment M results from any combination of My and M, such that M = Mg+ M_, each choice
of My and M, corresponding to a different solution in terms of stresses. Because of this

fundamental reason, this model is not “a la De Saint Venant” [28].



The Krajcinovic solution, as a first step, requires the integration of the differential equation

CHE) o OO __pLE

as &~ B @

to determine the auxiliary structural function f(z). In Eq. (7), L is the beam length,

(8)

S8

is the non-dimensional coordinate along the beam axis, and k, 81, B2, as are constant coeffi-
cients conveniently provided below.
Once f(x) is known, the structural functions can be obtained, by combining the relations

presented in [15, 3], leading to

_ Brag\ 1 d*F(&) BBz —B5 1 df(§)
0= (-G ) et e ©)
(el 4+m) | Prao\ 1 dPF(E) | BiBs— B3 L df(€)
#(0) = _( 2 52(11)[/3 d¢? " aifp L dE (10)

Cap 1 dMf(E) az\ 1 1 d*f(&) | BiBs— B3
O = 5 i _<63+61041>B2L2 TR BB,

In Eqgs. (7), (9), (10), and (11), the coefficients a1, ag, 51, B2, B3, m, k turn out to depend

on the heterogeneity coefficients (3) and on other sandwich parameters as

N _bc3Ecw N _ bPE, (24 3ne(1 + w1)
L= @ @27 n(3+4e2 )
2
= beGe(1 + 2 = b2 22 S TeJ [ i B
61 C ( + @6)7 52 C <n(3+4€) € ) /83 C 2n26(3+4€)2 +€ 9
_ QA2\T72
_ 1 +n€(3+26) ’ k= (51,83 ,BQ)L : (12)
ne(3 + 4e) Prag

where

wi = 14 2ne(3 + 6e +4€?),  wy = 1 + 6ne + 6ne>.



Let us mention that the coefficient m in Eq. (12) enters the warping shape function deduced
by Krajcinovic in order to devise a way to analytically integrate the Euler-Lagrange governing

equations [15].

3 The full stress field: analytical expression for the through-
the-thickness normal stress via double stress recovery

In the absence of issues concerned with severe boundary conditions [22] and soft cores [9,
24, 17], the sole stress component that is accurate if computed consistently with the assumed

zigzag kinematics in Krajcinovic theory [3, 2] is normal longitudinal stress, which reads

—ECQSIC(.T)y if y € A,

where A and A, are the sandwich domains occupied by the skins and the core, respectively.
For what concern the other stress components, consistently with the kinematics, one has

the following piecewise uniform shear stress

uni o GS[UI(I') - ¢3($)] if (TS AS
Ty (IL’) = { GC[U/(JI) o ch(l")] if y € A, (14)

which obviously violate equilibrium at the interfaces, whereas the through-the-thickness nor-
mal stress o, is even indeterminate because of the assumed rigidity of the cross-section along
the y axis.

Estimate (14) can be largely improved as proposed in [3], by resorting to the application
of the Jourawski approach [14] to the zigzag kinematics, that is the first the stress recovery

discussed about Eq. (1). Hence, the average over the beam width b of the shear stress



Tay (2,9, 2), relying on the zigzag kinematics, reads [3]

et (-5~ et ()} v

)
T = Bl (v - ) Bl + ol ityed, (19

70 ()

where Tmyt (z) =75, (z,y = |¢/2|) is the interfacial shear stress.

As a main novelty of this investigation, we follow a second stress recovery procedure to
determine o, by substituting Eq. (15) into Eq. (2). By also assuming, for simplicity, that
the transverse load ¢(z) is applied either at y = —t — ¢/2 or at y = t + ¢/2 (or even split in

two contributions on these two external boundaries), one can estimate
Y oT% (x,y*
o) = oyt —t—ef2)— [ TV g (16)
—t—c/2 Ox

Then, for the three sandwich layers, we obtain

o, (x,y) = oy(x, —t — ¢/2) + E {d)’”( )% [tQ (y + g + %) — %(y + 5)3}

+ o0 ()5 [y(g bt %) + %(g + tﬂ boofor yel-t—c/2,-c/2], (1Ta)
o) = o< e/2) + Bl @) 5 (L - L )

+ Es% <y + f)[ @)t + ¢l (z)c], for ye€[—c/2,¢/2], (17b)

rec

RSNSOI GO R Ol

+ " (2)S [<§+t—%>—§(§+t)]} for yele/2,t+¢/2]. (17c)

In the above relations o, (x, —t—c/2) is a known value, while, by evaluating (17a) at y = —c/2,

(17b) at y = ¢/2, and (17¢) at y =t + ¢/2, it results

c 2
oy(2, ~c/2) = oy (2, ~t = ¢/2) + By (9l ( ) b @) ) (18)
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3
oy (z,¢/2) = 0 (x, —¢/2) + E@Z’(w)% + ES%C[qb’S"(:B)t + ¢ (x)c], (19)
3 2
ot of2) = 03, c/2) + B () + o)D), (20)

Hence, from the equilibrium of the forces along the y direction for each layer, we deduce

t3 ct? V!
B (o) @) 5 + @) ) =~ (21)
3 t /
Eedf! () 5 + BS[60 @)+ 60 a)e] = < (22)

which perfectly agree with the expressions that one can obtain by deriving the second and
third relations of Eq. (4) and substituting in the obtained relations the definitions of the
bending moments in Eq. (5). This check shows that the double stress recovery provides
interfacial o, that can be obtained also by imposing the equilibrium of the free-body diagram
of the layer elements, which delivers balance equations equivalent to those obtained by min-
imising the Total Potential Energy governing the problem [15, 3, 26]. However, the double
stress recovery provides the o field all over the sandwich, which is worth to be explored. In

particular, on the neutral axis we obtain

+ B[ (@)t + 6 (2)d].

3
o, (2,0) = 0,/(w, —¢/2) + E. "’(w)% 1

y Cc

By setting ¢t = 0, we particularise Eq. (17b) to a homogeneous beam with rectangular cross-

section of height ¢, thus obtaining

. o 1 CQy y3 C3
oy () = oy (. —e/2) + Bt (0)5 (5 — 5+ 55)
121/¢%y v ¢
_ Tec = 9 7(7 _J 7)
R e R ¥ AR T
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This result shows that on the neutral axis the through-the-thickness stress on the top surface
is varied by half of the applied load only. Moreover, if ¢(x) is applied as a compressive load

on the top surface, one has

_ (@) g@) 3y 2 1
oy @y ="+ (20 c3+2>’

which correctly vanishes at y = ¢/2. As expected and well-known in classical structural
mechanics, this component of stress is negligible in homogeneous beams, consistently with
oz/oy ~ (L/c)®. Hence, the main point of this investigation is to demonstrate that this may
not be the case in laminated structures. In other words, it would be sufficient to show that
the contribution V//(2b) in Eq. (21) can be large enough to require the evaluation of o, for
a thorough analysis of the stress state in sandwich panels.

In particular, when one has to apply an appropriate criterion to establish whether delam-
ination may occur, o, should be accounted for if it is on the order of magnitude of the shear

stress at the interfaces, that is the ratio

t /! /!
mi(e)  ~Esgles@)t+ ezl Ol(@)t + gl(w)e
U;ec(x’ —c/2) oy (z, —t — ¢/2) — Ks/ 2q() o % — " Cl ,

By O W3 @)

obtained from Egs. (15) and (21), should, in modulus, not be much larger than 1. In Sect. 4

rec

3 (z, —c/2) may even be a tensile stress significantly

we show that this is surely the case, as o
larger than ?gg(x) This is of course a further interesting effect due to the heterogeneity
of laminated structures. With this goal in mind, we also provide general relations for the

interfacial shear stress, which can be easily obtained from the relations presented in [3, 2].

Note that, differently from o, in Krajcinovic model the shear stress at the two interfaces is

12



identical. From Egs. (15), (9), and (10) we obtain

i) = B (T 550 el G e

BiBs — B 1 dPf(€)
oh e ) @)

+ (t+c)

The evaluation of o, at the interfaces basically corresponds to evaluate V/(2b) in Eq. (21).

From Egs. (9) and (10), we obtain

/1 ( _ 51a2>i d6f(£) 51/83 - /822 i d4f(£) (24)

< Bocr/ L dEO afp LA dgt

" o__ C(l + m) 61052 1 d6f(§) 61/83 — /83 1 d4f(§)
s = _< 5 ﬁgoq)ﬁ des * a1fBs LA der (25)
which, if substituted in Eq. (21), deliver
Vi o frag (t ¢ ct(l+m) ct1 1 d®f()
~gp - Bt H‘ﬁm (§ - 6 +5l 1 des
BiBs— B3t ey 1 d*f(&)

B (§ Z)ﬁ des } - (26)

Before delving into the numerical results, we provide relations that focus on the important
case of a uniform transverse load q.

3.1 Particularisation to the case of uniform load

For a uniform transverse load ¢, the general solution of Krajcinovic differential equation (7)

reads
£(€) = Cysinh(k€) + Cy cosh(k€) + Co&' + C58® + C4&* + C5€ + C (27)
where
o BogqL* B qL*  ne(3 + 4e)[pws — ne(3 + 4€)] (28)
07 24(B.Bs — %) 12bc2G. ouw?

13



and the integration constants C; with ¢ = 1,...,6 must be determined by imposing the
essential and natural boundary conditions of the boundary value problem considered [16, 3, 2.

By substituting Egs. (27) and (28) into Egs. (23) and (26), we obtain

T = —ES;{ﬁ(t + c)wg[wog + C3] + [C1 cosh (k&) 4 Co sinh(k€)]

AL ) el G+ 0 PR BTN o)
- ‘2/2/ - Oi(; + g) + [Cy sinh(k€) + C cosh(ke)]

([ G (5 ) - G e PEEE (G ) o

The application of Egs. (29) and (30) to various benchmarks, corroborated with the results
of accurate FE analyses in which the sandwich is modelled as a 2D plane-stress continuum,
has shown that a very interesting boundary value problem is that of the cantilever beam,
where o, may play a very important role. This does not seem to be the case, for instance,
in the propped-cantilever and simply-supported beams, although there might be room for
different conclusions for sandwich parameters outside the ranges that we have explored in our
preliminary analyses. In the following we deal with the cantilever case, while in Appendix
A we provide the analytical results for the simply-supported sandwich beam and skip other

boundary value problems for the sake of brevity.

4 Cantilever sandwich subjected to uniform transverse load

With the fully-clamped section at x = 0, the integration constants C; with i =1,...,6 in Eq.

(27) are obtained by imposing the essential boundary conditions

v(E=0)=0, ¢(§=0)=0, ¢s({=0)=0,

14



along the natural boundary conditions V(§ = 1) = 0, M.({ = 1) = 0, My = 1) = 0,

corresponding to

V(E€=1) —pe(§ =1) +2pe[t'(§ =1) = s (E =1)] =0, ¢ ((=1)=0, ¢(§=1)=0.

Solving the system results in the expression for the Krajcinovic auxiliary function [2]

24C) k(e FC2=8) — e~k _ e=k(1-€) _ o=k(1+9) - 6Co , 5

f(g) = L4 1+ o2k + C()f - 4CO§ 2 (k + 2)5
24C) 1 o133 2 20182 1 —k+ (1+k)e 2k —2¢7F
- 2 §+ 1200 (]{2 + k;2a 61 + TA k405 62 1 + e_Qk. ° (31)
Then, by using Egs. (23), (26), (28), and (31), we obtain
ity _ gt c(lAm) B _ Brag\1 K
T:cy(g) - E32 {[ t( 9 + 52a1> +C(t 52a1)1| 5
it )51ﬁ3 -2 }2400 k(e k28 4 ehe) _ e=h(1-8) 4 e=k(1+¢)
OqﬁQLB k 1+ e—2k

+24Cy (€ — 1)(t+ )5(1535@52 }

k(2—€) —k€) _ o—k(1-8) —k(1+€) _
Loy S M) e DT DR g
2 2k B1ao 14 e—2k aq

V. t c\ 1 tc 1+m 1
_ s _ E5t2 T W Rl L T
T {<3+4)a1+2( 3 +2)
By (e k2= _okE) _ oh(1-€) _ o—k(140)
61052 14 e2k

} . (33)
Given that the displacement-based FE method in which the sandwich beam is modelled as

a 2D continuum cannot provide reliable results at the fully-clamped cross-section [11, 29, 2],

below we provide explicit analytical expressions for the recovered stresses therein.

4.1 The recovered stresses at the fully-clamped cross-section

Evaluation of the relevant derivatives of Eq. (31) in & = 0 gives

_ 2400k2k(e_2k —1) —2e7*

44 (©) k(e—%—l>—2e—k+1> de(f)‘
’ d§6 =0 14+ e 2k ’

= 24C,
et ‘ o 0( 1 o2k

15



such as, from Eqgs. (24) and (25), one obtains

_ 2400{5153 - 53 n k(e™ 1) —2e 7" 1183 — B3 n <t— 51042) kQH R

L4 a1 B2 1+e 2k a1 32 Bocy ) L2

111 _ 24Cy | B1P3 — /822 k(e_% -1) — 2eFk

s (0)=—73 { wdy T ="
5183 — B3 Brag  c(14+m)\ k?

. [ alfs (ﬁgal + 2 )ﬁ}} » (35)

to be substituted in Eq. (17) to obtain o3°(0,y).

About the recovered shear stress, we report the results in [2], adopting the notation

7 (y) = 7oy (6 =0,y). Hence, the shear stress reads

2
9L | p, +126,1Y 4 12D2<Q> if y e A,
?fc ( ) o bCD1 C C
| D5t D3(2> ify e A,

where

0o = pwa — ne(3+4e), Dy =4e*(2+3ne)(1 +2p¢), Dy =3ne(l—2¢p) — ¢,

D3 =24*(3¢ —2), Dy =3(1+2€)[Da + 2¢( 4+ ne)], Ds = 66%(2 — ¢ + 2ne) .

4.2 Results and discussion

We consider the following set of parameters, corresponding to a quite large relative stiffness

between skins and core,
n=1000, €=9/140, v,=0.and v.=049= ¢ =1490, (c+2t)/L ="179/800 (36)

and compare the proposed analytical estimates with the results of FE simulations where the
sandwich beam is modelled as a 2D plane-stress continuum. Next, we illustrate this FE

model.

16



4.2.1 The FE discretisation of the reference two-dimensional plane-stress con-
tinuum model

The FE model, which is developed within the commercial FE code ABAQUS [6], consists
of 1000 columns of bi-quadratic (8-noded) FEs with reduced integration (4 Gauss points for
each FE), denoted as CPS8R in ABAQUS. In each column, the core is discretised along its
thickness with 70 FEs, and each skin is discretised with 25 FEs. All FEs have the same side
along the x axis, whereas the sides along the y direction are uniform within each layer, thus
being different for core and skins. Overall, the mesh consists of 120,000 8-noded FEs.

The fully-clamped cross-section is realised by setting to zero both displacement compo-
nents of all the nodes belonging to the left side (located at z = 0) and the uniform load is
applied as a pressure to the external surface of the top skin (i.e. at y = —t — ¢/2).

4.2.2 Comparison between analytical and numerical results

For the sake of brevity we disregard the longitudinal stress o, as given by Eq. (13), which is

well-known to be very well estimated by the considered structural theory [3, 28, 2].

rec

Y and

In Fig. (2) we present the analytical results for the cross-sectional profiles of o

Thy at three different positions in the clamped sandwich region, § = 0.,0.03,0.06. While
the behaviour of the shear stress is quite well-known [2], that of the through-the-thickness
normal stress constitutes an interesting novelty: after attaining the assigned value —q/b at
y = —t — ¢/2, it experiences a quite large gradient and assumes a relatively large tensile

value at the interface (y = —c¢/2). Then, it is subject to an opposite gradient all along the

core thickness, such that at the lower interface (y = ¢/2) it assumes a compressive value

17
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Figure 2: Non-dimensional through-the-thickness normal stress (a) and shear stress (b) at
different cross-sections: analytical estimates

of magnitude similar to that at the upper interface. Of course, it finally goes to zero at
y =t + ¢/2. This type of profile for o, is due to the fast variation of 7,, along the beam
axis in the clamped sandwich region, where the shear stress rapidly migrates from the core
to the skins [2]. Hence, in this benchmark, at the upper interface (y = —t — ¢/2) in the
clamped region, o, counter-intuitively results in a peel stress that may prevent the interface
from developing its intrinsic shear strength.

The foregoing predictions have been validated against the results obtained with the FE
model described in Sect. 4.2.1. Fig. 3 reports the deformed shape, which is characterised
by a change of curvature already observed in [2] for parameters different from those selected
here, as in Eq. (36). Also, in Fig. 3 we display the contour of o, such contour being limited

in such a way as to give an indication of the behaviour over the whole sandwich. By the way,
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L.

Figure 3: Amplified deformed configuration and contour of the through-the-thickness normal
stress for the cantilever sandwich modelled as a plane-stress continuum with the FE code
ABAQUS

the sandwich region where the contour turns out to be cut is that next to the fully-clamped
sandwich end, in which it is well-known that the adopted displacement-based FEs cannot
capture some important aspects of the exact linear elastic solution of this 2D boundary value
problem, even if one resorts to extremely refined meshes. This is because the longitudinal
stress, o, turns out to be unbounded at the corner points of the fully-clamped cross-section
[11, 29]. The FE solution is unable to describe this singularity and, as a consequence, it even
does not match the static boundary conditions on a portion of the unconstrained sides ending
in the corner points of the clamped section. This problem is common to other structures
modelled as 2D continua and having a fully-clamped side with corners, as in axisymmetric
functionally-graded plates [25].

Figs. 4 and 5 display the comparison between the analytical and FE results. It is inter-

esting to observe that, because of the extremely fine FE mesh implemented in ABAQUS, the
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Figure 4: Non-dimensional through-the-thickness normal stress at £ = 0.03 (a) and £ = 0.06
(b): comparison between the results of the FE simulation as a 2D plane-stress continuum and
the stress recovery in the structural theory relying on the zigzag warping
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Figure 5: Non-dimensional shear stress at £ = 0.03 (a) and £ = 0.06 (b): comparison between
the results of the FE simulation as a 2D plane-stress continuum and the stress recovery in the
structural theory relying on the zigzag warping. Note that, for the sake of graphical clarity,
we plot only half of the 7., (y) profiles even though 7, is not perfectly symmetric with respect
to y = 0 in the 2D continuum analysis, because of the load applied at y = —t — ¢/2
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match is already quite good at & = 0.03, that is very close to the encastre. Instead, for the
reasons above explained, at the fully-clamped cross-section (¢ = 0.), the 2D plane-stress con-
tinuum FE model is totally unreliable in terms of all the three stress components, for instance
providing 7, (y/H = 0.5)b/q ~ 25. and 7,,(y/H = —0.5)b/q ~ 28., instead of vanishing val-
ues. Given the good match in Figs. 4 and 5 at £ = 0.03, we infer that the structural theory
relying on the zig-zag warping with the double stress recovery provides useful estimates also
at the encastre.

The most important result of this investigation is that we observe that there are portions
of the interfaces where the through-the-thickness normal stress is comparable to, or or even
much larger than, the shear stress, the former remarkably being a tensile stress. We think
that this might important to study delamination, which may be of crucial importance for the
analysis and design of sandwich panels. By entering into further details of the considered
benchmark, at (£§,y) = (0.03, —¢/2) we obtain ?g‘ytb/q = 6.96941 and 0,°b/q = 5.7537; at the
clamped section, the zigzag model even predicts much larger 0,°({ = 0,y = —¢/2)b/q than

Y

7w (€ = 0)b/q, which are equal to 15.6 and 1.42, respectively.

Fig. 6 displays the two stress components all along the upper interface (y = —c/2), where
oy is a tensile stress. Note that the particular behaviour of the shear stress is known since
[2]: from the free end to the clamped section it increases almost linearly with the shear force,

until the effect of hampering warping at the clamped section requires a sudden decrease of

Tzy in the core, which has then to migrate to the skins.
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Figure 6: Non-dimensional through-the-thickness normal stress and shear stress all along the
upper interface (y = —c¢/2): analytical estimates relying on Krajcinovic theory and stress
recovery

5 Concluding remarks

In this contribution, we have provided explicit analytical estimates for the through-the-
thickness normal stress component, oy, of sandwich beams with identical skins and governed
by the Krajcinovic theory, which relies on zigzag warping under flexure [15].

The new analytical estimates for o, complement those already established for the lon-
gitudinal stress o, [15, 16] and for the shear stress 7., [3, 2] and rely on a double stress
recovery procedure, already followed in the literature on numerical schemes for equivalent
single layer models (ESLMs) of multilayered structures [4, 18, 7]. In the case of beams, after
Tzy is obtained from a first Jourawski-like stress recovery [14, 18, 3], one resorts to the balance
equation 07y, /0x + 0o, /0y = 0 to obtain o,. While this procedure gives no problems if one

can obtain analytical solutions, it instead requires care in numerical approaches, where the
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functions approximating the primal structural variables may need high continuity conditions.

We have validated the obtained analytical results against finite element simulations in
which the sandwich beam is modelled as a two-dimensional plane-stress continuum. The main
practical outcome of this investigation is that there are boundary value problems in which
oy at the interfaces is a tensile stress of magnitude larger than 7,,, such as oy should surely
be accounted for when studying delamination. In our study, this happens for a cantilever
sandwich subjected to a uniform transverse load in a region close to the fully-clamped cross-
section.

Alternatively and complementarily to the use of more complex exact linear elastic solutions
for the sandwich panel modelled as a continuum [21], the proposed analytical solutions could
be used to test various higher-order models for laminated composite panels, with the purpose
of assessing an adopted numerical method, a new proposal for a warping function, or both.
Although here we have focused on sandwich beams with identical skins, in this regard, let us
also mention the ESLMs, which can be particularised to our layout even if they are typically
developed to deal with structures constituted by several layers. ESLMs aim at accurate
solutions while maintaining the number of unknown structural variables as limited as possible
and independent of the number of layers, thus opening up to a large number of proposals in
the literature and usually requiring numerical solutions. Within this realm, we mention both
laminated beams [32, 10, 27, 5, 13] and laminated plates (see, e.g., [4, 7, 23], dealing with
the double stress recovery adopted here, and references therein), in which the test could be

accomplished by subjecting the plate to cylindrical bending (along with substituting, in our
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equations, £ with E/(1 — v?) for the longitudinal moduli of the layers).
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A Analytical solution at the beam end in a simply-supported
sandwich subjected to uniform transverse load

In this boundary value problem the Krajcinovic auxiliary function results [3]
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Evaluation of the relevant derivatives of Eq. (37) in = = 0 gives
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Therefore, from Egs. (24) and (25) one has
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Then, by substituting Eqs. (40) and (41) into Eq. (21), one has
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and, by also accounting for Egs. (12) and (28), we finally obtain
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which can be studied in order to establish whether, for appropriate sets of parameters, a;ec(:c =
0,y) can result, in modulus, significantly larger than |¢/b|.

As already mentioned, both our 2D FE analyses of the sandwich as a plane-stress contin-
uum and the application of the foregoing formulae suggest that the simply-supported case is
not very much interesting as o, hardly is ever larger than |q/b|.

However, this benchmark unexpectedly displays a feature that, in our opinion, would
deserve to be further studied. It consists in the fact that the 2D FE analysis gives a o, profile
that is in remarkable disagreement with that predicted by Eqgs. (17) and (42) in a quite large
sandwich region at the support, the latter being modelled by setting to zero the transversal
displacement component of all the nodes at the beam-end side. In this respect, contrary to
our experience with the longitudinal and shear stress components, the comparison between
analytical estimates and FE results in terms of through-the-thickness stress is “more difficult”

for the simply-supported cross-section than for the fully-clamped cross-section. In practice,
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this means that, in the simply-supported benchmark, in order to observe agreement between
the results of the analytical and FE models we need to select a cross-section significantly

farther from the beam end than in the case of a fully-clamped cross-section.
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