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Abstract

We propose an automatic data processing pipeline to extract vocal productions
from large-scale natural audio recordings and classify these vocal productions.
The pipeline is based on a deep neural network and adresses both issues simulta-
neously. Though a series of computationel steps (windowing, creation of a noise
class, data augmentation, re-sampling, transfer learning, Bayesian optimisation),
it automatically trains a neural network without requiring a large sample of
labeled data and important computing resources. Our end-to-end methodology
can handle noisy recordings made under different recording conditions. We test
it on two different natural audio data sets, one from a group of Guinea baboons
recorded from a primate research center and one from human babies recorded at
home. The pipeline trains a model on 72 and 77 minutes of labeled audio record-
ings, with an accuracy of 94.58% and 99.76%. It is then used to process 443 and
174 hours of natural continuous recordings and it creates two new databases of
38.8 and 35.2 hours, respectively. We discuss the strengths and limitations of this
approach that can be applied to any massive audio recording.
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1 Introduction

The manual process of continuous audio recordings to extract and label vocalizations
is a complex, tedious and error-prone task. Databases obtained manually are the
result of a large and time-consuming task. With an automatic method, we can quickly
and cheaply build new massive databases. Many continuous-time audio recordings
represent significant amounts of data, within which the events of interest are infrequent
or even rare. Yet these continuous recordings have their own merit: recording an
ecosystem without the presence of an experimenter, then automatically extracting
vocalizations from it, makes it possible to create new, richer databases. Having a larger
number of vocalizations with greater variability would provide domain experts with
much more important and relevant information to refine or even challenge repertoire
definitions. In this article, we propose a methodology entirely based on a deep neural
network to address the dual challenge of (1) detecting vocalization periods and (2)
performing supervised classification of these vocalizations. We need a general workflow,
adaptable to find vocalizations of different species, produced in different conditions
and different ecosystems. The workflow should be user-accessible, relatively fast and
cheap to implement and run. It should require neither massive computational resources
nor massive labeled data.

This dual challenge faces numerous issues. Firstly, the vocalization data are neces-
sarily scarce due to manual processing to obtain them, or the limitations of publicly
available databases. Secondly, the audio data are captured in uncontrolled environmen-
tal conditions, and we have to contend with a variety of background sounds. Thirdly,
recording conditions may vary, including different microphone positions or orienta-
tions, the use of multiple microphones during recording, and the subject’s position
relative to the microphone. Fourthly, it is necessary to address the issue of the dig-
ital representation of such audio data. Finally, we aim to control the computational
cost to maintain reasonable resource usage and facilitate the wider adoption of the
proposed procedure. Traditional detection methods (1) filter the signal, (2) extract a
feature vector and (3) use a classification model on this vector [1–4]. Neural network
avoids these steps learning a hierarchical representation of data automatically [5], in
an end-to-end manner. It becomes state-of-the-art in bioacoustics and event detection
problems [6], detecting animal vocal productions when these are in low proportions
in massive audio recordings [7], and despite the noise present in the recordings [8].
But the limitations remain significant for use on many detection problems [9]. These
approaches require training databases (and the computational resources that go with
them) which are often not available.

The objective of the methodology we propose is to detect variable-duration
vocalization segments within a continuous recording and label them according to a
pre-labeled training dataset. Our methodology is based on a single deep neural net-
work that handles all the tasks we aim to achieve using raw PCM audio files and a
pre-labeled training database. It is described in the second part of this article. We
have taken great care in this method to avoid biases. To be able to delineate vocal-
ization segments in the recordings, the machine learning method should be trained
on a base that is as representative as possible of the soundscape, including, e.g. bio-
logical, geophysical, anthropogenic sounds sounds [7, 10]. We detail the data required
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for training and its enrichment, the proposed network architecture, its optimization
through data-driven adjustments, the cost function, as well as the transfer learning
from a pre-trained network. Transfer learning has already proved its worth for sound
event detection [11–14]. Indeed, we have adopted the representation provided by the
YamNet model [15]. This trained deep neural network is based on a MobileNet archi-
tecture [16] and has been trained on the massive AudioSet database [17]. Starting
from a mel spectrogram of dimension 96× 64, YamNet learns a 1024-dimensional rep-
resentation of the audio signal, that is then used to solve a classification problem with
521 different classes. The massive AudioSet database, composed of more than than 2
billions of 10-seconds audio records, has been used in various bioacoustic tasks [9] and
for different sound event detection tasks [18, 19]. Additionally, the MobilNet architec-
ture that was implemented to set YamNet, with deep-wise and piece-wise convolution
layers, has been designed to be resource-efficient. Relying on YamNet in the middle
of our network will ease the resort to our method without placing a heavy burden on
computational resources. Moreover, since we keep the weights of YamNet as they are,
the fitting on the learning database is simplified.

The third part of this article provides a numerical evaluation of the proposed
method using two distinct studies. The first study focuses on recordings of baboons in
their habitat at a primate research center. The training database, whether for vocal-
ization detection or classification, is derived from manual labeling of a few recordings
captured using the same setup. The second study involves recordings of human infants
in their natural environment using recording devices provided to parents. Here, the
training database relies on publicly available data concerning infants, which may not
possess the same acoustic properties as they originate from other recording conditions.
While not an exhaustive evaluation of the proposed method, we draw important con-
clusions regarding the method’s qualities at the end of this part and in the conclusion
section.

2 Methodology

This section presents the method we propose for processing these sound recordings.
The recordings are divided into short overlapping frames of 1 second each. The details
of this segmentation and the training databases are provided in Section 2.1. Our
methodology for processing these frames using a single neural network is described in
Section 2.2. To keep the structure of our network relatively simple, we completely dis-
regard the temporal correlation between successive frames in the continuous recordings
as well as in the training databases. While other choices are possible, such as using
recurrent networks, training them on medium to large databases can be computation-
ally expensive. Furthermore, for sound production detection tasks, the usefulness of
using recurrent layers is limited [9]. The adjustment of the network’s layers that need
to be calibrated on data is described in Section 2.3. Our objective also requires a step of
reconciling predictions on successive frames of the continuous recording, which is also
provided in this Section. This reconciliation step allows us to obtain variable-duration
vocalization segments and a single labeling per segment.
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2.1 Data

To create a suitable training dataset for our dual problem, we need to build two banks
of sound recordings. The first bank of audio recordings should consist of labeled vocal-
ization recordings (short or long) without any silence. It aims to address the problem
of labeling the detected vocalizations in continuous recordings. These recordings can
be manually extracted from the continuous sound recordings and labeled by an expert.
Alternatively, they can be sourced from publicly available databases. The second bank
of audio recordings aims to delineate the vocalization segments from the soundscape
in our continuous recordings. The soundscape is the acoustic expression of an ecosys-
tem [10] or an environment. Hence we highly recommend to build the second bank of
background sounds without vocalizations by hand-picking them from the continuous
audio recordings. To be as representative as possible of the diversity of noise, they
should be picked at various places throughout the whole continuous recordings. Since
vocalizations are more seldom than background noises, they should be relatively easy
to isolate by hand. Moreover, once those two banks are compiled, we strongly encour-
age the resort to relevant data augmentation techniques to enrich these data. We used
the ready-to-use library of McFee et al. [20], which allows us to multiply by 15 the
number of labeled recordings we have in the first bank. From each original file, we
shift the pitch by 5 values linearly spaced within (−4, 4), we stretch the speed by 5
values logarithmically spaced within (0.81, 1.23), and we add 5 background noise from
the second bank.

To standardize the audio recordings, we assume that they are all available as a
single-channel audio signal, sampled at 16 kHz in PCM format, for example as WAV
files. The pulse modulation signal is translated to be on a scale between −1 and +1.
Through windowing, the signal is divided into frames of one second each, with an
overlap of 80%. This divides a recording of T seconds into 5T frames. The position
of each frame along the continuous recordings should be saved. The same process is
also applied to the recordings of the two banks, yet saving their position is useless.
Note that a time window of one second is consistent with the problem with which
we are dealing. It allows us to quickly discard noise segments from the data to be
analyzed. And one second seems to be a good compromise, sufficient to encompass
most vocalizations but not too large to be easily processed.

Whether it is the frames obtained from the decomposition of the continuous record-
ing to be analyzed or from the two banks, we use the following conventions in the
notations: x represents a one-second audio signal, y ∈ {0, 1} is a vocalization indi-
cator, and z ∈ {1, 2, . . . ,K} is the label of the vocalization. Note that if x is not a
vocalization, y = 0 and z takes an arbitrary value. At this stage, we can aggregate
the frames coming from the two banks as a single table of triplets (xi, yi, zi), where
i = 1, 2, . . .. As usual in machine learning, the table should be divided in three parts:
a training dataset (≈ 60%), a validation and a test dataset (≈ 20% each).

To serve as input to the YamNet deep neural network [15], these one-second frames
need to be represented in the time-frequency domain using a log-mel spectrogram.
The log-mel spectrogram mimics the sensitivity of the human ear to frequency and
amplitude differences. This transformation is a frequent pre-processing step of audio
signal to input them into deep learning models. The following steps are required to
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Table 1: Network Architecture

Type Input Size

Log-scaled Mel Spectrogram 16000× 1

Y
a
m
N
et

Convolution 96× 64× 1

...
...

Average Pooling 3× 2× 1024

D
et
ec
ti
o
n

Fully Connected 1× 1× 1024
Batch-Normalization

Drop-out

Fully Connected 1× 1×md
1

Batch-Normalization
Drop-out

...
...

Fully Connected 1× 1×md
(ℓd−1)

Batch-Normalization
Drop-out

Sigmoid 1× 1×md
ℓd

C
la
ss
ifi
ca

ti
o
n

Fully Connected 1× 1× 1024
Batch-Normalization

Drop-out

Fully Connected 1× 1×mc
1

Batch-Normalization
Drop-out

...
...

Fully Connected 1× 1×mc
(ℓc−1)

Batch-Normalization
Drop-out

Softmax 1× 1×mc
ℓc

ℓd, ℓc ∈ J1, 6K, learned on the data.

md
i ∈ J32, 1024K, learned on the data, for i = 1, . . . , ℓd

mc
i ∈ J32, 1024K, learned on the data, for i = 1, . . . , ℓc

obtain an input of dimension 96 × 64: (1) apply the Short-Time Fourier Transform
(STFT) with a window size of 25 ms, a hop size of 10 ms, and a Hann window function,
(2) segment the spectrum into 64 mel bins spanning the frequency range of 125 -
7500 Hz, and (3) apply a logarithmic scaling. This process can be accomplished using
one layer of a neural network. We have made this choice in our code for the sake of
efficiency in our pipeline.

2.2 Network architecture

We rely on the YamNet network to move from the mel spectrogram of dimension
96×64 to a representation of the audio frame in dimension 1024 that is more relevant
for the dual problem at hand. The first layer that computes the mel spectrogram, as
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well as the layers transferred from YamNet are not fitted on the data described in
Section 2.1.

The dual problem we are trying to solve begins with the prediction of (y, z) given
the observation x of a one-second frame. From a mathematical point of view, the
problem can be reduced to the prediction of K + 1-classes’ problem by predicting
t = yz ∈ {0, 1, 2, . . . ,K}: we simple add a non-vocalization class (labeled by 0) to
the classes of vocalization. Yet we expect that the difference between a silence or a
noise from the soundscape and a vocalization is much larger than the subtle difference
between two classes of vocalizations. Resolving the detection problem is thus a simpler
learning task compared to the classification of vocalizations. We might expect a high
error rate in the subsequent classification of detected vocalizations. Yet it is crucial to
maintain strict control over the error rate in vocalization detection since our primary
focus is on finding the seldom vocalization in continuous recordings. Furthermore,
using the 1024-dimensional representation of YamNet, the detection problem should
not be approached in the same way as the classification problem: the relevant coor-
dinates and/or the manner in which to use these coordinates to solve both problems
are likely to be different. Based on these considerations and supported by preliminary
numerical results (not presented in this article), we have chosen to treat the detection
and classification problems separately while developing a single neural network.

Instead of directly predicting (y, z), we construct a network that outputs estimates
p̂(x) and q̂(x) of the posterior probability vectors:

pk(x) = P(y = k|x), k = 0, 1

qk(x) = P(z = k|x), k = 1, . . . ,K.

The value of z indicates the class of the vocalization and is only meaningful if x is
such a recording. Hence, our loss function is

L
(

(y, z), (p̂, q̂)
)

= −(1 − y) log p̂0 − y log p̂1 − y

( K∑
k=1

1{z = k} log q̂k

)
(1)

where the second cross-entropy term plays a role only if y = 1, i.e., only if it is a
vocalisation.

For all those reasons, we add two separated modules on top of the last layer of
YamNet. They aim at estimating p(x) and q(x) respectively. Both need to be trained on
data and are composed of fully connected layers with Parametric Rectified Linear Unit
activation function [21]. The weights of the two modules are initialized following the
initialization scheme proposed by He et al. [21], which should facilitate the convergence
of the model [22]. The number of layers of each module is between 1 and 6, the number
of nodes by layer between 32 and 1024. We rely on a regularization strategy to avoid
problem of over-fitting: a batch normalization [23] is computed after each layer, as
well as drop-out and a max constraint on the norm of the weights [24]. The activation
function of the last layer of each module is either a sigmoid or a softmax function to get
the desired posterior probabilities. The resulting architecture is described in Table 1.
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2.3 Fit on the data

Gradient based algorithm show the advantage of our architecture. To learn from our
training dataset, we minimize the loss in Equation (1) with the NAdam algorithm
[25, 26]. Many layers of our network are frozen and transferred. Yet the layers of the
two modules should be fitted to the data. When the input data is a non-vocalization
frame, the loss reduces to the cross-entropy of the detection module’s output p̂(x).
Its gradient with respect to the network weights to be adjusted is therefore zero on
the weights of the classification module. On the other hand, when the input data is a
classified vocalization frame, the loss is the sum of two cross-entropies, each computed
on the output of one of the modules, either p̂(x) or q̂(x). In this case, the gradient
decomposes into the sum of two vectors: the first vector only affects the weights of
the detection module, and is obtained by taking the gradient of the detection cross-
entropy; the second vector only affects the weights of the classification module, and
is derived from the gradient of the classification cross-entropy. Thus, the adjustment
of both modules can be done simultaneously, without the improvement of one module
degrading the performance of the other module. However, if we had relied on a single
module to solve the single classification problem with (K + 1) classes by adding a
non-vocalization class to the K vocalization classes, this observation would no longer
hold. As the detection problem is simpler than the vocalization classification problem
(see Section 2.2), the single network struggles to adjust to the dual problem. The two-
module solution is a way to avoid bias due to the fact that detection is simpler than
classification of vocalizations.

To avoid other bias, we need to take care of the way training frames enter in
the NAdam algorithm, and deal with possible unbalanced training data. The solution
we propose is as follows. Each batch is composed of Nbatch triplets (xi, yi, zi) drawn
from the training dataset with replacement. Each triplet is drawn as follow. First, we
draw y† uniformly over {0, 1}. If y† = 0, we draw the triplet at random among the
non-vocalization triplets, namely {(xi, yi, zi) : yi = y†}. Otherwise, y† = 1, we draw
z† uniformly over {1, . . . ,K} and pick a triplet at random among the vocalization
triplets of class z†, namely {(xi, yi, zi) : yi = y†, zi = z†}. Thus, on average, half
of each batch is composed of non-vocalization frames; and among the vocalization
frames, the K classes are balanced. Since the data seen by NAdam is an infinite flow
of triplets drawn at random from the training dataset, we define an epoch as a set of
Nepoch = (K + 1)Nmax/Nbatch batches, where Nmax is the size of the set of the largest
class of vocalization and Nbatch the size of the batch. Along the NAdam algorithm,
the learning rate is decreased by a factor of 0.2 if the validation loss has not decreased
after 5 epochs. And the whole algorithm is stopped after 20 epochs without validation
error decrease.

The hyperparameters of the two modules are calibrated on the validation dataset
using a Bayesian optimization scheme [27–29] which minimizes the validation com-
puted with the loss given in Equation (1). The parameters of the NAdam algorithm,
as well as the parameters that defines the precise architecture of the two modules are
calibrated with this method, are given in Table 2.
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Table 2: Hyper-parameters of the model

Hyper-parameters Research Space

pdrop-out (dropout within both modules) [0.1, 0.9]
cnorm (batch-normalization within both modules) J0, 8K

α (learning-rate) [1e− 10, 1e− 2]
β1 (decay-rate of the moving average of the gradient) [0, 0.9]

β2 (decay-rate of the moving average of the squared gradient) [0.99, 0.9999]

ℓd (number of hidden fully connected layers) J1, 6K
ℓc (number of hidden fully connected layers of the classification module) J1, 6K

mi, for i = 1, . . . , ℓd and ℓc (number of nodes per layer) J32, 1024K

2.4 Vocalization delineation and classification

The use of the trained network to delineate a vocalization period on a continuous
audio recording as well as its classification needs to be explained. We need a concili-
ation procedure that reintroduce the temporal dependency of our overlapping frames
that was lost by the network. More precisely, we need a rule that allows errors in
the detection of vocalization frames, and in the classification of detected vocalization
frames. To this aim, we design the procedure given below with the following rules.
First, a vocalization period can include period of time of length less than one second
where vocalizations have not been detected by the network. Second, to aggregate the
class predictions, we use a majority vote.

As before, the recording to be analyzed of length T ⋆ seconds should be divided into
frames of 1s with an overlap of 80%. Let us denote x⋆

t , t = 1, . . . , 5T ⋆ the t-th frame
of this recording. Using the trained network, we can compute for each t the maximum
a posteriori:

ŷ⋆t =

{
1 if p̂1(x⋆

t ) > 0.5,

0 otherwise
ẑ⋆t = argmaxkq̂k(x⋆

t ).

In order to delineate a vocalization segment based on the predicted values ŷ⋆t ,
t = 1, . . ., we introduce a equivalence relation on the set T1 = {t : ŷ⋆t = 1} as follows.
We say that t ∼ t′ if and only if there exists an increasing sequence t0, . . . , tN ∈ T1
such that t0 = t, tN = t′ and ti+1 − ti ≤ 5. It means that the audio segment starting
with the frame at position t and ending with the frame at position t′ is composed
of frames that are predicted as vocalizations, expect on small time periods that last
less than one second. The equivalence classes of this relation are easy to determine
along time. The position of the starts and ends of the vocalization segments along
the continuous recording are then given by the starts and the ends of the equivalence
classes of this equivalence relation.

Once a vocalization segment is delineated, we have to predict its class. To this aim,
we use the predicted classes ẑ⋆t of the frames that compose the segment. Considering
our loss function given in Equation (1), the predicted classes are reliable only on the
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frames that have been detected as vocalizations. Among these reliable predictions, a
majority vote allows us to determine the class of the vocalization segment.

3 Experimental Validation

The proposed pipeline has been tested in two different studies: a first study dealing
with baboon vocalizations and a second one dealing with human baby vocalizations.
The first study is a bioacoustic problem that aims at collecting vocalizations of Guinea
baboons (Papio papio). The second study is a developmental psycho-acoustic problem
and is focused on the vocalizations of human infants between 0 and 12 months of age.
For each study, the output is a large-scale database of labeled vocalizations.

The data of the two studies are described in Section 3.1.

3.1 From audio recordings to data banks for our method

Both studies aim at capturing vocalizations that are not provoked by the experimental
setup, using continuous and possibly daylong recordings. However, the recording con-
ditions are quite different. These two studies provide a first example of the diversity
of situations to which our method can adapt, as each of them contains different sound
events other than vocalizations, as well as different background noises that interfere
with the vocalizations.

In the baboon study, we recorded continuously during approximately one month
a group of 25 Guinea baboons (Papio papio) from the CNRS primatology center of
Rousset-sur-Arc (France). The group lives in semi-liberty in a large rectangular enclo-
sure outdoors. Ethical agreement (# 02054.02) was obtained from the CEEA-14 for
experimental animal research to conduct audio recordings of the baboons’ vocaliza-
tions. Two microphones are placed at two corners of the enclosure. In addition to the
baboons’ vocalizations, the sound environment is composed of climatic events (wind,
rain), the presence of other nearby animal species (sheep, birds), and human activities
(people around the enclosure, cars on the nearby highway, planes, etc.). One month
of recording leads to a tremendous amount of data: after removing night recordings
when baboons are at sleep inside a room (from 9 pm to 7 am), there is a total of 460
files representing 443 hours of recording (i.e., 1 595 018.24 seconds).

In the human study, we collected recordings from two human babies at home from
birth to their first birthday, at a rate of three days per month. An ethical agreement (#
2019-12-12-005) was obtained from the ethics committee of Aix-Marseille University
as well as a declaration of conformity from the CNIL (# 2222631 v 0) for experimental
research on humans in order to make audio recordings of human baby vocalizations.
All parents gave their informed consent for inclusion before their inclusion in the study.
The records were done by the parents at different moments of the days and nights.
The parents were instructed to start and stop themselves the recordings. Although
less noisy than the baboon environment, the recordings are composed of a lot of
heterogeneous sources of sounds: TV, radio, domestic works, parents, other children.
In total, the records represent 174.15 hours (626 940 seconds) for the two children.

Both studies had some uncontrolled recording conditions. In the baboon study,
the microphone had a fixed position and the signal source is mobile. The monkeys
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move and vocalize from various location into different direction. In the human study,
the microphone is constantly changing position. With each new recording, the parents
place the microphone in a position that may be different from the source, the baby.

In addition to the continuous sound recordings to be analyzed, our method is based
on two recording banks for each study: a first bank of non vocalization recordings,
and a second bank of labeled vocalization recordings. In both studies, the first bank
that helps to delineate vocalizations was extracted from the continuous recordings, as
proposed in Section 2.1. In the baboon study, we listened to a total amount of 7 hours
of these recordings from which we removed the vocalizations. In the human study, we
used the same method on a total amount of 5 hours of recordings. In both cases, we
took care to get a bank as representative as possible of the various sound events and
noises: the excerpts we listened to were chosen at different dates and times of the day
and came from different families. For the baboon study, it represents 355.62 minutes.
For the baby study, it represents 104.56 minutes.

The bank of labeled vocalization recordings were constructed differently in both
studies. In the baboon study, we had from a previous study [30] a total amount of
72.49 minutes of labeled vocalization, divided into 6 classes: bark, copulation grunt,
grunt, scream, wahoo, and yak. These baboon vocalizations came from the same group
of baboons and from the same experimental setup. In contrast, the baby vocalizations
came from a public database [31], based on daylong audio recordings of 49 children
(1–36 months) from five different languages and cultural backgrounds that were anno-
tated by citizen scientists. This public database gave us a bank of labeled vocalizations
that represents a total amount of 77.03 minutes of recordings, divided into 5 classes:
canonical, crying, junk, laughing, non-canonical. In both studies, the classes in the
vocalization bank were unbalanced. More details on the composition of the two banks
in both studies are given in the Supplementary Materials (Table 4 and 6)

3.2 Performance of our deep learning architecture

Before presenting the final results of the proposed methodology, we start by analyzing
the outputs of our network on the 1-second frames from the test datasets of both
studies: Table 3 provides different evaluations of the network’s performance on our
dual problem, calculated using standard metrics. Detailed confusion matrices for the
detection problem as well as the classification problem in both studies are given in
Supplementary Materials (Figures 1 and 2). At first glance, the results are relatively
similar, suggesting that our pipeline can be used successfully in different types of
studies. In particular, the performances in the detection problem measured with the
precision and recall metrics indicate that we succeeded in our primary goal of detecting
correctly the vocalization frames.

As can be seen in Table 3, the detection problem is resolved more satisfacto-
rily in the study on human infants than in the study on baboons. We can propose
two explanations for this discrepancy. Firstly, the quality of the recordings of baby
vocalizations is much better than that of baboons: they were made in a much qui-
eter place, at quieter times of the day, and with a microphone likely closer to the
source, whereas baboons move in a noisier and larger environment. Particularly, on
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Table 3: Performance of the deep learning in the
baboon and human studies

Data set

Baboon Baby

Loss (from equation 1) 0.12 0.07

Detection

Cross-entropy 0.04 0.01

Accuracy 94.58 99.76

AUC 0.94 0.99

Precision 82.68 99.33

Recall 90.28 99.74

Classification Cross-entropy 0.23 0.26

Accuracy 48.92 39.96

windy days (Mistral), the recordings of the baboon study are of very poor quality. Sec-
ondly, the 1024-dimensional representation provided by YamNet is likely more suited
to detect human vocalizations than baboon vocalizations. Indeed, this representation
was learned on the Audioset database to solve a classification problem with 521 classes.
This massive database contains numerous antropophonic sounds distributed across
several classes. But vocalizations of animals are much rarer and distributed across
coarser classes.

On the other hand, we can see in Table 3 that the classification problem is resolved
more satisfactorily in the baboon study even if it is a 6-classes problem whereas the
baby vocalizations are divided in 5 classes only. Even though YamNet was not origi-
nally designed to understand the differences between baboon vocalizations, the results
of our methodology are relatively good at classifying them. Moreover, the distinction
between the classes of infant vocalizations is likely more subtle than the differences
between the classes of baboon vocalizations. The study on infants marks the begin-
ning of an investigation into language development. In the early months, the infants
are still in the process of learning this classification for themselves, and the differences
between the vocalizations produced can sometimes be subtle. A more closer look at
the confusion matrices given in Supplementary Materials shows that the major part
of errors in the baboon study comes from rather similar classes: “copulation grunt”
which is a specific class in our study can be seen as a specific type of “grunt” and a
“bark” vocalization share common features with a “yahoo”.

We processed the continuous audio recordings for both problems on a laptop with
a single GPU, on which Tensorflow [32] was able to train and run the deep network.
The 460 files representing 443 hours of continuous recording of the baboon have been
loaded, segmented, and classified in 9 hours 28 minutes. The 261 files representing 174
hours of continuous recording for the two human babies have been loaded, segmented,
and classified in 9 hours 44 minutes.
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3.3 New large-scale databases of vocalizations

Once the model has been trained on the labeled data, we can use it on the massive
continuous data to extract the moments of vocalization and create two new large-scale
data sets. We can measure the amount of data extracted and the time to do it.

Two new databases are constructed from the continuous recordings processed by
the model through our pipeline. The new human baby database represents 35.20 hours
of records. The new baboon database represents 38.75 hours of records. Table 7 and
5 respectively, summarizes the distribution for each class, for each data.

We have made the data extracted by our model from continuous baboons record-
ings freely accessible on https://zenodo.org/record/7963124. This includes the labeled
database used for training, as well as the vocalizations detected during the month
and a csv file summarizing, for each vocalization, its duration, probability and
vote for each class. A typical day was also made available, to give everyone the
chance to test the model on this typical example (it was not possible to make
more than one day of continuous recording available for legal reasons). The code is
accessible on https://gitlab.com/papers4375727/detection-and-classification-of-vocal-
productions.git, with an exemple with this day to reproduce the work. Results for
baby recordings are not accessible for legal reasons.

4 Conclusion and Discussion

The goals of the pipeline were to quickly process and classify hundreds of hours of
audio, with as few errors as possible, minimizing information loss, through an end-to-
end pipeline with no engineering steps, so that it can be reused in different situations.
In addition, the pipeline had to adapt to various environmental sound classification
problems, with little labeled data for learning.

Our two-module architecture, together with the care taken with the training set,
enables us to achieve high scores on precision and recall in the vocalization detection
problem. This was the primary objective of our methodology, and we can consider that
it has been achieved without mobilizing massive computing resources, thanks to the
transfer of YamNet. Even on vocalizations with which YamNet is unfamiliar, such as
those of baboons, the detection scores (precision and recall) remain very high, showing
that our method is capable of attacking a certain diversity of species.

The two studies of Section 3 show that YamNet has sufficient generality to tackle a
wide class of problems similar to the one addressed in this work. AudioSet is massive
enough to learn a representation which distinguish between one type of signal and
another, between a species’ vocalization and the rest of its soundscape. The two studies
show that our method is robust to a variety of complicated recording conditions, and
generic enough for use in a variety of contexts, species,. . . The limits are certainly in
the frequency range to which YamNet is sensitive. This range is similar to that of
the human ear; it does not allow us to deal with species such as bats, for example,
which emit sounds in the high treble or ultra-sounds. The representation transferred
by YamNet is undoubtedly not the most appropriate for tackling a problem without
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adopting an anthropocentric stance, since it is based on a representation designed for
the human ear [33].

Thanks to our two-module architecture, we can handle a second problem simulta-
neously with detection, such as the classification of vocalizations, without degrading
detection scores. Classification scores are less satisfactory, but this problem, like
many learning problems on vocalizations, requires the learning model to be able to
distinguish more subtle differences. Probably, our training bases were too limited,
representing a total of one hour of recording in which our classes were unbalanced.

The conciliation procedure we have introduce in Section 2.4 to reintroduce the
temporal dependency is quite rough. We discarded other attempts that introduced too
many computational burden for the output provided. Yet, we have lost the uncertainty
measure provided by the network through p̂(x) and q̂(x). It would be interesting
to develop a probabilistic method capable of performing this reconciliation, without
weighing down our pipeline numerically.
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(a) Detection of vocalizations against
noise.

(b) Classification of the detected
vocalizations.

Fig. 1: Confusion matrices for the baboon data.
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(a) Detection of vocalizations against
noise.

(b) Classification of the detected
vocalizations.

Fig. 2: Confusion matrices for the human baby data.

Table 4: Total and per partition distribution of the baboon labeled data set.

(a) Initial sample size, number of records and duration for each vocalization class, for the
baboon data set.

Classes

Bark Copulation Grunt Scream Wahoo Yak

Number of records 269 68 502 414 97 60

Duration in seconds 192.1 132.1 2007.5 1695.8 146.4 175.5

Mean record time (secs) 1.3 3.0 6.7 7.0 2.4 4.9

(b) Number of records and their duration per vocalization class for the training set of the
baboon data set

Classes

Bark Copulation Grunt Scream Wahoo Yak Noise

Numbers of
records

152 44 302 244 51 36 82

Duration in
seconds

98.5 84.3 1252.9 951.6 105.3 99.1 13884.7

Mean record
time (secs)

0.7 1.9 4.2 3.9 1.7 2.8 169.3
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Table 4: Total and per partition distribution of the baboon labeled data set.

(c) Number of records and their duration per vocalization class for the validation set of the
baboon data set

Classes

Bark Copulation Grunt Scream Wahoo Yak Noise

Numbers of
records

54 11 101 89 20 12 20

Duration in sec-
onds

36.1 20.7 362.0 340.2 20.3 54.2 3379.0

Mean record
time (secs)

0.2 0.5 1.2 1.4 0.3 1.5 169.0

(d) Number of records and their duration per vocalization class for the testing set of the
baboon data set

Classes

Bark Copulation Grunt Scream Wahoo Yak Noise

Numbers of
records

63 13 99 81 16 12 24

Duration in sec-
onds

57.5 27.2 392.6 404.0 20.7 22.2 4073.4

Mean record
time (secs)

0.4 0.6 1.3 1.7 0.3 0.6 169.7

Table 5: Seconds of vocalization for baboons, for each class, over the month.

Classes

Bark Copulation Grunt Scream Wahoo Yak

3 197 8 455 50 679 35 070 23 026 19 080
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Table 6: Total and per partition distribution of the human baby labeled data set

(a) Initial sample size, number of records and their duration per vocalization class for the
human baby data set.

Classes

Canonical Crying Junk Laughing Non-Canonical

Numbers of records 1826 823 4974 241 5606

Duration in seconds 677.9 297.6 1665.1 87.1 1894.0

Mean record time
(secs)

0.4 0.4 0.4 0.4 0.4

(b) Number of records and their duration per vocalization class for the training subset of the
human baby data set

Classes

Canonical Crying Junk Laughing Non-Canonical Noise

Numbers of
records

1057 490 2988 138 3407 48

Duration in
seconds

390.4 176.5 996.7 49.9 1148.6 3748.5

Mean record
time (secs)

0.4 0.4 0.4 0.4 0.4 78.1

(c) Number of records and their duration per vocalization class for the validation subset of
the human baby data set

Classes

Canonical Crying Junk Laughing Non-Canonical Noise

Numbers of
records

386 169 982 51 1106 16

Duration in
seconds

142.8 62.0 331.4 18.6 372.1 753.4

Mean record
time (secs)

0.4 0.4 0.4 0.4 0.4 47.1
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Table 6: Total and per partition distribution of the human baby labeled data set

(d) Number of records and their duration per class for the testing set of the human baby data
set

Classes

Canonical Crying Junk Laughing Non-Canonical Noise

Numbers of
records

383 164 1004 52 1093 17

Duration in
seconds

144.6 59.2 337.0 18.6 373.3 1772.0

Mean record
time (secs)

0.4 0.4 0.4 0.4 0.4 104.2

Table 7: Seconds of vocalization for human babies, for each class, over the year

Classes

Canonical Crying junk Laughing Non-canonical

3 248 11 893 966 113 627
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