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Abstract—This paper focuses on a challenging class of in-
verse problems that is often encountered in applications. The
forward model is a complex non-linear black-box, potentially
non-injective, whose outputs cover multiple decades in amplitude.
Observations are supposed to be simultaneously damaged by
additive and multiplicative noises and censorship. As needed in
many applications, the aim of this work is to provide uncertainty
quantification on top of parameter estimates. The resulting log-
likelihood is intractable and potentially non-log-concave. An
adapted Bayesian approach is proposed to provide credibility
intervals along with point estimates. An MCMC algorithm is
proposed to deal with the multimodal posterior distribution, even
in a situation where there is no global Lipschitz constant (or it
is very large). It combines two kernels, namely an improved
version of PMALA [1] and a Multiple Try Metropolis (MTM)
kernel [2]. This sampler addresses all the challenges induced
by the complex form of the likelihood. The proposed method is
illustrated on classical test multimodal distributions as well as
on a challenging and realistic inverse problem in astronomy.

Index Terms—Bayesian inference, black-box forward model,
inverse problem, Markov Chain Monte Carlo algorithms.

I. INTRODUCTION

Physics and experimental sciences often produce non-linear,
potentially non-injective, forward models. Such models are
often encoded by expensive black-box functions, e.g., the
solution of a large set of partial differential equations in
epidemiology [3] or astrophysics [4], [5]. The forward model
may also span multiple decades, as in astrophysics [6] where
orders of magnitude can be gigantic. As a consequence, when
the log-likelihood function is smooth, the Lipschitz constant
of the gradient is too large to be numerically useful. Inverse
problems that involve such models can lead to a non-log-
concave, potentially multimodal likelihood function.

For the sake of simplicity, most observation models consider
one source of noise only, while more detailed models may
involve multiple noises as well as censored data, due to sensi-
tivity limitations. Such difficult models are often addressed
by simplifying the scenario in practice. For instance, one
noise is assumed to dominate the others that are neglected,
as in medical ultrasound imaging [7] or in synthetic aperture
radar [8].

This work addresses a family of inverse problems involving
both a non-linear black-box forward model covering mul-
tiple decades, and censored observations affected by both
an additive and a multiplicative noise. The log-posterior is
intractable, admits a Lipschitz continuous gradient with a very
large constant (if finite), may be non-concave and potentially

multimodal. A Bayesian approach is proposed. The problem
is addressed with a Markov Chain Monte Carlo (MCMC)
algorithm [9]–[11] to provide point estimates with the cor-
responding credibility intervals. This uncertainty quantifica-
tion is particularly critical for applications where no ground
truth is available, as in cosmology and astrophysics [4], [5].
An explicit and smooth approximation of the likelihood is
proposed. It relies on a model reduction and on controlled
approximations of the noise model. Since the Lipschitz con-
stant of the gradient of the log-posterior is assumed to be
very large or even infinite, efficient sampling methods relying
on smoothness assumptions, such as the Metropolis Adjusted
Langevin Algorithm (MALA) [12] or Hamiltonian Monte
Carlo (HMC) [13] typically fail to explore the parameter space.
To address this issue, a preconditioned MALA (PMALA)
kernel [14], [15] exploiting the RMSProp preconditioner from
deep-learning [16] is considered. Compared to HMC and
MALA, the exploration of the parameter space is based on
local second order information of the log-posterior, instead
of the global Lipschitz constant of its gradient only. A first
version of this kernel, introduced in [1], led to an approximate
sampler. We further improve it in this paper to obtain an
exact sampler, i.e., asymptotically drawing samples from the
distribution of interest. To account for the non-log-concavity
and potential multimodality of the posterior, a combination of
PMALA with a Multiple Try Metropolis (MTM) kernel [2] is
proposed.

The proposed sampler is validated on two classical mul-
timodal examples: a 2D Gaussian mixture model and the
sensor localization problem [17]. It is then applied with good
performances to a realistic higher dimensional astrophysical
problem that combines all the aforementioned challenges. A
preliminary version of this work was published in [18], where
the main principle of the method was summarized for a
simplified illustration.

Section II introduces the Bayesian model, the proposed like-
lihood approximation and the resulting posterior distribution.
Section III introduces the MCMC algorithm used to derive
estimators. Section IV demonstrates the performance of the
proposed method on the three experiments outlined above.
Section V provides conclusions and perspectives.

II. BAYESIAN MODEL

This section introduces the general Bayesian model con-
sidered in this article. A tractable surrogate likelihood with
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controlled error is built on a reduced forward model and a
likelihood approximation that deals with the mixture of noises.
The prior and the resulting posterior are then introduced.

A. Notation

Throughout this paper, scalars are denoted with regular
letters, e.g., indices n, d and ℓ, or the corresponding di-
mensions N , D and L. In the following, N is the number
of observations over L channels and D is the number of
parameters of the model. Vectors are denoted using bold
lowercase letters, e.g., parameters θ ∈ RD or observa-
tions y = (y1, . . . , yℓ, . . . , yL) ∈ RL. Matrices are written
with bold uppercase letters, e.g., matrices of observations
Y = (yn)

N
n=1 ∈ RN×L. The notation for functions is set

accordingly, e.g., the forward model f(θ) = (fℓ(θ))
L
ℓ=1.

B. Problem statement

Individual observations y = (yℓ)
L
ℓ=1 gather L channels.

They are considered to be generated from some parameter
θ ∈ RD and a forward model f : RD → RL, where the
number D of parameters is assumed to remain moderate, e.g.
D ≲ 10. The forward model prediction for a channel ℓ is
denoted by fℓ, so that for any θ ∈ RD, f(θ) = (fℓ(θ))

L
ℓ=1.

The forward model f is assumed to be a non-linear black-
box function, e.g., the result of a physical experiment or a
numerical simulation. It is considered valid on a compact
subset C = [l1, u1] × · · · × [lD, uD] ⊂ RD, with ld, ud ∈ R
for any d ∈ [[1, D]], that can correspond to a typical domain
of validity. To reflect physical considerations on the nature of
the data, the function f is further assumed to have positive
values that can span multiple decades, as is often the case in
astrophysics [6]. Individual observations and parameters are
grouped in indexed sets Y = (yn)

N
n=1 and Θ = (θn)

N
n=1 of

size N , such as an image, a time series or more generally
a graph, with N potentially very large, e.g., of the order of
millions. The sensors are assumed to have a lower limit of
sensitivity ω ∈ R below which an observation is censored.
Both an additive and multiplicative noise degrade the obser-
vations. Such a mixture of noises occurs in astrophysics as
well as in medical ultrasound imaging [7] or laser imaging
and synthetic aperture radars [8] for instance. Turning to
inference, one of the two noises is generally neglected for sake
of tractability [7]. However, when the forward model spans
several decades, the nature of the dominant noise depends on
the amplitude of fℓ(θ). The resulting observation model is,
for n ∈ [[1, N ]] and ℓ ∈ [[1, L]],

yn,ℓ = max
{
ω, ϵ

(m)
n,ℓ fℓ(θn) + ϵ

(a)
n,ℓ

}
, (1)

where ϵ
(a)
n,ℓ ∼ N (0, σ2

a) is an additive Gaussian white noise,
and ϵ

(m)
n,ℓ ∼ logN (−σ2

m/2, σ2
m) is a lognormal multiplicative

noise such that E[ϵ(m)
n,ℓ ] = 1. The noise terms ϵ

(a)
n,ℓ and ϵ

(m)
n,ℓ

are assumed independent with known variances σ2
a and σ2

m,
respectively. They are also assumed independent of fℓ(θn). At
low intensities, the additive noise dominates; high intensities
are mainly damaged by the multiplicative noise.

C. Likelihood approximation

The likelihood associated to (1) involves a potentially ex-
pensive forward model. A model reduction can be used to
ensure the computational efficiency of the inference process.
The presence of the two sources of noise makes the likelihood
intractable so that we propose a parametric surrogate model.

1) Model reduction: The forward model f is assumed to be
encoded by an expensive black-box function. Such black-box
models may be addressed with a likelihood-free method such
as Approximate Bayesian Computation (ABC) [19] that yield
approximate samplers of the true posterior distribution. These
methods are limited by the cost of numerous evaluations of
the black-box function. A cheaper reduced model is preferred
when this cost becomes prohibitive [20], [21]. This solution
often permits to exactly sample from an approximate poste-
rior. Model reduction largely remains an application specific
problem, with only a few generic approaches [22], [23]. Here
the forward model fℓ is positive and covers several decades,
for all ℓ ∈ [[1, L]]. We propose to replace it by approximations
P̃ℓ of its logarithm so that

∀ℓ, f̃ℓ(θ) = exp
[
P̃ℓ(θ)

]
. (2)

The error introduced by replacing f by f̃ should be negligible
compared to f and to the noise standard deviations σa

and σm. In the present approach, evaluations of P̃ℓ and its
gradients should be fast, as each iteration of the proposed
MCMC algorithm in Section III will require such operations.
This approximation is also required to be twice differentiable
to satisfy the requirements of the PMALA kernel involved
in III-A. The derivation of such a reduced model is feasible
with a wide family of methods including polynomials or neural
networks but remain out of the scope of this work. In the
following, f̃ is assumed available so that from now on fℓ is
replaced by f̃ℓ.

2) Modeling the noise mixture: For simplicity, we first
consider the uncensored part of the model (1). Since the
corresponding likelihood is intractable, most approaches in
the literature [7], [8] neglect one source of noise. This strat-
egy obviates the need for handling both the additive and
multiplicative noises at intermediate intensities. A slightly
different mixture model is addressed in [24] with a hierarchical
approach and linear forward models. The proposed approach
builds on [25], where the mixture is approximated with a
purely additive model. The additive noise ϵ

(a)
n,ℓ in (1) can

be neglected when f̃ℓ(θn) → ∞, while the multiplicative
noise ϵ

(m)
n,ℓ becomes negligible as f̃ℓ(θn) → 0. Therefore,

for each observation yn,ℓ, the true likelihood is approximated
using three different regimes: low, intermediate and high
values of f̃ℓ(θn). In the low value regime, the true likelihood
function π(yn,ℓ|θn) is approximated by an additive Gaussian
approximation π(a)(yn,ℓ|θn) corresponding to

yn,ℓ ≃ f̃ℓ(θn) + e
(a)
n,ℓ, e

(a)
n,ℓ ∼ N (ma,n,ℓ, s

2
a,n,ℓ), (3)
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where ma,n,ℓ and s2a,n,ℓ are obtained by matching the two first
moments with model (1), which yields{

ma,ℓ,n = 0,

s2a,ℓ,n = f̃ℓ(θn)
2(eσ

2
m − 1) + σ2

a.
(4)

Conversely, in the high value regime, a multiplicative lognor-
mal approximation π(m)(yn,ℓ|θn) is used. It reads

yn,ℓ ≃ e
(m)
n,ℓ f̃ℓ(θn), e

(m)
n,ℓ ∼ logN (mm,n,ℓ, s

2
m,n,ℓ), (5)

where moment matching with (1) yields:mm,ℓ,n = − 1
2

{
σ2
m + log

[
1 +

σ2
a

f̃ℓ(θn)2e
σ2
m

]}
,

s2m,ℓ,n = −2mm,ℓ,n so that E[e(m)
n,ℓ ] = 1.

(6)

For the intermediate regime, for each channel ℓ, we intro-
duce parameters aℓ = (aℓ,0, aℓ,1) ∈ R2. aℓ,0 pinpoints the
low to intermediate value transition and aℓ,1 the intermediate
to high value transition. In this intermediate regime, i.e.,
aℓ,0 ≤ P̃ℓ(θn) ≤ aℓ,1, we propose to use a geometric
average of the two likelihood approximations π(a)(yn,ℓ|θn)
and π(m)(yn,ℓ|θn) with weights 1−λ and λ, respectively, see
the first term of (8) below. The weight function λ is defined
as a twice differentiable sigmoid with values in [0, 1]:

λ(θn,aℓ) =


0 if P̃ℓ(θn) ≤ aℓ,0

1 if P̃ℓ(θn) ≥ aℓ,1

Q
(

P̃ℓ(θn)−log aℓ,0

log aℓ,1−log aℓ,0

)
otherwise

, (7)

where Q is a polynomial such that Q(0) = 0, Q(0) = 1 and
Q

′
(0) = Q

′
(1) = Q

′′
(0) = Q

′′
(1) = 0 for λ to be C 2. One of

the simplest such polynomials is Q(u) = u3(6u2−15u+10).
To take censorship into account, let C = (cn,ℓ)n,ℓ ∈

{0, 1}NL be a matrix such that cn,ℓ = 1 for a censored obser-
vation, and cn,ℓ = 0 otherwise. Let F (a)(·|θn) and F (m)(·|θn)
be the cumulative density functions (cdf) of π(a)(·|θn) and
π(m)(·|θn), respectively. The likelihood of censored data in-
volves F (a)(ω|θn) and F (m)(ω|θn). The proposed likelihood
approximation of model (1) finally reads

π̃(yn,ℓ|θn,aℓ) ∝ (8)[
π(a)(yn,ℓ|θn)

1−λ(θn,aℓ) π(m)(yn,ℓ|θn)
λ(θn,aℓ)

]1−cn,ℓ

×
[
F (a)(ω|θn)

1−λ(θn,aℓ) F (m)(ω|θn)
λ(θn,aℓ)

]cn,ℓ

.

The accuracy of this likelihood approximation clearly de-
pends on the choice of the parameter aℓ. Appendix A proposes
a procedure to adjust it in a relevant manner.

D. Prior and resulting posterior

We will consider applications on multispectral images so
that this work combines two penalties to build the prior
distribution. The first one favors the spatial regularity of
estimations. It is based on a local regularizer h : RN → R+

applied to each map Θ·d = (θn,d)1≤n≤N , with d ∈ [[1, D]].
The regularizer can be the Euclidean norm of the usual
gradient or Laplacian of the component map, with regular-
ization parameter τd > 0. The second term encodes the

validity of f on a compact set C = [l1, u1] × · · · × [lD, uD].
Note that the reduced model may be defined out of C but
will not be considered as valid since it was not trained on
such points. The most natural approach would be to use the
indicator function ιCN of the set CN , where ιCN (Θ) = 0 if
Θ ∈ CN , and +∞ otherwise. Since the PMALA kernel to be
introduced in Section III-A requires twice differentiability, the
following twice differentiable approximation of ιCN , known as
the quartic penalty in constrained optimization [26], is used:

ι̃CN : Θ 7→
N∑

n=1

D∑
d=1

[max(0, θn,d − ud, ld − θn,d)]
4
, (9)

leading to a smooth uniform distribution. Finally, the resulting
prior distribution is given by

π(Θ) ∝ exp

(
−δ ι̃CN (Θ)−

D∑
d=1

τd h(Θ·d)

)
, (10)

where δ > 0 is a penalty parameter. The posterior distribution
combines NL independent likelihoods (8) and the priors (10).

π(Θ|Y ) ∝ exp [−g(Θ)] (11)

∝

[
N∏

n=1

L∏
ℓ=1

π̃(yn,ℓ|θn,aℓ)

]
π(Θ). (12)

III. PROPOSED MCMC SAMPLER

MCMC algorithms can provide point estimates along with
the associated uncertainty quantification. However, the pos-
terior distribution of complex systems is in general non-
log-concave, hence potentially multimodal, which makes the
sampling task challenging. In addition, when the forward
model spans several decades, the gradient of the negative log-
posterior ∇g has a potentially very large Lipschitz constant, if
any. To address these two challenges, a new transition kernel is
proposed as a combination of two kernels: PMALA [15] and
MTM [2]. PMALA tackles the regularity issue to efficiently
explore the neighborhood of a local mode, whereas MTM
permits jumps between modes.

A. PMALA transition kernel

In absence of an exploitable gradient-Lipschitz regularity of
the log-posterior g in (11), a preconditioned MALA equipped
with RMSProp [16] is introduced to perform an efficient local
exploration of the posterior distribution. To simplify notations,
we temporarily use the vector version of Θ in lexicographic
order so that Θ ∈ RND. Metropolis-Hastings (MH) [27], [28]
is arguably the most famous MCMC algorithm. At each step
t, a candidate Θ(t)

c is sampled from a proposal distribution
q(Θ(t)

c |Θ(t−1)) that is accepted with probability

ρ(t) = 1 ∧
π
(
Θ(t)

c |Y
)

π
(
Θ(t−1)|Y

) q
(
Θ(t−1)|Θ(t)

c

)
q
(
Θ(t)

c |Θ(t−1)
) . (13)

The random walk proposal is often used but does not scale
up well due to its blind nature [10]. Hamiltonian Monte
Carlo (HMC) [13] and Metropolis Adjusted Langevin Algo-
rithm (MALA) [12] both exploit gradient information. MALA
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is defined as a discretized Langevin diffusion process with an
accept-reject step, while HMC relies on Hamiltonian dynamics
and auxiliary variables. Both propose larger steps than the
random walk with high acceptance probability, which favors
scaling up [10]. They both rely on a step size inversely
proportional to the Lipschitz constant of ∇g, if it exists.
Here the forward model f̃ covers several decades so that this
Lipschitz constant is potentially very large or even infinite.
Therefore, MALA and HMC will typically fail to efficiently
explore the parameter space of a posterior distribution such
as (12).

A transition kernel that handles such situations relies on
extensions of HMC and MALA to Riemannian manifolds [14].
The MALA extension is favored over its HMC counterpart
as MALA yields faster individual iterations and requires less
parameter tuning. Moreover, Riemannian manifolds MALA
was improved in [15], resulting in the so-called position
dependent MALA (PMALA) kernel. It permits exploiting local
information geometry thanks to a position dependent precon-
ditioner. We propose to use the RMSProp preconditioner [16]
that was initially defined in the deep learning literature for
fast neural networks training. In the absence of exploitable
Lipschitz constant, it adaptively estimates a local variance of
the gradient ∇g by keeping memory of former proposals Θ(t)

c .
At each step t, it updates a surrogate gradient variance vector
v(t) ∈ RND such that for all i ∈ [[1, ND]],

v
(t)
i = αv

(t−1)
i + (1− α)

[
∂g

∂θi

(
Θ(t)

c

)]2
(14)

= (1− α)

t∑
j=1

αt−j

[
∂g

∂θi

(
Θ(t−j)

c

)]2
, (15)

where α ∈]0, 1[ is an exponential decay rate. Note that the
variance vector v(t) relies on candidates Θ(t)

c instead of
iterates Θ(t): candidates might not be kept in the Markov
chain, but they still contain important information about the
shape of the distribution. The RMSProp preconditioner is
defined as [16]

G(t) = diag
(

1

η +
√
v(t)

)
∈ RND×ND, (16)

with η a small damping parameter. This preconditioner has
already been used in a MCMC context [1] within an ap-
proximate sampler. The goal in [1] was to sample from a
distribution defined over the parameters of a neural network
trained on a large dataset. Accept or reject steps were omitted
as they would have required expensive computations on the
full dataset. Additionally, the discretization of the Langevin
diffusion process equipped with a position-dependent pre-
conditioner comes with an additional drift term [15] that
was neglected in [1]. We correct these two approximations
to sample exactly from (12). Following [15], the proposal
distribution corresponding to PMALA with the RMSProp
preconditioner is the Gaussian distribution:

q
(
Θ(t)

c |Θ(t−1)
)
= N

(
Θ(t)

c |µ(t),Λ(t)
)

(17)

with{
µ(t) = Θ(t−1) − ϵ

2G
(t−1)∇g(Θ(t−1)) + ϵγ(t−1),

Λ(t) = ϵG(t−1),
(18)

where ϵ is a step size and γ(t−1) is the additional drift
term due to the position-dependent preconditioner [15]. In full
generality, for all i ∈ [[1, ND]],

γ
(t−1)
i =

1

2

ND∑
j=1

∂G
(t−1)
ij

∂θ
(t−1)
j

. (19)

However, the RMSProp preconditioner is diagonal so that the
sum in (19) reduces to the j = i term only. Note that γ(t−1)

is defined from a differentiation with respect to iterate Θ(t−1)

while the variance vector v in (14) is defined from candidates.
Since all iterates start as candidates, let j(t) be the number
of iterations since last accept: j(t) = min

{
j ≥ 0|Θ(t) =

Θ(t−j)
c

}
. The correction terms γ

(t−1)
i are then given by

γ
(t−1)
i = −

(1− α)αj(t−1)
(

∂g
∂θi

· ∂2g
∂θ2

i

)(
Θ(t−1)

)
2

√
v
(t−1)
i

(
η +

√
v
(t−1)
i

)2 , (20)

To compute q(Θ(t−1)|Θ(t)
c ) = N

(
Θ(t−1)|µ(t)

c ,Λ(t)
c

)
, one

needs to update the variance v(t) and preconditioner G(t) and
evaluate the candidate additional drift term γ

(t)
c . By definition,

j(t) = 0 for candidates, so for all i ∈ [[1, ND]],

γ
(t)
c,i = −

(1− α)
(

∂g
∂θi

· ∂2g
∂θ2

i

)(
Θ(t−1)

)
2

√
v
(t)
i

(
η +

√
v
(t)
i

)2 . (21)

The parameters µ
(t)
c ,Λ(t)

c are thus given by{
µ

(t)
c = Θ(t)

c − ϵ
2G

(t)∇g
(
Θ(t)

c

)
+ ϵγ

(t)
c ,

Λ(t)
c = ϵG(t).

(22)

Algorithm 1 describes the proposed PMALA kernel with
RMSProp preconditioner. It relies on three scalar parameters:
a damping parameter η, an exponential decay rate α and a
step size ϵ. The first two are generally set to η = 10−5 and
α = 0.99 [1]. The step size is chosen empirically. MALA
achieves optimal convergence rates with an acceptance rate
equal to 0.574 when the components of Θ are independent [9].
Despite the interdependencies in the posterior distribution, we
also set ϵ to obtain an average acceptance rate close to 0.574,
which yields good results in practice.

B. MTM transition kernel

The non-log-concavity and potential multimodality of the
posterior (12) is the second major difficulty to be addressed.
After a discussion on state-of-the-art methods, we will propose
a MTM kernel. In practice, samplers such as MH, MALA,
HMC or even PMALA fail to explore the full distribution
when modes are far away: they get stuck in one. Alternative
MCMC algorithms dedicated to multimodal distributions have
been proposed in the literature. Tempering-based samplers,
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Algorithm 1: PMALA kernel K1 at step t

Input: Θ(t−1), v(t−1), j(t−1)

Output: Θ(t), v(t), j(t)

// Propose candidate

G(t−1) and γ(t−1) // using (16), (20)
µ(t) and Λ(t) // using (18)
Θ(t)

c ∼ N (µ(t),Λ(t))
// Accept or reject

v(t), G(t) and γ
(t)
c // using (14), (16), (21)

µ
(t)
c , Λ(t)

c and ρ(t) // using (22), (13)
Draw ζ ∼ Unif(0, 1)
if ζ ≤ ρ(t) then Θ(t) = Θ(t)

c , j(t) = 0

else Θ(t) = Θ(t−1), j(t) = j(t−1) + 1

e.g., the Equi-Energy Sampler [29] and the Adaptive Parallel
Tempering Algorithm [30], run parallel interacting Markov
chains at different temperatures. High temperature chains can
navigate between modes and only one chain at low temperature
is actually used for estimations. Other methods consider an
augmented distribution with a latent mode index and sample
it with two kernels: a local kernel explores around a mode
and a jump kernel permits jumps between modes. Such meth-
ods include Darting MC (DMC) [31], Jumping Adaptative
Multimodal Sampler (JAMS) [32], Regeneration Darting MC
(RDMC) [33] and Wormhole HMC (WHMC) [34]. WHMC
is a particular case of the Riemannian Manifold Hamiltonian
Monte Carlo algorithm [14]. The metric of the corresponding
manifold combines the standard Euclidean distance and a
wormhole metric that shortens the distances between already
identified modes, which simplifies transitions from one to
another. DMC and JAMS require a prior identification of the
distribution modes by some optimization methods. RDMC and
WHMC allow running optimization methods in parallel to the
sampler and update the distribution and the sampler parameters
at random regeneration times [35]. A more complete review
of samplers dedicated to multimodal distributions is available
in [32]. Most of these methods are computationally very
expensive or rely on optimization methods to identify the
modes. When f̃ covers multiple decades and is non-linear,
the posterior (12) has potentially many modes with only a few
of significant weight in the distribution. The identification of
relevant modes with standard optimization methods is difficult.

We propose to use a Multiple-Try Metropolis (MTM) [36]
kernel that can escape a local mode and explore other ones
without any knowledge about the number, positions or vari-
ances of the modes. Instead of sampling the whole vector
Θ ∈ RND at once, it uses a Gibbs sampler to decompose
it into N individual θn. For each conditional distribution, it
harnesses an Independent Multiple-Try Metropolis (I-MTM)
approach [2], [36], [37]. This method generates K ≥ 1
candidates (θ(k)

n )Kk=1 independently of θ(t−1)
n . This divide-to-

conquer approach permits considering N conditional distribu-
tions π

(
θn|yn,Θ

(t−1)
\n

)
of small dimension, where Θ

(t−1)
\n =(

θ
(t−1)
1 , . . . ,θ

(t−1)
n−1 ,θ

(t−1)
n+1 , . . . ,θ

(t−1)
N

)
. Candidates are sam-

Algorithm 2: MTM kernel K2 at step t

Input: Θ(t−1)

Output: Θ(t)

for n = 1 to N do
// Propose candidates, select one

θ(k)
n ∼ q

(
θn

∣∣∣Θ(t−1+n−1
N )

\n

)
for k = 1 to K

w
(
θ(k)
n

)
for k = 1 to K // using (23)

wk for k = 1 to K // using (24)
i ∼ Cat(w1, · · · , wK)
// Accept or reject

r
(t)
n // using (25)

Draw ζ ∼ Unif(0, 1)
if ζ ≤ r

(t)
n then

θ
(t−1+ n

N )
n = θ(i)

n , Θ(t−1+ n
N )

\n = Θ
(t−1+n−1

N )
\n

else Θ(t−1+ n
N ) = Θ(t−1+n−1

N )

pled from a proposal distribution q
(
θn|Θ(t−1)

\n
)

that should
be permissive enough to generate candidates in all modes of
π
(
θn|yn,Θ

(t−1)
\n

)
. Then, using an importance weight function

w

w
(
θ(k)
n

)
=

π
(
θ(k)
n |yn,Θ

(t−1)
\n

)
q
(
θ(k)
n |Θ(t−1)

\n
) , (23)

one candidate is selected using a categorical distribution with
selection probability wk for candidate k

wk =
w
(
θ(k)
n

)∑K
j=1 w

(
θ(j)
n

) . (24)

The MH step is then performed with the selected candidate i
and the generalized acceptance probability [2], [36]

r(t) = 1 ∧
w
(
θ(i)
n

)
+
∑K

j=1,j ̸=i w
(
θ(j)
n

)
w
(
θ(t−1)
n

)
+
∑K

j=1,j ̸=i w
(
θ(j)
n

) . (25)

Algorithm 2 summarizes the MTM sampler. Note that due to
the Gibbs approach, it updates one component at a time and
returns the result of all updates. A succession of intermediate
updates

(
Θ(t−1+n/N)

)N
n=1

is therefore introduced. This tran-
sition kernel relies on the choice of the proposal distribution
q and on the number of candidates K generated at each step.
This parameter is chosen as a trade-off between computational
intensity and average acceptance probability: the higher K,
the higher the acceptance probability, the mixing capability
but also the computational cost.

In image inverse problems, many common spatial priors
are based on a local operator such as the image gradient or
Laplacian. In such cases, many components θn are condition-
ally independent. They can be sampled in parallel using a
Chromatic Gibbs sampler [38], which can significantly speed
up computations.

C. Proposed sampler and implementation details
To combine a good local exploration of modes as well as

jumps between modes, the proposed kernel mixes the PMALA
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and MTM transition kernels above. At every step t, the MTM
kernel is selected with probability p, and the PMALA kernel
with probability 1 − p. Since the MTM kernel divides the
parameter space in N D-dimensional subspaces, the PMALA
global integer j(t) ≥ 0 is replaced by a vector j(t) ∈ NN ,
where j

(t)
n counts the number of steps since last acceptance

for component θn. When a component θn is accepted by the
MTM kernel, the counter jn is reset to 0 and the variance
component vn ∈ RD is updated as in (14) with ∂g

∂θn

(
Θ(t)

)
.

Algorithm 3 reports the complete proposed sampler. Sim-
ilarly to RDMC and WHMC, the proposed sampler mixes
a kernel dedicated to local exploration – PMALA – and
another to jump between modes – MTM. The decomposition
of the parameter space into N D-dimensional subspaces
makes the sampler much simpler than previous approaches.
It will perform well in structured problems that allow such
decomposition, e.g., images and graphs, and poorly in high-
dimensional problems that do not, e.g., Gaussian Mixtures over
the full space.

Regarding theoretical properties, the PMALA kernel sat-
isfies the detailed balance property – from [9, theorem 7.2]
– and produces ergodic Markov chains – from [9, corollary
7.5]). The proposed MTM kernel is a Metropolis-within-Gibbs
algorithm with propositions independent to the current location
and with multiple candidates K. In the particular case where
K = 1, it satisfies the detailed balance property and pro-
duces uniformly ergodic Markov Chains – from [39, theorem
7]. Using K > 1 candidates in a Multiple-Try Metropolis
framework maintains detailed balance and ergodicity [36]. As
a mixture of kernels having the same stationary distribution,
the proposed kernel also admits the posterior as a stationary
distribution – from [9, chapter 10]. As the MTM kernel pro-
duces uniformly ergodic Markov chains, so does the proposed
mixture kernel – from [9, proposition 10.20]). These results
of convergence towards the posterior are mostly asymptotic
and also hold for simpler algorithms such as Random Walk
Metropolis-Hastings [40]. A comparative theoretical study
of non-asymptotic properties that could demonstrate a faster
convergence of the proposed sampler is beyond the scope of
this paper. However, empirical results show that the proposed
sampler yields state-of-the-art performance on multimodal
distributions in low-dimensional settings, or higher dimen-
sional applications with relevant low-dimensional conditional
distributions.

IV. NUMERICAL EXPERIMENTS

The performance of the proposed method is evaluated on
three examples of increasing complexity: (i) sampling a 2D-
Gaussian mixture model with unknown modes, (ii) the sensor
localization problem [17], and (iii) a synthetic astrophysical in-
verse problem inspired from [4]. The first two examples focus
on the ability of the sampler to efficiently explore multimodal
distributions. The astrophysical inverse problem combines all
the challenges addressed in Sections II and III: censorship,
mixture of noises, forward model spanning multiple decades
and multiple local minima.

Algorithm 3: Proposed sampler: PMALA and MTM

Input: number of iterations T , starting point Θ(0)

Output: Markov chain {Θ(t)}Tt=1

Initialize v
(0)
nd =

[
∂g

∂θnd

(
Θ(0)

)]2
for all n and d

Initialize j(0) = 0N

for t = 1 to T do
Draw ζ ∼ Unif(0, 1)
if ζ > p then // PMALA kernel (Algo. 1)

Θ(t),v(t), j(t) = K1

(
Θ(t−1),v(t−1), j(t−1)

)
else // MTM kernel (Algo. 2)

Θ(t) = K2

(
Θ(t−1)

)
// Update PMALA parameters
for n = 1 to N do

if candidate for θn was accepted then ∀d,
v
(t)
nd = αv

(t−1)
nd +(1−α)

[
∂g

∂θnd
(Θ(t))

]2
,

j
(t)
n = 0, v(t)

\n = v
(t−1)
\n , j(t)\n = j

(t−1)
\n

A. Gaussian mixture model

A two-dimensional Gaussian mixture model (GMM) re-
stricted to the square C = [−15, 15]2 is considered. This
simple multimodal distribution, shown on Fig. 1 (top left),
is set to contain 15 modes (µi,Σi). It will demonstrate the
ability of the proposed sampler to jump between modes. For
simplicity, all the modes have an equal weight in the mixture

π(Θ) ∝

[
15∑
i=1

N (Θ|µi,Σi)

]
exp (−δ ι̃C(Θ)) , (26)

with δ = 104. No natural structure decomposition exists for
a GMM since each observation consists of N = 1 point
only in dimension D = 2. A Markov chain composed of
10 000 samples is considered, including 100 burn-in samples.
To illustrate the role of each of the two kernels in the proposed
sampler, two different values are considered for the probability
of selecting the MTM kernel: p = 0.1 or p = 0.9. The number
of candidates of the MTM kernel is set to K = 50, and
the proposal distribution q is the smooth uniform prior on
C (see appendix B). The MTM candidates weights w

(
θ(k)
n

)
in (23) are then equal to the likelihood term, i.e., the sum of
Gaussian pdfs. The default values α = 0.99 and η = 10−5 are
considered for the exponential decay and damping factor of
the PMALA kernel [1], and its step size is set to ϵ = 0.5.
The proposed approach is compared to the state-of-the-art
Wormhole Hamiltonian Monte Carlo sampler (WHMC) [34],
using the same number of samples. Note that WHMC needs
the prior knowledge of mode positions (µi)1≤i≤15, while the
proposed kernel does not.

Fig. 1 shows the 2D histograms obtained with the three
samplers: WHMC and the proposed ones with either p = 0.1
or p = 0.9. The three Markov chains efficiently explore all
the modes, and their local dispersion obeys the covariance
structures equally well. Table I compares their effective sample
sizes (ESS) [9] and biases. When p = 0.9, the proposed
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TABLE I
SAMPLERS COMPARISON ON 2D-GMM.

MCMC sampler Bias ESS
∥E[Θ]−Θ∗∥ θ1,1 θ1,2

WHMC [34] 1.28 · 10−1 2 753 2 993
Proposed, p = 0.1 7.02 · 10−1 395 444
Proposed, p = 0.9 4.61 · 10−2 6 157 5 780

Fig. 1. Sampling results on GMM for WHMC (top right), the proposed kernel
with p = 0.1 (bottom left) and p = 0.9 (bottom right). The red ellipses show
the probability level at 2σ. All histograms are in logarithmic norm.

sampler achieves better performances than WHMC, despite
the absence of information about the position of the modes
µi. The high ESS values result from the 85% acceptance rate
of the MTM kernel for K = 50. However, the MTM kernel
with a fixed number of candidates K would not scale up to
much higher dimensions. The probability to jump between
modes is proportional to the volume of the high probability
regions compared to the volume of C, and thus decreases
exponentially with the dimension of the problem. The pro-
posed sampler would therefore fail to reach isolated modes
in a high-dimensional GMM, whereas WHMC would succeed
to do so by exploiting its additional information about the
modes. However, the proposed approach focuses on scenarios
where the parameter space can be partitioned into a collection
of N subspaces of limited dimension D, typically D ≲ 10.
The MTM kernel thus remains out of reach from the curse
of dimension thanks to the structure of the problem. As in
this simple GMM example, the proposed sampler can then
outperform WHMC, even without any prior information on
the modes of a multimodal distribution.

B. Sensor localization

The sensor localization problem introduced in [17] is a
common test case in multimodal sampling, e.g., in [32]–
[34]. Three sensors have known locations and will serve as
a reference to avoid ambiguities with respect to translation,
rotation and negation. The goal is to estimate the unknown
positions Θ ∈ RND of N = 8 sensors in dimension D = 2.

TABLE II
EFFECTIVE SAMPLE SIZE (ESS) ON THE SENSOR LOCALIZATION

PROBLEM.

MCMC sampler ESS
min mean max

WHMC [34] 29 1 026 5 753
RDMC [33] 168 3 354 11 192

Proposed, p = 0.1 29 329 1 235
Proposed, p = 0.9 299 3 561 16 789

The observation matrix Y ∈ RNL collects noisy and partially
censored pairwise distances between sensors located in a
square [0, 1]2, where L = N+3 is the total number of sensors.
The distance to sensor ℓ feeds channel ℓ, so that the forward
model is fℓ(θn) = ∥θn−θℓ∥. Note that only N +2 distances
will really be used since fℓ(θℓ) = 0, and that we set yn,ℓ = 0
by convention. The probability of communication from sensor
ℓ ∈ [[1, L]] to sensor n ∈ [[1, N ]] is set to exp

{
− fℓ(θn)

2

2R2

}
with R = 0.3. In absence of communication, the observation
is censored, which is encoded by the binary latent variable
cn,ℓ = 1. Otherwise, cn,ℓ = 0 when the observation occurs
and is corrupted by a white Gaussian noise

yn,ℓ = fℓ(θn) + ϵn,ℓ, with ϵn,ℓ ∼ N (0, σ2
ϵ ), (27)

with σϵ = 0.02, leading to

− log π (Y |Θ) =

N∑
n=1

L∑
ℓ=1

(1− cn,ℓ)

[
(fℓ(θn)− yn,ℓ)

2

2σ2
ϵ

(28)

+
fℓ(θn)

2

2R2

]
+ cn,ℓ log

[
1− exp

(
−fℓ(θn)

2

2R2

)]
,

The smoothed uniform prior on the square C = [−0.35, 1.2]2

is used as a prior on the location of each sensor. The cor-
responding penalty parameter δ introduced in (10) is set to
104. This prior is non-informative enough to match the results
shown in [32]–[34]. The proposed sampler is compared to
both Regeneration Darting Monte Carlo (RDMC) [33] and
WHMC. A Markov chain of size 30 000 is generated by each
algorithm, including 5 000 burn-in samples. The parameters
of the PMALA kernel are set to α = 0.99, η = 10−5 and
ϵ = 3 × 10−3. The MTM kernel is selected with p = 0.1 or
p = 0.9. Its proposal distribution q is set to the smooth uniform
prior on C. For each sensor, the high probability regions are
small compared to C. To obtain high acceptance rates for the
MTM kernel, the number of candidates is set to K = 1000.
Better proposal distributions can be obtained for this specific
problem, which is beyond the scope of this experiment.

Fig. 2 shows the marginal distributions of each sensor
position. The four samplers identified the same modes. Table II
compares the samplers in terms of ESS. With p = 0.9, the
proposed sampler yields better mixing capability than WHMC
and RDMC. This is due to the partition of the ND = 16-
dimensional problem into N = 8 simpler D = 2-dimensional
problems. This divide-to-conquer strategy exploits the problem
structure to fight the curse of dimension.
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Fig. 2. Marginal distributions of the sensors positions for RDMC (top left),
WHMC (top right), proposed with p = 0.1 (bottom left) and with p = 0.9
(bottom right). The graph shows the true position of all sensors. The sensors
with a known position are in red and those whose position is inferred are in
blue. The edges of the graph indicate which pairs of sensors are observed.

C. Realistic astrophysical synthetic data

The overall approach is now applied to a synthetic yet real-
istic inverse problem from astrophysics [4], [5]. The goal is to
reconstruct maps of physical parameters of a molecular cloud
from radio wave multispectral intensity maps. Each observa-
tion map contains N = 4096 pixels. Each pixel is associated
to D = 4 physical parameters φ = (κ, Pth, G0, AV ), so
that the aim is to infer a set of parameters Φ = (φn)

N
n=1

in dimension N × D = 16 536. The parameter κ is a
nuisance parameter related to the conditions of observations.
It’s ground truth value is set to 1 over the whole map.
The main parameters of interest are the thermal pressure
Pth, the intensity of a UV radiative field G0 and the visual
extinction AV , related to the cloud depth along the line of
sight. The ground truth parameters Φ∗ are chosen according
to a plausible astrophysical scenario [41]. The physics of
the system is encoded within the Meudon PDR code [6], a
large numerical simulator. This forward model features many
properties that make inference difficult: it is a non-linear
model that yields a multimodal posterior distribution, and the
amplitude of observations as well as parameters φ span several
decades. A discrete grid of values {(φ[g],f [g]), g ∈ G} is used
to define a normalization process as well as the reduced model.
To work with similar scales, the set of estimated parameters Θ
will correspond to normalized values θ of logφ with respect
to empirical averages and variances of {logφ[g], g ∈ G}. To
avoid repeated expensive evaluations, the forward model f
is reduced to an approximate model f̃ , as in (2). For each
line ℓ, a polynomial approximation P̃ℓ of degree 6 is trained
on collection {(θ[g], log fℓ[g]), g ∈ G}. The approximation
quality of the resulting f̃ will be considered of sufficient
quality to replace exact simulations everywhere. It is used to
generate observation maps of L = 10 emission lines. For each

Fig. 3. Some observation maps of the astrophysical experiment. From left
to right: line ℓ = 1, line ℓ = 10, proportion of censored lines per pixel.

Fig. 4. Inference results: (left) ground truth Θ∗; (middle) MMSE estimate
from the proposed transition kernel; (right) size of the 95% credibility intervals
(CI) in % of the size of the validity intervals.

line ℓ, f̃ℓ ranges from 10−18 to 10−2. These maps are deteri-
orated by additive noise, multiplicative noise and censorship
following the observation model (1). The standard deviation of
the multiplicative noise is set to σm = log(1.1), which roughly
represents a 10% alteration in average. For the additive noise,
σa = 1.38715 ·10−10 so that the Signal-to-Noise Ratio (SNR)
varies between −81 and 79 dB. Observations yn,ℓ range from
about 10−10 to 10−2. The censorship level is set to ω = 3σa.
Fig. 3 shows the observation maps of two lines and the spatial
distribution of censorship importance.

The likelihood approximation is obtained as indicated in
Section II-C2, and its parameters aℓ are adjusted as described
in Appendix A. The validity set C of physical parameters is set
as in [4], and the penalty parameter δ of the smooth uniform
prior is set to 104. Given the smoothness of the true maps, for
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each d the chosen spatial regularizer h is taken as

h(Θ·d) = ∥∆Θ·d∥22 =

N∑
n=1

∑
i∈Vn

(θn,d − θi,d)
2, (29)

where ∆ is the discrete (5-point based) 2D Laplacian operator,
and Vn is the set of neighbors of pixel n induced by ∆. The
hyperparameter τ from (10) is fixed to τ = (10, 2, 3, 4).

Inference is carried out using 10 000 iterations of a Markov
chain including 1 500 burn-in samples. The parameters of the
proposed sampler are set to α = 0.99, η = 10−5 and ϵ = 10−6

for PMALA, and to p = 0.5 and K = 50 for MTM. Since
the operator ∆ only compares a pixel to its four neighbors
and since the indicator prior and likelihood are pixel-wise,
the set of pixels can be partitioned into two conditionally
independent subsets of pixels. A two sites Chromatic Gibbs
sampling [38] is therefore performed in the MTM kernel to
speed up computations. Note that using the smooth uniform
prior as a proposal distribution in MTM is inefficient due to
the small size of high probability regions compared to the
volume of C. The proposal distribution q is based on the
spatial prior (29) instead. For any pixel, one can show that the
conditional spatial prior is a Gaussian distribution centered on
the mean of the set of neighboring pixels Vn. Since maps are
assumed to be smooth, the likelihood functions for a pixel n
and its neighbors should correspond to similar modes in the
parameters’ domain. If the neighbors are not all in the same
mode, the mean of the neighbors will in general not fall in a
high probability region. Therefore, for a pixel n, the proposal
distribution is defined as a Gaussian mixture whose modes are
all the means of non-empty subsets V ∈ P(Vn) of Vn:

q(θn|Θ\n) ∝
D∏

d=1

∑
V ∈P(Vn)

exp

[
−2τd

∑
i∈V

(θnd − θid)
2

]
(30)

∝
D∏

d=1

∑
V ∈P(Vn)

exp

−2τd|V |

(
θnd −

1

|V |
∑
i∈V

θid

)2
 . (31)

Performance is assessed for the Minimum Mean Squared
Error (MMSE) estimate Θ̂. Recall that the inferred parameters
Θ correspond to normalized logarithms of physical param-
eters Φ. Therefore, prediction errors on the D parameter
maps Θ·d are comparable. The quality of the reconstruction
is quantified with the Mean Squared Error (MSE) ∥Θ̂ −
Θ∗∥22 and the Reconstruction Signal-to-Noise Ratio (R-SNR)
20 log10

(
∥Θ∗∥

∥Θ̂−Θ∗∥

)
.

Fig. 4 shows the estimations results. The MMSE estimate Θ̂
(middle) is very close to the ground truth Θ∗ (left). The recon-
structions are qualitatively very consistent with the underlying
physics. The parameter Θ·4, corresponding to φ4 = AV , is
known by astrophysicists to be the most difficult to retrieve
as high values lead to saturated line intensities. Such pixels
appear in the top left corner of the ground truth map.

Table III shows the MSE and the R-SNR for each parameter
Θ·d, and the relative size of the credibility intervals with
respect to the associated (normalized) validity interval C. As
expected, the MSE is larger for Θ·4 (↔ φ4 = AV ), and
the relative size of its credibility intervals are overall the

TABLE III
RECONSTRUCTION METRICS AND RELATIVE SIZE OF CREDIBLE

INTERVALS FOR THE ASTROPHYSICS EXPERIMENT. THE R-SNR IS NOT
DEFINED FOR Θ·1 , AS ITS GROUND TRUTH IS 0 EVERYWHERE.

MMSE Mean 95% credibility intervals size

MSE R-SNR censorship overall(dB) ≤ 50% > 50%
Θ·1 0.017 – 6.1 % 11.9 % 6.8 %
Θ·2 0.019 16.8 9.3 % 20.6 % 9.9 %
Θ·3 0.009 23.4 5.7 % 19.8 % 6.5 %
Θ·4 0.034 15.5 16.3 % 14.5 % 16.2 %

largest, about 16.2%. The problem is also very ill-posed for
all parameters in pixels with very low SNR, where most of the
lines are censored, see Fig. 3 (right). To interpret the results
from an astrophysical viewpoint, performances are computed
over two subsets of pixels with either less or more than 50%
of censored lines. As expected, the credibility intervals of the
latter are about twice as large as the former. Finally, all the
parameters but AV are well constrained for pixels with less
than 50% of censored lines. The inference remains challenging
since the posterior contains many local modes with high g
values, but the proposal distribution q permits the Markov
chain to successfully reach the mode of interest. The relative
quadratic error results in an R-SNR between 15.5 dB and 23.4
dB. Credibility intervals at 95% level remain small, ranging
from 5.7% to 9.3% of the admissible interval C.

Combining all the difficulties addressed in this article, this
astrophysical inverse problem illustrate the good performances
of the proposed approach in a challenging scenario. The
proposed likelihood approximation enabled handling the cen-
sorship and mixture of noises present in the observation model.
Dealing with a multimodal posterior distribution, the MTM
kernel allows the different modes to be visited, while the
PMALA kernel permits to explore them efficiently. The pro-
posed sampler provides high quality estimates and informative
credibility intervals.

V. CONCLUSION

This work addresses a family of inverse problems that
combine several difficulties: a non-linear black-box forward
model, potentially non-injective, that covers multiple decades;
observations damaged by both censorship and a mixture of
additive and multiplicative noises. The likelihood is intractable
and leads to a potentially multimodal posterior distribution.
An approximation of the likelihood was proposed, based on a
model reduction and an approximate parametric noise mixture
model with controlled error. To efficiently sample from the
resulting multimodal posterior, an original MCMC algorithm
combining two kernels was proposed. The Gibbs-like MTM
kernel permits jumps between modes, while the PMALA
kernel efficiently explores the local geometry of each mode.
The proposed sampler was shown to be competitive with
state-of-the-art multimodal sampling methods on a Gaussian
mixture model and a sensor localization problem. Motivated
by astronomical observation, a more realistic application to
a challenging inverse problem has shown the interest and
the good performances of the proposed approach. Estimation
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errors remain small and uncertainties are quantified. Future
work includes applications to real astrophysical data such as
the IRAM’s Orion-B cloud observations [41] or the James
Webb Spatial Telescope observations.
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APPENDIX A
CHOICE OF LIKELIHOOD APPROXIMATION PARAMETERS aℓ

For each channel ℓ, the parameter aℓ = (aℓ,0, aℓ,1) lo-
cates the frontiers between low, intermediate and high values
regimes of P̃ℓ in the definition of λ (7). It has a critical
influence on the approximation quality. It should be adjusted to
P̃ℓ, σa and σm. For simplicity, in this subsection, likelihood
functions are conditioned with respect to z = P̃ℓ(θ) ∈ R
instead of θ ∈ RD. The true likelihood is not explicit,
but the model (1) can be easily sampled from, and the
approximation (8) is known.

The parameter aℓ is set to obtain an approximation as
close as possible to the true likelihood, with respect to some
divergence criterion. The Kullback-Leibler (KL) divergence
would be a natural choice. However, due to the number of
decades spanned, the standard deviation of KL estimators is
in practice larger than the quantity of interest [42], which
prevents from performing optimization. The Kolmogorov-
Smirnov (KS) distance is not affected by this property: for
a given z, it only requires ordered samples (y(i))Mi=1. It reads

D̂KS(z,aℓ) = sup
y∈R

∣∣∣F̂M (y|z)− F̃ (y|z,aℓ)
∣∣∣ , (32)

where F̂M (·|z) is the empirical cdf of the true likelihood π(·|z)
estimated from M samples y(i), and F̃ (·|z,aℓ) is the cdf of
the proposed approximation (8). Assuming that θ follows a
uniform distribution on C yields a distribution on z with pdf
π(z) which can be estimated by kernel density estimation
(KDE). The function to minimize is

φ(aℓ) = Ez

[
D̂KS (z,aℓ)

]
=

∫
D̂KS(z,aℓ)π(z)dz. (33)

An estimator φ̂ can be obtained using numerical integration
on z over S bins. The higher M and S, the better the
estimation accuracy. Minimizing φ̂ can be performed using
a grid search, which is quite computationally intensive. A
cheaper alternative is to use a Bayesian Optimization (BO)
procedure [43]. This optimization was applied for each channel
in the astrophysical application described in Section IV-C.
Both grid search and BO approaches were used. The KDE of
π(z) was performed from 810 000 samples. The BO procedure

Fig. 5. Maximization of − log10 φ̂ using both Bayesian Optimization
(BO) and grid search for one channel of the astrophysical case detailed
in IV-C. In BO, a Gaussian Process (GP) replaces the function to optimize
(left column). The red dashed vertical bar represents the value of a0+a1

2
for which the additive and multiplicative noises have equal variances, i.e.
σ2
a = f̃ℓ(θ)

2Var[ϵ(m)
n,ℓ ], at λ = 1

2
. For clarity, all scales are displayed in

log10 scale, while computations are done in log scale.

was run with S = 100 and M = 250 000 using [44] with
default parameters. Fig. 5 shows the results for one channel.
The proposed approximation with adjusted aℓ is closer to the
true likelihood than a purely additive Gaussian approximation,
i.e., aℓ,0 > maxj z

(j), or a purely multiplicative lognormal
approximations, i.e., aℓ,1 < minj z

(j).

APPENDIX B
SAMPLING FROM SMOOTHED INDICATOR DISTRIBUTION

This section describes the algorithm to draw samples from
the real-valued probability distribution with density π(θ) ∝
exp

(
−δ ι̃[l,u](θ)

)
, with l < u and ι̃[l,u] introduced in (9).

To this aim, consider the generalized normal distribution
GN (0, 1/δ4, 4) of probability density function [45]

pGN (θ) =
2δ

1
4

Γ(1/4)
exp

(
−δ θ4

)
. (34)

Note that π(θ) is a continuous extension of a uniform distri-
bution and of this generalized normal distribution at 0.

π(θ) ∝


pGN (θ − l) if θ < l,

pGN (0) if θ ∈ [l, u],

pGN (u− θ) if θ > u.

(35)

The normalizing constant of π(θ) is 1 + pGN (0)(u− l). The
weight of the uniform section in the combination is therefore

wUnif =
1

1 + Γ(1/4)
2

1

δ
1
4 (u−l)

. (36)

Algorithm 4 summarizes the procedure to sample from π(θ).
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[42] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual
information,” Phys. Rev. E, vol. 69, no. 6, p. 066138, Jun. 2004.

[43] B. Shahriari, K. Swersky, Z. Wang et al., “Taking the Human Out of the
Loop: A Review of Bayesian Optimization,” Proceedings of the IEEE,
vol. 104, no. 1, pp. 148–175, Jan. 2016.

[44] F. Nogueira, “Bayesian Optimization: Open source constrained global
optimization tool for Python,” 2014–.

[45] S. Nadarajah, “A generalized normal distribution,” Journal of Applied
Statistics, vol. 32, no. 7, pp. 685–694, Sep. 2005.

[46] M. Nardon and P. Pianca, “Simulation techniques for generalized
Gaussian densities,” Journal of Statistical Computation and Simulation,
vol. 79, no. 11, pp. 1317–1329, Nov. 2009.


	Introduction
	Bayesian model
	Notation
	Problem statement
	Likelihood approximation
	Model reduction
	Modeling the noise mixture

	Prior and resulting posterior

	Proposed MCMC sampler
	PMALA transition kernel
	MTM transition kernel
	Proposed sampler and implementation details

	Numerical experiments
	Gaussian mixture model
	Sensor localization
	Realistic astrophysical synthetic data

	Conclusion
	Appendix A: Choice of likelihood approximation parameters bold0mu mumu aaaaaa
	Appendix B: Sampling from smoothed indicator distribution
	References

