Omar El-Fallah 
email: elfallah@fsr.ac.ma
  
Emmanuel Fricain 
email: emmanuel.fricain@math.univ-lille1.fr
  
Karim Kellay 
email: karim.kellay@math.u-bordeaux1.fr
  
Javad Mashreghi 
email: javad.mashreghi@mat.ulaval.ca
  
Thomas Ransford 
email: ransford@mat.ulaval.ca
  
Laboratoire Analyse 
  
Universit É Mohamed 
  
MOROCCO Rabat 
  
Paul Laboratoire 
  
Painlev 
  
D Épartement 
  
D Épartement De 
  
  
  
  
  
CONSTRUCTIVE APPROXIMATION IN DE BRANGES-ROVNYAK SPACES

In most classical holomorphic function spaces on the unit disk, a function f can be approximated in the norm of the space by its dilates f r (z) := f (rz) (r < 1). We show that this is not the case for the de Branges-Rovnyak spaces H (b). More precisely, we give an example of a non-extreme point b of the unit ball of

It is known that, if b is a non-extreme point of the unit ball of H ∞ , then the polynomials are dense in H (b). We give the first constructive proof of this fact. Definition 2.1. Let b ∈ H ∞ with b H ∞ ≤ 1. The associated de Branges-Rovnyak space H (b) is the image of H 2 under the operator (I -T b T b ) 1/2 . We define a norm on H (b) making (I -T b T b ) 1/2 a partial isometry from

INTRODUCTION

The de Branges-Rovnyak spaces are a family of subspaces H (b) of the Hardy space H 2 , parametrized by elements b of the closed unit ball of H ∞ . We shall give the precise definition in §2. In general H (b) is not closed in H 2 , but it carries its own norm • H (b) making it a Hilbert space.

The spaces H (b) were introduced by de Branges and Rovnyak in the appendix of [START_REF] De Branges | Canonical models in quantum scattering theory[END_REF] and further studied in their book [START_REF] De Branges | Square Summable Power Series[END_REF]. The initial motivation was to provide canonical model spaces for certain types of contractions on Hilbert spaces. Subsequently it was realized that these spaces have several interesting connections with other topics in complex analysis and operator theory. For background information we refer to the books of de Branges and Rovnyak [START_REF] De Branges | Square Summable Power Series[END_REF], Sarason [START_REF] Sarason | Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF], and the forthcoming monograph of Fricain and Mashreghi [START_REF] Fricain | Theory of H (b) Spaces[END_REF].

The general theory of H (b)-spaces splits into two cases, according to whether b is an extreme point or a non-extreme point of the unit ball of H ∞ . For example, if b is non-extreme, then H (b) contains all functions holomorphic in a neighborhood of the closed unit disk D, whereas if b is extreme, then H (b) contains very few such functions. In particular, H (b) contains the polynomials if and only if b is non-extreme, and in this case, the polynomials are dense in H (b). Proofs of all these facts can be found in Sarason's book [START_REF] Sarason | Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF].

The density of polynomials is proved in [START_REF] Sarason | Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF] by showing that their orthogonal complement in H (b) is zero. The proof is non-constructive in the sense that it gives no clue how to find polynomial approximants to a given function. We know of no published work describing constructive methods of polynomial approximation in H (b), and it is surely of interest to have such methods available.

Perhaps the most natural approach is to try using dilations. Writing f r (z) := f (rz), the idea is to approximate f by f r for some r < 1, and then f r by the partial sums of its Taylor series. This idea works in many function spaces, but, as we shall see, it fails dismally in H (b), at least for certain choices of b. Indeed, it can happen that lim r→1 -f r H (b) = ∞, even though f ∈ H (b). We shall prove this in §3, thereby answering a question posed in [START_REF] Chevrot | De Branges-Rovnyak spaces and Dirichlet spaces[END_REF].

This phenomenon has other negative consequences, among them the surprising fact that the formula for f H (b) in terms of the Taylor coefficients of f , previously known to hold for f holomorphic on a neighborhood of D, actually breaks down for general f ∈ H (b). It also shows that, in general, neither the Taylor partial sums of f , nor their Cesàro means need converge to f in H (b).

So, to construct polynomial approximants to functions in H (b), a different idea is needed. In §4 we shall describe a scheme that achieves this based on Toeplitz operators. The method presupposes that b is non-extreme (as it must), but one of its consequences is an approximation theorem for Toeplitz operators that extends even to the case when b is extreme. We shall give a proof of this extension in §5.

BACKGROUND ON H (b)-SPACES

Given ψ ∈ L ∞ (T), the corresponding Toeplitz operator T ψ : H 2 → H 2 is defined by

T ψ f := P + (ψ f ) ( f ∈ H 2 ),
where

P + : L 2 (T) → H 2 denotes the othogonal projection of L 2 (T) onto H 2 .
Clearly T ψ is a bounded operator on H 2 with T ψ ≤ ψ L ∞ (T) . (In fact, by a theorem of Brown and Halmos, T ψ = ψ L ∞ (T) , but we do not need this.) If h ∈ H ∞ , then T h is simply the operator of multiplication by h and its adjoint is 

T h . Consequently, if h, k ∈ H ∞ , then T h T k = T hk = T k T h ,
(I -T b T b ) 1/2 f H (b) := f H 2 ( f ∈ H 2 ker(I -T b T b ) 1/2 )).
This is the definition of H (b) as given in [START_REF] Sarason | Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF]. The original definition of de Branges and Rovnyak, based on the notion of complementary space, is different but equivalent. An explanation of the equivalence can be found in [6, pp.7-8]. A third approach is to start from the positive kernel

k b w (z) := 1 -b(w)b(z) 1 -wz (z, w ∈ D),
and to define H (b) as the reproducing kernel Hilbert space associated with this kernel.

As mentioned in the introduction, the theory of H (b)-spaces is pervaded by a fundamental dichotomy, namely whether b is or is not an extreme point of the unit ball of H ∞ . This dichotomy is illustrated by following result. Proof. The equivalence between (i) and (ii) is proved in [4, Theorem 7.9]. That (i) implies (iii) is proved in [START_REF] Sarason | Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF]. Clearly (iii) implies (iv). That (iv) implies (i) follows from [6, §V-1].

Theorem 2.2. Let b ∈ H ∞ with b H ∞ ≤ 1. The following statements are equivalent: (i) b is a non-extreme point of the unit ball of H ∞ ; (ii) log(1 -|b| 2 ) ∈ L 1 (T); (iii 
Henceforth we shall simply say that b is 'extreme' or 'non-extreme', it being understood that this relative to the unit ball of H ∞ .

From the equivalence between (i) and (ii), it follows that, if b is nonextreme, then there is an outer function a such that a(0) > 0 and |a| 2 +|b| 2 = 1 a.e. on T (see [START_REF] Sarason | Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF]). The function a is uniquely determined by b. We shall call (b, a) a pair. The following result gives a useful characterization of H (b) in this case.

Theorem 2.3 ([6, §IV-1]). Let b be non-extreme, let (b, a) be a pair and let f ∈ H 2 . Then f ∈ H (b) if and only if T b f ∈ T a (H 2 ).
In this case, there exists a unique function f + ∈ H 2 such that T b f = T a f + , and

(1) f 2 H (b) = f 2 H 2 + f + 2 H 2 .
We end this section with an example that was studied in [START_REF] Sarason | Local Dirichlet spaces as de Branges-Rovnyak spaces[END_REF]. Let [START_REF] De Branges | Canonical models in quantum scattering theory[END_REF] b 0 (z

) := τz 1 -τ 2 z ,
where τ := ( √ 5 -1)/2. The equivalence between (i) and (ii) in Theorem 2.2 shows that b 0 is non-extreme, and a calculation shows that the function a 0 making (b 0 , a 0 ) a pair is given by

a 0 (z) = τ(1 -z) 1 -τ 2 z .
It was shown in [START_REF] Sarason | Local Dirichlet spaces as de Branges-Rovnyak spaces[END_REF] that b 0 has the special property that f r

H (b 0 ) ≤ f H (b 0 )
for all f ∈ H (b 0 ) and all r < 1. Using a standard argument of reproducing kernel Hilbert spaces, it is easy to see that this implies that lim r→1 -f rf H (b 0 ) = 0. As we shall see in the next section, this property is not shared by general b.

DILATION IN H (b)

Our principal goal in this section is to prove the following theorem.

Theorem 3.1. Let b := b 0 B 2
, where b 0 is the function given by (2), and B is the Blaschke product with zeros at w

n := 1 -8 -n (n ≥ 1). Let f (z) := ∑ n≥1 4 -n /(1 -w n z) (z ∈ D).
Then b is non-extreme, f ∈ H (b), and we have

(3) lim r→1 - |( f r ) + (0)| = ∞ and lim r→1 - f r H (b) = ∞.
Notice that, by Theorem 2.3, if b is non-extreme and f ∈ H (b), then

f H (b) ≥ f + H 2 ≥ | f + (0)|.
Thus the second conclusion in (3) is actually a consequence of the first. We shall therefore concentrate our attention on the first conclusion.

To simplify the notation in what follows, we shall write k w (z) := 1/(1wz), the Cauchy kernel. It is the reproducing kernel for H 2 in the sense that f (w) = f , k w H 2 for all f ∈ H 2 and w ∈ D. In particular, k w 2

H 2 = k w , k w H 2 = k w (w) = 1/(1 -|w| 2 ). We remark that k w has the useful prop- erty that T h (k w ) = h(w)k w for all h ∈ H ∞ . Indeed, given g ∈ H 2 , we have g, T h (k w ) H 2 = hg, k w , H 2 = h(w)g(w) = h(w) g, k w H 2 = g, h(w)k w , H 2 .
The proof of Theorem 3.1 depends on two lemmas. The first lemma provides a class of functions f for which ( f r ) + (0) is readily identifiable. 

( f r ) + (0) = ∑ n≥1 c n φ (rw n ) (0 < r < 1).
Proof. The series defining f clearly converges absolutely in H 2 . Also, since T b k w n = b(w n )k w n = 0 for all n, we have T b f = 0, and consequently f ∈ H (b) by Theorem 2.3. Now fix r ∈ (0, 1) and consider

g := ∑ n≥1 c n φ (rw n )k w n .
As (φ (rw n )) n≥1 is a bounded sequence, this series also converges absolutely in H 2 , and a simple calculation gives T b ( f r ) = T a (g r ). Thus f r ∈ H (b) and ( f r ) + = g r . In particular (4) holds.

The second lemma is a technical result about Blaschke products.

Lemma 3.3. Let B be an infinite Blaschke product whose zeros (w n ) n≥1 lie in (0, 1) and satisfy

(5) 0 < α ≤ 1 -w n+1 1 -w n ≤ β < 1 2 (n ≥ 1).
Then there exists a constant C > 0 such that

|B(rw n )| ≥ C (w n ≤ r ≤ w n+1 , n ≥ 1).
Proof. We have

|B(rw n )| = ∞ ∏ k=1 ρ(w k , rw n ),
where ρ is the pseudo-hyperbolic metric on D, namely ρ(z, w) := |z -w|/|1 -wz|. The condition [START_REF] Fricain | Theory of H (b) Spaces[END_REF] implies that w n-1 < w n for all n, and even that w n-1 < w 2 n . Indeed, we have

(6) 1 -w 2 n ≤ 2(1 -w n ) ≤ 2β (1 -w n-1 ) < 1 -w n-1 . It follows that, if r ∈ [w n , w n+1 ], then rw n ∈ [w 2
n , w n w n+1 ] ⊂ (w n-1 , w n ), and consequently ( 7)

|B(rw n )| ≥ n-2 ∏ k=1 ρ(w k , w n-1 ) ×ρ(w n-1 , w 2 n )×ρ(w n , w n w n+1 )× ∞ ∏ k=n+1 ρ(w k , w n ) .
Thus the lemma will be proved if we can show that each of the four terms on the right-hand side of ( 7) is bounded below by a positive constant independent of n.

By [4, Theorem 9.2], the condition (5) implies that the sequence (w n ) is uniformly separated, in other words, that there exists a constant C > 0 such that

∏ k = j ρ(w k , w j ) ≥ C ( j ≥ 1).
Applying this with j = n -1 and j = n takes care of the first and fourth terms in [START_REF] Sarason | Local Dirichlet spaces as de Branges-Rovnyak spaces[END_REF].

For the second term in [START_REF] Sarason | Local Dirichlet spaces as de Branges-Rovnyak spaces[END_REF], note that (6) gives

w 2 n -w n-1 ≥ (1 -2β )(1 - w n-1
), and clearly also 1 -

w 2 n w n-1 ≤ 1 -w 2 n-1 ≤ 2(1 -w n-1 ), whence ρ(w n-1 , w 2 n ) = w 2 n -w n-1 1 -w 2 n w n-1 ≥ 1 -2β 2 .
Finally, for the third term in [START_REF] Sarason | Local Dirichlet spaces as de Branges-Rovnyak spaces[END_REF], we observe that w nw n w n+1 ≥ w 1 (1w n+1 ) and also 1 - The lemma also gives that

w 2 n w n+1 = (1 -w n ) + (w n -w 2 n ) + (w 2 n -w 2 n w n+1 ) ≤ 3(1 -w n ), whence ρ(w n , w n w n+1 ) = w n -w n w n+1 1 -w 2 n w n+1 ≥ w 1 3 1 -w n+1 1 -w n ≥ w 1 3 α.
( f r ) + (0) = ∑ n≥1 4 -n φ (rw n ) = ∑ n≥1 4 -n B(rw n ) 2 rw n 1 -rw n .
As the terms in this series are non-negative, each one of them provides a lower bound for the sum. Given r ∈ [w 1 , 1), we choose n so that w n ≤ r ≤ w n+1 . By Lemma 3.3 we have |B(rw n )| ≥ C > 0, where C is a constant independent of r and n. Thus

( f r ) + (0) ≥ 4 -n C 2 rw n 1 -rw n ≥ 4 -n C 2 w 2 n 1 -w 2 n 2 n (1 -r) -1/3 .
In particular ( f r ) + (0) → ∞ as r → 1 -, as claimed. Finally, as remarked earlier, this implies that f r H (b) → ∞ as r → 1 -.

We now present some consequences of this result. Proof. This follows immediately from Theorem 3.1 and the elementary identities

f r = ∑ n≥0 (1 -r)r n s n ( f ) and f r = ∑ n≥0 (n + 1)(1 -r) 2 r n σ n ( f ).
Let b be non-extreme, let (b, a) be a pair and let φ := b/a, say φ (z) =

∑ j≥0 φ ( j)z j . It was shown in [1, Theorem 4.1] that, if f is holomorphic in a neighborhood of D, say f (z) = ∑ k≥0 f (k)z k , then the series ∑ j≥0 f ( j + k) φ ( j)
converges absolutely for each k, and

(8) f 2 
H (b) = ∑ k≥0 | f (k)| 2 + ∑ k≥0 ∑ j≥0 f ( j + k) φ ( j) 2 .
It was left open whether the same formula holds for all f ∈ H (b). Using Theorem 3.1, we can now show that it does not.

Corollary 3.5. Let b, f be as in Theorem 3.1. Then ∑ j≥0 f ( j) φ ( j) diverges.

Proof. For r ∈ (0, 1), the dilated function f r is holomorphic in a neighborhood of D, and the argument in [START_REF] Chevrot | De Branges-Rovnyak spaces and Dirichlet spaces[END_REF] that establishes the formula (8) shows that

( f r ) + (0) = ∑ j≥0 r j f ( j) φ ( j).
If b, f are as in Theorem 3.1, then ( f r ) + (0) → ∞ as r → 1 -, in other words, lim

r→1 -∑ j≥0 r j f ( j) φ ( j) = ∞.
By Abel's theorem, it follows that the series ∑ j≥0 f ( j) φ ( j) diverges.

In Theorem 3.1, we chose b 0 so as to have a simple concrete example. With a more astute choice, we can prove more, obtaining examples where f r H (b) grows 'fast'. There is a limit on how fast it can grow: it was shown in [START_REF] Chevrot | De Branges-Rovnyak spaces and Dirichlet spaces[END_REF]Theorem 5

.2] that, if b is non-extreme and f ∈ H (b), then log + f r H (b) = o((1 -r) -1
) as r → 1 -. We now prove that this estimate is sharp. Theorem 3.6. Let γ : (0, 1) → (1, ∞) be a function such that log γ(r) = o((1r) -1 ). Then there exist b non-extreme and f ∈ H (b) such that f r H (b) ≥ γ(r) for all r in some interval (r 0 , 1).

Proof. Let φ 1 be any function in the Smirnov class N + that is positive and increasing on (0, 1). To say that φ 1 ∈ N + means that we can write 

φ 1 = b 1 /a 1 ,
( f r ) + (0) ≥ C 2 (1 -r) 2/3 φ 1 (16r -15) (w 1 < r < 1). Since log γ(r) = o((1 -r) -1
), it is possible to choose φ 1 so that right-hand side exceeds γ(r) for all r sufficiently close to 1. For these r, we therefore have

f r H (b) ≥ ( f r ) + (0) ≥ γ(r).

POLYNOMIAL APPROXIMATION IN H (b)

In this section we present a recipe for polynomial approximation in H (b) when b is non-extreme. It is based upon three lemmas. Lemma 4.1. Let h ∈ H ∞ and let p be a polynomial. Then T h p is a polynomial.

Proof. For k > deg(p), we have T h p, z k H 2 = p, z k h H 2 = 0. Lemma 4.2. Let h ∈ H ∞ with h H ∞ ≤ 1.
Then, for all g ∈ H ∞ , we have

T h g -g 2 H 2 ≤ 2(1 -Re h(0)) g 2 ∞ .
Proof. Expanding the left-hand side, we obtain 

T h g -g 2 H 2 = T h g 2 H 2 + g 2 H 2 -2 Re T h g, g H 2 ≤ 2 g 2 H 2 -2 Re g, hg H 2 = 2 2π 0 |g(e iθ )| 2 1 -Re h(e iθ ) dθ 2π ≤ 2 g 2 H ∞ 2π 0 1 -Re h(e iθ ) dθ 2π = 2 g 2 H ∞ (1 -Re h(0)).
. If h ∈ aH ∞ , then T h is a bounded operator from H 2 into H (b) and T h H 2 →H (b) ≤ h/a H ∞ .
Proof. Let h = ah 0 , where h 0 ∈ H ∞ . For f ∈ H 2 , we have

T b T h f = T b T a T h 0 f = T a T h 0 T b f , so, by Theorem 2.3, T h f ∈ H (b) and (T h f ) + = T h 0 T b f . Consequently T h f 2 H (b) = T h f 2 H 2 + T h 0 T b f 2 H 2 = T h 0 T a f 2 H 2 + T h 0 T b f 2 H 2 ≤ h 0 2 H ∞ ( T a f 2 H 2 + T b f 2 H 2 ) ≤ h 0 2 H ∞ f 2
H 2 , the last inequality coming from the fact that |a| 2 + |b| 2 = 1 a.e. on T, since (b, a) is a pair.

We now put these results together to produce a new and constructive proof of the following theorem. 

Proof. Let f ∈ H (b) and let ε > 0. Pick g 1 , g 2 ∈ H ∞ such that f -g 1 H 2 ≤ ε and f + -g 2 H 2 ≤ ε. Then pick h ∈ aH ∞ such that h H ∞ ≤ 1 and 2(1 -Re h(0)) ≤ ε 2 /( g 1 2 H ∞ + g 2 2
H ∞ ). (For example, let h be the outer function satisfying h(0) > 0 and |h| = min{1, n|a|} a.e. on T, where n is chosen sufficiently large.) Finally, pick a polynomial p such that

f -p H 2 ≤ ε/ h/a H ∞ .
By Lemma 4.1 T h p is a polynomial, and we shall show that f -T h p H (b) ≤ 6ε.

First of all, using Lemma 4.2 we have

f -T h f H 2 ≤ f -g 1 H 2 + g 1 -T h g 1 H 2 + T h g 1 -T h f H 2 ≤ f -g 1 H 2 + √ 2(1 -Re h(0)) 1/2 g 1 H ∞ + g 1 -f H 2 ≤ 3ε. Likewise, f + -T h f + H 2 ≤ f + -g 2 H 2 + g 2 -T h g 2 H 2 + T h g 2 -T h f + H 2 ≤ f + -g 2 H 2 + √ 2(1 -Re h(0)) 1/2 g 2 H ∞ + g 2 -f + H 2 ≤ 3ε. Now T b (T h f ) = T h (T b f ) = T h (T a ( f + )) = T a (T h ( f + ))
, so by Theorem 2.3 we have T h f ∈ H (b) and (T h f ) + = T h ( f + ), and

f -T h f 2 H (b) = f -T h f 2 H 2 + f + -T h f + 2 H 2 ≤ 9ε 2 + 9ε 2 ≤ (5ε) 2 .
Finally, using Lemma 4.3, we have

f -T h p H (b) ≤ f -T h f H (b) + T h f -T h p H (b) ≤ f -T h f H (b) + h/a H ∞ f -p H 2 ≤ 5ε + ε = 6ε,
as claimed.

TOEPLITZ APPROXIMATION IN H (b)

Recapitulating the proof of Theorem 4.4, we can approximate any f ∈ H (b)in H (b) by a polynomial of the form T h p, where h ∈ H ∞ and p is a polynomial. Indeed, by the triangle inequality,

f -T h p H (b) ≤ f -T h f H (b) + T h f -T h p H (b) .
The first term on the right-hand can be made small by choosing h with h H ∞ ≤ 1 and h(0) sufficiently close to 1. If, in addition, h ∈ aH ∞ , then the second term can be made small by choosing p sufficiently close to f in H 2 , for example a Taylor partial sum of f . This construction presupposes that b is non-extreme. Indeed it must, since otherwise H (b) may well contain no non-zero polynomials. However, the fact that f -T h f H (b) can be made small remains true even in the case when b is extreme. We isolate this idea in the following approximation theorem, valid for all b, extreme and non-extreme. 

(I -T b T b ) 1/2 f H (b) := f H 2 ( f ∈ H 2 ker(I -T b T b ) 1/2 )).
The spaces H (b) and H (b) are related through the following theorem. 

f 2 H (b) = f 2 H 2 + T b f 2 H (b) .
The advantage of H (b) over H (b), for our purposes at least, is that it has another description making it a little more amenable.

Theorem 5.3 ([6, §III-2]). Let b ∈ H ∞ with b H ∞ ≤ 1. Let ρ := 1 -|b| 2 on
T, let H 2 (ρ) be the closure of the polynomials in L 2 (T, ρ dθ /2π) and let J ρ : H 2 → H 2 (ρ) be the natural inclusion. Then J * ρ is an isometry of H 2 (ρ) onto H (b).

Using this result, we can prove a version of Theorem 5.1 for H (b). Proof. Let ρ := 1 -|b| 2 on T, and define H 2 (ρ) and J ρ as in the preceding theorem. Given h ∈ H ∞ , let M h : H 2 (ρ) → H 2 (ρ) be the operator of multiplication by h, namely M h g := hg (g ∈ H 2 (ρ)). Note that M h J ρ = J ρ T h , so, taking adjoints, we have (9) J * ρ M * h = T h J * ρ . Now let f ∈ H (b). By Theorem 5.3, there exists g ∈ H 2 (ρ) such that f = J * ρ g. Using (9), we have T h n f = T h n J * ρ g = J * ρ M * h n g. As J * ρ is an isometry of H 2 (ρ) onto H (b), it follows that T h n f ∈ H (b) and that

T h n f -f H (b) = M *
h n gg H 2 (ρ) . It therefore remains to show that lim n→∞ M * h n gg H 2 (ρ) = 0 for all g ∈ H 2 (ρ). It suffices to prove this when g ∈ H ∞ , because H ∞ is dense in H 2 (ρ) and the operators M * h n are uniformly bounded in norm (by 1). For g ∈ H ∞ , the same proof as that of Lemma 4.2 gives that M * h n gg 2 H 2 (ρ) ≤ 2(1 -Re h n (0)) g 2 H ∞ , and as the right-hand side tends to zero, the proof is complete. Part of this research was carried out during a Research-in-Teams meeting at the Banff International Research Station (BIRS). We thank BIRS for its hospitality.

  ) H (b) contains all functions holomorphic in a neighborhood of D; (iv) H (b) contains all polynomials.

Lemma 3 . 2 .

 32 Let b be non-extreme, let (b, a) be a pair and let φ := b/a. Let f := ∑ n≥1 c n k w n , where (w n ) n≥1 are zeros of b and (c n ) n≥1 are scalars with ∑ n |c n |(1 -|w n |) -1/2 < ∞. Then f ∈ H (b) and (4)

Proof of Theorem 3 . 1 .

 31 As remarked in §2, the function b 0 is non-extreme and the function a 0 making (b 0 , a 0 ) a pair satisfies φ 0 := b 0 /a 0 = z/(1z). As b and b 0 have the same outer factors, it follows that b is non-extreme and the function a making (b, a) a pair is just a 0 . Hence φ := b/a = B 2 b 0 /a 0 = B 2 φ 0 . By Lemma 3.2, we have f ∈ H (b).

Corollary 3 . 4 .

 34 Let b, f be as in Theorem 3.1. Then the Taylor partial sums s n ( f ) of f and their Cesàro means σ n ( f ) satisfy lim sup n→∞ s n ( f ) H (b) = ∞ and lim sup n→∞ σ n ( f ) H (b) = ∞.

where a 1 ,

 1 b 1 ∈ H ∞ and a 1 is outer. Multiplying a 1 and b 1 by an appropriately chosen outer function, we may further ensure that |a| 2 + |b| 2 = 1 a.e. on T and that a 1 (0) > 0, in other words, that (b 1 , a 1 ) is a pair. Repeating the proof of Theorem 3.1 with b 0 replaced by b 1 (but with the same B), we obtain f ∈ H (b) such that

Lemma 4 . 3 .

 43 Let b be non-extreme and let (b, a) be a pair

Theorem 4 . 4 .

 44 If b is non-extreme, then polynomials are dense in H (b).

Theorem 5 . 1 .

 51 Let (h n ) n≥1 ⊂ H ∞ be such that h n H ∞ ≤ 1 and lim n→∞ h n (0) = 1. Then, given b in the unit ball of H ∞ and f ∈ H (b), we have T h n f ∈ H (b) for all n and lim n→∞ T h n ff H (b) = 0. The proof of this result requires a little more background on de Branges-Rovnyak spaces, which we now briefly summarize. Let b ∈ H ∞ with b H ∞ ≤ 1. We define the space H (b) in the same way as H (b), but with the roles of b and b interchanged. Thus H (b) is the image of H 2 under the operator (I -T b T b ) 1/2 , with norm defined by

Theorem 5 . 2 ([ 6 ,

 526 §II-4]). Let b be an element of the unit ball of H ∞ and let f ∈ H 2 . Then f ∈ H (b) if and only T b f ∈ H (b), and in this case

Theorem 5 . 4 .
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