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We present a group structure on D via the automorphisms which fix the point 1. Through the induced group action, each point of D produces an equivalence class which turns out to be a Blaschke sequence. We show that the corresponding Blaschke products are minimal/atomic solutions of the functional equation ψ • φ = λψ, where λ is a unimodular contant and φ is an automorphism of the unit disc. We also characterize all Blaschke products which satisfy this equation and study its application in the theory of composition operators on model spaces K Θ .

The typical question in this topic is to know under which conditions we have C φ X ⊂ Y, where X and Y are some Banach spaces of analytic function which reside in Hol(D) as a subset. In particular, the special case Y = X has been extensively studied for various classes of Banach spaces X . The classical subordination principle of Littlewood can be rephrased in this language. In terms of composition operators, it says that the mapping C φ : H p -→ H p is a well-defined bounded operator on all Hardy spaces H p , 0 < p ≤ ∞. See [START_REF] Shapiro | Composition Operators and Classical Function Theory, Univeritext: Tracts in mathematics[END_REF]Chapter 1]. This question has also been studied on numerous other function spaces, e.g. Hardy spaces [START_REF] Charpentier | Essential norm of composition operators on the Hardy space H 1 and the weighted Bergman spaces A p α on the ball[END_REF][START_REF] Lefévre | Some revisited results about composition operators on Hardy spaces[END_REF][START_REF] Tjani | Compact composition operators on Besov spaces[END_REF][START_REF] Rochberg | Projected composition operators on the Hardy space[END_REF], Hardy-Orlics spaces or other weighted Hardy spaces [START_REF] Charpentier | Compact composition operators on the Hardy-Orlicz and weighted Bergman-Orlicz spaces on the ball[END_REF][START_REF] Rodriguez-Piazza | Composition operators on Hardy-Orlicz spaces, Topics in complex analysis and operator theory[END_REF][START_REF] Zorboska | Angular derivative and compactness of composition operators on large weighted Hardy spaces[END_REF], Dirichlet Series [START_REF] Bayart | Hardy spaces of Dirichlet series and their composition operators[END_REF][START_REF] Gordon | The composition operators on the space of Dirichlet series with square summable coefficients[END_REF][START_REF] Lefévre | Essential norms of weighted composition operators on the space H 1 of Dirichlet series[END_REF][START_REF] Queffélec | Composition operators in the Dirichlet series setting, Perspectives in operator theory[END_REF], Bergman space [START_REF] Choe | Hilbert-Schmidt differences of composition operators on the Bergman space[END_REF][START_REF] Lefévre | Compact composition operators on Bergman-Orlicz spaces[END_REF][START_REF] Maccluer | Angular derivatives and compact composition operators on the Hardy and Bergman spaces[END_REF], Besov spaces [START_REF] Tjani | Compact composition operators on Besov spaces[END_REF], Bloch spaces [START_REF] Chen | Composition operators of µ-Bloch spaces Canad[END_REF][START_REF] Makhmutov | Hyperbolic Besov functions and Bloch-to-Besov composition operators[END_REF][START_REF] Pau | Composition operators between Bloch-type spaces and Mobius invariant Q K spaces[END_REF][START_REF] Zorboska | Fredholm and semi-Fredholm composition operators on the small Bloch-type spaces[END_REF], and the Dirichlet space [START_REF] Chacon | Closed-range composition operators on Dirichlet-type spaces[END_REF][START_REF] El-Fallah | Level sets and composition operators on the Dirichlet space[END_REF][START_REF] Gallardo-Gutiérrez | Exceptional sets and Hilbert-Schmidt composition operators[END_REF][START_REF] Gallardo-Gutiérrez | Hausdorff measures, capacities and compact composition operators[END_REF][START_REF] Luecking | composition operators with closed range on the Dirichlet space[END_REF][START_REF] Martin | Isometries of the Dirichlet space among the composition operators[END_REF][START_REF] Zorboska | Composition operators on weighted Dirichlet spaces[END_REF]. However, the litterateur on this subject is simply out of control and the above mentioned list is far away from being complete. In this paper, we present some facts about Blaschke products which are interesting in their own right and, moreover, they help to characterize composition operators with inner symbol that map a model space into itself.

The closed invariant subspaces of the forward shift operator

S : H 2 -→ H 2 f -→ zf
were completely characterized by Beurling in his seminal work [START_REF] Beurling | On two problems concerning linear transformations in Hilbert space[END_REF]. He showed that, apart from the trivial case {0}, they are precisely of the form ΘH 2 , where Θ is an inner function. Hence, using a simple Hilbert space technic, the invariant subspaces of the backward shift S * are precisely (ΘH 2 ) ⊥ . This collection is so important in mathematical analysis that it merits a specific name. Due to its application in the theory of contractions,

K Θ := (ΘH 2 ) ⊥ = H 2 ⊖ ΘH 2
is called a model space. The monograph [START_REF] Cima | The Backward Shift on the Hardy Space Mathematical Survey and Monographs[END_REF] is a great source for model spaces and their operators.

Studying composition operators on model spaces is a new topic and still there are several open questions about them. In [START_REF] Lyubarskii | Composition operator on model spaces[END_REF], authors studied the compactness and membership in Schatten classes of the mapping C φ : K Θ -→ H 2 . In [START_REF] Mashreghi | Composition operators on finite rank model subspaces[END_REF], a complete characterization of φ's for which C φ leaves K Θ invariant, when Θ is a finite Blaschke product, is given. The paper [START_REF] Mashreghi | Composition of inner functions[END_REF] is devoted to a comprehensive study of C φ when φ is an inner function. In this situation, we face with the functional equation

(1.1) ψ ( φ(z) ) × ω(z) = ψ(z), (z ∈ D),
where all the three functions ψ, φ and ω are inner. With an iteration technic and appealing to the structure of inner function, (1.1) simplifies to

(1.2) ψ ( φ(z) ) = λ ψ(z), (λ ∈ T, z ∈ D),
where φ has its fixed (Denjoy-Wolff) point on T. This equation is a special case of the celebrated Schröder equation which has a long and rich history. As a matter of fact, its first treatment dates back to 1884 when Königs [START_REF] Königs | Recherches sur les intégrales de certaines équationes functionnelles[END_REF] classified the eigenvalues λ for mappings φ with a fixed points inside D. See [START_REF] Shapiro | Composition Operators and Classical Function Theory, Univeritext: Tracts in mathematics[END_REF]Chapter 6] for more detail on Königs' solution. Composition of inner functions has also a very rich history [START_REF] Cowen | Iteration and the solution of functional equations for functions analytic in the unit disk[END_REF]. In particular, with special attention to Blaschke products, it has been extensively studied in [START_REF] Gallardo-Guti 'rrez | Orbits of norm-elliptic disc automorphisms on H p[END_REF][START_REF] Matache | The eigenfunctions of a certain composition operator, Studies on Composition Operators[END_REF].

Despite the vast literature on Schröder's equation, not much is known when the Denjoy-Wolff point of φ is on T and it calls for further investigations. This paper is devoted to a complete characterization of the Blaschke products ψ which satisfy (1.2), with φ being an automorphism of D. To do so, in Section 3 we define a noncommutative group structure on D which stems from automorphisms of the D which fix the point 1. Essential properties of this group are discussed in this section. Then in Section 4, we introduce a family of abelian subgroups of D. These subgroups will provide the main apparatus to spot all the minimal Blaschke sequences. To achieve this goal, we need an explicit formula for the n-th iterate of an element in the group D; this formula is obtained in Section 5. Eventually, in Sections 6 and 7, we study the orbits of the subgroup actions on D and show that these orbits are two-sided Blaschke sequences.

The main outcome is Theorem 7.1, in which we show that the corresponding Blaschke sequence is in fact a minimal or atomic solution of the functional equation. More precisely, this means that no proper sub-product satisfies the functional equation. Eventually, in Section 8, the stage is ready to characterize all Blaschke products which satisfy the functional equation. Theorem 8.1 is a complete characterization of Blaschke products which fulfill the functional equation (1.2). At the end, we discuss some applications of these objects (minimal Blaschke products) in the theory of composition operators on model spaces.

Automorphisms of D

Let γ be an arbitrary unimodular constant and α be an arbitrary point in D. The Möbius transformation b(z) = γ α -z 1 -ᾱ z is an automorphism of the open unit disc with a simple zero at α. Conversely, any automorphism of the disc has the above form.

In order to use it in the formation of a Blaschke product, we define the Blaschke factor

b α (z) :=      |α| α α -z 1 -ᾱ z if α ̸ = 0, z if α = 0.
But, some other variations of b are needed in our discussion.

Depending on the number of fixed points, apart from the identity, the Möbius transformations divide into two classes: either they have just one fixed point, or they have two distinct fixed points. Since an automorphism of the open unit disc maps bijectively D into itself, and also T into itself, there are certain restrictions on the location of these fixed points. See [3, Section 1.2] for more on this topic.

The point 1 is a fixed point of b if and only if

1 = γ α -1 1 - ᾱ .
Hence, b takes the form

(2.1) φ α (z) := 1 - ᾱ 1 -α z -α 1 -ᾱ z ,
where α is a parameter running through D. A simple computation shows that the other fixed point of φ α is (2.2)

κ α := - α(1 -ᾱ) ᾱ(1 -α) .
In our calculation, we will also need the quantity

(2.3) A α := φ ′ α (1) = 1 -|α| 2 |1 -α| 2 .
As a matter of fact, A α is the angular derivative (in the sense of Carathéodory) of φ α at the fixed point 1. Moreover, note that

A α = 1 ⇐⇒ κ α = 1.
Finally, given z 0 ∈ D, we define the unimodular constant γ α,z 0 by

γ α,z 0 :=            φ z 0 (κ α ) if A α < 1, 1 if A α = 1, φ z 0 (κ α ) if A α > 1.
This constant will appear in several occasions below. For more information on the structure of automorphisms of D and Blaschke products, see [20, page 65], [33, page 176] or [29, page 155].

The group (D, * )

In a rather surprising way, the open unit disc D becomes a group. The law of composition is defined by

(3.1) α * β := β(1 -β) + α(1 -β) (1 -β) + α β(1 -β) , (α, β ∈ D).
This algebraic structure is rewarding and has numerous interesting properties. The rather strange law of composition comes from the composition of some judiciously chosen automorphisms of the disc. This is clarified below. 

of G to D. Since G is a group, given α, β ∈ D, there is a unique γ ∈ D such that φ α • φ β = φ γ . We define the isomorphism such that γ = α * β, i.e. (3.2) φ α • φ β = φ α * β , (α, β ∈ D).
We proceed to find an explicit formula for γ. In fact, we have

φ α * β (z) = (φ α • φ β )(z) = 1 - ᾱ 1 -α 1- β 1-β z-β 1-β z -α 1 -ᾱ 1- β 1-β z-β 1-β z = 1 - ᾱ 1 -α (1 -β)(z -β) -α(1 -β)(1 -β z) (1 -β)(1 -β z) -ᾱ(1 -β)(z -β) = 1 - ᾱ 1 -α ( (1 -β) + α β(1 -β) ) z - ( β(1 -β) + α(1 -β) ) ( (1 -β) + ᾱβ(1 -β) ) - ( β(1 -β) + ᾱ(1 -β) ) z .
Looking at the zero of the last quotient shows that (3.1) holds. We constructed the group (D, * ) such that it is an isomorphic copy of (G, •). As the first consequence, since φ 0 = id, the point 0 is the identity element of (D, * ). Using (3.1), it is also easy to see that

α * 0 = 0 * α = α, (α ∈ D).
Similarly, the expression

φ -1 α (z) = 1 - ᾱ 1 -α z + α 1- ᾱ 1-α 1 + ᾱ 1-α 1- ᾱ z = φ -α 1-ᾱ 1-α (z),
gives the formula for the inverse of α, something that can also be directly verified via (3.1), i.e.

α * ( -α 1 - ᾱ 1 -α ) = ( -α 1 - ᾱ 1 -α ) * α = 0, (α ∈ D).
Fix α ∈ D. To avoid the confusion with the law of multiplication in the complex plane, for n ≥ 1, we write

α n := α * α * • • • * α, (n times, n ≥ 1),
and, appealing to the formula for the inverse of α in D given in Theorem 3.1, we define

α -n := ( -α 1 - ᾱ 1 -α ) n , (n ≥ 1).
Since 0 is the identity element in D, we put α 0 := 0. Hence, each α ∈ D gives birth to a two-sided sequence (α n ) n∈Z , and with this notation, we have the crucial identity

(3.3) φ [n] α = φ αn , (n ∈ Z). The notation f [k] means f • • • • • f , k times. This observation immedi- ately implies (3.4) φ αm • φ αn = φ α m+n , (m, n ∈ Z).
This identity will be used frequently. Theorem 3.1 and (2.1) also reveal that

(3.5) φ α (0) = -α 1 - ᾱ 1 -α = α -1 , (α ∈ D).
To obtain another useful formula, note that φ β •φ α -1 and φ φα(β) both belong to G and vanish at φ α (β). Hence,

φ β • φ α -1 = φ φα(β) , (α, β ∈ D).
As a special case, we have

(3.6) φ z 0 • φ α -n = φ wn , (α, z 0 ∈ D, n ∈ Z),
where w n = φ αn (z 0 ). The importance of this formula will be revealed below.

The subgroup D κ

The fixed points of φ α are 1 and κ α . Hence, the study of D naturally bifurcates into two cases: κ α = 1 and κ α ̸ = 1. Note that as α runs through D, the fixed point κ runs through all of T.

For a fixed κ ∈ T, we also define

(4.1) D κ := { α ∈ D : κ α = κ} = { α ∈ D : α + κᾱ = (1 + κ)|α| 2 }.
The last expression shows that the points of D κ are part of the circle passing through the points 1, 0 and κ which is inside D. Also note that for κ = -1, we have the degenerate case

D -1 = { α ∈ D : α(1 -ᾱ) = ᾱ(1 -α)} = (-1, 1).
One spacial case is of particular interest. If κ = 1, then

D 1 = { α ∈ D : α(1 -ᾱ) = -ᾱ(1 -α)} = { α ∈ D : α + ᾱ = 2|α| 2 } = {x + iy : (x -1/2) 2 + y 2 = 1/4} \ {1}. (4.2)
Hence, D 1 is precisely the circle of radius 1 inside D which is tangent to point 1, of course without counting the boundary point 1. At such points, φ α has just one fix point, i.e. the point 1, and this makes the difference in the following. The subgroup D 1 is also the border line for the values of A α . On D 1 , we precisely have A α = 1, while inside it A α > 1, and in between D and D 1 we have A α < 1. This is important when we study the iterates of an element in an equivalence class (Section 6). 

α * β = α + β -(1 + κ)αβ 1 -καβ , (α, β ∈ D κ ).
Proof. Direct verification of this fact is possible. However, it is easier to just note that if κ is the fixed point of φ α and φ β , then it is also stays fixed under

φ α • φ -1 β = φ α * β -1 . Hence, for each α, β ∈ D κ , we have α * β -1 ∈ D κ . Clearly 0 ∈ D κ . Thus, D κ is a subgroup of D.
To obtain a simpler formula for * in D κ , note that by (3.1) and (4.1), we have

α * β = β(1 -β) + α(1 -β) (1 -β) + α β(1 -β) = -κ β(1 -β) + α(1 -β) (1 -β) -ακβ(1 -β) = (1 -β)(-κ β + α) (1 -β)(1 -καβ) = α + β -(1 + κ)αβ 1 -καβ , (α, β ∈ D κ ).
This formula also reveals that D κ is abelian.

A formula for the iterates of α

Using an interesting technic of complex analysis, we now obtain an explicit formula for α n . 

α n =          κ α (1 -A n α ) 1 -κ α A n α if κ α ̸ = 1, nα 1 + (n -1)α if κ α = 1, (n ∈ Z).
In particular, except the identity element 0, no other element of D is of finite order.

Proof. Direct verification of the above formula is feasible. But, it is not a pleasant task. We present another more interesting approach. Given κ ∈ T, define

ϕ κ (z) :=        z -κ z -1 if κ ̸ = 1, z z -1 if κ = 1.
This function satisfies ϕ κ •ϕ κ = id. Now, we need to consider two cases.

Case I, κ α ̸ = 1: We have

(ϕ κα • φ α • ϕ κα )(z) = z A α ,
and thus we deduce that

(ϕ κα • φ [n] α • ϕ κα )(z) = z A n α , (n ∈ Z).
Therefore,

(5.1)

φ [n] α (z) = ϕ κα ( ϕ κα (z) A n α ) , (n ∈ Z), which simplifies to (5.2) φ [n] α (z) = (1 -κ α A n α )z -κ α (1 -A n α ) (1 -A n α )z + (A n α -κ α ) , (n ∈ Z).

Now, according to (3.3), φ

[n] α = φ αn , and by considering the zero of φ

[n] α we obtain the required above formula.

Case II, κ α = 1: The proof has the same spirit, except that we use ϕ 1 .

In this case, we have

(ϕ 1 • φ α • ϕ 1 )(z) = z + α 1 -α ,
and thus

(ϕ 1 • φ [n] α • ϕ 1 )(z) = z + nα 1 -α , (n ∈ Z).
Therefore,

(5.3) φ [n] α (z) = ϕ 1 ( ϕ 1 (z) + nα 1 -α ) , (n ∈ Z).
which simplifies to (5.4)

φ [n] α (z) = (1 -α + nα)z -nα nαz + 1 -α -nα , (n ∈ Z).
The result now follows.

With similar technics, one can also show that

α n = A α (1 + A α + • • • + A n-1 α )B 1 + A α (1 + A α + • • • + A n-1 α )B , (n ∈ Z),
where 2 . But, we do not need this representation in the following.

B = α -|α| 2 1 -|α|
Note that if α ∈ D κ , then its iterates form a subgroup in D κ . In particular,

(α n ) n∈Z ⊂ D κ .
This observation is exploited in the next section.

An equivalence relation

The operation

⋄ : (D, * ) × D -→ D (α, z) -→ φ α (z)
defines a group action on the set D. The required condition α⋄(

β ⋄z) = (α * β) ⋄ z is precisely a reformulation of (3.2). Since (φ w -1 • φ z )(z) =
w this action is transitive and thus it creates just one orbit on D.

Hence, we restrict ourselves to some subgroups of (D, * ) to obtain better equivalence classes. Fix α ∈ D. Then the subgroup it creates in (D, * ) is precisely (α n ) n∈Z . The orbits, or equivalent classes, created by this subgroup is as follows. Two points z 1 and z 2 are in the same orbit, and we write z 1 ∼ α z 2 , if and only if there is an integer n ∈ Z such that φ [n] α (z 1 ) = φ αn (z 1 ) = z 2 .

Since φ α is an automorphism, it maps D and T respectively to themselves bijectively. Hence, the equivalence class generated by a z ∈ D is entirely in D. A similar statement hold for the points of T. More information on the equivalence classes are gathered below. Since α = 0 corresponds to the identity mapping on D, the following result (while properly modified) becomes trivial in this case. Thus, we assume that α ̸ = 0. ) n∈Z , which consists of distinct points of D. In particular, the equivalence class generated by 0 is the sequence

( α n ) n∈Z . (ii) We have lim n→±∞ φ αn (z 0 ) = 1, (if A α = 1), and 
lim n→+∞ φ αn (z 0 ) = κ α while lim n→-∞ φ αn (z 0 ) = 1, (if A α > 1), and 
lim n→+∞ φ αn (z 0 ) = 1 while lim n→-∞ φ αn (z 0 ) = κ α , (if A α < 1).
Proof. (i): That the equivalence class generated by z 0 ∈ D is precisely ( φ αn (z 0 ) ) n∈Z is rather trivial. This fact says that the equivalence class generated by z 0 consists of the past, present and future of z 0 under the transformation φ α . See formulas (5.2) and (5.4). For any α ∈ D, the automorphism φ α has no fixed point inside D. Hence, the class ( φ αn (z 0 )

) n∈Z consists of distinct points. To find the equivalence class of 0, apply (2.1) to get

φ αn (0) = -α n 1 -α n 1 -α n , (n ∈ Z).
But, by Theorem 3.1 and (3.4),

-α n 1 -α n 1 -α n = inverse of α n in (D, * ) = α -n , (n ∈ Z).
Thus, by part (i), ( φ αn (0)

) n∈Z = ( α -n ) n∈Z = ( α n ) n∈Z . (ii): If A α = 1, then we rewrite (5.4) as φ [n] α (z) = (1 -α)z + nα(z -1) (1 -α) + nα(z -1) .
This representation shows that lim n→±∞ φ αn (z 0 ) = 1.

Note that A α = 1 happens precisely on D 1 . But, if A α ̸ = 1, then we rewrite (5.2) as

φ [n] α (z) = -A n α κ α (z -1) + (z -κ α ) -A n α (z -1) + (z -κ α )
. Now, there are two possibilities. If A α > 1, which corresponds to the points α inside the disc surrounded by D 1 , then

lim n→+∞ φ αn (z 0 ) = κ α , while lim n→-∞ φ αn (z 0 ) = 1.
But, if A α < 1, which corresponds to the points α ∈ D, but outside the disc surrounded by D 1 , then

lim n→+∞ φ αn (z 0 ) = 1, while lim n→-∞ φ αn (z 0 ) = κ α .
We can also provide a geometric interpretation of the equivalence classes. Chapter 3 of [START_REF] Needham | Visual Complex Analysis[END_REF] contains a comprehensive study of the geometric behavior of Möbius transformation. A very short glimpse of this visual interpretation is provided below. Theorem 6.1 shows that the points ( φ αn (z 0 ) ) n∈Z reside on some curves passing through 1, κ α and z 0 , and tend to the frontiers 1 and κ α as n → ±∞.

Parabolic case, κ α = 1: The relation (5.3) reveals that the equivalence class ( φ αn (z 0 ) ) n∈Z is on the image of the line

t -→ ϕ 1 (z 0 ) + α 1 -α t, (t ∈ R),
under the mapping ϕ 1 . Since ϕ 1 (∞) = 1 and ϕ 1 (ϕ 1 (z 0 )) = z 0 , the image is a circle passing through the points 1 and z 0 . Different values of ϕ 1 (z 0 ) corresponds to different parallel lines. Hence, their images are circles which are tangent at 1. One particular circle corresponds to the line passing through ϕ 1 (z 0 ) = 1/2. In this case, we have

ϕ 1 ( 1 2 + α 1 -α t ) = t + 1-α 2α t + 1- ᾱ 2 ᾱ ∈ T.
Hence, the image of this last line is the unit circle T. In other words, the iterates of boundary points stay on T and (except 1) they form a two-sided sequence which converge to 1 from both sides.

Hyperbolic case, κ α ̸ = 1: By (5.1), we see that the equivalence class ( φ αn (z 0 )

) n∈Z is on the image of

t -→ ϕ κα (z 0 ) A t α , (t ∈ R).
Since A α ∈ (0, ∞) \ {1}, the image is a line passing through 0 and ϕ κα (z 0 ). Since ϕ κα (∞) = 1, ϕ κα (0) = κ α , and ϕ κα (ϕ κα (z 0 )) = z 0 the image is circle passing through the points 1, κ α and z 0 . The following figure shows the pathes when A α < 1.

For A α > 1, we just need to reverse the directions.

Minimal Blaschke products

In this section, we take the first step in finding the solutions of the equation ψ • φ α = λψ by showing that each equivalence class of ∼ α in D produces a Blaschke product which is a minimal solution of the equation. Therefore, having the freedom to choose α ∈ D and any of the equivalence classes it generates, the following result provides a vast variety of solutions of the functional equation. In fact, we can go even further and extract all Blaschke products with satisfy the equation. 

B α,z 0 = ∞ ∏ n=-∞ b zn satisfies the functional equation B α,z 0 • φ α = γ α,z 0 B α,z 0 .

Moreover, no proper divisor ψ of B α,z 0 satisfies any functional equations of the form ψ

• φ α = λ ψ, λ ∈ T.
Proof. According to Theorem 6.1(i), without loss of generality, we can assume

z n = φ αn (z 0 ), (n ∈ Z).
Hence,

1 -|z n | 2 = 1 -|φ αn (z 0 )| 2 = (1 -|α n | 2 ) (1 -|z 0 | 2 ) |1 -α n z 0 | 2 ≤ 1 + |z 0 | 1 -|z 0 | (1 -|α n | 2 ).
Therefore, to deal with (1 -|α n | 2 ), in the light of Theorem 5.1, we consider two cases. Parabolic case, κ α = 1: Using (4.2), we have

1 -|z n | 2 ≤ 1 + |z 0 | 1 -|z 0 | ( 1 - nα 1 + (n -1)α 2 ) = 1 + |z 0 | 1 -|z 0 | 1 + (n -1)(α + ᾱ) -(2n -1)|α| 2 |1 + (n -1)α| 2 ≤ 1 + |z 0 | 1 -|z 0 | 1 -|α| 2 |1 + (n -1)α| 2 = O(1/n 2 ), (n -→ ±∞).
Hence, C is a double-sided Blaschke sequence.

Hyperbolic case, κ α ̸ = 1: We have

1 -|z n | 2 ≤ 1 + |z 0 | 1 -|z 0 | ( 1 - κ α (1 -A n α ) 1 -κ α A n α 2 ) = 1 + |z 0 | 1 -|z 0 | (2 -κ α -κα )A n α |1 -κ α A n α | 2 = O(q |n| ), (n -→ ±∞),
where q := min{A α , 1/A α } < 1. Hence, again C is a double-sided Blaschke sequence (indeed, with a geometric rate of convergence).

To show that

B α,z 0 = ∏ n∈Z b zn satisfies the functional equation B α,z 0 • φ α = B α,z 0 , we rewrite B α,z 0 in the form B α,z 0 = ∏ n∈Z γ n φ zn ,
where γ n are appropriate constants such that b zn = γ n φ zn , i.e.

γ n = - |z n | z n • 1 -z n 1 -wn , (n ∈ Z).
Now, by (3.4) and (3.6), (7.1)

φ zn • φ α = φ z 0 • φ α -n • φ α = φ z 0 • φ α -n+1 = φ z n-1 .
Therefore,

B α,z 0 • φ α = ∏ n∈Z γ n φ zn • φ α = ∏ n∈Z γ n φ z n-1 = ( ∏ n∈Z γ n γ n-1 ) B α,z 0 .
In the first place, even thought it can be directly verified, the above calculation shows that this last product has to be convergent. Secondly, we have

∏ n∈Z γ n γ n-1 = lim N →+∞ N ∏ n=-N +1 γ n γ n-1 = lim N →+∞ γ N γ -N = lim N →+∞ γ N lim N →-∞ γ N .
Using Theorem 6.1(ii), we can compute both limits. In fact, the formula

z n = φ αn (z 0 ) = 1 -ᾱn 1 -α n z 0 -α n 1 -ᾱn z 0 , (n ∈ Z), implies 1 -z n 1 -wn = 1 -z 0 1 -z0 1 -ᾱn 1 -α n 1 -α n z0 1 -ᾱn z 0 , (n ∈ Z).
Hence,

γ n = 1 -z 0 1 -z0 1 -α n z0 |1 -α n z0 | |α n -z 0 | α n -z 0 , (n ∈ Z),
and thus

α n → 1 =⇒ γ n → 1 while α n → κ α =⇒ γ n → 1 -z 0 1 -z0 1 -κ α z0 κ α -z 0 .
Therefore, by Theorem 6.1(ii),

∏ n∈Z γ n γ n-1 =    1-z 0 1-z 0 1-κα z0 κα-z 0 if A α > 1, 1 if A α = 1, 1-z 0 1-z 0 κα-z 0 1-κα z0 if A α < 1.
In fact, the above calculation shows the motivation for the definition of γ α,z 0 . It is defined such that

∏ n∈Z γn γ n-1 = γ α,z 0 . Thus, B α,z 0 satisfies the functional equation B α,z 0 • φ α = γ α,z 0 B α,z 0 .
Finally, the identity (7.1) reveals that no proper divisor of B α,z 0 satisfies a functional equation of the form ψ • φ α = λψ. By Theorem 6.1(i), the equivalence class generated by 0 is

( α n ) n∈Z
and, in this case, α -n = ᾱn . Hence, the corresponding minimal Blaschke product is

B(z) = z +∞ ∏ n=1 (α n -z) (ᾱ n -z) (1 -α n z) (1 -ᾱn z)
.

By Theorem 7.1, this is the minimal Blaschke product which satisfies the equation B • φ α = B and, moreover, B(0) = 0.

The general solution

Let ψ be an inner function satisfying ψ •φ α = λ ψ, denote its zero set on D by Z(ψ). Then the equation ψ

• φ α = λ ψ implies ψ • φ α -1 = λ ψ,
and by induction we obtain

ψ • φ αn = λ n ψ, (n ∈ Z).
This identity reveals that if z 1 is a zero of ψ, then in fact the whole equivalence class [z n ] n∈Z , generated by ∼ α , is among Z(ψ). Hence, we can write

Z(ψ) = ∪ m C m ,
where (C m ) m is a (finite or infinite, and repetition allowed) collection of equivalence classes of ∼ α in D. Note that since ψ is a non-constant inner function, we must have (

∑ m ∑ zmn∈Cm (1 -|z mn |) < ∞. Thus, (8.2) B α,(Cm)m = ∏ m B α,Cm 8.1) 
is a well-defined Blaschke product and, by Theorem 7.1, B α,(Cm)m satisfies the functional equation

B α,(Cm)m • φ α = λ ′ B α,(Cm)m ,
where λ ′ is an appropriate unimodular constant. These types of Blaschke products form the main building blocks for a description of solutions of the equation

ψ • φ α = λψ, λ ∈ T.
Again thanks to Theorem 7.1, it is rather trivial that if we have a sequence which can be decomposed as above, then the corresponding Blaschke product is in fact a solution of the functional equation.

Put S = ψ/B α,(Cm)m . The discussion above shows that S is a zero free inner function (i.e. a singular inner function), which satisfies an equation of the form S • φ α = λ ′′ S, λ ′′ ∈ T. The classification of such function is still an open question. However, at list we deduce the following result.

Theorem 8.1. Fix α ∈ D, α ̸ = 0. If a Blaschke product B satisfies the functional equation B • φ α = λ B then its zero set is a union of equivalence classes generated by ∼ α . Reciprocally, if a sequence (z n ) n ⊂ D is such that: i) as in (8.
2), it can be decomposed as a union of equivalence classes generated by ∼ α , ii) and satisfies (8.1), then the corresponding Blaschke product B is a solution of the functional equation B • φ α = λ B, with some unimodular constant λ. In particular, if α ∈ D 1 , then λ = 1.

If ψ 0 satisfies the equation ψ • φ α = ψ, and ω is any arbitrary inner function, then we also have

(ω • ψ 0 ) • φ α = (ω • ψ 0 ). Hence, ψ = ω • ψ 0 is also a solution of the equation ψ • φ α = ψ. For example, if B is any of the Blaschke products (8.2) for which γ = 1, then ω • B is a solution.
What is rather surprising is that all solutions are obtained in this manner. 

ψ = ω • B.
Proof. Without loss of generality, assume that ψ is nonconstant. Then, by a celebrated result of Frostman [START_REF] Frostman | Sur les produits de Blaschke[END_REF], there is a β ∈ D such that ψ = b β • ψ is a Blaschke product with simple zeros. As a matter of fact, in a sense (logarithmic capacity), there are many such β's. But, just one choice is enough for us.

Surely, ψ satisfies ψ • φ α = ψ. By induction, we get

ψ • φ αn = ψ, (n ∈ Z).
If z 0 is a zero of ψ, then the above identity shows that φ αn (z 0 ) is also a zero of ψ. Hence, we can classify the zeros of ψ as a union of equivalence classes of ∼ α , e.g. (C m ) m . This observation immediately reveals that, up to a unimodular constant, ψ is precisely a Blaschke product of type (8.2). Since ψ = b -1 β • ψ, the proof is complete. It it important to keep in mind that the representation ψ = ω • B, given in Theorem 8.2, is far away from being unique. For example, in the proof of theorem, we picked one of the Frostman shifts and then constructed B. Different shifts give different sets of zeros and thus different Blaschke products.

Application in model spaces

The functional equation (1.1), and its simplified form (1.2), stem from studies on composition operators on model spaces K Θ . The following question is still wide open:

Open Question: for which symbols φ, the composition operator C φ maps K Θ into itself?

This question was initiated in [START_REF] Mashreghi | Composition operators on finite rank model subspaces[END_REF] and then was followed in [START_REF] Mashreghi | Composition of inner functions[END_REF] for composition operators with an inner symbol. We state the following result from [START_REF] Mashreghi | Composition of inner functions[END_REF] with a new proof. Theorem 9.1. Let φ and θ be inner functions, and let

η(z) =            (θ • φ)(z), if θ(0) ̸ = 0 and φ(0) = 0, z (θ • φ)(z), if θ(0) ̸ = 0 and φ(0) ̸ = 0, z θ(φ(z)) φ(z) , if θ(0) = 0.
Then the mapping

C φ : K θ -→ K η
is well-defined and bounded. Moreover,

⟨C φ K θ ⟩ = K η ,
i.e., K η is the smallest closed S * -invariant subspace of H 2 which contains the image of K θ under C φ .

Proof. We just treat the first case. Other cases are similar. Write S for the forward shift operator. For each h ∈ H 2 and n ≥ 1, it is well known that S * n θ ∈ K θ , n ≥ 1, and moreover the sequence (S * n θ) n≥1 is dense in K θ . Indeed, the verification of these facts are straightforward.

We have

⟨S * n θ, θh⟩ = ⟨θ, S n θh⟩ = ⟨θ, z n θh⟩ = ⟨1, z n h⟩ = 0. Hence, S * n θ ∈ (θH 2 ) ⊥ = K θ , n ≥ 1. Moreover, assume f ∈ K θ is such that f ⊥ S * n θ, n ≥ 1. Then 0 = ⟨f, S * n θ⟩ = ⟨z n f, θ⟩ = ⟨z n , θ f ⟩, (n ≥ 1),
which implies θ f ∈ H 2 , or equivalently f ∈ θH 2 . Thus, f = 0, i.e. the sequence (S * n θ) n≥1 is dense in K θ . Therefore, to show that C φ maps K θ into K η , it is enough to verify that

C φ (S * n θ) ∈ K η , (n ≥ 1).
For this, we show that C φ (S * n θ)

⊥ ηH 2 . Write θ(z) = ∑ ∞ k=0 a k z k . Then C φ (S * n θ) = ∞ ∑ k=n a k φ k-n = ( θ • φ - n-1 ∑ k=0 a k φ k ) φ -n .
Since φ and η are inner, for each h ∈ H 2 and n ≥ 1, we have

⟨C φ (S * n θ), θh⟩ = ⟨( θ • φ - n-1 ∑ k=0 a k φ k ) φ -n , ηh ⟩ = ⟨( η - n-1 ∑ k=0 a k φ k ) , φ n ηh ⟩ = ⟨η, φ n ηh⟩ - n-1 ∑ k=0 a k ⟨φ k , φ n ηh⟩ = ⟨1, φ n h⟩ - n-1 ∑ k=0 a k ⟨1, φ n-k ηh⟩ = 0.
Remember φ(0) = 0, which was exploited in the last line. In short, we showed that C φ K θ ⊂ K η , which immediately also implies

⟨C φ K θ ⟩ ⊂ K η .
It remains to show that the smallest closed subspace of H 2 which contains the range of C φ , i.e. C φ K θ , is precisely K η . To this end, note that

k θ λ (z) = 1 -θ(λ)θ(z) 1 -λz is the reproducing kernel of evaluation functional at the point λ ∈ D. In particular, k θ λ ∈ K θ for any values of λ ∈ D. Since k θ 0 = 1 -θ(0)θ ∈ K θ , we get C φ k θ 0 = 1 -θ(0)η ∈ C φ K θ .
Thus, remembering the assumption θ(0) ̸ = 0, we deduce

S * C φ k θ 0 = S * η ∈ S * C φ K θ ⊂ ⟨C φ K θ ⟩. But, we saw above that S * η is a generator of K η . Hence, K η ⊂ ⟨C φ K θ ⟩.
The above theorem opens the gate to study composition operators C φ , with φ inner, which maps a model space into itself. According to Theorem 9.1, the mapping C φ : K θ -→ K θ is well defined if and only if K η ⊂ K θ . Considering the hierarchy of inner functions, the inclusion

K η ⊂ K θ happens if and only if η divides θ, i.e. η(z) θ 1 (z) = θ(z), (z ∈ D),
where θ 1 is an inner function. Therefore, we are forced to consider three cases corresponding to the different definitions of η which were given in Theorem 9.1: (i) If θ(0) ̸ = 0 and φ(0) = 0, then η = θ • φ and we must have

θ ( φ(z) ) θ 1 (z) = θ(z), (z ∈ D).
Hence, there is an integer n ≥ 1 and an inner function ϑ, with ϑ(0

) ̸ = 0, such that θ(z) = ϑ(z n ) and φ = ρ e i2kπ/n for 1 ≤ k ≤ n. See [31, Theorem 4.1]. (ii) If θ(0) ̸ = 0 and φ(0) ̸ = 0, then η(z) = z θ ( φ(z) ) and we must have z θ ( φ(z) ) θ 1 (z) = θ(z), (z ∈ D)
. the above equation does not hold for z = 0. Hence, there is no solution in this case.

(iii) Assume θ(0) = 0, then η(z) = z θ(φ(z))/φ(z). This is the most interesting case, which leads us to unknown territories. We must have θ ( φ(z) )

φ(z) θ 1 (z) = θ(z) z , (z ∈ D),
Put θ 2 (z) = θ(z)/z. Hence, the above becomes

θ 2 ( φ(z) ) θ 1 (z) = θ 2 (z), (z ∈ D).
According to the Grand Iteration Theorem, φ has a fixed point p in D = D ∪ T. If p ∈ D, as it is discussed in detail in [31, Theorem 4.1], the possible solutions are

θ(z) = γ z ( τ p (z) ) m , (γ ∈ T, m ≥ 1), with φ = τ p • ρ λ • τ p , (λ ∈ T), and 
θ(z) = γ z ( τ p (z) ) m ϑ ( (τ p (z)) n ) , (γ ∈ T, m ≥ 1, n > 1), with φ = τ p • ρ e i2kπ/n • τ p , ( 1 
≤ k ≤ n). But if p ∈ T, the situation is dramatically more complicated.
Here, θ is of the form (9.1)

θ(z) = γ z θ 2 (z) ∞ ∏ n=0 θ 1 ( φ [n] (z) ) ,
where θ 1 is such that the product is convergent and θ 2 fulfills Proof. Most of the proof is done in the above discussions. In particular, we saw that θ must have the form (9.1). We know that the Denjoy-Wolff point of φ α is either 1 or κ α . This is because φ α has just two fixed points on D and one of them has to be the Denjoy-Wolff fixed point. Therefore, by Theorem 8.1, the zeros of Blaschke product θ 2 are decomposed as a union of equivalence classes generated by ∼ α and, by Case (iii), the operator C φα maps K θ into itself. To show that C φ is surjective whenever θ 1 = 1, note that

K zB = C ⊕ Span{k z j : B(z j ) = 0},
where k z j is the Cauchy reproducing kernel k z j (z) = 1 1 -zj z .

We have C φα 1 = 1 and, by Theorem 3.1,

C φα k z j (z) = 1 1 -zj φ α (z) = A + Bz 1 -φ α -1 (z j ) z ,
where A and B are some constants. Hence, k φα -1 (z j ) belongs to the image of C φα . We assumed that the zeros of B can be decomposed as a union of equivalence classes generated by ∼ α . Therefore, by Theorem 6.1(i), the image contains all Cauchy kernels k z j , where z j runs through the zeros of B. In short, this means that the mapping is surjective.

We can also interpret Theorem 7.1 in the following way to state some facts about the point spectrum of C φα . Write the functional equation as C φα B α,z 0 = γ α,z 0 B α,z 0 , it says that B α,z 0 is an eigenvector of C φα corresponding to the eigenvalue γ α,z 0 . As usual, there are two cases to consider: (a) If α ∈ D 1 , then for any choice of z 0 , we have γ α,z 0 = 1. Hence, there are infinitely many Blaschke products with satisfy C φα B α,z 0 = B α,z 0 . In the first place, the mere existence of such eigenfunctions was an open question. Secondly, it is still unknown of C φα can have other eigenvalues. (b) If α ∈ D \ D 1 , then γ α,z 0 = φ z 0 (κ α ) (or its conjugate) and as z 0 ranges over D, the values of φ z 0 (κ α ) cover all of T \ {1}. Hence, σ p (C φα ) = T\{1} and each eigenvalue has infinitely many Blaschke products as its eigenvectors. (That the eigenvalues of C φα must stay on T is rather elementary to verify.)
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