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Overcompleteness of sequences of reproducing kernels in

model spaces

I. Chalendar∗, E. Fricain† and J. R. Partington‡

January 10, 2005

Abstract

We give necessary conditions and sufficient conditions for sequences of reproducing kernels
(kΘ(·, λn))n≥1 to be overcomplete in a given model space K

p

Θ
where Θ is an inner function in

H∞, p ∈ (1,∞), and where (λn)n≥1 is an infinite sequence of pairwise distinct points of D.
Under certain conditions on Θ we obtain an exact characterization of overcompleteness. As
a consequence we are able to describe the overcomplete exponential systems in L2(0, a).

ams subject classification: 46E22, 46B15.

1 Introduction

Given a Banach space X and a sequence (xn)n≥1 ⊂ X , the question of completeness of sequences
(xn)n≥1 in X is classical and appears in many problems. In this paper, we deal with a stronger
property than completeness.

Definition 1.1 Let X be a Banach space. An infinite sequence (xn)n≥1 whose terms are pairwise
distinct is overcomplete in X if every infinite subsequence (xnk

)k≥1 of (xn)n≥1 is complete in X,
i.e. span{xnk

: k ≥ 1} = X, where span denotes the closed linear hull.

One might expect that overcomplete sequences were rare, but in fact V. Klee [13] proved that
every separable Banach space contains an overcomplete sequence. Such sequences (also known as
hypercomplete or densely-closed sequences) have been much studied in the theory of the geometry
of Banach spaces, originally because of their links with the existence of bases. See the book of
Singer [17] for further details.

In this paper, we study the following problem due to N. Nikolski and considered previously in
[9].

Problem 1.1 Find necessary and sufficient conditions concerning the inner function Θ and the
sequence (λn)n≥1 of D in order to obtain overcompleteness of (kΘ(·, λn))n≥1 in the model space
Kp

Θ.

In fact overcompleteness of (kΘ(·, λn))n≥1 in Kp
Θ is equivalent to the following assertion: if f ∈ Kq

Θ

satisfies f(λnp) = 0 for (λnp)p≥1 an infinite subsequence of (λn)n≥1, then f = 0.
The characterization of overcompleteness is linked to the same problem for completeness, which

is rather difficult, even in the special case of sequences of exponential type (see [3, 14] for partial
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results in this direction).

The plan of the paper is the following. The next section contains preliminary material on
Hardy spaces and inner functions. In Section 3, we study reflexive Banach spaces X of holomorphic
functions on a domain Ω admitting evaluations Eλ at points λ ∈ Ω. We give necessary conditions
and sufficient conditions for the overcompleteness of (Eλn)n≥1 in X . The main result of this
section is the following :

if X ∩ H∞(Ω) is dense in X , then the overcompleteness of (Eλn)n≥1 implies the strong relative
compactness of (Eλn)n≥1.

In Section 4, we provide a characterization of the overcomplete sequences of exponentials, i.e.

(eiµnt)n≥1 is overcomplete in L2(0, a) ⇐⇒ supn≥1 |µn| < ∞.

The main result of Section 5 is a geometric necessary and sufficient condition for the overcom-
pleteness of kΘ(·, λn)n≥1 in reflexive spaces Kp

Θ, holding for a wide class of inner functions Θ. We
also study the links between overcompleteness of sequences of reproducing kernels and properties
of minimality or uniform minimality of all their infinite subsequences. We conclude with some
illustrative examples analysed using the theory of Toeplitz operators.

2 Preliminaries

For 1 ≤ p ≤ +∞, Hp will denote the standard Hardy space of the open unit disk D in C, which
we identify with the subspace of functions f ∈ Lp(T) for which f̂(n) = 0 for all n < 0 [5, 10]. Here
T denotes the unit circle with normalized Lebesgue measure. Recall that a function Θ ∈ H∞ is
called inner if |Θ(ζ)| = 1 for almost ζ ∈ T. We associate with each inner function Θ the model
space Kp

Θ defined by

Kp
Θ := Hp ∩ ΘHp

0 = {f ∈ Hp : 〈f, Θg〉 = 0, g ∈ Hq},

where Hp
0 = {f̄ : f ∈ Hp : f(0) = 0} and where p and q are conjugate exponents.

For p ∈ (1,∞), Beurling’s theorem ([10], Chap. II) states that every nontrivial closed invariant

subspace of Hp for S∗ : f 7−→
f − f(0)

z
is of the form Kp

Θ. The study of the subspaces Kp
Θ is

relevant in various subjects such as rational approximation [8, 11, 16], Toeplitz operators [4, 6]
and spectral theory for general linear operators [15]. The reproducing kernels in the subspaces
Kq

Θ are the functions kΘ(., λ) ∈ Kp
Θ such that f(λ) = 〈f, kΘ(., λ)〉 for λ ∈ D and f ∈ Kq

Θ. By [12]
they are given by

kΘ(z, λ) =
1 − Θ(λ)Θ(z)

1 − λz
.

Recall that if Θ is an inner function in H∞, then Θ has a canonical decomposition of the form

Θ(z) = eiαzN
∏

n≥1

|an|

an

an − z

1 − anz
exp

(

−

∫

T

ζ + z

ζ − z
dµ(ζ)

)

(1)

where α ∈ R, an 6= 0,
∑

n≥1(1 − |an|) < ∞ and where µ is a non negative singular measure.

Definition 2.1 Let Θ be an inner function in H∞. The spectrum of Θ is denoted by σ(Θ) and
is defined to be the complement in D of the set {ξ ∈ D : 1

Θ can be analytically continued in a (full)
neighborhood of ξ}.

It follows from [15], p. 63, that σ(Θ) ∩ T = {ξ ∈ T : lim infz→ξ |Θ(z)| = 0} and if Θ has the
canonical decomposition (1), then σ(Θ) = clos{an : n ≥ 1} ∪ suppµ, where supp(µ) denotes the
support of µ and clos denotes the closure.

A useful fact concerning the spectrum of an inner function is contained in the following propo-
sition.
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Proposition 2.1 ([15], p. 65) Let Θ be an inner function and p ∈ (1,∞). The set T \ σ(Θ)
coincides with the set of points ξ such that every function in the model space Kp

Θ admits an analytic
continuation across ξ.

We shall also require another set associated with Θ, defined as follows.

Definition 2.2 Let Θ be an inner function with the canonical decomposition (1). Then define the
Ahern–Clark set EΘ [1] by:

EΘ :=







ζ ∈ T :
∑

n≥1

1 − |an|2

|ζ − an|2
+ 2

∫

T

dµ(t)

|t − ζ|2
< +∞







.

Note that T \ σ(Θ) ⊂ EΘ, but as we shall see later these sets can be distinct. Also recall that the
set EΘ is an open set relative to T. When Θ is an inner function on D and ζ0 is a point in T, one
says that Θ has an angular derivative in the sense of Carathéodory at ζ0 if Θ has a non tangential
limit at ζ0 of modulus 1 and in addition the derivative Θ′ of Θ has a non tangential limit at ζ0.
We have the following characterization of such points:

Proposition 2.2 Let Θ be an inner function and ζ0 ∈ T. Then the following assertions are
equivalent:
(i) Θ has an angular derivative in the sense of Carathéodory at ζ0.

(ii) lim inf
z∈D

z→ζ0

1 − |Θ(z)|2

1 − |z|2
< ∞ .

(iii) ζ0 ∈ EΘ.

The equivalence between (i) and (ii) follows from Carathéodory’s Theorem [16] and for the equiv-
alence between (ii) and (iii) see [7].

Finally, we need the notion of minimal sequences.

Definition 2.3 Let (xn)n≥1 be a sequence of a Banach space X. Then (xn)n≥1 is called minimal
if for every n ≥ 1, we have xn 6∈ span{xk : k 6= n}. Moreover, (xn)n≥1 is called uniformly minimal
if infn≥1 dist(xn/‖xn‖, span{xk : k 6= n}) > 0.

A standard application of the Hahn–Banach theorem gives the following characterization of min-
imality and uniform minimality ([15], p. 131).

Proposition 2.3 Let (xn)n≥1 be a sequence of a Banach space X.

1. (xn)n≥1 is minimal if and only if there exists a sequence (x∗
n)n≥1 in X∗ satisfying < xn, x∗

k >=
δn,k where δn,k is the Kronecker symbol. Such a sequence is called a biorthogonal sequence
of (xn)n≥1.

2. (xn)n≥1 is uniformly minimal if and only if there exists a biorthogonal sequence (x∗
n)n≥1 of

(xn)n≥1 such that supn≥1 ‖xn‖‖x∗
n‖ < ∞.

3 Overcomplete sequences in reflexive Banach spaces

First of all, we recall a useful lemma.

Lemma 3.1 ([2]) Let (yn)n≥1 be a sequence in a Banach space X satisfying inf
n≥1

‖yn‖ > 0 and

such that (yn)n≥1 tends weakly to 0. Then (yn)n≥1 has a subsequence (ynp)p≥1 which is a basic
sequence, i.e., a Schauder basis in its span.
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Now, we can give a general necessary condition for overcompleteness.

Theorem 3.1 Let X be a reflexive Banach space and (xn)n≥1 ⊂ X a bounded infinite sequence
of pairwise distinct vectors. If (xn)n≥1 does not contain a uniformly minimal subsequence (so, in
particular if (xn)n≥1 is overcomplete in X), then (xn)n≥1 is strongly relatively compact.

Proof: Suppose that (xn)n≥1 is not strongly relatively compact. As (xn)n≥1 is bounded, we
can find y ∈ X and a subsequence (xnk

)k≥1 tending weakly to y such that inf
k≥1

‖xnk
− y‖ > 0.

First case: y = 0. Using Lemma 3.1, we obtain a subsequence of (xnk
)k≥1 which forms a

basis in its span. In particular this subsequence is uniformly minimal, which proves that (xn)n≥1

is not overcomplete in X .
Second case: y 6= 0. Using once more Lemma 3.1, we can find a subsequence (xnkp

− y)p≥1

which is a basic sequence. It follows that
⋂

i≥1

span {xnkp
− y : p ≥ i} = {0}. Indeed, since

(xnkp
− y)p≥1 is a basic sequence, for any z ∈ span{xnkp

− y : p ≥ 1}, there exists a unique scalar

sequence (anp)p≥1 such that z =
∑

p≥1 anp(xnkp
− y). The minimality of (xnkp

− y)p≥1 implies

that anp = 0 for p ≥ 1 if, in addition, z ∈
⋂

i≥1 span {xnkp
− y : p ≥ i} = {0}.

Since y 6= 0, there exists i0 ∈ N such that y 6∈ span {xnkp
− y : p ≥ i0}. Hence we get

that X = (y, xnkp
− y)p≥i0 is a basic sequence, and thus a uniformly minimal sequence. Let

(y∗, (xnkp
−y)∗)p≥i0 be the biorthogonal sequence of X such that supp≥i0

‖xnkp
−y‖‖(xnkp

−y)∗‖ <

∞. One can check that ((xnkp
− y)∗)p≥i0 is also a biorthogonal sequence for (xnkp

)p≥i0 . Since

(xnkp
)p≥i0 is bounded and infp≥i0 ‖xnkp

−y‖ > 0, it follows that supp≥i0
‖xnkp

‖‖(xnkp
−y)∗‖ < ∞.

Therefore, (xnkp
)p≥i0 is uniformly minimal. In particular, (xn)n≥1 is not overcomplete, which ends

the proof.
�

In the rest of the section, we consider a reflexive complex Banach space X and Ω a domain in
C. Moreover suppose that the mapping f 7−→ f is well-defined and continuous from X into Hol(Ω)
(the space of holomorphic function on Ω equipped with the topology of the uniform convergence
on compact subsets). It is a well-known fact that the evaluations Eλ : f 7→ f(λ) for λ ∈ Ω, are
continuous. In this context, we can relax the hypothesis under which we can give a necessary
condition for overcompleteness.

Theorem 3.2 Suppose that X ∩H∞(Ω) is dense in X and let (λn)n≥1 be an infinite sequence of
pairwise distinct points in Ω. If (Eλn)n≥1 does not contain a uniformly minimal subsequence (so,
in particular if (Eλn)n≥1 is overcomplete in X∗), then (Eλn)n≥1 is strongly relatively compact.

Proof: By Theorem 3.1, it suffices to show that sup
n≥1

‖Eλn‖ < +∞. Assume that sup
n≥1

‖Eλn‖ =

+∞ and let (yn)n≥1 be defined by yn = Eλn/‖Eλn‖ . For all f ∈ H∞(Ω) ∩X , we have |〈f, yn〉| =
|f(λn)|/‖Eλn‖ ≤ ‖f‖∞/‖Eλn‖ → 0 as n → ∞ . Since H∞(Ω) ∩ X is dense in X , we get that
(yn)n≥1 tends weakly to 0 and using Lemma 3.1, we find a subsequence (ynp)p≥1 which is a basic
sequence and in particular is uniformly minimal. Hence (Eλnp

)p≥1 cannot be overcomplete in X∗.
�

An obvious sufficient condition for overcompleteness is given by the following proposition,
which follows immediately from the principle of isolated zeros.

Proposition 3.1 Let (λn)n≥1 be an infinite sequence of pairwise distinct points in Ω. If the
closure of (λn)n≥1 is a subset of Ω, then (Eλn)n≥1 is overcomplete in X∗.

4 Overcomplete sequences in K
p
Θ, 1 < p < ∞

Before investigating overcompleteness in the reflexive model spaces Kp
Θ, it is natural to consider

the problem in Hp where the reproducing kernels are kλ(z) = 1
1−λz

, for λ ∈ D.
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Theorem 4.1 Let p ∈ (1,∞) and (λn)n≥1 an infinite sequence of pairwise distinct points in D.
The sequence (kλn)n≥1 is overcomplete in Hp if and only if supn≥1 |λn| < 1.

Proof: In order to apply the results of Section 3, set Ω = D, X = Hq where p and q are
conjugate. In this context, for λ ∈ D, Eλ can be identified with kλ. By Proposition 3.1, the
condition supn≥1 |λn| < 1 implies that (kλn)n≥1 is overcomplete in Hp. Conversely, by Theo-
rem 3.2 the overcompleteness of (kλn)n≥1 implies in particular that supn≥1 ‖kλn‖p < ∞. Now, it

is known ([15], p. 188) that ‖kλn‖p � 1
(1−|λn|2)1/q . Therefore, supn≥1 ‖kλn‖p < ∞ if and only if

supn≥1 |λn| < 1.
�

The study of sequences of reproducing kernels in the model spaces Kp
Θ is often considered

under the geometrical condition sup |Θ(λn)| < 1 [12]. In this case we have the following result.

Theorem 4.2 Let p ∈ (1,∞) and (λn)n≥1 an infinite sequence of pairwise distinct points in D.
Suppose sup

n≥1
|Θ(λn)| < 1; then (kΘ(·, λn))n≥1 is overcomplete in Kp

Θ if and only if sup
n≥1

|λn| < 1.

Proof: Set Ω = D, X = Kq
Θ where p and q are conjugate. For λ ∈ D, the evaluation Eλ on X can

be identified with kΘ(·, λ). By Proposition 3.1, the second condition is sufficient for the overcom-
pleteness. By Theorem 3.2, overcompleteness implies in particular that supn≥1 ‖kΘ(·, λn)‖p < ∞.
But we have

‖kΘ(·, λn)‖p
p

1

2π

∫ 2π

0

∣

∣

∣

∣

∣

1 − Θ(λn)Θ(eit)

1 − λneit

∣

∣

∣

∣

∣

p

dt ≥ (1 − |Θ(λn)|)p 1

2π

∫ 2π

0

1

|1 − λneit|p
dt.

Since supn≥1 |Θ(λn)| < 1, there exists a positive constant c such that ‖kΘ(·, λn)‖p
p ≥ c‖kλn‖

p
p. It

follows that supn≥1 ‖kλn‖p < ∞, and hence supn≥1 |λn| < 1, as shown in the proof of Theorem 4.1.
�

The study of bases of exponentials in L2(0, a) provided the original motivation for the develop-
ment of the functional model approach in [12]. In the remainder of this section we discuss in more
detail overcompleteness of exponentials. Some preliminaries are needed to translate the problem
into the language of model spaces.

If C+ = {z ∈ C : Im z > 0}, then we define the conformal mapping φ : C+ → D by φ(z) = z−i
z+i

.

The operator (Uf)(z) = 1
π(z+i)f(φ(z)) maps H2 unitarily onto the Hardy space H2(C+). The

corresponding transformation for functions in H∞ is f 7→ f ◦ φ; it maps inner functions in D

into inner functions in C+. We have then UKΘ = H2(C+) 	 (Θ ◦ φ)H2(C+), and U(kΘ
λ ) is the

reproducing kernel for the point φ(λ).
The Blaschke factor corresponding to µ ∈ C+ is b+

µ (z) = z−µ
z−µ̄

and the Blaschke product with

zeros (µn)n≥1 is B+(z) =
∏

n≥1 cµnb+
µn

(z), the coefficients cµn being chosen as to make all terms
positive at z = i.

Let F : L2(R) → L2(R) be the Fourier transform. Then FU maps H2 unitarily onto L2(0,∞).

If Θa(z) = ea z+1

z−1 , then FU maps KΘa unitarily onto L2(0, a); the reproducing kernel kΘa(·, λ)
(λ ∈ D) is mapped (up to a nonzero constant) into eiµt, where µ = −φ−1(λ). Note that |Θa(λn)| =
e−a Im µn and thus supn≥1 |Θa(λn)| < 1 if and only if infn≥1 Im µn > 0.

Therefore, the previous results can then be adapted to the case of exponentials eiµnt, with
infn≥1 Im µn > 0. Nevertheless we will see that the hypothesis infn≥1 Im µn > 0 can be removed.

Theorem 4.3 Let a > 0 and (µn)n≥1 be an infinite sequence of pairwise distinct points in C.
Then (eiµnt)n≥1 is overcomplete in L2(0, a) if and only if supn≥1 |µn| < ∞.

Proof: Consider the sequence (µ∗
n)n≥1 defined as follows:

µ∗
n =

{

µn if Imµn ≥ 0,
µn if Imµn < 0.
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We will prove that

(eiµnt)n≥1 is overcomplete in L2(0, a) ⇐⇒ (eiµ∗

nt)n≥1 is overcomplete in L2(0, a). (2)

First we remark that for every infinite subset Λ of N∗, considering the anti-linear bijection T
defined by Tf(t) = f(−t + a) on L2(0, a), we have:

(eiµnt)n∈Λ is overcomplete in L2(0, a) ⇐⇒ (eiµnt)n∈Λ is overcomplete in L2(0, a). (3)

If {n ≥ 1 : Im µn < 0} is finite or {n ≥ 1 : Im µn ≥ 0} is finite, (2) follows from (3) and that fact
that adding or deleting a finite set does not change the overcompleteness property. Otherwise, (2)
follows from (3) and the fact that the union of two overcomplete sequences is overcomplete.

Let δ > 0. Now, considering the unitary operator U on L2(0, a) defined by Uf(t) = eiδtf(t),
we have:

(eiµ∗

nt)n∈Λ is overcomplete in L2(0, a) ⇐⇒ (ei(µ∗

n+δ)t)n∈Λ is overcomplete in L2(0, a). (4)

Since infn≥1 Im(µ∗
n + δ) > 0, by Theorem 4.2 and the translation of our problem into the language

of model spaces, we get:

(ei(µ∗

n+δ)t)n∈Λ is overcomplete in L2(0, a) ⇐⇒ sup
n≥1

|µ∗
n + δ| < ∞ ⇐⇒ sup

n≥1
|µn| < ∞.

Using (2) and (4), the proof of the theorem follows.
�

5 Overcompleteness in K
p
Θ in terms of σ(Θ) and EΘ

The following result shows that we may assume, in the sequel, that Θ is an inner function which
is not a finite Blaschke product and thus σ(Θ) ∩ T 6= ∅.

Proposition 5.1 Let p ∈ (1,∞), (λn)n≥1 be an infinite sequence of pairwise distinct points in D

and let Θ be a finite Blaschke product. Then (kΘ(., λn))n≥1 is overcomplete in Kp
Θ.

Proof: Set Ω = {z ∈ C : |z| < R} where 1
R

= max{z ∈ D : Θ(z) = 0} < 1 and X = Kq
Θ where

p and q are conjugate. For λ ∈ D, the evaluation Eλ on X can be identified with kΘ(·, λ). Since
clos({λn : n ≥ 1}) ⊂ {z ∈ C : |z| ≤ 1} ⊂ Ω, by Proposition 3.1, (kΘ(., λn))n≥1 is overcomplete in
Kp

Θ.
�

Proposition 5.2 Let p ∈ [2,∞), (λn)n≥1 be an infinite sequence of pairwise distinct points in D.
We have the following sequence of implications:

(SC) infn≥1 dist(λn, σ(Θ) ∩ T) > 0
⇓

(OV C) (kΘ(., λn))n≥1 is overcomplete in Kp
Θ

⇓
(NC1) (kΘ(., λn))n≥1 is strongly relatively compact in Kp

Θ

⇓

(NC2) sup
n≥1

1 − |Θ(λn)|2

1 − |λn|2
< ∞

⇓
(NC3) infn≥1 dist(λn, T \ EΘ) > 0

Moreover, for p ∈ (1, 2), (SC) ⇒ (OV C) ⇒ (NC1) remains true.
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Proof: Let p ∈ (1,∞). Set Ω = C \ (σ(Θ) ∪ { 1
z

: Θ(z) = 0}) and X = Kq
Θ where p and q are

conjugate. Using Proposition 2.1, X embeds continuously into Hol(Ω). Then (SC) =⇒ (OV C)
and (OV C) =⇒ (NC1) applying respectively Proposition 3.1 and Theorem 3.2.

Now take p ∈ [2,∞). If (NC1) is satisfied, then, obviously, supn≥1 ‖kΘ(·, λn)‖p < ∞. Since
p ≥ 2 we have:

sup
n≥1

1 − |Θ(λn)|2

1 − |λn|2
sup
n≥1

‖kΘ(., λn)‖2
2 ≤ sup

n≥1
‖kΘ(., λn)‖2

p < ∞,

which implies that (NC2) is satisfied. To prove that (NC2) =⇒ (NC3), take ζ0 be a limit

point of (λn)n≥1 in T. Then since lim inf
z∈D

z→ζ0

1 − |Θ(z)|2

1 − |z|2
≤ sup

n≥1

1 − |Θ(λn)|2

1 − |λn|2
< ∞, it follows from

Proposition 2.2 that ζ0 ∈ EΘ. Since T \ EΘ is closed, there exists δ > 0 such that for every n,
dist(λn, T \ EΘ) ≥ δ.

�

In the case where EΘ = T \ σ(Θ), Proposition 5.2 provides a characterization of overcomplete
sequence of reproducing kernels in Kp

Θ for p ≥ 2. The next theorem provides an explicit class of
inner functions Θ for which EΘ = T \ σ(Θ). First, recall that a sequence (αn)n≥1 ⊂ D is a Stolz
sequence if there exists a finite subset e of T and a positive constant c > such that for all n ≥ 1,
dist(αn, e) ≤ c dist(αn, T). If (αn)n≥1 is a Stolz sequence and ζ is a limit point of (αn)n≥1 then
there exists a subsequence (αnp)p≥1 and a Stolz angle

∆ζ := {z ∈ D : | arg(1 − ζz)| < α, |z − ζ| < ρ} (0 < α <
π

2
, ρ < 2 cosα) ,

such that (αnp)p≥1 ⊂ ∆ζ and limp→+∞ αnp = ζ. In other words, this means that (αnp)p≥1

converges nontangentially to ζ.

Theorem 5.1 Let p ∈ [2,∞) and (λn)n≥1 be an infinite sequence of pairwise distinct points of D.
Let Θ be an inner function with the canonical decomposition (1). If (an)n≥1 is a Stolz sequence
and if µ has a finite support, then

(kΘ(·, λn))n≥1 is overcomplete in Kp
Θ ⇔ (SC) ⇔ (NC1) ⇔ (NC2) ⇔ (NC3).

Proof: By Proposition 5.2, it is sufficient to prove that T \ EΘ = T ∩ σ(Θ), or, equivalently,
that T \ σ(Θ) = EΘ. The inclusion T \ σ(Θ) ⊂ EΘ is true for any inner function Θ and follows
from the definitions of σ(Θ) and EΘ. Note also that EΘ = EB ∩ ESµ and σ(Θ) = σ(B) ∪ σ(Sµ).

Therefore it suffices to prove that EB ⊂ T \ σ(B) and ESµ ⊂ T \ σ(Sµ). Write µ =
∑

λ∈supp(µ)

cλδλ

where supp(µ) is the support of µ, cλ > 0 and δλ is the Dirac measure at λ. If ζ0 ∈ ESµ , then
∫

T

dµ(t)

|t − ζ0|2
< ∞, that is,

∑

λ∈supp(µ)

cλ

|λ − ζ0|2
< ∞. Since the support of µ is finite, we conclude

that infλ∈supp(µ) |λ − ζ0| infλ∈σ(Sµ) |λ − ζ0| > 0, and thus ζ0 ∈ T \ σ(Sµ).
It remains to check that EB ⊂ T \ σ(B). Take ζ0 ∈ EB ∩ σ(B). Since, ζ0 ∈ EB, using

Proposition 2.2, we know that B has a nontangential limit at ζ0 with |B(ζ0)| = 1. Moreover, since
ζ0 ∈ σ(B) ∩ T, there exists a sequence (αn)n≥1 which tends to ζ0 and satisfying B(αn) = 0 for
n ≥ 1. Since (αn)n≥1 is a Stolz sequence, it follows that B(ζ0) = 0, which is absurd.

�

Note that kΘ(·, λn) strongly converges in K2
Θ if λn → ζ ∈ EΘ nontangentially [1, 16]. Now,

assuming that the sequence (λn)n≥1 is a Stolz sequence, the conditions (NC1), (NC2) and (NC3)
are obviously equivalent with p = 2.

We now give a characterization of overcomplete sequences of reproducing kernels (kΘ(·, λn))n≥1

for some particular Blaschke products Θ whose sets of zeros are not necessarily Stolz sequences. If
Θ is inner and α ∈ D, then we define Θα = Θ−α

1−αΘ . Then Θα is also an inner function and according
to theorem of Frostman, for almost all α ∈ D, it is actually a Blaschke product.
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Proposition 5.3 Let p ∈ [2,∞) and (λn)n≥1 is an infinite sequence of pairwise distinct points of
D. Let Θ be a Blaschke product and suppose that there exists α ∈ D and a singular inner function
S with finite support such that Θ = Sα. Then

(kΘ(·, λn))n≥1 is overcomplete in Kp
Θ ⇔ (SC) ⇔ (NC1) ⇔ (NC2) ⇔ (NC3).

Proof: It is not difficult to check that the formula U(f) =
√

1 − |α|2 f
1−αΘ defines a unitary

operator U : Kp
S → Kp

Θ which maps (up to a nonzero constant) kS(·, λn) into kΘ(·, λn). Therefore
(kΘ(·, λn))n≥1 is overcomplete in Kp

Θ if and only if (kS(·, λn))n≥1 is overcomplete in Kp
S . Moreover

it follows from the very definition of the spectrum and Proposition 2.2 that ES = EΘ and σ(S)∩T =
σ(Θ) ∩ T. Applying Theorem 5.1, we conclude the proof of the proposition. �

Let S(z) = e
z−1

z+1 , a singular inner function whose support is {−1}. For almost every α ∈ D, Sα

is a Blaschke product. An easy calculation shows that the set of zeros of Sα, say (an)n≥1, satisfies
the equation

∣

∣

∣

∣

an −
ln |α|

1 − ln |α|

∣

∣

∣

∣

=
1

1 − ln |α|
,

which means that the sequence (an)n≥1 is on a circle tangent to T and thus (an)n≥1 is not
a Stolz sequence. Theorem 5.1 does not apply; however, Proposition 5.3 gives a criterion for
overcompleteness in KSα .

In the introduction we have already mentioned the links between overcompleteness and mini-
mality and uniform minimality. The next theorem gives the precise statements.

Theorem 5.2 Let p ∈ (1,∞) and (λn)n≥1 an infinite sequence of pairwise distinct points in D.

1. The sequence (kΘ(·, λn))n≥1 is overcomplete in Kp
Θ if and only if it has no infinite subse-

quence which is minimal.

2. The sequence (kΘ(·, λn))n≥1 is strongly relatively compact in Kp
Θ if and only if it is bounded

and has no infinite subsequence which is uniformly minimal.

Proof: 1. By definition, an overcomplete sequence in a Banach space does not contain any
infinite minimal subsequence. Conversely, if (kΘ(·, λn))n≥1 is not overcomplete, there exists an
infinite subsequence (kΘ(·, λnp))p≥1 which is not complete in Kp

Θ. By the Hahn–Banach theorem,
there exists g ∈ Kq

Θ \ {0} such that g(λnp) = 0, p ≥ 1. Now, if mp is the multiplicity of the zero at

λnp of g, the function Ψnp defined by Ψnp = g
(bλnp

)mp , with bλnp
(z) =

z−λnp

1−λnpz
, belongs to Kq

Θ ([15],

p. 211). By construction (
Ψnp

Ψnp(λnp ) )p≥1 is a biorthogonal sequence of (kΘ(·, λnp))p≥1. Therefore,

the infinite subsequence (kΘ(·, λnp))p≥1 is minimal.
2. By Theorem 3.1, if (xn)n≥1 is a bounded sequence in a reflexive Banach space which does not
contain any uniformly minimal sequence is necessarily strongly relatively compact. Conversely,
first note that

‖kΘ(·, λn)‖ ≥

∣

∣

∣

∣

〈

PΘ1

‖PΘ1‖q

, kΘ(·, λn)

〉∣

∣

∣

∣

|1 − Θ(0)Θ(λn)|

‖PΘ1‖q

≥
1 − |Θ(0)|

‖PΘ1‖q

.

Therefore, there exists c > 0 such that infn≥1 ‖kΘ(·, λn)‖ ≥ c. It follows that

dist

(

kΘ(·, λn)

‖kΘ(·, λn)‖
, span{kΘ(·, λk) : k 6= n}

)

≤ inf
k 6=n

‖kΘ(·, λn) − kΘ(·, λk)‖

c
.

Thus, if (kΘ(·, λn))n≥1 is strongly relatively compact, it is clear that (kΘ(·, λn))n≥1 is bounded
and cannot have a uniformly minimal infinite subsequence.

�

By means of examples we obtain further information on the links between some of the conditions
considered.
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Proposition 5.4 The condition (NC3) is strictly weaker than (NC2); furthermore, the condition
(NC1) is strictly weaker than (SC).

Proof: We first construct an example where (SC) is not valid but (NC1) is satisfied. Let

an =
1
n

+ i( 1
2n − 1)

1
n

+ i( 1
2n + 1)

for n ≥ 1. Since 1−|an|2 � 1
2n , (an)n≥1 is a Blaschke sequence. Let (λn)n≥1 be a Blaschke sequence

which converges to −1 and which satisfies the Stolz condition. Denote by B the Blaschke product
associated with (λn)n≥1. Since σ(B) ∩ T = {−1} and limn→∞ an = −1, applying Theorem 5.1,
it follows that (kB(·, an))n≥1 is not overcomplete in K2

B. Therefore there exists a subsequence
(anp)p≥1 of (an)n≥1 such that (kB(·, anp))p≥1 is not complete in K2

B. By Lemma 97 of [15], this is
equivalent to the condition that kerTBΘ1

6= {0} where Θ1 is the Blaschke product associated with
(anp)p≥1. By Coburn’s lemma [15, Lemma 43, p. 318], it follows that {0} = kerT ∗

BΘ1

= kerTΘ1B.

Applying once more Lemma 97 of [15], we deduce that the sequence (kΘ1
(·, λn))n≥1 is complete

in K2
Θ1

. Obviously, we have σ(Θ1) = {−1}. Nevertheless we have EΘ1
= T. Indeed, since

T \ σ(Θ1) ⊂ EΘ1
, we get T \ {−1} ⊂ EΘ1

. By Definition 2.2, −1 ∈ EΘ1
if and only if

∑

p≥1

1 − |anp |
2

|1 + anp |
2

< ∞ .

But this convergence follows from the estimate 1 − |anp |
2 � 1

2np and the existence of a constant
c > 0 such that |1 + anp |

2 ≥ c
n2

p
. Therefore, we get EΘ1

= T. Now, since (λn)n≥1 is a Stolz

sequence, (kΘ1
(·, λn))n≥1 converges in norm in K2

Θ1
, and then satisfies the condition (NC1) but

(SC) is not valid.
Moreover, if one takes Θ1 defined as previously and λn = an, then Θ1(λn) = 0, which implies

that (NC2) does not hold, whereas (NC3) is valid since EΘ1
= T. �
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