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Abstract
Metastatic progression is regulated by metastasis promoter and suppressor genes. NME1, the prototypic and first described 
metastasis suppressor gene, encodes a nucleoside diphosphate kinase (NDPK) involved in nucleotide metabolism; two related 
family members, NME2 and NME4, are also reported as metastasis suppressors. These proteins physically interact with 
members of the GTPase dynamin family, which have key functions in membrane fission and fusion reactions necessary for 
endocytosis and mitochondrial dynamics. Evidence supports a model in which NDPKs provide GTP to dynamins to main-
tain a high local GTP concentration for optimal dynamin function. NME1 and NME2 are cytosolic enzymes that provide 
GTP to dynamins at the plasma membrane, which drive endocytosis, suggesting that these NMEs are necessary to attenuate 
signaling by receptors on the cell surface. Disruption of NDPK activity in NME-deficient tumors may thus drive metastasis 
by prolonging signaling. NME4 is a mitochondrial enzyme that interacts with the dynamin OPA1 at the mitochondria inner 
membrane to drive inner membrane fusion and maintain a fused mitochondrial network. This function is consistent with 
the current view that mitochondrial fusion inhibits the metastatic potential of tumor cells whereas mitochondrial fission 
promotes metastasis progression. The roles of NME family members in dynamin-mediated endocytosis and mitochondrial 
dynamics and the intimate link between these processes and metastasis provide a new framework to understand the metastasis 
suppressor functions of NME proteins.
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1 � NME genes as suppressors of metastasis

Metastasis is the main cause of death in cancer patients. During 
metastatic disease, complex factors involving the tumor cells and 
their microenvironment promote tumor dissemination from the 
primary site, tumor cell survival in the bloodstream, extravasation 
and colonization of a secondary site [1]. Breakdown of intercel-
lular adhesion in the tumor epithelium and acquisition of invasive 
and migratory traits allow epithelial tumor cells to breach the 
basement membrane and degrade the interstitial – mostly – type 

I collagen in the stromal extracellular matrix (ECM). These pro-
cesses, referred collectively to as the epithelial–mesenchymal 
transition (EMT), are critical events in tumor progression [2, 3]. 
As in tumorigenesis, metastasis is regulated both positively (by 
promoters) and negatively (by suppressors). Metastasis suppres-
sor genes – unlike tumor suppressors – inhibit metastasis without 
affecting growth of the primary tumor [4]. Genetic alterations in 
these genes – i.e. loss of heterozygosity, spontaneous mutations 
and polymorphisms – are rare in primary tumors, thus metastasis 
suppressor genes are probably inactivated by epigenetic mecha-
nisms during metastatic dissemination.

The human genome is estimated to contain ~ 30 genes that 
encode proteins with metastasis suppressor activity [4–8]. The 
first example of such a metastasis suppressor gene, NME1 
[9], has been characterized extensively and is the subject of 
numerous reviews [10–14]. The role of the related NME2 
gene in the context of metastasis suppression is much less 
well documented and remains controversial [15–18]. NME3 
has not yet been found to have metastasis suppressor activity, 
whereas NME4 was described very recently as a new metas-
tasis suppressor gene, the first one in mitochondria [19].
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NME genes encode highly conserved multifunctional 
proteins, some of which are nucleoside diphosphate kinases 
(NDPKs). NDPKs catalyze the transfer of a γ-phosphate 
group from nucleoside triphosphates (mainly ATP) to nucle-
oside diphosphates (mainly GDP) [20–22]. These proteins 
have many important physiological functions in bioenergetics, 
cytoskeleton and membrane dynamics, signal transduction, 
metabolism, and development and they are also involved in 
pathological processes, including metastasis, through mecha-
nisms that are beginning to be deciphered [23–26]. In mam-
mals, the NME gene family comprises ten members that can 
be divided into two phylogenetic groups [23, 27]. The group I 
genes (NME1–NME4) encode proteins that are 58–88% iden-
tical to each other and have only one NDPK domain (Table 1). 
The four NME1 to NME4 proteins are ubiquitous and their 
catalytic activities have similar kinetics [28]. NME1, NME2 
and NME3 are mainly located in the cytosol and at the plasma 
membrane, whereas NME4 is located exclusively in mito-
chondria [23, 24, 29, 30]. NME1 and NME2 assemble in vitro 
and in vivo into stable, catalytically active homohexamers and/
or heterohexamers [31, 32]. Formation of such oligomers may 
contribute to regulating their subcellular localization and/or 
cellular functions. NME1 and NME2 are the two most abun-
dantly expressed and are thought to be responsible for at least 
80% of the cell’s NDPK activity. The phylogenetic group II 
genes encode more divergent proteins that are only 22–44% 
identical to each other and to the group I enzymes. Group II 
NMEs contain one or several full-length or truncated NDPK 
domains [27]. Despite these domains, none has a demon-
strated catalytic activity. In addition, these proteins contain 
other domains, such as the Dpy-30, DM10, or thioredoxin 
domains, which may regulate the localization and/or the func-
tion of the proteins, possibly by modulating their interactions 
with various partners. Most group II NME proteins are found 
only in ciliated cells; the exception is NME6, which is ubiq-
uitous and is located in mitochondria [33].

1.1 � NME1, a prototypic metastasis suppressor

Two original discoveries established NME1 as a metas-
tasis suppressor. First, up-regulation of NME1 in several 
metastatic tumor cell lines from multiple histological types, 
including melanoma, breast, colon, lung, liver, ovary, pros-
tate, and oral carcinoma cell lines, reduced their metastatic 
potential both in experimental and spontaneous mouse mod-
els of metastasis [34–42]. Second, the incidence of lung 
metastases increased significantly in NME1 knockout mice 
prone to develop hepatocellular carcinoma [43]. In addition, 
numerous studies analyzing human patients with melanoma 
or epithelial tumors of the breast, liver, colon or ovary, found 
that loss of NME1 expression correlated with a greater risk 
of metastasis and a poorer clinical prognosis [10, 37, 44–49]. 
By contrast, in neuroblastoma and in hematological malig-
nancies, NME1 overexpression correlated with metastasis 
dissemination and unfavorable outcome [50–52]. These con-
flicting reports of both positive and negative correlation of 
NME1 expression with metastasis depending on the tumor 
type, are highly suggestive of context-specific mechanisms.

Overexpression of NME1 in invasive tumor cell lines that 
have low levels of endogenous NME1 expression reduces 
the migratory and invasive potential of the cells. This is 
observed in cell lines derived from melanoma and from 
breast, colon, lung, liver, ovarian, prostate and oral carci-
noma [42, 53–59]. By contrast, silencing NME1 in non-
invasive tumor cell lines that express high NME1 levels, 
results in a migratory and invasive phenotype in melanoma, 
glioblastoma, and carcinoma cells [60–64]. Silencing NME1 
in epithelial tumor cells results in an intermediate phenotype 
with both epithelial and mesenchymal features, refered to as 
a ‘partial’ EMT [65]. Indeed, NME1-depleted cells express 
both epithelial and mesenchymal markers, indicating that 
they do not transition fully to a mesenchymal state. Nev-
ertheless, this ‘partial’ EMT phenotype is more metastatic 

Table 1   The group I NME family members

NDPK domain           Hydrophobic peptide Mitochondrial targeting signal

Gene Chromosome Protein Structure Expression Subcellular 
localization

NDPK 
activity

Anti-
metastatic 

activity
Dynamin 
involved

NME1 17q21.3 NME1 /
NDPK A ubiquitous cytoplasm 

membrane + + Dynamin 2

NME2 17q21.3 NME2 /
NDPK B ubiquitous

cytoplasm
membrane

nucleus
+ + Dynamin 2

NME3 16p13.3 NME3 /
NDPK C ubiquitous cytoplasm 

mitochondria + Not 
determined Mitofusins

NME4 16p13.3 NME4 /
NDPK D ubiquitous mitochondria + + OPA1
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than the fully mesenchymal state [66, 67], providing an 
explanation for the high metastatic potential of NME1-defi-
cient tumor cells.

In human cancer samples, there is an inverse correlation 
between NME1 levels and the expression of well-known 
EMT markers [65]. Consistent with this, NME1 is down-
regulated or absent at the invasive front of clinical samples 
of hepatocellular carcinoma and colon cancers whereas it is 
robustly present in the center of the tumors [60]. In addition, 
the ability of NME1 to influence tumor invasion in vivo has 
been demonstrated in a xenograft model in which human 
breast tumor cells were injected into the primary duct of the 
mammary gland in immunodeficient mice [68, 69]. In this 
model, tumor cells form intraductal tumors that recapitu-
late the transition from carcinoma in situ to invasive breast 
carcinoma [68, 70]. Gene-editing inactivation of NME1 in 
the injected cells accelerated the development of invasive 
lesions [61].

1.2 � NME2, a controversial metastasis suppressor

The anti-metastatic activity of NME2 has been demonstrated 
mainly in breast, lung and oral squamous carcinoma, and 
in melanoma [15, 40, 71–73]. Moreover, analysis of gene 
expression datasets from breast, colon, lung and ovarian 
tumors revealed that there is significantly less NME2 expres-
sion in metastatic tumors than in non-metastatic tumors [74].

NME2 has been reported to be an inhibitor of cell motility 
and invasion [18, 55, 57, 75, 76], suggesting that it might 
have a similar function to NME1 during tumor progression 
as an inhibitor of metastasis. In contrast to these earlier stud-
ies, however, our work rather suggests that NME2 is not a 
suppressor of EMT and tumor invasion [60, 61, 65, 77]. 
Indeed, loss of NME2, unlike NME1, does not impair the 
invasive capacity of tumor cells or the transition from in 
situ to invasive breast carcinoma in the intraductal xeno-
graft model [61]. Importantly, inactivation of either NME1 
or NME2 expression did not alter the protein level of the 
other isoform [61], suggesting that there is no compensatory 
effect when one isoform is deficient.

NME1 and NME2 isoforms are 88% identical in their 
amino acid sequence, however, sixteen out of eighteen non-
identical amino acids are located at the peripheral surface of 
the hexamer [78]. Thus, NME1 and NME2 homohexamers 
may interact with different partners and may have distinct 
cellular functions. Indeed, there is evidence that NME1 and 
NME2 have more specific partners than partners in com-
mon [78]. Furthermore, the relative abundance of NME1 
and NME2 proteins and the stoichiometry of NME1–NME2 
heterohexamers may provide additional specific regulation 
and function.

In addition to specific binding partners and regulation of 
function of NME1 and NME2, the two proteins may function 

at distinct times in tumorigenesis. We hypothesise that that 
NME1 and NME2 function as NDPKs at early stages of 
tumorigenesis, providing nucleoside triphosphates to sus-
tain the high proliferation of tumor cells. At later stages, 
however, NME1 might become the only isoform controlling 
EMT, invasion and metastasis. Consistent with this hypoth-
esis, cells induced to proliferate have high levels of NME1 
[60, 79–83] and cells overexpressing NME2 proliferate faster 
than control cells in culture [73]. Accordingly, NME1 and 
NME2 are overexpressed early in the primary tumor and 
only NME1 expression is reduced or repressed at later stages 
in colorectal and hepatic tumors that have undergone metas-
tasis [43, 60, 84]. Additionally, in breast cancer, we found a 
similar up-regulation of NME1 in ductal carcinoma in situ 
when compared to the surrounding non-malignant tissues, 
whereas NME1 levels were significantly reduced in invasive 
tumor foci and in microinvasive carcinoma buds extending 
beyond the ruptured basement membrane [61]. By contrast, 
NME2 was upregulated in ductal carcinoma in situ, but 
remained highly expressed in invasive tumors supporting 
the conclusion that NME2 is not a repressor of invasion.

1.3 � NME4, a new metastasis suppressor

The NME4 gene encodes nucleoside diphosphate kinase D 
(NDPK-D). Mutations in NME4 that inactivate either the 
enzymatic activity of NDPK-D or its ability to bind car-
diolipin in the mitochondrial inner membrane both induce 
a strong metastatic phenotype in the cervical carcinoma 
cell line HeLa and in the breast adenocarcinoma cell line 
MDA-MB-231 [19], including pronounced cell scattering, 
loss of intercellular adhesion, increased cell migration in 
2D and 3D assays, and increased invasion through a type I 
collagen matrix. Overexpression of wild-type NDPK-D had 
the opposite, anti-metastatic effect. Conversely, silencing 
NME4 in the breast epithelial carcinoma cell line ZR75-1 
reduced cell–cell adhesion and increased migration [19]. 
The metastasis suppressor activity of NME4 was most 
clearly demonstrated in a metastasis assay in mice in which 
HeLa cells overexpressing wild-type NDPK-D were injected 
intravenously [19]. Significantly fewer lung metastases were 
seen in these mice than in mice injected with HeLa cells 
overexpressing kinase-dead NDPK-D or expressing a low 
level of wild-type NDPK-D. These effects were specific to 
the altered function/expression of mitochondrial NME4 and 
not due to modified expression of NME1 and NME2 [19].

Low levels of NME4 expression also correlated with high 
levels of metastasis in various types of cancer in humans. 
NME4 expression is lower in hepatocarcinoma-derived 
cell lines with high metastatic potential than it is in those 
with low metastatic potential [85]. In human cancer, NME4 
expression correlates negatively with markers of EMT and 
tumor aggressiveness [19]. In several cohorts of breast 
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cancer patients, expression of NME4 is negatively associated 
with markers of mesenchymal cells, the EMT, and tumor 
invasion, but is positively associated with epithelial mark-
ers. In oral cancer, a miRNA that promotes cell migration, 
invasion and metastasis by inhibiting NME4 expression, 
miR-196, is highly expressed and correlates with lymph 
node metastasis [86]. Consistent with the role of NME4 as 
a metastasis suppressor in human subjects, low expression 
of NME4 is associated with shorter overall survival (i.e. poor 
prognosis) in patients with breast tumors or with several 
other tumor types [19].

1.4 � Other NME genes

Among the other members of the NME gene family, there is 
sparse evidence for their functions as suppressors of metas-
tasis. Human NME3 and NME5 might modulate tumor cell 
motility depending on the cell context [55, 87], but the 
mechanism(s) are unclear. Also, in one study, overexpres-
sion of NME3 inhibited the metastatic potential of colorectal 
tumor cells [87]. Further work will be required to pursue 
the characterization of these and other NME family genes 
roles in cancer.

2 � The dynamin connection

In this section we will review the cellular and molecular 
mechanisms whereby NME proteins suppress metastasis; 
in particular, we will detail a mechanism related to NME’s 
interplay with dynamin GTPases.

Classical dynamins are GTPase motor proteins that are 
required for endocytosis in all eukaryotic cells [88]. They 
are responsible for the scission of endocytic vesicles from 
the plasma membrane during clathrin-mediated endocytosis 
as well as in some clathrin-independent endocytic pathways 
[89, 90]. The interaction of NME proteins with dynamins is 
conserved across species from the nematode Caenorhabditis 
elegans, to the fruit fly Drosophila melanogaster, mice and 
humans [26, 91–94]. NMEs in dynamin-mediated endocy-
tosis might suppress metastasis by inhibiting cell migration 
and cell invasion, and maintaining cell–cell adhesion, all 
of which are important for EMT and metastasis processes 
[3, 95].

2.1 � NME/dynamin interplay in cell migration 
and chemotactism

The first evidence for a functional link between NME pro-
teins and dynamin came from a study in Drosophila [91], 
that showed that Awd, the counterpart of mammalian NME1 
and NME2 facilitated dynamin-mediated neurotransmitter 

uptake at neuromuscular junctions in the fly. Further studies 
reported a key implication of Awd function in endocyto-
sis during cell migration [96, 97]. In cooperation with the 
Drosophila homolog of dynamin, Shibire, Awd inhibits cell 
migration by promoting endocytosis of chemotactic recep-
tors including the receptors for FGF and PDGF/VEGF, from 
the surface of migrating tracheal cells during tracheogenesis 
and of migrating border cells during oogenesis [96–101]. 
Loss of awd in these two cell types decreases endocytosis, 
leading to up-regulation of the receptors on the cell surface 
and increasing migration. By contrast, overexpression of 
awd, increases the endocytosis rate of receptors from the 
cell surface, so decreasing cell migration. The severity of 
the awd phenotype is exacerbated in a shibire mutant back-
ground whereas overexpression of awd can revert the pheno-
type associated with a dominant-negative shibire mutation. 
Likewise in mammalian cells, NME1 mediates endocytosis 
of the FGF receptor, FGFR1, induced by expression of the 
von Hippel-Lindau (VHL) protein and prevents cell migra-
tion [102]. Interestingly, a loss-of-function mutant in VHL 
[103] resembles the tracheal phenotype in the awd mutants 
[96], suggesting that the functional relationship between 
VHL and NME is evolutionary conserved and is important 
during development. In addition, mammalian tumor cell 
lines overexpressing NME1 have increased endocytosis 
of the EGF receptor and also migrate less than the control 
cells, and both the increased endocytosis and suppression 
of migration are blocked by inhibitors of dynamin [57]. In 
the nematode Caenorhabditis elegans, the NDPK homolog 
of NME1 and NME2, NDK-1, also influences migration of 
distal tip cells [104]. Although the underlying mechanism 
is unknown, the genes encoding C. elegans NDK-1 and 
dynamin, DYN-1, interact genetically [104]. Additionally, 
in a genome-wide RNAi screen for genes involved in mem-
brane trafficking, knockdown of NDK-1 caused failure of 
receptor-mediated endocytosis [105]. Thus, it is possible that 
NDK-1 regulates the amount of a chemotactic receptor on 
the surface of the distal tip cells, in the same way as it does 
in Drosophila and in mammals.

Together, the evidence discussed above indicates that 
NME proteins facilitate endocytosis of surface receptors and 
possibly other proteins, altering their availability to trans-
duce migration signals, which, in turn, can suppress cell 
migration and chemotactism.

2.2 � NME/dynamin interplay during cell invasion

Regulation of endocytosis rate by NME proteins may also 
influence the ability of tumor cells to invade surrounding 
tissues by clearing membrane-bound proteases from the 
cell surface. Transmembrane membrane type 1 metallopro-
teinase (MT1-MMP) is instrumental during cancer progres-
sion by mediating proteolytic breaching of tissue barriers, 
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basement membrane and interstitial stromal type I collagen. 
MT1-MMP is cleared from the cell surface by dynamin-
dependent clathrin-mediated endocytosis and is found in 
clathrin-coated pits associated with dynamin [106–108]. 
Overexpression of NME1 in breast tumor cells was found to 
increase MT1-MMP endocytosis resulting in removal of the 
protease from the cell surface, whereas silencing of NME1 
decreases MT1-MMP uptake [61]. Collectively, these data 
indicate that NME1 controls the endocytic clearance and 
surface exposure of MT1-MMP in human breast cancer. As 
a consequence, loss of NME1 function enhances both matrix 
degradation and the invasive potential of breast tumor cells 
in vitro. At the mechanistic level, MT1-MMP, NME1 and 
dynamin, interact in clathrin-coated vesicles at the plasma 
membrane. Loss of NME2, by contrast, has no such effect. 
Consistent with a role for NME1 in endocytosis of MT1-
MMP, in human hepatoma and colorectal tumor cell lines in 
which NME1 is silenced, expression of a mutant MT1-MMP 
deleted of its catalytic domain inhibits invasion [60]. Con-
versely, overexpression of proteolytically active invasion-
promoting MT1-MMP increases invasion by cells in which 
NME1 is silenced. Thus, NME1 enhances endocytosis of 
MT1-MMP, so suppressing cell invasion.

2.3 � NME/dynamin interplay in cell adhesion

Another way by which the function of NME proteins in 
dynamin-mediated endocytosis may suppress metastasis is 
by promoting cell adhesion. Evidence for this mechanism, 
again, came first from studies of the awd mutation in the 
Drosophila homolog of NME1 and NME2. During oogen-
esis in mutant awd larvae, adherens junction components, 
including E-cadherin, β-catenin and α-spectrin, in follicle 
epithelial cells are mislocalized in the oocyte, disrupting 
the integrity of the epithelium structure, whereas awd over-
expression promotes the turnover of these components by 
controlling endocytosis [109]. Consistent with this, awd 
mutations cause developmental defects in the imaginal discs, 
the sac-like epithelial structures in Drosophila larvae from 
which legs, antennae and wings develop in the adult fly [110, 
111]. A kinase-dead awd mutation failed to rescue the awd 
mutant phenotype in contrast to the wild-type awd [112], 
indicating that Awd kinase activity is essential for cell adhe-
sion during Drosophila development.

Consistent with a role for Awd in cell adhesion, dynamin 
is also necessary to maintain epithelial integrity [113, 114]. 
In epithelial tissues with a shibire mutation, E-cadherin 
accumulates in the cytoplasm and adherens junction stability 
is disrupted, indicating that E-cadherin endocytosis is regu-
lated in epithelial tissues and necessary to maintain epithe-
lium integrity [113–116]. Similarly, in C. elegans embryos, 
dynamin-mediated endocytosis is crucial to maintain cell 
polarity [117]. Moreover, in non-invasive hepatoma and 

colon tumor epithelial cell lines, silencing NME1 reduces 
the amount of E-cadherin on the cell surface, correlating 
with reduced cell–cell adhesion [60]. Also in mammalian 
epithelial cells, NME1 promotes dynamin-mediated endo-
cytosis of E-cadherin [118].

NME proteins may also regulate cell adhesion to the 
substratum by modifying the endocytosis of integrin recep-
tors. ICAP-1, an adaptor protein for clathrin-dependent 
endocytosis of integrins, recruits NME1 and NME2 close 
to integrins, the clathrin adaptor protein complex, AP2, and 
dynamin at clathrin-coated pits to ensure integrin turnover 
at focal adhesions and regulate integrin signaling and cell 
adhesion [119–121].

This abundant evidence that NME proteins are involved 
in clearing from the cell surface various receptors with key 
functions in cell–cell adhesion and cell adhesion to the 
matrix by promoting their dynamin-mediated endocytosis, 
so inhibiting cell migration and invasion, likely explains the 
strong metastasis suppressor activity of NME1.

2.4 � Control of mitochondrial dynamics by NME 
family proteins

Additional members of the dynamin superfamily act else-
where in eukaryotic cells to mediate membrane fission and 
fusion [122, 123]. Three human mitochondrial dynamin-like 
proteins, dynamin-related protein 1 (DRP1), optic atrophy 
protein 1 (OPA1) and mitofusin (MFN), could be impli-
cated in the metastasis suppressor function of mitochondrial 
NME4 and possibly NME3.

Changes in mitochondria structure and function are potent 
determinants of EMT and metastasis [124–126]. In particu-
lar, fragmentation (or fission) of the mitochondrial network 
facilitates invasion and migration of tumor cells, whereas 
mitochondrial fusion is rather inhibitory [127]. Generally, 
metastatic tumor cells express low levels of the fusogenic 
protein, MFN, as compared to non-metastatic cells, while 
they express higher levels of the pro-fission protein, DRP1 
[128–131]. In addition, activation of DRP1 [132] or MFN 
silencing [128] increase the metastatic potential, whereas 
silencing or pharmacological inhibition of DRP1 or MFN 
overexpression reduce cell migration and metastasis [128, 
129, 133, 134].

The two isoforms of mitofusin, MFN1 and MFN2, are 
integral membrane proteins of the mitochondrial outer mem-
brane that mediate fusion [122, 123]. NME3 is similarly 
localized at the outer membrane depending on its N-termi-
nal region [93], and it is known to interact with MFN1 and 
MFN2 [135]. Silencing of NME3 increases fragmentation 
of mitochondria [136], suggesting that NME3 enhances 
outer membrane fusion mediated by mitofusins. Strikingly, 
expression of NME3 was shown to rescue mitochondrial 
fusion and elongation in NME3-silenced cells irrespective 
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of its NDPK activity [135]. Further studies will be necessary 
to elucidate exactly how NME3 functions in mitochondrial 
fusion and whether this mechanism can contribute to sup-
press metastasis. In addition, it should be noticed that the 
NDPK ortholog DYNAMO1 (dynamin-based ring motive-
force organizer 1) of mammalian NME3 locally generates 
GTP for the optimal activity of DRP1 during the division 
of mitochondria in the red alga, Cyanidioschyson merolae 
[137]. However, the relevance of these data regarding the 
role of NME3 in metastasis dissemination is currently 
unknown.

In addition, the dynamin-like protein, OPA1, mediates 
the fusion between the inner membranes of mitochondria 
[122, 123]. NME4, is also located in the intermembrane 
space and is bound to the mitochondrial inner membrane 
through cardiolipin, an abundant phospholipid in the inner 
membrane [138]. Silencing of NME4 alters mitochondrial 
morphology by producing fragmented, swollen and ‘blebby’ 
mitochondria reminiscent of those produced upon defective 
mitochondrial fusion [93]. Depletion of NME4 phenocopies 
the effect of OPA1 loss-of-function on mitochondria mor-
phology. Moreover, NME4 forms a complex with OPA1 on 
the mitochondrial inner membrane, facilitated by the bind-
ing of both proteins to cardiolipin [138–140]. The effect of 
NME4 binding to OPA1 is not fully understood, however 
NME4 increases GTP-loading onto OPA1 [93], suggesting 
that NME4 promotes OPA1-mediated fusion activity. The 
functions of NME3 and MFN at the outer membrane and 
NME4 and OPA1 at the inner membrane, respectively, likely 
contribute to maintaining a fused mitochondrial network 
important for preventing the EMT and metastasis.

2.5 � Molecular mechanisms related to dynamin 
function displayed by NME family proteins

Members of the dynamin superfamily are evolutionarily 
conserved membrane-remodeling GTPases involved in both 
membrane fission and fusion reactions. However, unlike 
myosin and kinesin motor proteins that use ATP to produce 
forces, dynamins hydrolyse GTP. In addition, dynamins are 
very sensitive to intracellular GTP concentration due to their 
remarkably low affinity for GTP and high intrinsic GTPase 
activity, resulting in rapid GTP hydrolysis and GDP–GTP 
exchange, which is enhanced by dynamin oligomerization 
[90, 93, 141]. Thus, vigourous replenishment of GTP is 
necessary to sustain cellular activity of dynamin. Unlike 
for myosins and kinesins, which are fueled by high cyto-
solic ATP concentration, the lower concentrations of GTP 
are not sufficient to maintain high rate of GTP loading and 
GTP hydrolysis by dynamins [142]. Thus, a mechanism of 
GTP channeling achieved by enzymes that synthesise GTP 
in close proximity to dynamins is required to secure a high 
GTP/GDP ratio and favour GTP hydrolysis. The strong 

NDPK activity of NME proteins [143], together with their 
high affinity for GDP [144], are ideal to maintain a high local 
concentration of GTP required for dynamin function. Indeed, 
several evidence support a model in which NDPKs physi-
cally interact with members of the dynamin superfamily to 
maintain high local GTP concentration for optimal dynamin 
function in membrane remodeling [94]. NME1 and NME2 
fuel cytoplasmic endocytic dynamins at plasma membrane 
clathrin-coated pits to drive endocytosis (Fig. 1A). In addi-
tion, NME1 and NME2 may facilitate the oligomerization 
of dynamin, which is necessary for membrane fission [57]. 
Thus, local production and channeling of GTP to endocytic 
dynamins and stimulation of dynamin oligomerization by 
NME1 and NME2 contribute to stimulate dynamin’s func-
tion in endocytosis. NME4 has the same function on OPA1 
by fueling GTP on it at the mitochondria inner membrane 
to drive inner membrane fusion (Fig. 1B). The molecular 
mechanism underlying NME3 function on mitofusins must 
be different to this GTP channeling mechanism as a kinase-
dead mutant of NME3 can rescue mitochondrial fusion in 
NME3-silenced cells. One possibility is that NME3 recruits 
cytosolic NDPKs, NME1 and/or NME2, to the mitochon-
drial surface by forming hetero-oligomers. In this scenario, 
NME1/NME2 recruited by NME3 would channel GTP to 
mitofusins to promote outer membrane fusion (Fig. 1C). If 
the molecular mechanisms of action of NME proteins on 
dynamin superfamily proteins remain to be defined pre-
cisely, convergence of subcellular localisations of NME pro-
teins and their dynamin superfamily counterparts, acting as a 
team is emerging as a new, interesting perspective to explain 
the antimetastatic activity of NME proteins (Table 1).

3 � Cytoskeleton regulation by NME family 
proteins

Additionally mechanisms may explain how NME1 and, in 
some cases, NME2 can potently suppress cell migration 
and metastasis. On the one hand, NME proteins inhibit Rho 
GTPase signaling, by sequestering nucleotide exchange 
factors necessary for Rho activation in the control of cell 
cytoskeleton dynamics. Indeed, NME1 sequesters Tiam1 
and Dbl-1, the nucleotide exchange factors for Rac1 and 
cdc42, respectively [145–147], whereas NME2 sequesters 
Lbc, the nucleotide exchange factor for RhoA [148]. The 
independent identifications of three nucleotide exchange 
factors as NME-interacting proteins suggest that the Rho 
GTPase signaling may be biologically relevant. On the other 
hand, NME1 may suppress metastasis, by reducing tran-
scription of the EDG2 gene, which is involved in metastasis 
and connected with Rho–ROCK regulation of cell motility 
[38, 63]. Third, the anti-metastatic function of NME1 may 
be mediated partially by its ability to inhibit the activity 
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of the actin-severing protein gelsolin [149]. A proteom-
ics study identified NME1 as a binding partner of gelsolin 
[149]. NME1 inhibited the actin depolymerizing activity of 

gelsolin, antagonized gelsolin-stimulated tumor cell migra-
tion in vitro, and attenuated its pro-metastatic activity in an 
in vivo model of breast tumor metastasis. Fourth, NME1 

Fig. 1   Mechanisms of antimetastatic action of group I NME family 
members. A. The cytosolic NDPKs NME1 and NME2 are recruited 
to the plasma membrane by their physical interaction with dynamin 
2. They generate GTP locally from GDP and ATP and channel GTP 
to dynamin 2 to optimise dynamin’s activity, which is necessary for 
fission and endocytosis. The resulting removal of pro-migratory/
pro-invasive factors such as MT1-MMP, PDGFR, FGFR and EGFR 
from the cell surface and turnover of adherens junction proteins such 
as E-cadherin explain the antimetastatic effects of NME1 and NME2. 
B. The mitochondrial NDPK NME4 binds the dynamin-related pro-
tein OPA1 at the mitochondrial inner membrane to provide GTP for 
OPA1, which permits mitochondrial inner membrane fusion. This 
fusion process inhibits metastasis, thus explaining the antimeta-

static activity of NME4. C. The localization of NME3 at the mito-
chondrial surface, where the dynamin-related pro-fusion proteins 
mitofusins act, suggests that this NDPK might assist mitofusins dur-
ing mitochondrial outer membrane fusion. NME3 might recruit the 
cytosolic NDPKs NME1 and NME2 to the mitochondrial surface to 
produce GTP for mitofusins and promote mitochondrial outer mem-
brane fusion. This fusion process also inhibits metastasis, thus this 
mechanism may explain the antimetastatic effect of NME3. PDGFR: 
platelet-derived growth factor receptor, FGFR: fibroblast growth fac-
tor receptor, EGFR: epidermal growth factor receptor, MOM: mito-
chondrial outer membrane, IMS: intermembrane space, MIM: mito-
chondrial inner membrane, ANT: adenylate translocase, OXPHOS: 
oxidative phosphorylation, MFN: mitofusins
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is reported to inhibit cell migration by phosphorylating the 
light chain of the cytoplasmic motor protein myosin [150]. 
Finally, accumulating evidence suggests that NME1, and 
often also NME2, interact with and affect the functions of 
various components and regulators of the cytoskeleton, 
including acting-binding proteins, intermediate filaments 
and attachment sites for the cytoskeleton (adherens junc-
tions, desmosomes, and focal adhesions) in cells from a vari-
ety of organisms and tissues and during the course of devel-
opment, suggesting this association is conserved through 
evolution and may serve an essential function [26].

4 � Conclusion

Over the last three decades, extensive analyses of the NME/
NDPK family revealed the multifaceted roles of these con-
served proteins in cellular pathophysiology and uncovered 
the underlying molecular mechanisms. The role of the NME/
NDPK family in membrane remodeling and nucleotide 
channeling has become widely recognized as an essential 
feature of the mechanism of action of several NME family 
members, including NME1, NME2, NME4, and potentially 
NME3. Here, the classical NDPK model as a main source of 
GTP is extended to direct fueling of GTP to GTP-dependent 
dynamin family proteins through protein/protein interaction. 
This conclusion is supported by experimental evidence 
obtained in different species and model systems, including 
the fruit fly D. melanogaster, nematode C. elegans, mouse 
and human, indicating an evolutionary conserved mecha-
nism of membrane remodeling controlled by dynamin-NME/
NDPK protein interplay. GTP fueling to cytosolic dynamins 
(through cytosolic NME1 and NME2), which promotes 
endocytosis of cell surface receptors and cargoes with key 
function in cell–cell adhesion and cell adhesion to the matrix 
with, direct impact on cell migration and invasion, likely 
explains the strong metastasis suppressor potential of NME1 
and its alternatively, NME2. GTP fueling to mitochondrial 
dynamin-related OPA1 (by mitochondrial NME4) promotes 
mitochondrial inner membrane fusion, a process inhibitory 
to migration and invasion of tumor cells. The localization 
of NME3 at the outer mitochondrial membrane, where the 
fusogenic dynamin-like protein, mitofusin, is recruited to, 
mediates mitochondrial outer membrane fusion, suggesting 
that NME3 might likewise participates in outer membrane 
dynamics, although through a mechanism different of GTP 
channeling. These emerging roles of NME family members 
in dynamin-mediated endocytosis and mitochondrial dynam-
ics provide a new framework to explain the antimetastatic 
activities of NME proteins, which may open new routes to 
novel therapeutics.
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