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ABSTRACT

The use of modern vocoders in an analysis/synthesis pipeline allows
us to investigate high-quality voice conversion that can be used for
privacy purposes. Here, we propose to transform the speaker embed-
ding and the pitch in order to hide the sex of the speaker. ECAPA-
TDNN-based speaker representation fed into a HiFiGAN vocoder
is protected using a neural-discriminant analysis approach, which
is consistent with the zero-evidence concept of privacy. This ap-
proach significantly reduces the information in speech related to the
speaker’s sex while preserving speech content and some consistency
in the resulting protected voices.

Index Terms— attribute privacy, voice conversion, privacy
preservation, sex-neutral voice

1. INTRODUCTION

Privacy considerations are rising in speech technology research [1].
The VoicePrivacy challenge [2] focuses on hiding the full identity
of the speaker. However, there might be situations where the user
requires the protection of only one or a few of their personal at-
tributes, for instance, their sex, native language, emotional or health
state. This approach to privacy is known as user configurable [3]
and attribute driven privacy [4]. In this work, we focus on sex as an
attribute to hide in speech signals.

Recently, methods have been proposed for this purpose. In [5],
in order to avoid sex-related bias in speech model training, the au-
thors proposed making speech sex-neutral beforehand by automati-
cally searching for pitch and formants shifting that would lead to the
maximum uncertainty sex classifier score, i.e., 50%. However, there
is no guarantee that the classifier they used is well calibrated [6],
and a search for shifting parameters must be done for each utter-
ance. Here, we prefer to have a single transformation that can be
applied regardless of the input utterance, which appears to us more
suitable for a real-life application of privacy systems. In [7], the
authors proposed removing the speaker’s sex using an adversarial
approach. Their approach also aims to protect the speaker’s identity
instead of leaving the speaker’s other information unchanged.

Here, we want to alter only the speaker’s sex while preserving
the other speaker-related variabilities. We therefore consider the ex-
plicit disentanglement of sex information as a desirable step. In [4],

This work was done when Paul-Gauthier Noé was visiting Yamagishi
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we proposed a neural-discriminant-analysis-based approach for dis-
entanglement. The sex variable is represented as a log-likelihood-
ratio (LLR) that can be set to zero for privacy, which is consistent
with the zero-evidence recognition framework [8] and Shannon’s
perfect secrecy [9]. However, this approach has been designed for
vector inputs and applied to speaker embeddings. Extending it to
waveforms is challenging, and we therefore want, as a first step,
to include it in an analysis/synthesis framework for voice conver-
sion for sex protection. We use the HiFiGAN vocoder [10] fed
by the f0 trajectory, a HuBERT soft content representation [11],
and an ECAPA-TDNN [12] speaker embedding. Once the analy-
sis/synthesis pipeline is trained, we apply the protection proposed
in [4] to the speaker vector and an affine transformation to the f0
to remove sex-related information. In our experiments, we test the
protection ability of our approach in terms of sex recognition perfor-
mance with both ignorant and semi-informed attacks [13], respec-
tively considered weak and strong attacks. We evaluate the perfor-
mance of automatic speech recognition (ASR) and speaker verifica-
tion (ASV) as downstream tasks. Listening tests are also done in
order to assess human ear perception of protected speech.

Randomly assigning a target sex to each speaker could lead to
better protection results using our evaluation protocol. However, we
want to inform the reader that our concept of privacy is not to fool
the attacker but rather to not provide any evidence about speaker’s
sex, resulting in some kind of sex-neutral voice1.

2. ATTRIBUTE PRIVACY AND ZERO-EVIDENCE

Most of the approaches in voice conversion for privacy aim to hide
the full speaker identity [1, 2]. Attribute privacy aims instead to hide
only one or a few attributes of the speaker [4], making it possible to
look for a better compromise between utility and user configurable
privacy [3]. The attributes can be personal information such as the
speaker’s sex, emotional and health state and so on. The attacker’s
knowledge on an attribute he or she wants to infer is represented by
a discrete probability distribution over the possible outcomes (male
and female in our case). The Bayes’ rule provides a natural way to
update the attacker’s belief in light of observed data. For perfect se-
crecy/privacy, posterior and prior knowledge has to be the same [9],
which corresponds to a LLR equal to zero; this is zero-evidence [8].

In attribute privacy, the attributes to conceal have a relatively low
number of possible outcomes. For instance, if the speaker appears to
be a French native and an attacker wants to infer from which region
the speaker comes from, the number of possible outcomes is 18, i.e.,

1Audio samples and model are available at https://github.com/
nii-yamagishilab/speaker_sex_attribute_privacy
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the number of administrative regions in France. In this case, where
the number of classes is significantly lower than the dimensionality
of the data, the latter can be transformed such that a group of compo-
nents embeds the attribute-related variability, while the other compo-
nents contain the residual variability. Once this separation has been
done, the attribute variability can be annihilated for privacy. This
approach differs from common privacy tasks where the number of
classes to make indistinguishable can be arbitrarily large.

In [4], we proposed a nonlinear discriminant analysis that al-
lows for manipulating the LLR related to the sex attribute in speaker
representation. For privacy, the LLR can be set to zero, which is con-
sistent with zero-evidence. However, in its current design, this ap-
proach cannot be applied to raw speech data because speech is time
dynamical. In the next section, we propose a way to get around this
problem by protecting intermediate features in an analysis/synthesis
pipeline instead of trying to sanitize raw speech directly.

3. PROPOSED PROTECTION SYSTEM

Analysis/synthesis is the process of extracting speech features from
which the original speech signal can be recovered using a vocoder.
In speech technology, this approach has been widely used. The
intermediate characterisation of speech can be used for speech
transmission, voice conversion, speech anonymisation... In speech
anonymisation, we want a part of the intermediate features to repre-
sent speaker-related information that can be manipulated for privacy.
In [14], the authors proposed updating the first VoicePrivacy’s base-
line [2] by replacing the neural source-filter vocoder [15] with
a HiFiGAN vocoder [10]. They also replaced the Kaldi TDNN
speaker embedding [16] (xvector) with an ECAPA-TDNN speaker
embedding [12] considered to be the state-of-the-art representation
for ASV. They finally got rid of the acoustic model by using instead
a HuBERT-based soft content representation [11]. In [14], they used
this system for the VoicePrivacy task and studied its application to
unseen languages. In this paper, we use this system, but we replace
the speaker embedding averaging used for voice anonymisation with
the discriminant-analysis-based protection in [4] and add an affine
transformation of the f0 trajectory for sex protection.
Speaker representation protection: In [14, 2], for anonymisation,
the original xvector of an utterance is replaced with an average
of xvectors randomly selected from a pool of speakers. Here, we
want to conceal the sex of the speaker only. We propose using the
discriminant-analysis-based approach presented in [4] and discussed
above. We recall here in more detail how this can be used for the
concealment of sex-related information in speaker embeddings. The
idea is to use normalizing-flow neural-transformation [17] to learn
an invertible mapping from the speaker embedding space to a base
space where the class-conditional densities are carefully chosen
such that only the first component embeds the sex information in
the form of a LLR log P (x|C=0)

P (x|C=1)
(where C is for class, 0 for male,

1 for female). When the LLR is zero, the observation x is equally
likely to come from both classes, resulting in no change in the belief
of the observer/attacker. Therefore, for protection, the observed
embedding is mapped into the base space where the first dimension
(LLR) is set to zero before mapping back to the observation space.
f0 protection: The fundamental frequency (f0) is known to contain
information about the sex. We therefore apply an affine transforma-
tion to the f0 to force a fixed target f0 trajectory mean and standard
deviation that we expect to be sex-neutral. They are computed from
a training set where the means and standard deviations from f0
trajectories are first averaged at the speaker level and are then aver-
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Fig. 1: Architecture of our system. Blue-dashed path is used during
training and purple one during protection.

aged over all males and all females resulting in two means and two
standard deviations f0 (one for each sex). Then, the target mean f0
is obtained by taking the average between the male and the female
mean f0, and the target standard deviation is obtained by taking the
average between the male and the female standard deviation. This
careful averaging is done in order to avoid bias due to an unbalanced
number of utterances per speaker and speakers per sex.

Figure 1 shows an outline of our system. The blue-dashed ar-
rows show the training path of the HiFiGAN. The feature extractors
are pretrained and fixed. Once the vocoder has been trained, the
purple path is used. Both the f0 and the speaker representation are
transformed to reduce the sex-related information they contain. The
content representation is assumed to not contain sex-related infor-
mation. However, in real applications, the speaker might explicitly
reveal their sex but we do not consider this scenario and instead fo-
cus on hiding the sex information in the acoustic features.

4. EXPERIMENTS

This section presents the sets used for training and testing the system,
the baselines with which we compare it and experimental results.

4.1. Training and testing sets

Vocoder’s training: LibriTTS train-clean-100 [18] was used to
train the HiFiGAN as in [14]. The feature extraction modules
were pretrained and fixed. ECAPA-TDNN [12] with 80-coefficient
FBank features [14] was used for the 192-dimensional speaker rep-
resentation extraction and was trained on VoxCeleb2 development
set [19]. The 200-dimensional content representation was extracted
by a HuBERT soft content encoder [11] fine-tuned from a pretrained
HuBERT base model2 on LibriTTS train-clean-100. Its training
procedure is detailed in [14]. We used YAAPT [20] for the f0 ex-
traction, which does not require any training.
Training of protection modules: Once the analysis/synthesis
system is trained, it can be used for privacy by manipulating the
speaker representation and the f0. In our experiments, the former
was protected using the discriminant analysis for zero-evidence sex
recognition presented in [4] and summarised in Section 3. It was
trained on ECAPA-TDNN speaker embeddings [12] from LibriTTS
train-other-500. The target f0 mean and standard deviation were
computed as described in 3 from LibriTTS train-other-500 also.
Testing sets: The VoicePrivacy challenge provides a complete
evaluation protocol. For conciseness, we merged its libri dev and
libri test sets to assess our system, resulting in 35 females with a
total of 1185 utterances and 34 males with a total of 1136 utterances.

2https://github.com/pytorch/fairseq/tree/main/
examples/hubert
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Fig. 2: Mean f0 (left) and standard deviation f0 (right) histograms
for original speech (orange) and for generated protected speech
(blue) with target f0 mean and standard deviation (dashed lines).

4.2. Baselines

We compared the proposed approach with two baselines. The first,
called global, is the same as our proposed approach but instead of us-
ing the neural-discriminant-analysis-based protection of the speaker
representation, we simply fed the HiFiGAN with the same global
averaged xvector for all utterances. The averaging was done in such
a way as to avoid bias as it was done for the computation of the tar-
get f0 trajectory moments. In this case, we expect that the sex of the
original speaker will be hidden but that all the speaker information
will be altered such that the resulting voices all look the same. The
second baseline transforms only the f0 using time domain pitch syn-
chronous overlap add (TDPSOLA) [21] where, because we know
that sex information is also contained in the spectral envelope, we
expect that the sex of the speaker will not be satisfactorily hidden.

4.3. Results

We report the results for original speech, synthesised, i.e., fed into
our system but without xvector and f0 transformations, protected
with the proposed approach, i.e., with xvector and f0 transforma-
tions as presented in Section 3, together with the global approach
and the TDPSOLA approach. To assess the protection, we report to
which extent an automatic sex classifier is able to detect the sex of
the speaker. We then present results for ASR and ASV as down-
stream tasks and voice similarity matrices. Finally, we present lis-
tening test results. First, Figure 2 shows histograms of generated f0
trajectory mean and standard deviation when the proposed approach
was used. We can see that the mean and standard deviation of the
generated f0 follow the target ones. Indeed, their histograms (in
blue) are narrow around the target values shown by the dashed lines.

4.3.1. Protection assessment: Automatic sex classification

To objectively assess the protection performance of the systems, we
report the results of automatic sex recognition. This section is con-
cerned with automatic attacks only. An attacker may try to infer the
sex of the speaker by listening manually to the data. This point will
be discussed in Section 4.3.3. We propose two kinds of attack: one
where the classifier is trained on original speech data and one on
protected speech data. The former corresponds to an ignorant at-
tacker and the latter is analogous to a semi-informed attacker [13].
The ignorant attacker does not have access to the protection system
or may not be aware that the data has been protected. In this case,
it uses a sex classifier trained on natural non-protected speech. The
semi-informed one is the strongest attack we consider. In this case,
the attacker has access to the protection system. He or she can apply
it to data he or she will be using for training the automatic sex clas-
sifier. The resulting classifier therefore benefits from the sex-related
information that could remain in the protected data. The classifier

Table 1: Sex classification results for protection assessment, and
automatic speech recognition WER.

ignorant semi-informed ASR
system EER [%] DECE [bit] EER [%] DECE [bit] WER [%]

original 3.67 0.578 4.02
synthesised 4.32 0.542 4.01 0.593 4.79

global 24.95 0.198 20.60 0.233 4.92
proposed 28.99 0.128 24.13 0.200 4.81

TDPSOLA 6.30 0.504 4.36 0.542 4.43

we used in our experiments is based on fine-tuned HuBERT base
features extraction (with frozen convolution), statistical pooling and
multilayer perceptron. Table 1 reports the results in terms of two
metrics: the equal error rate (EER) and the DECE [8]. The latter is
a positive measure of the expected amount of information disclosed
to the attacker when observing the output of the classifier. For pri-
vacy, we want a low DECE. The first line shows the initial ability to
distinguish the sex of the speakers. We can see from the second line
that this is slightly altered when processed even without protection
applied. The next two lines show how the classification performance
drops when protection is applied. For the ignorant attack, we have a
drop in DECE of 78% for the proposed approach and 66% for global.
The methods are also robust to the semi-informed attack with a drop
in DECE of 65% and 60%. The TDPSOLA baseline is not competi-
tive, which is not a surprise because it alters only the f0 while it is
known that differences in vocal tract shape between males and fe-
males are significantly related to the spectral envelope. However,
we do not have a clear explanation as to why the proposed approach
protects better than global baseline does. This could be due to un-
controlled bias in the data but this requires further study.

4.3.2. Automatic speech recognition and speaker verification

In this section, we want to ensure that automatic speech recognition
and automatic speaker verification can still be performed as down-
stream tasks. We used the same ASR evaluation as in the VoicePri-
vacy challenge [2]. The word error rate (WER) is reported in Ta-
ble 1. Processing the speech increases the WER slightly, but among
the two systems that provide good protection, the proposed approach
seems to alter the ASR performance less. At worst, 0.9% is added to
the WER which is a relatively low price to pay for privacy.

We also report ASV results and voice similarities matrices to
check if, after protection, ASV can still perform. We used the same
ASV system used for evaluation in the VoicePrivacy challenge. It
consists of a Kaldi TDNN speaker embedding extractor [16] with a
PLDA backend. Both enrolment and test utterances were processed
by the system. The EER and Cmin

llr [22] are reported in Table 2. We
can see that processing the data without protection already slightly
reduces the ASV performance. This suggests that the HiFiGAN
vocoder results in a small distortion or domain shift. However, ap-
plying protection further reduces the ASV performance. For global,
all the speaker variability in the xvector is annihilated by the global
averaging, therefore increasing the confusion between voices. With
the proposed approach, the xvector is disentangled in order to alter
only the speaker’s sex. Other speaker variabilities are preserved and,
as expected, the protected voices remain consistent to some extent.
Indeed, the proposed approach does far better than the global one al-
though, compared with original data, significant ASV ability is lost
with an increase in Cmin

llr from 0.278 to 0.445 and from 0.040 to 0.345
for female and male respectively. In addition to the domain shift in-
duced by the HiFiGAN synthesis, this drop in performance could be



Table 2: Automatic speaker verification results. F and M refer re-
spectively to in-between female and in-between male trials, while
FM refers to cross-sex trials.

system EER [%] Cmin
llr [bit]

F M FM F M FM
original 8.15 1.13 5.77 0.278 0.040 0.204

synthesised 9.42 7.18 6.86 0.325 0.245 0.240
global 39.88 39.81 35.86 0.931 0.943 0.903

proposed 13.22 9.85 11.55 0.445 0.345 0.407
TDPSOLA 9.36 1.26 6.38 0.332 0.046 0.237

(a) original (b) protected with proposed

(c) protected with global (d) protected with TDPSOLA

Fig. 3: Voice log-similarity matrices [23].

explained by both the reduction in sex information as a component
of the speaker variability that helps in distinguishing speakers, not
only a male speaker from a female one but also between speakers
with the same sex, and also by imperfect disentanglement of the sex
component from other speaker-related information. In [23, 24], the
authors proposed, in the context of the VoicePrivacy initiative, to vi-
sualise speaker voice similarity matrices to investigate the behavior
of a protection system at both a speaker and global level. Here, our
task is different, but we can still visualise voice similarity matrices
to assess the consistency of the protected voices and to pay attention
to any sex-related patterns that could appear in the matrices. We re-
port four of these matrices in Figure 3. Speakers were grouped by
sex such that squares appear in the matrix (a). Indeed, male speakers
generally look more like other males than females and vice versa.
When we have good sex protection in (b) and (c), we can see that
these squares tend to disappear. The near disappearance of the di-
agonal in (c) confirms that global is not suitable enough to preserve
other speaker variabilities compared with proposed.

4.3.3. Listening tests

The results presented so far show the machine’s perception. In this
section, we discuss how the human ear perceives protected speech
by reporting listening test results. 19 listeners, all native English
speakers, were asked to assess the naturalness of speech on a dis-
crete scale from 1 (unnatural) to 10 (natural) and whether the speech
sounded like a male (1), a female (5), or neutral (3), also allow-
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Fig. 4: Listening test results. Violin plots of perceived speech natu-
ralness (top). Violin plots of perceived speaker’s sex (bottom), blue
for female and red for male; blue and red dots show medians, cyan
and orange dots show means.

ing for some nuance with scores of 2 and 4. Neutral refers here to
the zero-evidence formulation of privacy where we want the data to
provide no evidence about the speaker’s sex such that the listener
posterior belief remains equal to the prior one. Figure 4 shows the
naturalness and sex perception scores. The speech processed by the
analysis/synthesis even without protection does not sound as natural
as the original speech. However, applying the protection does not
further decrease the naturalness. As expected, TDPSOLA does not
sufficiently change the perception of the sex. While global seems to
change the perception of the speech from males, it does not have the
expected behavior for females3. The proposed approach works for
both male and female with a good average score close to 3 which
tends to make attacks by listening inefficient. However, for better
zero-evidence protection of each utterance, it would have been bet-
ter to have narrower distributions around the neutral score.

5. CONCLUSION

For privacy reasons, this paper proposed removing the sex of the
speaker in speech using an analysis/synthesis-based voice conver-
sion pipeline. An affine transformation is applied to the pitch,
and the speaker representation is disentangled using a neural-
discriminant analysis in order to conceal the speaker’s sex-related
information. The latter is consistent with the zero-evidence frame-
work. The protection ability of the system was checked by means
of an automatic sex classifier considering both an ignorant and a
semi-informed attacker. Automatic speech recognition can still be
applied on protected speech. Although the automatic speaker veri-
fication is deteriorated, the protected voices remain consistent to a
certain extent. A listening test showed that the naturalness of the
protected speech is satisfactory and the perception of the speaker’s
sex is altered, making attacks by listening more difficult.

In the future, we are interested in extending this work to other
attributes like, for instance, accents. However, as accents involve
more classes and are rarely labeled in large datasets, we expect that
handling them will be even more challenging.

3Again, we do not have a clear explanation as to why global does not
protect the data as well as proposed.
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jana Petrovska-Delacrétaz, Gérard Chollet, Nicholas Evans,
Thomas Schneider, Jean-François Bonastre, Bhiksha Raj, Is-
abel Trancoso, and Christoph Busch, “Preserving privacy in
speaker and speech characterisation,” Computer Speech &
Language, vol. 58, pp. 441 – 480, 2019.

[2] N. Tomashenko, Brij Mohan Lal Srivastava, Xin Wang,
Emmanuel Vincent, Andreas Nautsch, Junichi Yamagishi,
Nicholas Evans, Jose Patino, Jean-François Bonastre, Paul-
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