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ABSTRACT

We propose a rendering method for efficiently computing the transmitted caustics produced by a glass panel with

arbitrary surface deformations, characteristic of old glass used in 3D reconstructions in virtual heritage. Using

Fermat’s principle of least time, we generalize the concept of Next Event Estimation to allow light sampling

through two displaced refractive interfaces, which amount to numerically finding all stationary points of an ob-

jective function. Our work allows for an efficient estimation of the caustic while staying inside a standard Monte

Carlo pathtracing framework. Our specific geometrical context allows our solver to converge significantly faster

than the more general method Specular Manifold Sampling, while scaling well with the number of panels present

in the scene.
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1 INTRODUCTION

Recent progress in lighting simulation offers a true op-

portunity for recreating the luminous atmosphere that

existed in ancient architectures. The virtual restitution

of architectural heritage gives to historians a new set

of tools allowing a better analysis and understanding of

life, work and worship conditions through comparison

with the existing written archives.

For centuries, glass has been used in the windows of

most buildings. However, the production of high qual-

ity glass is relatively recent and old glass, as used in

windows and stained glass, has specific visual char-

acteristics that greatly impact the lighting of indoor

scenes. These include surface irregularities, or the pres-

ence of various bubbles and debris due to the differ-

ent manufacturing processes (crown or cylinder blown

sheet glass), which did not allow for perfectly flat or

homogeneous surfaces. These irregularities, however

small, produce distortions in the perception of the ex-

ternal environment but also complex lighting patterns
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(caustics) on objects illuminated directly by a source

(sun, flames) through these types of glass (see Fig.

1). The composition of the glass paste could also lead

to slightly colored glass, influencing the color of per-

ceived light.

These effects are still challenging to compute with mod-

ern rendering techniques, often requiring prohibitive

rendering time to produce noise-free images. On the

other hand, they are of great interest to the historian, in

order to understand the differences in light atmosphere

that may have existed in the past compared to the atmo-

sphere produced by our modern glazing.

Figure 1: Photography of a caustic produced by a

slightly irregular panel of glass.



In this article, we are only considering the lighting ef-

fects produced by the irregularities of glass surfaces in

windows. By neglecting volume irregularities (bubbles,

impurities inclusions e.g.) and the possible colouring of

the glass, we can model an ancient glass panel by two

parallel and slightly displaced planes. By taking ad-

vantage of this particular geometrical context, we can

significantly accelerate the rendering time of scenes in-

cluding these complex objects.

The contributions of this paper are:

• a geometrical framework for modeling the surface

irregularities of ancient glass panels ;

• a solver based on Fermat’s principle allowing the

connection of two points through two refractive in-

terfaces ;

• a robust initialisation strategy for path sampling that

scales well with the number of glass panels present

in the scene.

In the next paragraph, we review previous works rele-

vant to our problem from the point of view of antique

glass and caustics rendering. In paragraph 3, we detail

the different steps of our approach. We then present the

results obtained in terms of convergence speed of our

solver, but also from the point of view of the interest

of the initialization strategy that we propose when there

are many windows. We discuss in section 5 some resid-

ual difficulties of our approach which are also present

on the approaches of the state of the art, then conclude

this article by proposing some avenues for future re-

search.

2 PREVIOUS WORK

To our knowledge, no previous work specifically tackle

the rendering of the caustics produced by ancient glass

panels. Kider Jr et al. [Jr+09] recreate the characteristic

caustic lighting pattern produced by early Islamic light

sources using a specialised technique. This method

doesn’t take in account the surface imperfections of

the glass fixture, resulting in a simplified simulation of

the effects. Grobe et al. [GNL20] measure the BSDF

of various flat Roman window glass samples. They

then proceed to simulate daylight lighting of an interior

scene using a data-driven transmission model. While

this work captures the small scale in-homogeneity of

the material, it doesn’t take in considerations the larger

surface variations that play an essential role for trans-

parent and homogeneous glass samples that only refract

incident light without significantly scattering it.

The rendering of caustics produced by refractive or re-

flective objects has been a long lasting problem in com-

puter graphics. While standard pathtracing is able to

compute caustics generated by a specular object lighted

by an area light, its slow convergence rate makes it

difficult to use in practice. Many different rendering

techniques have been designed to accelerate the con-

vergence of the standard algorithm.

Pathtracing

Pathtracing (PT) is a popular unbiased estimation

method of the rendering equation originally described

by Kajiya [Kaj86]. While being able to accurately

render scenes with complex light transport (including

caustics), the standard algorithm may suffer from

impractically slow convergence rates even with GPU

acceleration. Although slow, pathtracing can be used

to produce accurate ground truth reference images.

The more sophisticated Bidirectional Path Tracing

technique [LW93] speeds up convergence for Diffuse-

Specular paths (see the A area in Fig. 2b), but remains

unable to efficiently deal with Specular-Diffuse-

Specular (SDS) paths that are commonly encountered

with reflective or refractive objects (see Fig. 2b, where

the B area is slower to converge).

Photon Mapping

Techniques based on Photon Mapping [Jen96] are gen-

erally well suited for caustics rendering. Photons com-

ing from the light sources are traced around the scene

and stored in an auxiliary data structure called a pho-

ton map. Since the amount of photons traced is finite,

a photon density estimation step is needed in order to

compute the rendering integral, which requires a volu-

minous amount of storage in certain cases.

In related previous work [Shi90], the contribution of

illumination rays coming from the light sources were

stored in a texture (an illumination map) associated to

each diffuse surfaces. This however requires a suffi-

ciently high resolution for the illumination map to avoid

artifacts.

The stochastic progressive photon mapping technique

(SPPM) proposed by Hachisuka and Jensen [HJ09] al-

lows the progressive construction of the photon map

during render time, alleviating the storage issue. While

this technique handles SDS paths, it also introduces

bias in the final image causing the caustic to appear

blurry (see Fig. 2c).

Metropolis Light Transport

Metropolis Light Transport (MLT) of Veach and Guibas

[VG97] uses Metropolis-Hasting integration to evalu-

ate the rendering integral. A path space formulation

of the rendering equation allows the construction and

mutation of a group of bootstrap paths, allowing the



(a) Reference (4M spp) (b) BDPT (c) SPPM (d) MLT (e) SMS

Figure 2: Comparison of different rendering techniques for a simple scene including a glass panel whose surfaces

are not smooth (identical number of 200 samples per pixel (spp)). Images where rendered with PBRT-V4 using

(a) Pathtracing, (b) Bidirectional Path Tracing, (c) Stochastic Progressive Photon Mapping and (d) Metropolis

Light Transport. Image (e) Specular Manifold Sampling was rendered with the Path-SMS-MS integrator (using

the author implementation in Mitsuba2 [Nim+19]) with 2 specular bounces (thus lacking the reflected caustic).

local exploration of path space. This approach is par-

ticularly efficient for scenes in which the light transport

mainly occurs throughout few highly contributing paths

that are difficult to sample using traditional techniques.

Intrinsically, the convergence process is highly depen-

dent of the random seed used and non-uniform by na-

ture: some paths that are difficult to sample may be ex-

plored lately during render time, causing some bright-

ness inconsistencies until the process completely con-

verges (see Fig. 2d where the SDS paths can be alterna-

tively brighter or darker than expected depending on the

seed). This may leads to unpleasant flickering artifacts

when rendering animations.

Manifold Exploration

Early work from Mitchell and Hanrahan [MH92] makes

use of Fermat’s principle of least time combined with

interval arithmetic for computing the illumination pro-

duced by reflective, implicitly defined surfaces. This

method is deterministic and is able to compute the

whole set of paths connecting two points through a one-

bounce perfectly specular reflection.

Similarly with Manifold Exploration [JM12], Jakob

and Marschner present a new set of mutations for MLT

that are more suited to paths involving purely specular

events. This set of paths is a manifold described by a

set of specular reflection and refraction constraints C

that each path satisfies. The use of the implicit function

theorem allows to walk over this manifold by using the

gradient of the specular constraint ∇C and a Newton

type solver. This action is referred as Manifold Walk

and has been applied in a standard pathtracing context

by Hanika et al. in Manifold Next Event Estimation

(MNEE) [HDF15] in order to construct paths connect-

ing an observed point O to a point S sampled on a light

source only visible through specular interactions. This

technique is only able to find one solution and is thus

limited to specular objects that are regular enough.

The Specular Manifold Sampling technique (SMS) of

Zeltner et al. [ZGJ20] generalizes MNEE to the cases

where the geometry of the specular objects become

more complex and more than one path between O and

S may exist. This stochastic method allows unbiased

rendering of caustics while staying in a standard Monte

Carlo pathtracing context. Note that this method won’t

produce more physically accurate caustics than stan-

dard pathtracing, but it will converge to the result faster.

Our present work will make use of the same context

described in [ZGJ20], with a problem specific solver

based on Fermat’s principle instead of manifold

walk (Fermat Next Event Estimation, FNEE). As

illustrated by Fig.2, we chose to compare our method

only to Specular Manifold Sampling since this tech-

nique seemed to achieve the best balance between

performance and fidelity for our use case.

In the following, we will focus on the transmitted caus-

tic, but our work can be adapted to generate the re-

flected caustics as well.

3 METHODOLOGY

A glass windowpane displaying surface deformations is

represented by two parametric surfaces {Γ1,Γ2} (Fig.

3), each described by an elevation function hi(u,v)
i ∈ {1,2} such that Γi = {X ∈ R

3/X = (u,v,hi(u,v))}
with (u,v) ∈ [0,1]2. In the following, the hi functions

are considered twice differentiable. The ray - surface

intersections are resolved using sphere tracing [Har96]

in order to avoid making further assumption on how the

hi are defined (bi-cubic interpolation of an heightmap

e.g.).

In the most general case where the two interfaces are

not flat (i.e. the hi(u,v) functions are not constant), sev-

eral paths connecting O and S may exist. This results in

the formation of a caustic that is strongly dependent on

the geometry of the two interfaces (Fig. 1).

Our objective is to compute the direct lighting that

comes through the panel. This is done by extending the

well known Next Event Estimation technique [SWZ96]

to the case where two refractive interfaces occlude the



observed point O from the point S sampled on a light

source.

Figure 3: Transmitted ray parametrization. There is in

general multiple paths connecting an observed point O

to a source S.

3.1 Finding an admissible path

In the following, we will describe a stochastic proce-

dure to construct one valid path and compute its con-

tribution. The procedure can then be re-conducted for

each path tracing samples, effectively computing the

contribution of all feasible paths when the number of

samples is large enough.

Fermat’s principle

Fermat’s principle (or principle of least time) states that

for any given two points of space O and S, the optical

length of the paths taken by a light ray between O and

S is stationary.

Let L =
∫

P η(s)ds be the optical length of a given path

P, with η(s) the index of refraction of the medium at

position s. According to Fermat’s principle, the set of

admissible paths connecting O to S satisfy dL = 0.

• In the case of two points in an homogeneous

medium of refraction index η , the solution is

uniquely given by the straight line connecting the

two points.

• With a straight windowpane in between O and S, the

solution is still unique, but is now composed of three

line segments OX1, X1X2 and X2S.

• If the windowpane has irregular surfaces, the solu-

tion is no longer unique (see Fig. 3). With the added

hypothesis of the hi being small and regular enough,

we can still consider that the solutions are composed

of three line segments.

Hence,

L(u1,v1,u2,v2) = ηe ‖OX1‖+ηi ‖X1X2‖+ηe ‖X2S‖

with ηe, ηi the refractive indexes of respectively the ex-

terior or interior medium, and (ui,vi) the parametric co-

ordinates of the point Xi . The differential dL is given

by:

dL = ηe

(

OX1

‖OX1‖
·dX1 +

X2S

‖X2S‖
·dX2

)

+ηi

(

X1X2

‖X1X2‖
· (dX1 +dX2)

)

(1)

Since dL = 0⇔ ∇L = 0, we have to solve a system

of 4 non-linear equations of 4 unknowns (u1,v1,u2,v2).
The solutions of this system will give us the paramet-

ric coordinates of X1 and X2, allowing us to construct

admissible paths.

Other configurations

Note that we can derive in the same way a system of

2 equations of 2 unknowns (u2,v2) for solving caustics

generated by light being reflected on one face of the

panel (see figure 2a for example). In that case,

L(X2) = ηe

∥

∥

∥

−−→
OX2

∥

∥

∥
+ηe

∥

∥

∥

−→
X2S

∥

∥

∥

dL = ηe

(

OX2

‖OX2‖
+

X2S

‖X2S‖

)

·dX2

We could do the same for an arbitrary number of spec-

ular reflections or transmissions (similarly to Manifold

walk, the Hessian matrix would have a diagonal block

structure). The method used to solve the system of

equation and to compute paths contributions are then

similar for all configurations.

Solving the system

The system is solved using Newton’s method for opti-

misation. Newton’s method is known for converging to

stationary points of the objective function regardless of

their nature (minimal, maximal or saddle). While that

can be an issue in a general optimization context where

we want to either maximize or minimize an objective

function, it is a useful property in our case. Since hi

are twice differentiable, we can derive an exact analytic

expression for the 4×4 Hessian matrix H from the ex-

pression of ∇L.

The method is iterative and consists (at step k) in find-

ing a descent direction vk using curvature information

at the point θk = (uk
1,v

k
1,u

k
2,v

k
2). We can then compute



the next point θk+1 by moving along vk by a step of size

tk (Eq. 2).

vk =−[H|θk
]−1 ·∇L|θk

θk+1 = θk + tk · vk (2)

The step size tk is found by the Armijo rule [Arm66]

using a backtracking strategy (see Algorithm 1) with

constants α = 0.45 and β = 0.5.

Algorithm 1 Line search with backtracking

tk← 1

while (L(θk + tk · vk)> L(θk)+α · tk ·∇L|θk
· vk) do

tk← β · tk
end while

θk← θk + tk · vk

In practice, we limit the number of iterations to 20 and

define a convergence threshold to ||∇L|θk
|| < ∇Lε =

10−4. If the threshold is not reached after 20 iterations,

we consider that the process has failed to converge.

Newton’s method convergence behavior is well known

to be complex even with relatively simple functions

[HSS01]. Since the hi functions are potentially com-

plex, finding a good initial guess is in general challeng-

ing. The initial value θ0 is thus chosen randomly inside

[0,1]4.

We also found that imposing a minimal value for tk is

generally beneficial to prevent the solver from getting

stuck (tmin = 0.004).

3.2 Path contribution

After finding a potential path, we need to compute its

contribution to the lighting of the observed point O.

Let X = (O,X1,X2,S) be the path found by the solver.

The contribution of X is given by

f (X)= Le ·
G(O↔ S)

PDF(X)
·BSDFX1

·BSDFX2
·V (X) (3)

with Le the radiance emitted from the light source and

V (X) being 0 if the path X is occluded, 1 otherwise.

BSDFX1
is the value of the bidirectional scattering dis-

tribution function at vertex X1, with incoming light di-

rection
−−→
X1X2 and outgoing light direction

−−→
X1O (respec-

tively, we have for BSDFX2
incoming direction

−→
X2S and

−−→
X2X1 for outgoing direction).

The ratio
G(O↔S)

PDF(X)
is composed of the generalized geom-

etry factor [JM12], and the probability density of find-

ing the solution path X using our solver.

Generalized geometry factor

The generalized geometry factor is defined as:

G(X0↔ Xn) =
dω⊥

dAn

=
dω⊥

dA1
·

dA1

dAn

Intuitively, it represents the tendency of a ray bundle

to spread out or focus when subject to a sequence of

refraction or reflection.

Figure 4: Generalized geometry factor parametrisation

in the case of light transmission through a glass panel.

The term dω⊥

dA1
is simply the usual Geometry factor

given by:

G(X0↔ X1) =
dω⊥

dA1
=
|N(X0) ·

−−→
X0X1| · |N(X1) ·

−−→
X1X0|

||X0−X1||2

with N(Xi) the normal vector at vertex Xi and ω⊥ the

projected solid angle.

The other factor
dA1
dAn

is then computed from ∇C, the

derivative of the specular constraint of X [JM12].

Alternatively, pencil tracing can also be used to com-

pute G by the mean of the transfer matrices of the opti-

cal system [STN87] [KHD14].

Inverse probability estimation

As explained in [ZGJ20], the probability of sampling

the solution X corresponds to the volume of the conver-

gence basin of this solution . For a given solution X , its

convergence basin is defined as the set of all the initial

values θ0 that converges to this solution (Fig. 5).



(a) Convergence basins at a

point O for a source S for a

simple blown glass profile.

(b) Zoom on the solution

cluster.

Figure 5: The solver converges to 3 solutions colored

in red, blue and green. Each point is colored depend-

ing on which solution the solver converges to, starting

from this point. Their respective convergence basins

are highly irregular and nearly cover the whole space.

These 4D basins are projected onto the 2D plane for

visualization purpose (i.e. we choose (u1,v1) ∈ [0,1]2

and impose u1 = u2 and v1 = v2).

These convergence basins are in general highly irregu-

lar and their volume cannot be computed exactly. The

inverse of their volume can however be estimated by an

iterative process that resorts to counting the number of

trials necessary for the solver to converge to X from a

random initial starting point.

1

PDF(X)
≃ Ntrial

In practice, it is necessary to clamp this estimator to

Nmax to avoid potentially infinite loops if the basins are

close to being singular (typical value Nmax = 1000).

3.3 Initialisation strategy

In this section, we discuss the initialisation strategy we

use for selecting an appropriate {Γ1,Γ2} surface pair

given two points O and S that we try to connect. Sup-

pose that multiple specular surfaces are present in the

scene. In the general case where the interfaces can have

any shape, we can’t easily chose an appropriate couple

{Γ1,Γ2} for initializing the solver. We still can resort

to selecting a random pair for each sample, which is the

strategy used by Specular Manifold Sampling: select

a caustic caster marked shape at random, then launch

one estimate per caustic bouncer marked shape. Unfor-

tunately, in practice, most pairs lead to no solutions and

are thus bad initialisation choices (see Fig. 6).

Figure 6: Choice of an interface pair: most combina-

tions lead to a poor initialisation (red paths) that pre-

vents the solver from converging to a solution.

In our case, having to handle many windows in a scene,

we can make a better choice.

Consider that we have N glass panes. For each glass

pane gi, the most natural pairing would be to use Γ
gi

1

and Γ
gi

2 the front and back faces of the glass pane, thus

reducing the number of initialisation choices from 4N2

(since there is 2N faces) to N.

Since the caustic generated by the window is mostly

contained inside the shadow cast by a flat glass pane

(that we will refer to as the approximate caustic area

in the following), we can further reduce the number of

possibilities by selecting the glass pane that occluded

the shadow ray cast from O in the direction of S (see

point O in Fig. 7). That generally leaves us with a

unique initialisation possibility. In the contrary case,

we resort to standard pathtracing (see point O′).

Figure 7: Window selection during light sampling. The

approximate caustic area is colored in light yellow.

This strategy however produces unnaturally sharp shad-

ows (see Fig. 8b) for occluders situated in front or be-

hind the chosen window (see point O′′ in Fig. 7). In

practice, the caustic tends to bleed in a small region out-

side of the approximate caustic area (see Fig. 8 a). We



can easily account for this case by choosing to launch

the solver with a random glass pane whenever an ob-

ject occludes the shadow ray. This may comes at the

cost of a loss of performance (see Fig. 8 c). This so-

lution isn’t entirely satisfactory and more sophisticated

approach [WHY20] may be considered in future work.

Reference (Pathtracing 1M spp)

(a) (b) (c)

Figure 8: Illustration of the bias introduced by the two

initialisation strategies: (a) Reference, (b) FNEE with

sharp shadows (1000 sec), (c) FNEE with caustic bleed

(1000 sec).

4 RESULTS

Solver comparison

In this section, we compare our solver against the

predictor-corrector scheme used by Specular Manifold

Sampling. For comparison fairness, the two solvers are

implemented inside the same integrator in Mitsuba2

[Nim+19] and thus use the initialisation scheme

described in the previous section. Both solvers use

double precision arithmetic which is necessary to deal

with thin windows (thickness around 1mm).

The images produced by FNEE and SMS were com-

pared against a ground truth image generated by path-

tracing. The Mean Squared Error (MSE) metric was

used:

MSE =
1

n

n

∑
i=0

(xi− x̂i)
2

with xi the pixels values of the ground truth image (gen-

erated by pathtracing) and x̂i the pixels values of the

image being compared.

Our benchmark scene (Fig. 9) is a window composed

of 4 different glass panes with various elevation profiles

on the face facing the camera. These profiles are mod-

eled from typical windows of the XIV to XIX centuries

(crown and cylinder blown sheet glass).

Reference Ref. FNEE SMS

Figure 9: Visual comparison of our method (FNEE)

with Specular Manifold Sampling (SMS) on various

perturbation profiles (equal time t = 100s). Reference

computed with Pathtracing with 10M samples per pix-

els.

20 40 60 80 100
time (s)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

M
SE

Fermat
SMS

Figure 10: Convergence rate comparison of the two

solvers (ours in blue, SMS in green). Using the scene

from Fig.9, we compare images computed using each

solver to the reference image at various rendering times

an report the corresponding MSE error measure.

Our Fermat-based solver achieves noticeably faster

convergence on all deformation profiles of the bench-

mark scene (Fig. 9 and Fig. 10). Both solvers are

prone to producing outliers that would need to be

eliminated in post treatment, or with a robust Monte

Carlo estimator [ZHD18] [BDR21].

Solver heval Solutions Success

FNEE 956M 76832 3.76%

SMS 8457M 48754 1.87%

Table 1: Comparison of the two solvers for various per-

formance metrics (same scene as Fig. 9 with image

size of 256×256 px and 100 spp): number of elevation

function evaluations (in millions), number of unique so-

lutions discovered, solver success probability (ratio of

the number of solver calls that converges to a solution

over the total number of calls).

More in depth comparisons (Tab. 1) reveals that the ren-

dering of caustics produced by thin glass panels is par-

ticularly challenging for the manifold walk solver used

by SMS. Our formulation displays an around 8 time



smaller number of elevation function calls and a higher

success probability (we compute the success probabil-

ity for each solver as the ratio of the number of solver

calls that converges to a solution over the total number

of calls registered). This allows FNEE to explore the

solution space more efficiently than SMS (larger num-

ber of solutions discovered).

Initialisation method comparison

Here, we compare our initialisation strategy to the ran-

dom specular shape sampling used by SMS on a resti-

tution scene (work in progress) from the Digital Field

of Cloth of Gold project. This indoor scene (Fig. 11)

is lighted by a distant spherical light source simulating

sunlight. The sun shines through many old glass win-

dows, producing characteristic caustics.

Reference Ref. FNEE SMS

Figure 11: Visual comparison of our method with SMS

(equal time t = 100s). Reference uses pathtracing with

30M samples per pixel.

The large number of specular interfaces makes the ran-

dom pairing initialisation particularly inefficient. In

contrast, the convergence speed of the proposed method

remains practically constant with the number of win-

dows used. This particularly highlights the need for a

robust initialisation strategy for these types of scenes.

5 DISCUSSION

Both FNEE and SMS share the same difficulties deal-

ing with glass panels with intricate, high frequency de-

tails, where the invPDF estimation process becomes

performance intensive. Using the above parameters

(Nnewton = 20, ∇Lε = 10−4, tmin = 0.004) with finely

detailed profiles leads to unnaturally dark caustics (Fig.

12).

Reference (Pathtracing 1M spp)

Ref. Nmax = 10k

(10k sec)
Nmax = 1M

(100k sec)

Figure 12: invPDF under-estimation in the case of a

finely detailed glass profile (using our method FNEE).

Understandably, as the surface gets more detailed, the

generalized geometric term G(O↔ S) tends to become

increasingly small in certain area (being directly depen-

dent to the partial derivatives of the normal vector ∂n
∂u

and ∂n
∂v

). As the ray contribution is proportional to the

product G(O↔ S) · invPDF(X), if the allowed number

of iterations Nmax during the invPDF estimation process

is too low, the invPDF term generally won’t be large

enough to compensate for the luminosity loss caused

by G(O↔ S). This results in an underestimation of the

illumination.

Since the convergence basins are generally large for

smooth perturbation profiles, the estimation can be

done in a few iterations. It is however not the case

anymore when the perturbations are finer since the

basins become increasingly small (Fig. 13) as the

number of solutions dramatically increases. In this

case, taking a sufficiently large Nmax may lead to an

impractically slow convergence rate for both SMS and

FNEE.

6 CONCLUSION

We have presented a method to compute the transmitted

caustic produced by a displaced glass panel lighted by a

light source. Our method based on the Fermat’s princi-

ple displays faster convergence than SMS and allows to

handle efficiently scenes including many glass panes.

These scenes are commons in architecture and repre-

sent a situation for which SMS initialisation scheme is

inefficient. The two methods being closely related, they

share the same difficulty dealing with finely detailed

surfaces: since many solutions exists, the estimation of



Figure 13: Convergence basins for a crown glass window. The finely detailed surface of the panel gives rise to

several clusters of solutions. Each individual solution has a small and irregular convergence basin, making the

invPDF estimation process inefficient.

the invPDF term requires many iterations to converge.

Finding a better way to estimate this term is an avenue

for future work and would greatly benefits the two tech-

niques. Our present work is still a simplification of the

real world problem since we neglected the volume ir-

regularities that exist in real ancient glass panels. Find-

ing ways to take these irregularities into account would

be a natural direction for future research.
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