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Abstract
This paper tackles the challenging task of automatically predicting the

floor of a balcony based on a sound bound of two minutes recorded on
that balcony. The sound fragments are typical of the environment, as
nothing out of the usual can be heard in them. However, there is a good
probability that, when hearing a fragment in quiet surroundings with con-
sistent metropolitan background noise, it would not be straightforward to
determine or estimate the floor height. In our experiments, it was found
that sound chunks lasting 5 s can be identified with high accuracy even
with a small number of training samples. In addition, when using a late
fusion strategy to combine the outputs of classifiers trained on two modal-
ities of the sound tracks, the floors of these bands are perfectly correctly
classified. This result was consistent throughout all twenty tests when
training and test sets were chosen at random, supporting the viability of
the suggested method.

1 Introduction
The Organization for Economic Co-operation and Development (OECD)1 pre-
dicts that over 70% of the world’s population will reside in cities by 2050. How-
ever, given that space is finite and bounded and because driving is a significant
contributor to global warming, urban expansion is reaching its limits. In this
context, cities must choose alternative development paths, particularly in the
housing sector, to boost density and promote the growth of new ecological neigh-
borhoods.

1https://www.oecd.org/fr/env/indicateurs-modelisation-perspectives/, accessed on
6 May 2023
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A dense habitat, however, runs against the generally held notion of private
residence and is by no means favored by inhabitants. Furthermore, from the
standpoint of communal housing, especially social housing, density frequently
corresponds with a poor impression of the environment, as it fosters a close-
ness that makes intimacy difficult while imposing exterior restrictions. Thus,
one of the main issues facing modern urban architecture is to suggest changes
that would improve communal living conditions in collective housing, thereby
lessening its poor reputation [1, 2, 3].

From different studies, it is apparent that residents would abandon the dream
of the single-family home with a garden if collective housing were to provide
expansions to the exterior, allowing beautiful attractive uses, for example, deep
balconies, covered terraces, patios, indoor courtyards, and shared gardens [4].
In order to create more aesthetically pleasing communal living while satisfying
demands for thermal, visual, olfactory, and acoustic comfort, optimal housing
criteria need to be reassessed and new standards need to be introduced.

Related to the above, the European Union’s member states are presently
using the instruments required to address the issues with sound environments
on an agglomerational scale while developing mapping strategies and related
action plans. These tools have the privilege of using mapping and presenting
regional quantitative criteria to ensure the reproducibility of studies, offering a
common European standard for comparing different neighborhoods and cities.
These strategic sound environment maps include action plans to reduce the
sound levels of major noise sources and set limits in specific areas affected by
severe nuisance. Therefore, despite the creation of tactical noise maps and the
selection of a single quantifiable indication, these maps are unable to identify
all the sound sources that are present around us in daily life [5].

In order to better meet the expectations of citizens, it is necessary to ap-
proach urban development projects by quantitatively measuring noise as well as
by integrating the quality of the sound environment. For more than 20 years,
from the first environmental labels to the more recent eco-districts (on which
our research is based) [4, 6], many operations have proposed new models of
living in which thick facade devices (balconies, loggias, terraces, corridors) offer
answers to this complex equation between density, intimacy, and sociability, as
depicted in Figure 1.
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Figure 1: An example of eco-district collective housing extracted from [4].

The balconies of new constructions are places rich in sensory practices that
provide users with this feeling of well-being. In the field of sensation, the per-
ceptive dimension of sound is typically less directly worked on by architects as
a means of design in comparison to the visual field [7].

This lack of concern for the sound environment in most architectural projects
is certainly explained by its non-determinable and evolving character in space
and time. In fact, sound travels in all directions through materials, which makes
it much harder to channel and direct compared to light.

Indeed, as shown by different studies, in particular those of Cresson2 [8], the
limits of sound are rarely identical to those of the visual; obviously, sound phe-
nomena are not observable and rarely stop due to architectural techniques such
as facades, balconies, railings, walls, and openings. It is a conceivable hypoth-
esis that a dearth of control tools (prediction, simulation, etc.) contributes to
the lack of value placed on sound perception in architectural and urban design.

1.1 Motivation and Contribution
The factors that influence sound perception on the balconies are the morphology
of the balcony, the materials, the height of the balcony’s location on the facade,
and the surrounding urban configurations and use [9]. In this direction, the

2https://www.esquissons.fr/, accessed on 6 May 2023
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height of the floor where a balcony is located is an essential parameter that
allows for different types of atmospheres, as it can affect the visual and sensory
experience. For example, if a balcony is located on a high floor, the view can
be expansive, providing a sense of openness and freedom. The height can make
the balcony feel more secluded and private, as it is removed from street-level
activity. Additionally, being at a greater height can create a sense of thrill or
excitement, as one feels a sense of being suspended in the air. On the other
hand, if a balcony is located on a lower floor, the view may be obstructed by
buildings or trees, limiting the sense of openness and freedom. The balcony may
feel more exposed to street-level activity, reducing the sense of privacy. Being at
a lower height can create a more grounded feeling connected to the surrounding
environment. In this sense, the height of a floor where a balcony is located can
greatly impact the visual and sensory experience of being on the balcony, and
can create different types of atmospheres.

In this work, our goal is to determine whether sound perception in the form
of sound fragments can be used to automatically determine the floor on which a
balcony is located. If this identification can be done efficiently, new components
could be included to the design of balconies, as designers could better suggest
the exposure, morphology, and arrangement tailored to balconies with regard
to the impression of a sound environment connected with the height of its floor.

In this work, the problem of floor identification of a balcony is tackled by
analyzing its sound environment as an audio classification problem using the as-
sociated soundtrack to characterize this environment. This task involves learn-
ing to classify sounds and predicting the class (in this case, the floor height) of
a new sound.

Although machine learning has made significant advancements in the field
of audio categorization recently, this issue remains open and challenging, as am-
bient everyday noises includes a great deal of information [10]. Recent research
suggests using machine learning for sound and acoustic analysis [11, 12, 13].
To the best of our knowledge, no research has been done on the application of
learning strategies for taking advantage of balcony soundscapes. In this paper,
a novel machine learning-based approach is proposed to automatically classify
recordings with soundtracks from balconies into the respective floors.

1.2 Machine Learning
Machine learning (ML) is a branch of artificial intelligence that systematically
applies algorithms to synthesize the underlying relationships between data and
information [14]. Machine learning approaches are traditionally divided into
three main categories, which correspond to learning paradigms depending on
the nature of the ”signal” or ”feedback” available to the learning model, as
described below.

Supervised Learning [15] is a framework in which a Machine Learning algo-
rithm is trained to predict outputs (or “labels”) based on a given set of input
data and their corresponding output labels. On the other hand, Unsupervised
learning [16] is a framework in which an algorithm is trained to identify patterns
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or relationships within a given set of data, without any explicit guidance or labels
provided. In between, there is the Semi-Supervised Learning [17] framework,
which trains an algorithm using both labeled and unlabeled datasets. The goal
is to use the structure of the data with the label information to find a predictor
that performs better than one that uses only the labeled training data. Finally,
Reinforcement Learning [18] involves an agent learning to make decisions in an
environment in order to maximize a cumulative reward signal.

In our study, a set of sound fragments associated with stages of thirty in-
termediate spaces from the Esquis’sons! project was used. This project was
studied in six sustainable neighborhoods in Europe (Germany, Spain, France,
and Sweden) using the sound qualities of intermediate spaces located on the
facade of buildings, such as balconies, loggias, terraces, and corridors (BLTC).
Figure 2 shows images of these six-districts. This space has drawn a lot of at-
tention, as it presents a new architectural language that has emerged in this
type of neighborhood. A sonic approach was privileged in studying this ar-
chitectural element for evaluating its potential in different urban and climatic
contexts in Europe. These sites were chosen because they support outstanding
and avant-garde BLTC architectural forms while emphasizing the morphological
development of this typology of spaces. The different eco-districts were selected
along a north–south axis in Europe that traverses various cultural, climatic, and
urban environments in order to ensure a variation of urban form.

For this purpose, several sound recordings were made in situ on each balcony,
each lasting 10 min, to better understand the differences in listening and the
effect of the spatial layout, on both the architectural and urban scales, on the
sound atmosphere. Many micropositions, including standing and sitting pos-
tures, in front of the railing, or close to the facade, were chosen in consultation
with the inhabitants to reflect the natural and frequent usage of the balcony.
Please refer to [19, 20] for more details.
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Figure 2: The six eco-districts in Europe considered in our study [20].

Our goal was to determine from the soundtracks of a subset of these buildings
whether it is possible to predict the floors or height of the soundtracks in the
rest of the buildings. Therefore, the framework of our study is that of supervised
learning.

1.3 Outline
In the following, Section 2 presents the classical sound processing models as
well as the convolutional neural network models used in this work. Section 3
presents our approach for classifying floors by their soundtracks. The data from
the Esquis’sons! project are used to illustrate our findings in Section 4, and
Section 5 concludes the work and identifies its next steps.

2 Soundtrack Representations
VanDerveer [21] offers the following criteria for defining a sound of the environ-
ment:

• It is the product of an event;

• It is the reflection of one or a series of causal events;

• It does not fall under speech recognition.

Thus, the sounds of an environment are categorized according to several
categories: noise, natural sound, artificial sound, speech, music.

Recent techniques have been developed to process sound for a variety of
purposes, including removing noise components from the signal.
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In this way, one of the most popular techniques is Independent Compo-
nent Analysis (ICA), which separates a multivariate signal into independent
non-Gaussian components [22]. The basic idea behind ICA is to find a set of
statistically independent source signals from a set of mixed signals. In the case
of sound signals, the mixed signals may contain noise components that interfere
with the desired signal. By applying ICA to the mixed signals, it is possible to
separate the noise components from the desired signal, allowing for a cleaner
and clearer output.

To apply ICA to sound signals, the first step is to acquire a set of mixed sig-
nals. This can be done by recording the desired sound along with any interfering
noise. The mixed signals are then preprocessed to ensure that they are centered,
scaled, and have a consistent sampling rate. Next, the mixed signals are passed
through an ICA algorithm which separates them into independent components.
The ICA algorithm works by maximizing the statistical independence of the
components while minimizing their mutual information. After the independent
components have been identified, the noise components can be removed from
the desired signal by simply subtracting them from the mixed signal. The result
is a cleaner and clearer sound signal that is free of noise interference.

One important consideration when applying ICA to sound signals is the
choice of algorithm [23]. There are many different ICA algorithms available, each
with its own strengths and weaknesses. It is important to choose an algorithm
that is appropriate for the specific application and signal characteristics.

As the sound signals in our scenario are not standardized and originate from
a range of neighborhood soundscapes (such as the street, the school, the inside
of the building, etc.), it is impossible to pinpoint the ideal interfering noise for
any situation. As a result, our aim is to develop a stand-alone method that can
identify the sound signal with its incorporated noise.

In our work, the sound is considered as a one-dimensional vector with a
large number of samples per second; in our case, the sampling frequency is 16
kHz, with a sample being an integer value. From this one-dimensional vector,
it is possible to calculate different representations such as the MFCC and the
Spectrogram, which translate different aspects of the sound fragment.

2.1 MFCC
Mel frequency cepstral coefficients (MFCCs) are a feature extraction technique
used in speech recognition and other audio signal processing applications. They
are based on a nonlinear frequency scale called the Mel scale, which is designed to
mimic the way the human ear perceives sound [24]. The Mel scale is divided into
a number of evenly spaced frequency bands, which are logarithmically spaced
at lower frequencies and linearly spaced at higher frequencies. The Mel scale is
typically used to map the frequency spectrum of an audio signal onto a set of Mel
frequency bins, which can then be used to calculate MFCCs following a set of
pre-processing steps from a windowing method known as the Hamming window.
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2.2 Spectrogram
A classic representation of a spectogram is a three-dimensional graph, with the
x-axis representsing time and the y-axis representing frequency; the intensity or
color of each point on the graph provides a third dimension that indicates the
amplitude of a certain frequency at a given time [25].

Spectrograms are often used in audio signal processing to analyze sounds
such as music or speech and identify patterns or features within them. They
can be used in other fields as well, such as in the analysis of seismic data, where
they can help to identify earthquakes and other seismic events.

Figure 3 depicts MFCC coefficients and the spectrogram of a sound obtained
with the modules of the PyTorch3 library on one of the sound tracks in our study.

Figure 3: MFCC and Spectogram representations of a soundtrack considered in
our work.

3 Proposed Approach
The MFCC and spectrogram transforms of a sound are represented by matrices
of values which are considered as matrices of pixels, allowing the use of con-
volutional neural networks (CNNs) developed for image classification. In our
case, CNNs were trained to find the association between these transforms and
the floors of the balconies from which the corresponding sounds were recorded.

3.1 The CNN Model and its Variants
Convolutional neural networks (CNNs) are inspired by the organization of the
visual cortex. Inspired by the work of neuroscientists, [26] proposed a neural

3https://pytorch.org/audio/stable/transforms.html, accessed on 6 May 2023
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network model called a neocognitron that has two basic types of layers (see
Figure 4):

• Convolution layers

• Subsampling (or max-pooling) layers.

A convolutional layer contains units with receptive fields that cover part of
the previous layer; the weight vector is often called a filter or kernel. Down-
sampling layers contain units with receptive fields that cover parts of previous
convolutional layers. Such a unit generally calculates the average of the ac-
tivations of the units of its set. This downsampling allows input forms to be
correctly classified in visual scenes even when they are moved.

Based on this, in [27] the authors introduced the first convolutional network
capable of successfully capturing spatial and temporal dependencies in an image
through the application of learned kernels. This network architecture is better
suited to the image dataset thanks to the reduction in the number of parameters
involved and the reusability of the weights.

The three types of layers in a convolutional network are convolution, pooling
(or pruning), and fully connected layers.

3.1.1 Convolution Layer

In the convolution layer, an input (usually a tensor) is modified by a kernel or
filter that is learned. A convolution layer has three attributes:

• Convolution kernels, which are defined by width and height;

• The number of input channels and output channels (hyperparameters);

• The depth of the convolution filter (the input channels), which must be
equal to the number of channels (depth) of the input map.

The example below shows the convolution of a 5× 5× 1 image with a depth
of 1 using a 2 × 2 × 1 kernel of depth 1 in order to obtain 4 × 4 × 1 convolved
features: 

1 1 0 1 1
1 0 1 1 0
0 0 1 1 0
1 1 0 1 1
0 0 0 1 1


︸ ︷︷ ︸

Image

+

[
0 1
1 1

]
︸ ︷︷ ︸
Core,2×2

=


2 1 3 2
0 2 3 1
2 2 2 2
1 0 2 3


︸ ︷︷ ︸
Convolved image

In this example, the kernel shifts nine times, from top left to bottom right,
each time performing a matrix multiplication operation between K and the part
of the image to which it is applied. In the case of images with multiple channels,
e.g., RGB, the kernel has the same depth as that of the input image. Matrix
multiplication is performed between the kernel and image stacks, and all results
are summed using bias to output a one-channel convolved image.
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The purpose of the convolution operation is to extract high-level features.
Conventionally, the first convolution layer is responsible for capturing low-level
features such as edges, color, gradient orientation, etc. With additional layers,
the architecture accommodates higher-level functionality. The convolution re-
sult is of two types: either the convolved feature is reduced in dimensionality
relative to the input, which is the general case, or the dimensionality is increased
or remains the same.

3.1.2 Pruning Layer

The pruning layer is responsible for reducing the spatial size of the convolved
feature to decrease the computing power required to process the data through
this dimensionality reduction. In addition, it is used to extract dominant fea-
tures that are invariant in rotation and position. There are two types: maximum
pooling (or max-pooling) and average pooling. The first returns the maximum
value of the part of the image covered by the kernel. In contrast, an average
kernel returns the average of all values of the part of the image covered by the
kernel. For the example below, the result of max-pooling is as follows:

2 1 3 2
0 2 3 1
2 2 2 2
1 0 2 3


︸ ︷︷ ︸
Convolved image

→
[
2 3
2 3

]

3.1.3 Fully Connected Layer

Fully connected layers at the end of the network allow nonlinear combinations of
the high-level features represented by the output of the convolutional layer to be
learned. They are generally few in number, typically one to three. There should
be a transition between the last grouping layer and the first fully connected layer.
This is done by simply serializing the representations produced by this last
grouping layer. Our baseline model, called CNN782, was successfully proposed
for the classification of images [28]. Its architecture is composed of two successive
convolutions and 8× 8, 2× 2, 5× 5, and 8× 8 max-pooling kernels, followed by
a fully connected network with an input representation vector of size 782. This
model is shown in Figure 4.
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Figure 4: Diagram of the CNN782 convolutional network used in our experi-
ments, with two successive convolution and max-pooling layers.

In order to see the impact of the filter size and the stride length used in the
convolutional layers, two other variants of this model, named CNN392 (Figure
5) and CNN16384 (Figure 6), respectively, were considered. These models are
defined as follows:

• CNN392: Two successive convolutions and max-pooling with 8× 8, 5× 5,
5 × 5, and 4 × 4 kernels followed by a fully connected network with an
input representation vector of size 392.

Figure 5: Diagram of the CNN392 convolutional network used in our experi-
ments.

• CNN16384: Three successive convolution and max-pooling layers, then a
final convolution with seven 3 × 3 kernels, followed by a fully connected
network with an input representation vector of size 16,384.
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Figure 6: Diagram of the CNN16384 convolutional network used in our experi-
ments.

In our experiments, the modules of the NN PyTorch library4 were used
to define these models. The sizes of the models based on their number of
parameters are provided in Table 1.

3.2 Late Fusion
For the final prediction of our system, late fusion [29] was employed. This tech-
nique is mainly used in multi-view learning, and combines information from
multiple views of a dataset in order to improve the accuracy of a machine learn-
ing model.

Table 1: The number of parameters of the different models.
Model Params
CNN392 29 k
CNN782 227 k
CNN16384 8 M

In multi-view learning, data are represented by multiple “views” or “modali-
ties” that contain different information about the same underlying entities. For
example, in image classification one view could be the raw pixels of the image,
while another view could be a set of hand-crafted features extracted from the
image.

Late fusion involves training separate models on each view of the data, then
combining their predictions in a later stage. This can be done using a variety
of techniques, such as averaging, voting, or weighted combinations.

The intuition behind late fusion is that each view contains complementary
information about the underlying entities, meaning that combining them can
lead to more accurate predictions.

4https://pytorch.org/docs/stable/nn.html, accessed on 6 May 2023
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In our work, the MFCC and the spectogram constitute the two modalities of
a sound track, providing complementary information on the characteristics of
the latter. Our purpose is to exploit this information by combining the predic-
tions of two models, each operating on one of these modalities. Our approach
consists of learning a convolutional model using the MFCC representation of
the sounds and another convolutional model using the spectrogram represen-
tation of these sounds. After these two models are learned, the sounds in the
training set are represented by a vector made up of the outputs of these two
models. Each output is a class probability membership corresponding to a floor.
Finally, a third model is learned in order to find the association between the
predictions of these two initial models and the desired outputs associated with
the sounds. This procedure is shown in Figure 7.

Figure 7: Our strategy of merging the decisions of each convolutional network
using the MFCC or Sound Spectrogram representation.

It should be noted that other decision fusion techniques have been proposed
recently to combine the decisions made by multiple classifiers. Among them,
Alpha integration [30] has been applied to a variety of applications, for example,
the classification of archaeological ceramics using ultrasound [31].

In comparison, late fusion involves independently making decisions with each
classifier and then combining them at the end of the classification process, while
Alpha integration involves fusing the decisions of the classifiers at an earlier stage
by considering the degree of agreement between them. Alpha integration assigns
a weight to each classifier based on its performance on the training data and the
level of agreement among the classifiers. This weight is then used to combine
the decisions of the classifiers, with greater weights assigned to classifiers that
are more accurate and have higher agreement with the other classifiers.

Alpha integration can lead to better results than late fusion when the classi-
fiers are highly correlated and have high agreement. However, it requires more
computation and may be more complex to implement.

13



4 Experiments
This section presents the sound database used in our experiments as well as the
results obtained with the three convolutional networks on the two modalities
(MFCC and sound spectrogram) and with the proposed late fusion approach.

4.1 Data Collection
The sounds used in our research were sound recordings in MP3 format obtained
by the Esquis’sons project teams. These sounds come from thirty recordings of
thirty different intermediate spaces, and were classified as the 1st, 3rd, and 5th
floors, designated respectively by R + 1, R + 3, and R + 5 in the following.
Each sound recording had a duration of 2 min and was made on a specific floor
of a building. In all, 27 records (90%) were considered when training the models
and the rest were used for testing. The CNN models had many parameters (cf.
Table 1), and using only 27 examples to learn these parameters would not lead
to conclusive results. Thus, in order to increase the training samples, the sound
recordings were cut every 5 s. Thus, the models learned to make associations
between these cut-offs (or chunks) and the floors of their corresponding sound-
tracks. The matrices of MFCC and spectogram chunks provided in the input
of the CNN models were 512 × 938 and 128 × 938, respectively. These chunks
were obtained using the make_chunks function of the library pydub.utils.

For the test, the floors that were most predicted for the chunks of a band
were used to determine the floor of the associated balcony. Table 2 presents the
distribution of bands and chunks per floor for the collection that is considered.

Table 2: Distribution of soundtracks and chunks by floor.
R + 1 R + 3 R + 5 Total

Soundtracks
Train 8 9 10 27
Test 1 1 1 3
Total 9 10 11 30

Chunks
Train 258 268 250 776
Test 19 38 30 87
Total 277 306 280 863

In all of our experiments, an NVIDIA GeForce RTX 3070 GPU with 5888
CUDA cores and 8 GB of GDDR6 memory was used. The learning rate was
chosen by grid search over the set {10−3, 10−2, 10−1}, the batch size was fixed
to 64, and Adam was used as the optimization algorithm. The running times
for training the convolutional neural networks were from 2 to 4 h. After the
models were trained, the test times were in the range of a few milliseconds to a
few hundred milliseconds per sound track.
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4.2 Experimental Results
The training and testing of the models was repeated twenty times, and four
performance measures were used for evaluation: Accuracy, Recall, Precision,
and F_measurement, calculated on the basis of the confusion matrix A =
(aij)1≤i,j≤3 of the predicted classes of the chunks of the test samples com-
pared to their desired classes as follows.

Accuracy =a11 + a22 + a33∑3
i=1

∑3
j=1 aij

; Recall=1

3

3∑
k=1

akk∑3
i=1 aki

; Precision=1

3

3∑
k=1

akk∑3
i=1 aik

;

and
F1=2 RecallPrecision

Recall+Precision [32].
Table 3 presents the Accuracy of the three models learned using the MFCC

and the spectrogram of the chunks separately on the training and the test sets.
The best performance per modality is shown in bold; ↓ indicates statistically
significantly worse performance than the best result according to the Wilcoxon
rank-sum test (p < 0.01) [33].

Table 3: Accuracy of different variants of CNNs with Spectogram and MFCC
representations. The best performance per representation is shown in bold.

Spectogram MFCC
Model Train Test Train Test
CNN392 0.561 ↓ ± 0.017 0.404 ↓ ± 0.014 0.566 ↓ ± 0.012 0.468 ↓ ± 0.011
CNN782 0.643± 0.019 0.569± 0.013 0.638 ↓ ± 0.012 0.582 ↓ ± 0.014
CNN16384 0.4423 ↓ ± 0.012 0.316 ↓ ± 0.015 0.769± 0.011 0.67± 0.013

The CNN782 and CNN16384 models provide the best results with the Spec-
togram and MFCC representations, respectively. The CNN782 model is the
second best model when considering the MFCC representation, while CNN16384

is the worst model with the spectogram representation. The table shows that
the CNN782 model has the best compromise between performance and complex-
ity compared to the two other models. Thus, this model was used in the late
fusion approach; two distinct CNN782 models were trained on the MFCC and
spectrogram representations, the outputs of these models were used to represent
the sounds, and a third classifier was then trained to combine these predictions
for a final classification. This third model used a random forest approach [34],
which is one of the most efficient models for classification in cases where the
data are represented by vectors. This model learns multiple random trees and
combines their results based on majority vote [35]. Table 4 reports the average
of the results over twenty training/test runs of this approach.
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Table 4: Late fusion performance on CNN782 classifier results using MFCC and
Spectrograms as two views of sounds.

Model Accuracy Recall Prec. F1
Random Forest 0.823 0.821 0.812 0.816

Table 5 presents the confusion matrix of one of these experiments. From
these results, it is apparent that the true positives on each diagonal of the
confusion matrix are greater than the false positives, meaning that the chunks
of the different floors are 100% correctly predicted. This result is the same
for the nineteen other experiments, which validates the effectiveness of this
approach for automatically determining the floors of a building.

Table 5: The confusion matrix of the test set of one of our experiments.

Predicted
R+1 R + 3 R + 5

D
es

ire
d R + 1 16 3 2

R + 2 4 32 1
R + 3 2 4 24

Furthermore, these results suggest that by using two views of the sound
signal it is possible to combine the outputs of CNN782 in an efficient manner
in order to precisely determine the height of the floors based on their related
sound tracks. This paves the way for the use of more elaborate fusion tech-
niques in situations where there are a higher number of floors and a more noisy
environment.

5 Conclusions and Discussion
In usual urban environments with a constant background noise, it is likely that
listening to a fragment is not necessarily easy to apprehend or use in guessing
the height of the corresponding floor. For the Esquis’sons study, the sound
engineer and a jury of listeners that were formed for the research had selected
fragments between 1’30 and 2’ that represented the situation well.

In this work, the difficult task of automatically identifying the floor of a bal-
cony based on a sound bounded at 2 min recorded on that balcony is considered.

In our experiments, it was found that sound chunks of 5 s can be identified
with high accuracy, even though the number of training samples is not very
much; furthermore, with the proposed late fusion strategy, the floors of these
bands are 100% correctly classified. This result is consistent throughout all
twenty experiments when training and test sets were chosen randomly, which
demonstrates the viability of this method for automatically identifying balcony
floors.
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In general, these algorithms open the way to tools that can help designers
to understand the consequences of design choices by intervention on the sound
material itself, where other acoustic tools may remain too crude.

For future work, the present study can shed light on the development of
software that can predict the class of new sound fragments. As a first step,
it would be interesting to determine the extent to which this recognition is
effective with sound fragments that are radically different (i.e., in event density,
intensity, and frequency) from those that serve to train the model. This problem
was tackled as a classification problem with a fully annotated training set. It
would be interesting to consider other learning approaches, such as ranking [36],
and to consider other types of training the model, for example using unlabeled
samples in the training process [37].
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