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Abstract: Caffeic acid (CA) exhibits a myriad of biological activities including cardioprotective action,
antioxidant, antitumor, anti-inflammatory, and antimicrobial properties. On the other hand, CA
presents low water solubility and poor bioavailability, which have limited its use for therapeutic
applications. The objective of this study was to develop a nanohybrid of zinc basic salts (ZBS) and
chitosan (Ch) containing CA (ZBS-CA/Ch) and evaluate its anti-edematogenic and antioxidant
activity in dextran and carrageenan-induced paw edema model. The samples were obtained by
coprecipitation method and characterized by X-ray diffraction, Fourier transform infrared (FT-IR),
scanning electron microscope (SEM) and UV-visible spectroscopy. The release of caffeate anions
from ZBS-CA and ZBS-CA/Ch is pH-dependent and is explained by a pseudo-second order kinetics
model, with a linear correlation coefficient of R2 ≥ 0.99 at pH 4.8 and 7.4. The in vivo pharmacological
assays showed excellent anti-edematogenic and antioxidant action of the ZBS-CA/Ch nanoparticle
with slowly releases of caffeate anions in the tissue, leading to a prolongation of CA-induced anti-
edematogenic and anti-inflammatory activities, as well as improving its inhibition or sequestration
antioxidant action toward reactive species. Overall, this study highlighted the importance of ZBS-
CA/Ch as an optimal drug carrier.

Keywords: caffeic acid; intercalation; ZBS-CA; ZBS-CA/Ch nanoparticles; anti-edematogenic

1. Introduction

Caffeic acid (CA) is a natural phenolic compound found in various plants, including
coffee, fruits, and vegetables [1]. It has been studied for its potential anti-inflammatory
properties [1,2]. However, this compound exhibits low water solubility, which can hinder
its effective delivery and bioavailability [3]. Strategies to enhance its solubility include
the nanoscale delivery systems increase surface area and improve dissolution [4,5]. These
nanocarriers can also provide controlled release of CA, allowing for sustained and regulated
delivery of the compound [6]. This controlled release can optimize its therapeutic or
functional effects, ensuring that the desired concentration of drug is maintained over a
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desired period of time [7]. In addition, nanocarriers can be loaded with different types of
anti-inflammatory drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDs) [8,9],
corticosteroids [10], or specific anti-inflammatory peptides [11].

The Zinc Basic Salt (ZBS) have the general formula [Zn5(OH)8](A)2·nH2O], where A is
an intercalated anion such as a carbonate, nitrate, carboxylate or sulfate group [12,13]. Their
structures are related to the natural mineral Brucite and feature octahedral, edge-sharing
sheets of zinc hydroxide units, where two tetrahedral zinc hydroxide units are situated
above and below a vacant octahedral site [13,14]. The interlayer anions are weakly bound
to the tetrahedral Zn2+ ions, completing the tetrahedral coordination, and easily exchanged
with most of inorganic anions as well as organic ones [13,14].

The use of nanocarriers ZBS is not extensively reported in the literature compared
to other drug delivery systems or applications. However, ZBS can be combined with
chitosan (Ch), a biocompatible and biodegradable polysaccharide derived from chitin [15],
to create composite materials or delivery systems with unique properties [16–18]. Conse-
quently, the incorporation of nanoparticles, such as metal nanoparticles, silica nanoparticles,
or polymeric nanoparticles, into Ch matrices can enhance drug loading capacity, provide
controlled release profiles, and improve targeted delivery of therapeutic agents. Based on
this, the combination of ZBS nanohybrids with Ch (ZBS-Ch) holds potential for various
drug delivery routes [19].

This study shows for the first time the intercalation of the CA into inorganic layers (ZBS)
complexed by Ch, ZBS-CA/Ch nanoparticles and in vivo pharmacological assays from anti-
edematogenic and antioxidant in dextran and carrageenan-induced paw edema model. The
motivation of this study is based on well-known biological activities of caffeic acid (CA), such
as cardioprotective action [20], antioxidant [21], antitumor [22], anticarcinogenic [23], anti-
inflammatory [24], and antimicrobial [25] among others. However, therapeutic applications of
CA are still limited due to its low water solubility and poor bioavailability [26].

2. Results and Discussion
2.1. Powder X-ray Diffraction Pattern (PXRD) Analysis

The co-precipitation method was used to intercalate CA in the interlayer spacing of
ZBS material, which were confirmed by XRD patterns (Figure 1). The interlayer spacing
expands from 9.6 Å for the pristine ZBS-NO3 (Figure 1A) to 10.14 Å for the exchange
product, ZBS-CA intercalation compound (Figure 1C). Upon exchange of the interlayer
nitrate anions with caffeate anions, the layered nature of the pristine ZBS is preserved
and the observed layer spacing of 10.5 Å is also close to 10.44 Å reported previously [27],
observed from XRD analysis. The considerable broadening of the diffraction peaks up on
intercalation of the organic anion (9.6 Å for ZBS-NO3 Figure 1A and 10.5 Å in the ZBS-CA
Figure 1C) is often associated with a decrease in the particle size of the crystallites or
turbostraticity of the layers whereby there is irregular or mismatched stacking of sequential
layers [28]. Furthermore, the interlayer spacing of the 10.5 Å value suggests a gallery of the
inorganic matrix caffeate anions assembled in bilayers. Such arrangement maximizes π-π
interactions between the interlayer anions, hydrogen bonding interaction between the layer
OH groups and the phenolic OH groups of the anions as well as the interaction between
the layers and the anions as proposed by reference [27].

Additionally, the scanning electron microscope confirm a decreasing in crystallite size
of the pristine ZBS to ZBS-CA (Figure S1). The pristine ZBS consists of plate-like particles
with diameter ranging from 100 to 500 nm whilst the particles of the exchange product
appear as aggregates of different shapes and sizes.
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cm−1 of Zn–O and 467 cm−1 of O–Zn–O are detected, respectively as reported by [29]. 
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disappearance of the absorption peak at 1643 cm−1 that is associated with stretching 
vibrations of the undissociated carboxylic acid (COOH) (Figure 2B) and the appearance 
of absorption peaks at 1545 cm−1 and 1421 cm−1 which confirms the intercalation of the 
caffeate anion between interlayer space of the ZBS, ZBS-CA sample (Figure 2C). In ZBS-
NO3 (Figure 2A), the carboxylate group may coordinate with the ZBS cation as a 
unidentate ligand or occur as a free species [29]. However, sodium salts of the caffeate 
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III) modes of the residual N-acetyl groups, respectively, which remain after of the 
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Figure 1. X-ray powder diffraction patterns of the ZBS-NO3 (A), pure CA (B), ZBS-CA (C), pure Ch
(D) and ZBS-CA/Ch (E) intercalation compound.

2.2. Infrared Analysis

The FT-IR spectra of all the samples are shown in Figure 2, however only the main
absorption bands, between 1800–400 cm−1 spectral region, are shown for the sake of
clarity. For the ZBS-NO3 sample (Figure 2A), the most intense absorption band is found
at 1384 cm−1, which is characteristic of the free interlayer nitrate group (belonging to
point group symmetry D3h) and at low frequency, bands arising from the intra-layers
vibrations at 637 cm−1 of Zn–O and 467 cm−1 of O–Zn–O are detected, respectively as
reported by [29]. Furthermore, the most notable feature upon intercalation of CA molecules
is the disappearance of the absorption peak at 1643 cm−1 that is associated with stretching
vibrations of the undissociated carboxylic acid (COOH) (Figure 2B) and the appearance
of absorption peaks at 1545 cm−1 and 1421 cm−1 which confirms the intercalation of the
caffeate anion between interlayer space of the ZBS, ZBS-CA sample (Figure 2C). In ZBS-
NO3 (Figure 2A), the carboxylate group may coordinate with the ZBS cation as a unidentate
ligand or occur as a free species [29]. However, sodium salts of the caffeate anion exhibit
unidentate coordination (Na+CA−: 146 cm−1) [27], and a value similar obtained in this
work by ∆ni = 1543–1421 = 122 cm−1, suggest that the interaction of the caffeate anion
with the matrix cation in the ZBS is fairly electrostatic, also confirmed by UV-vis solid
analysis (see Figure 3B). Finally, the FT-IR spectra of pure Chitosan (Figure 2D), show
three characteristic absorption bands at 1657, 1561 and 1317 cm−1 which assigned to C=O
stretching (amide I), N–H bending (amide II) and C–N stretching (amide III) modes of
the residual N-acetyl groups, respectively, which remain after of the complexation of the
ZBS-CA, Figure 2E.
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2.3. Interpretation of the UV-Visible Absorption Spectra

The strength of the interaction between CA molecules and the ZBS lattice was analyzed
by UV–Vis spectroscopy. Figure 3A shows four absorption bands at 215, 240, 287 and 312 nm
which correspond to the wavelengths maximus (max) of the pure caffeic acid and released
CA from the ZBS-CA and ZBS-CA/Ch samples. These values correspond to HOMO
(highest occupied molecular orbital) for LUMO (lowest unoccupied molecular orbital)
electronic transitions, for example, n→ π∗ and π→ π∗ , that are attributed to carbonyl
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group (at 312, 287 and 215 nm) and aromatic ring (at 240 nm) in the caffeic acid molecule.
Therefore, the data are composed of three UV bands, i.e., UV-A (315–400 nm), UV-B
(280–315 nm) and UV-C (200–280 nm), which demonstrate that there is no degradation of
the molecule in the synthesis process. Furthermore, an amount of the 46% (w/w) of the
cafeilate anion intercalated into ZBS (ZBS-CA) was obtained, which is in compliance with
47.4% (w/w) reported in the literature [27].

Furthermore, the 46% (w/w) of the cafeilate anion of the ZBS-CA sample keep up
28 wt% of the CA into ZBS-CA/Ch sample after the complexation in Chitosan. The loss
of the 18 wt% can be explained by CA molecules adsorbed in interlayer space of the ZBS
as well as by the time (4 h) of the reaction of the ZBS-CA with Ch solution. A minor time
could lead to the permanence of the CA molecule into ZBS-CA/Ch complex. Besides, the
UV-Vis solid state spectrum (Figure 3B) shows peaks at 384 nm and 390 nm related to the
energy transitions of the π-π to π → π∗ interactions, which correspond CA alone and of
the caffeilate anion into ZBS layers, respectively.

2.4. Drug Release Behavior of ZBS-CA and ZBS-CA/Ch

The drug release properties of caffeic acid (CA) anion from the ZBS-CA and ZBS-
CA/Ch samples have been investigated at a constant volume and temperature of 37± 0.5 ◦C
at different pH values, indicating that the release rate of CA anion from these hybrids
materials is pH-dependent. Figure 4A shows the release profiles of composite in solution at
pH 4.8 for ZBS-CA and ZBS-CA/Ch. The percentage release of CA anion from ZBS-CA
and ZBS-CA/Ch is approximately 41% and 23% after 10 h when exposed to pH 7.4 and
approximately 77% and 46% to pH 4.8, respectively (Table 1). The slower release rate for
ZBS-CA/Ch is due to the protective shell around the CA anions promoted both by the inor-
ganic material (ZBS) and polymer Ch. In addition, five kinetic models (Korsmeyer-Peppas,
Higuchi, Zero-Order, First-Order and Pseudo-Second Order) were assigned to understand
the release mechanism of CA anion from the interlayer spaces of ZBS-CA and ZBS-CA/Ch
layered compounds.
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Figure 4. Release profiles for caffeic acid from the nanoparticles based on chitosan/zinc basic salt
with caffeic acid drug at pH 7.4 and pH 4.8: (A) ZBS-CA/Ch (pH 7.4); (B) ZBS-CA (pH 7.4);
(C) ZBS-CA/Ch (pH 4.8) and (D) ZBS-CA (pH 4.8).
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Table 1. Correlation coefficient (R2) obtained by fitting caffeic acid release data from ZBS-CA and
ZBS-CA/Ch samples into phosphate-buffered saline at pH 7.4 and pH 4.8.

Sample pH Saturation
Release (%)

Kinetic Models

Korsmeyer-Peppas Higuchi Zero-Order First-Order

Simulation of the Kinetic
Pseudo-Second Order Model

R2 Stage I Stage II

ZBS-CA
4.8

77.0 0.978 0.953 0.878 0.918 0.997 0.996 0.998
ZBS-CA/Ch 46.0 0.959 0.919 0.934 0.959 0.998 0.997 0.999

ZBS-CA
7.4

41.0 0.915 0.985 0.733 0.786 0.992 0.998 0.995
ZBS-CA/Ch 23.0 0.915 0.936 0.788 0.819 0.996 0.999 0.996

According to the literature [30], the kinetic models for layered compound are well
described by linear regression technique. The calculated linear correlation coefficient shows
that the R2 > 0.99 in pseudo-second order is the best kinetics model fitted to explain the
release of CA anion from the interlayer spaces of ZBS compared to the other kinetic models
(Table 1). The zero-order and first-order models are not suitable to explain the whole
release of hybrids nanomaterials, as reported in the literature [31]. However, a detailed
examination of the data point distribution in Figure 4 in pH 4.8 suggests that the whole
release process consists of two linear stages. In order to better simulate the CA release
behavior, we applied the kinetic models as two separate stages, the stage I in 0–45 min, and
the stage II in 45–600 min. The stages I and II for CA anions release from ZBS/CA and
ZBS-CA/Ch are best fitted with the pseudo-second order model, with a linear correlation
coefficient of R2 ≥ 0.99 (Table 1).

Additionally, the simulation results of the kinetic model suggest that (i) the release
at both stages is diffusion-controlled; (ii) within the first 45 min (stage I), most caffeate
anions on the surface of ZBS particles diffuse into the medium solution via anion exchange;
and (iii) at stage II, surface diffusion, although not the controlling step, is continuous; the
controlling step is the caffeate anion diffusion from the inside to the surface of ZBS particles,
which takes a longer time than at stage I, as previously reported [32]. Furthermore, the
release profile (Figure 4) shows similar features to those previously reported for layered
inorganic materials, such as layered double hydroxides (LDH) [32–34] and zinc basic
salts (ZBS) [27,35,36] intercalated with organic compounds. Therefore, the release profile
suggests that the CA anion release from ZBS-CA and ZBS-CA/Ch may be attributed to
heterogeneous diffusion from the flat surfaces via ion exchange and/or by intraparticle
diffusion or surface diffusion, as previously reported [37].

2.5. In Vivo Pharmacological Assays
2.5.1. Antiedematogenic and Antioxidant of ZBS-CA/Ch in Dextran-Induced Paw
Edema Model

As shown in Figure 5A, subcutaneous injection of dextran induced paw edema that
reached a maximum edematogenic peak at 60 min (2.448 ± 0.834 mm), returning to normal
levels at 240 min. HDS (4 mg/Kg), CA (10 mg/Kg) and ZBS-CA/Ch (50 mg/Kg) inhibited
the paw edema from 30 min after dextran injection, remaining with this inhibitory effect un-
til at least 120 min (Figure 5C,D) compared to the DEX group. The antiedematogenic effect
along time (AUC 30–120 min) was observed in Figure 5(B.1) (DEX: 189.8 ± 17.02%; HDS:
107.8± 4.53%; CA: 107.6± 9.13% and ZBS-CA/Ch: 104.6± 7.54%). On the other hand, after
150 min, only the animals treated with the micro particles (ZBS-CA/Ch group) showed
reduced edema (AUC 150–240 min) compared to the DEX group (DEX: 131.0 ± 10.49% and
ZBS-CA/Ch: 94.52 ± 7.17%) (Figure 5(B.2)).

Regarding the oxidative parameters, our data show that 240 min after the induction of
paw edema with Dextran, the DEX group showed no change in TEAC levels (Figure 5E), but
increased NO and MDA levels in the paw (NO: 69.33± 6.17µM/L; MDA: 22.71± 2.43 nmol/L)
compared to the baseline group (Figure 5F,G). Regarding the treatments, HDS, CA and
ZBS-CA/Ch also did not change the levels of TEAC, but reduced the production of NO
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and MDA levels in the paw as compared to the DEX group (Figure 5F,G), However, the
animals treated with the ZBS-CA/Ch nanoparticles showed a better inhibitory effect on the
oxidative imbalance in this tissue, since the MDA levels in this group were significantly lower
compared to the other treatments (HDS = 5.69 ± 1.23 nmol/L; CA = 7.42 ± 1.11 nmol/L and
ZBS-CA/Ch = 2.22 ± 0.52 nmol/L).
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Figure 5. Effect antiedematogenic and antioxidant of CA (10mg/Kg) and ZBS-CA/Ch (50mg/Kg)
in dextran-induced paw edema model. (A) The evolution of paw edema size (mm) in different
times (T0–240min) after dextran injection. (B) Dextran induced paw edema model—Area Under
Cuver (AUC). (B.1) AUC graph in minute 30–120 after dextran induced paw edema in association
between measurement time (minute) to rat paw thickness (mm). (B.2) AUC graph in minute 120–240
after dextran induced paw edema in association between measurement time (minute) to rat paw
thickness (mm). (C) Photographic images of right hind paws of CA group in different times (T30, 60,
90 and 120) after dextran injection (D) Photographic images of right hind paws of ZBS-CA/Ch group
in different times (T30, 60, 90 and 120 min) after dextran injection (E) TEAC of rats with dextran-
induced paw inflammation 240 min after induction. (F) NO levels of rats with dextran-induced paw
inflammation 240 min after induction. (G) MDA (lipid peroxidation) of rats with dextran-induced
paw inflammation 240 min after induction. Data were expressed as mean ± SD (n = 5 per group).
Statistically significant differences between HDS, CA and ZBS-CA/Ch group vs. DEX group at
* p < 0.05. Statistically significant differences between CA vs. ZBS-CA/Ch group at # p < 0.05. Legend:
CA: caffeic acid, DEX: Dextran, HDS: hydrocortisone, MDA: malondialdehyde, NO: nitric oxide,
TEAC: Total Evaluation of Trolox Equivalent Antioxidant Capacity, ZBS-CA/Ch: Nanoparticles based
on Chitosan/Zinc basic salt with caffeic acid drug group.
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2.5.2. Antiedematogenic and Antioxidant of ZBS-CA/Ch in Carrageenan-Induced Paw
Edema Model

As shown in Figure 6A, the development of edema induced by carrageenan started
soon after the subcutaneous injection and the paw edema reached a maximum value
in 90 min (4.894 ± 0.365 mm) and remained elevated until at least 240 min. Regarding
treatments, HDS (4 mg/Kg), CA (10 mg/Kg) and ZBS-CA/Ch (50 mg/Kg) inhibited paw
edema from 30 to 240 min (Phase 1 -AUC 30–120min and Phase 2-AUC 150–240 min) after
carrageenan induction (CG: 1447 ± 112.3%; HDS: 172.8 ± 14.87%; CA: 177.9 ± 22.22% and
ZBS-CA/Ch: 86.39 ± 7.46%) (Figure 6(B.1)).
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Figure 6. Effect antiedematogenic and antioxidant of CA (10mg/Kg) and ZBS-CA/Ch (50mg/Kg) in
carrageenan-induced paw edema model. (A) The evolution of paw edema size (mm) in different times
(T0–240min) after carrageenan induction (B) Carrageenan- induced paw edema model—Area Under
Curve (AUC). (B.1) AUC graph in minute 30–120 after carrageenan induced paw edema in association
between measurement time (minute) to rat paw thickness (mm). (B.2) AUC graph in minute 120–240
after carrageenan induced paw edema in association between measurement time (minute) to rat paw
thickness (mm). (C) Photographic images of right hind paws of (C.1) CG, (C.2) CA and (C.3) ZBS-CA/Ch
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group T30 and T240 min after carrageenan injection. (D) TEAC of rats with carrageenan-induced
paw inflammation 240 min after induction. (E) NO levels of rats with carrageenan-induced paw
inflammation 240 min after induction. (F) MDA of rats with carrageenan-induced paw inflammation
240 min after induction. Data were expressed as mean ± SD (n = 5 per group). Statistically significant
differences between HDS, CA and ZBS-CA/Ch group vs. CG group at * p < 0.05. Statistically
significant differences between CA vs. ZBS-CA/Ch group at # p < 0.05. Legend: CA: caffeic acid, CG:
carrageenan, HDS: hydrocortisone, MDA: malondialdehyde, NO: nitric oxide, TEAC: Total Evaluation
of Trolox Equivalent Antioxidant Capacity, ZBS-CA/Ch: Nanoparticles based on Chitosan/Zinc
basic salt with caffeic acid drug group.

It is important to note that the ZBS-CA/Ch nanoparticle was able to maintain edema
inhibition for at least 240 min after stimulation (Figure 6(C.1–C.3)), showing a better
anti-inflammatory action compared to the CA group, and similar action to the corticoid
control (GC: 1502 ± 134.1%; HDS: 172.8 ± 3.08%; CA: 241.7 ± 17.92% and ZBS-CA/Ch:
132 ± 8.91%) (Figure 6(B.2)).

Regarding the oxidative parameters, 240 min after the induction of paw edema, car-
rageenan did not change the TEAC (Figure 6D), but reduced the levels of NO and MDA in
the paw compared to the CG group. In this study, all treatments inhibited NO production
(CG: 266.7 ± 5.65 µM/L; HDS: 3.08 ± 1.58 µM/L; CA: 9.35 ± 0.35 µM/L; ZBS-CA/Ch:
10.48± 1.025 µM) (Figure 6E) and MDA (CG: 22.71± 2.43 nMol/L; HDS: 5.69± 1.25 nM/L;
CA: 7.42± 1.11 nM/L; ZBS-CA/Ch: 2.23± 1.02 nM/L) (Figure 6F), mainly the ZBS-CA/Ch
group, which significantly inhibited lipid peroxidation (MDA) compared to the CA group,
showing better antioxidant action (Figure 6F).

2.5.3. ZBS-CA/Ch Not Produce Systemic Toxicity in Dextran and Carrageenan-Induced
Paw Edema Models

The results of the oxidative balance in the liver 240 min after injection of dextran
with treatment with CA did not change levels of TEAC and NO (Figure 7A,B), however,
although ZBS-CA/Ch not alter TEAC levels in the liver (Figure 7A), it was able inhibited
the production of NO (Figure 7B) and MDA in the liver induced by the stimuli better than
CA (p = 0.0115) (Figure 7C).
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Figure 7. ZBS-CA/Ch not produce systemic toxicity 240 min after dextran induced paw edema
(A) TEAC in the liver 240 min after injection of dextran (B) MDA in the liver 240 min after injection
of dextran (C) NO in the liver 240 min after injection of dextran. Data were expressed as mean ± SD
(n = 5 per group). Statistically significant differences between HDS, CA and ZBS-CA/Ch group vs.
DEX group at * p < 0.05. Statistically significant differences between CA vs. ZBS-CA/Ch group at
# p < 0.05. Legend: CA: caffeic acid, DEX: dextran, HDS: hydrocortisone, MDA: malondialdehyde,
NO: nitric oxide, TEAC: Total Evaluation of Trolox Equivalent Antioxidant Capacity, ZBS-CA/Ch:
Nanoparticles based on Chitosan/Zinc basic salt with caffeic acid drug group.
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In the carrageenan-induced paw edema model, CA treatment also did not change lev-
els of TEAC, however nanoparticle of CA (ZBS-CA/Ch) reduced levels of TEAC compared
CA group (p = 0.0105) (Figure 8A). On the other hand, both treatments were able to inhibit
the production of NO induced by the stimuli (Figure 8B) and reduced lipid peroxidation
(Figure 8C). In this study, ZBS-CA/Ch proved its better antioxidant action in relation to CA
in carrageenan-induced paw edema than CA (p = 0.0062) (Figure 8C).
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(A) TEAC in the liver 240 min after injection of carrageenan (B) MDA in the liver 240 min after
injection of carrageenan (C) NO in the liver 240 min after injection of carrageenan. Data were
expressed as mean ± SD (n = 5 per group). Statistically significant differences between HDS, CA and
ZBS-CA/Ch group vs. CG group at * p < 0.05. Statistically significant differences between CA vs.
ZBS-CA/Ch group at # p < 0.05. Legend: CA: caffeic acid, CG: carrageenan, HDS: hydrocortisone,
MDA: malondialdehyde, NO: nitric oxide, TEAC: Total Evaluation of Trolox Equivalent Antioxidant
Capacity, ZBS-CA/Ch: Nanoparticles based on Chitosan/Zinc basic salt with caffeic acid drug group.

In the present study, in paw edema model, our data showed an excellent anti-edematogenic
and antioxidant action of CA in free form and in the ZBS-CA/Ch nanoparticle, but the nanopar-
ticles formulation proved to be more effective for a longer time in dextran-induced paw edema
model. In this sense, several studies have already reported the activities of CA, a hydrox-
ycinnamic acid, known to have cardioprotective action [2], antioxidant [38], antitumor [22,39],
anti-inflammatory [40], antimicrobial [41] among others. However, the present study shows for
the first time that ZBS-CA/Ch nanoparticles show better anti-inflammatory and antioxidant
action in vivo.

In the dextran-induced paw edema model, in the initial phase (0–60 min), CA has the
ability to prevent mast cell degranulation and consequently the release of mediators such
as histamine [2]. Subsequently, in the second phase (60–240 min), CA inhibits the release
of arachidonic acid from the cell membrane and consequently inhibits cyclooxygenase-2
(COX-2) and lipoxygenase (LOX) enzymes, especially 5-LOX [23,42]. According to Bare et al.,
(2019) [43], CA blocks phosphorylation of JNK, p38 and ERK, which inhibits COX-2 and
consequently the conversion of PG2 to PH2, which reduces the production of superoxide and
lipid peroxidation. The same was observed in our study, CA showed anti-inflammatory effect
in the second phase of dextran-induced edema and in the parameters of oxidative stress, it
was observed that the ZBS-CA/Ch nanoparticles prolonged the antioxidant activity of CA,
reducing the lipid peroxidation in the paw.

In relation to the carrageenan, is a high molecular weight polysaccharide used in
acute and chronic inflammatory processes [44]. This polysaccharide induces inflammatory
process with systemic changes, and is subdivided into two phases associated with medi-
ators, the first phase (30–120 min) is mediated by the release of histamine and serotonin,
while the second (150–360 min) consists of an increase in prostaglandins E2, cytokines
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such as IL-1, IL-6 and TNF-α and reactive species such as NO [45–47]. According to
Borthakur et al., 2012, the inflammatory process induced by carrageenan is mediated by
the TLR-4/NF-κB signaling pathway, which is associated with increased expression of
pro-inflammatory mediators, including cytokines and NO [48,49]. Studies shown that
CA can modulate the inflammatory and antioxidant response through the modulation of
the TLR4/TRIF/SYK/EROs signaling pathway [20,49]. In this regard, it was possible to
observe the antiedematogenic, anti-inflammatory, and antioxidant effects of CA during the
time evaluated.

In this study, the edema induced by dextran and carrageenan lead to an increase in sys-
temically reactive species, and our data also shows the systemic inhibitory effect of CA and
ZBS-CA/Ch nanoparticles on the production of NO induced by Dextran or Carrageenan.
In addition, ZBS-CA/Ch nanoparticles were able to protect animals from oxidative damage
in both models. An important biological action of CA is its potent antioxidant activity,
capable of preventing the production of reactive oxygen species including species such as
O2
−, OH−, H2O2 preventing cell damage and tissue [50].

Another study in a carrageenan-induced paw edema model showed that caffeic acid
phenethyl ester (CAPE), a CA derivative, at doses of 10 and 30 mg/Kg, can regulate the
levels of heme oxygenase-1 (HO-1) enzymatic activity responsible for protecting against
oxidative damage, with increased expression of the nuclear regulatory factor erythroid
2-related factor gene (Nrf2) [51]. he Nrf2 gene plays a key role in the regulation of expression
of genes responsible for encoding antioxidant and anti-inflammatory proteins [52].

3. Materials and Methods
3.1. Chemicals and Reagents

All reagents were, purchased from Sigma-Aldrich-Brazil and used as received:
Chitosan (Ch) of the low molecular weight, caffeic acid (CA, C9H8O4), zinc nitrate hexahy-
drate, Zn(NO3)2·6H2O (98%), metallic sodium, Na(s) (99.8%), ethyl alcohol, CH3CH2OH
(99.5%), dimethyl sulfoxide-DMSO, (CH3)2SO (≥99.7%), phosphate buffer (98%). Deion-
ized water was decarbonated before synthesis. Acetic acid solution for HPCL. Overall, all
reagents used in this study were analytical grade.

3.2. Synthesis

The coprecipitation method was used in the synthesis process of efficient drug de-
livery systems. Zinc basic salt (ZBS, hereafter named) was prepared as previously re-
ported [27]. The pristine ZBS was prepared by slowly adding 0.8 M NaOH (aq) to 3.75 M
Zn(NO3)2·6H2O (aq) solution at room temperature with vigorous stirring and soon after,
the white precipitate was immediately centrifugated and washed thoroughly with water
and then dried at room temperature. For the intercalation of CA into the ZBS host 30 mL
of water/methanol (5/1 v/v) was added to a three-neck flask containing CA, producing
sodium caffeilate salt (C9H7O4

−Na+). Soon after, a mixed aqueous solution (10.0 mL)
containing Zn(NO3)2·6H2O was slowly added to the C9H7O4

−Na+ solution. To ensure the
dissolution of CA, the pH was adjusted to approximately 7.0 using 1.0 M NaOH solution.
The addition was performed in the dark and under vigorous stirring in a nitrogen atmo-
sphere to protect the reagents from light and oxygen. During the procedure, the pH was
maintained by the continuous addition of a 1.0 M NaOH solution. The resulting suspension
was immediately centrifuged and washed thoroughly with water and dried in a vacuum
desiccator. 0.8 g of Chitosan (Ch) [53] was used for ZBS-Ch synthesis. The Ch was dissolved
in aqueous solution of 100 mL (1%) acetic acid, where the pH of the solution was adjusted
at 7.0 by adding 1.0 M NaOH. Then, this solution was kept in vigorously stirred under a
nitrogen atmosphere at room temperature for 1 h. This solution was added dropwise to a
suspension containing 0.4 g of ZBS in 50 mL of deionized water. Its pH was adjusted to 7.0
by the controlled addition of 1.0 M NaOH under magnetic stirring and the nitrogen flow
at room temperature during a time interval. The solid was isolated by centrifugation and
washed thoroughly three times with aqueous ethanol solution (50 vol. %) and then dried in
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a vacuum desiccator. The new efficient drug delivery system (ZBS-CA/Ch) is presented. In
the present method, Ch was vigorously stirred in a solution of acetic acid under a nitrogen
atmosphere at stirred at room temperature at a predetermined time interval. The pH of the
solution was kept nearly at 7.0 by adding 1.0 M NaOH. This solution was added dropwise
to a suspension containing ZBS-CA in distilled water. Its pH was adjusted to 7.0 by the
controlled addition of 1.0 M NaOH under magnetic stirring and a nitrogen flow at room
temperature. The solid was isolated by centrifugation and washed with aqueous ethanol
solution and then dried in a vacuum desiccator.

3.3. Sample Characterization

X-ray powder diffraction (XRD) of all the samples was collected from 2 to 80◦ (2θ)
with a step of 0.04◦ and an effective acquisition time of 2.8 s per step using a Bruker D8
Advance diffractometer with Bragg-Brentano geometry, LynxEye PSD detector, and CuK
CuKα radiation (λ = 1.5418 Å). The XRD data were extracted by the PEAKOC, Version 1.0,
https://www.esrf.fr (accessed on 20 September 2022) [54] using a split pseudo-Voigt
function [55] to fit the experimental profiles. FT-IR spectra of the powder samples were
scanned (400–4000 cm−1) on a Bruker (Vertex 70v) spectrophotometer with a resolution of
2 cm−1. Each spectrum was the average of 100 successive scans.

The solid state UV–Vis spectra for pure CA, pure Ch and ZBS-CA/Ch powder were
obtained in a range from 200 nm to 900 nm with BaSO4 bacKground by using a UV-Vis
spectroscope (Shimadzu UV-2600 model). In addition, CA quantification was performed
after the destruction of the ZBS-CA structure in an acidic medium. Measurements were
carried out using a UV-Vis spectroscope (Shimadzu UV-2600 model) as described in our
previous work [56]. One milligram of ZBS-CA sample was dissolved in 0.5 mL of ethanol
and 0.5 mL of 0.1 M HCl solution, with a successive dilution using a phosphate buffer
at pH 7.40 ± 0.02 in a 10 mL volumetric flask. The concentration of CA in the resulting
solution was determined by measuring the absorbance at λmax = 325 nm. The concentration
of CA was calculated by regression analysis according to a calibration curve obtained from
a series of standard solutions of pure CA.

3.4. Caffeic Acid Release Studies

The release of caffeic acid was performed as described in our previous work [57]: the
ZBS-CA or ZBS-CA/Ch samples (10 mg) were immersed in phosphate-buffered saline at
pH 4.8 and 7.4 (100 mL) with mild shaking at 150 rpm; the temperature was maintained
at 37 ± 0.5 ◦C. An aliquot of 5 mL was taken from the suspension from time to time to
measure the release of caffeic acid into the solution. Aliquots were immediately replaced
by an equal volume of SBF at 37 ± 0.5 ◦C to keep the temperature and volume constant.
The content of caffeic acid in each aliquot was filtered and measured at an absorbance of
325 nm using a UV/Vis spectrophotometer (Shimadzu UV-2600 model) at λmax = 325 nm
according to a previously determined calibration curve (y = 0.0426x + 0.0229; r2 = 0.9999).
The percentage released at each time was expressed as a fraction of the total amount of
CA. Drug release was monitored for 10 h, and the CA concentration was collected as the
average of 3 measurements. All recordings were within the range of the calibration curve.
Moreover, in order to obtain more information on the release behavior of CA from the
ZBS-CA and ZBS-CA/Ch samples, five kinetic models were applied: zero order, first order,
pseudo-second order, Korsmeyer-Peppas and Higuchi model (Equations (1)–(5)) [31,58,59].

q = kt + c (1)

ln(qe−qt) = lnqt − kt (2)

1
qt

=
1

kq2
e
+

1
qe

(3)

t
q∞

= ktn (4)

https://www.esrf.fr
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qt = k
√

t (5)

where qe is the equilibrium release amounts, qt the release amounts at any time (t), k is the
rate constant, and c an arbitrary constant.

3.5. Animals Model
3.5.1. Ethics Statement and Animals

This study was carried out in strict accordance with the recommendations of the Guide
for the Care and Use of Laboratory Animals of the Brazilian National Council of Animal
Experimentation http://www.sbcal.org.br/ (accessed on 30 August 2018) and the NIH
Guidelines for the Care and Use of Laboratory Animals. The institutional Committee for
Animal Ethics of the Federal University of Pará (CEUA, Protocol: 9731050718) approved all
the procedures used in this study. A total of 40 healthy males and females (Rattus novergicus)
of Wistar lineage, were obtained from the Central Animal Facility of Federal University of
Pará and kept in cages under controlled conditions of temperature (22 ± 3 ◦C), light (12 h
light/dark cycle) with food and water ad libitum, and acclimatized conditions for 3 days
before use. On the day of the experiment, animals were randomly allocated in groups of
four inside cages.

3.5.2. Paw Edema Model

Paw edema was induced by subcutaneous (s.c.) injection of dextran (1% w/v, 100 µL)
or carrageenan (1% w/v, 100 µL) into the animals right hind paws according to Winter et. al.
(1962) [60] and Ghorbanzadeh et al. (2015) [61]. Inflammation-induced edema was calcu-
lated by measuring the changes in paw thickness with a digital caliper (Absolute-Série 500,
Mitutoyo, Japan) just prior to (t0min) and every 30 min until 4 h after (t240min) the dextran or
carrageenan injection. The areas under the time course curves (AUC) were calculated using
the trapezoidal rule [62,63].

3.5.3. Design of In Vivo Experiments

The animals were randomized into two groups (dextran and carrageenan) with
20 animals each. The dextran and carrageenan groups were separated into four groups
each according to the treatment.

Carrageenan (CG) or Dextran (DEX): 30 min after dextran (1% w/v, 100 µL) or car-
rageenan injection (1% w/v, 100 µL, s.c.) physiological saline (100 µL, s.c.) was administered
into the right hind paw (n = 5 per group).

Hydrocortisone Group (HDS): 30 min after dextran (1% w/v, 100 µL) or carrageenan
injection (1% w/v, 100 µL, s.c.) physiological saline (100 µL, s.c.) and 4 mg/Kg body weight
of Hydrocortisone were administered into the right hind paw (n = 5 per group).

Caffeic acid (CA): 30 min after dextran (1% w/v, 100 µL) or carrageenan injection (1% w/v,
100 µL, s.c.) physiological saline (100 µL, s.c.) and 10 mg/Kg body weight of Caffeic acid (CA)
were administered into the right hind paw (n = 5 per group).

Nanoparticles based on Chitosan/Zinc basic salt with caffeic acid drug Group (ZBS-CA/Ch):
30 min after dextran (1% w/v, 100 µL) or carrageenan injection (1% w/v, 100 µL, s.c.) and
50 mg/Kg body weight of ZBS-CA/Ch were administered into the right hind paw (n = 5
per group).

The nanoparticle dose used in the treatment of paw edema was determined from the
percentage of (CA) present in the compound, so that 10 mg/kg of the compound would be
(CA) and the remaining 40 mg/kg of ZBS-CH complex. The animals were evaluated for
240 min and posteriorly were euthanized to collect paw and liver to the determination of
the oxidative stress state.

3.5.4. Total Evaluation of Trolox Equivalent Antioxidant Capacity (TEAC)

The total antioxidant capacity (TAC) of paw and liver specimens 240 min post-dextran-
or -carrageenan-induced paw edema was evaluated via Trolox ((±)-6-Hydroxy-2,5,7,8-

http://www.sbcal.org.br/
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tetramethylchromane-2-carboxylic acid; (Sigma-Aldrich, Co,3050 Spruce St., St Louis, MO,
USA) equivalent antioxidant capacity assay (TEAC), which provides relevant information
that may effectively describe the dynamic equilibrium between pro-oxidant and antioxidant
compounds. In this assay, 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammo-
nium salt (ABTS) (Sigma Aldrich) was incubated with potassium persulfate (Sigma Aldrich)
to produces ABTS·+, a green/blue chromophore. The inhibition of ABTS·+ formation by
antioxidants in the samples was expressed as Trolox equivalents, determined at 740 mm
using a calibration curve plotted with different amounts of Trolox (Sigma Aldrich) [64].

3.5.5. Determination of Nitric Oxide (NO) Production

The nitrite (NO2) was estimated calorimetrically in paw and liver 240 min post dextran
or carrageenan-induced paw edema based on reduction of nitrate to nitrite using the Griess
method. Nitrite level was determined in 100 µL of samples (serum and lavage peritoneal)
incubated with an equal volume of Griess reagent for 10 min at room temperature. The
absorbance was measured at 550 nm and calculated from a standard curve with sodium
nitrite expressed per µM/mL [47].

3.5.6. Lipid Peroxidation

Lipid peroxidation was measured in paw and liver specimens 240 min post-dextran- or
-carrageenan-induced paw edema as an indicator of oxidative stress, using the thiobarbituric
acid-reactive substances (TBARS) assay [65,66]. Briefly, samples were mixed with 0.05 M
trichloroacetic acid (TCA) and 0.67% thiobarbituric acid (TBA; Sigma-Aldrich, St. Louis,
MO, USA) in 2 M sodium sulfate and heated in a water bath at 94 ◦C for 90 min. The
chromogen formed was extracted in n-butanol and measured at 535 nm. An MDA standard
solution was used to construct a standard curve against which unknown samples were
plotted. Results are expressed as malondialdehyde equivalents in nmol/L.

3.6. Statistical Analysis

Results are expressed as mean ± SD from at least 5 animals per group and statistical
analysis was performed using one-way analysis of variance (ANOVA) followed by Tukey’s
test for the comparison of pairs of means and Pearson’s correlation tests, considered
statistically significant for p ≤ 0.05.

4. Conclusions

In this study, the intercalation of the caffeilate anion into interlayer space of zinc basic
salts (ZBS) was carried out by coprecipitation method. Then, ZBS-CA nanohybrid material
were used to prepare the ZBS-CA/Ch by coating of ZBS-CA complex with Chitosan, and
characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV-visible
(UV-vis) spectroscopy. The data analysis reveals the percentage of 46% and 28% of the CA
into ZBS-CA and ZBS-CA/Ch, respectively. After 10 h, the release of caffeate anions from
ZBS-CA is 77% and 41% at pH 4.8 and 7.4, respectively. For ZBS-CA/Ch system, it was
observed a different trend (after the same amount of time), where CA release correspond
to 46% and 23% at pH 4.8 and 7.4, respectively. Furthermore, pseudo-second order is the
best kinetics model to explain the release of CA anion from the interlayer spaces ZBS, with
a linear correlation coefficient of R2 ≥ 0.99 at pH 4.8 and pH 7.4. Overall, nanoparticle
containing CA (ZBS-CA/Ch) shows better anti-inflammatory and antioxidant actions in
the two inflammatory phases of carrageenan, for a longer time compared to the CA group,
as well as leading to a balance in the oxidative process induced by carrageenan in the
paw. ZBS-CA/Ch nanoparticle slowly releases caffeate anions in the tissue, leading to a
prolongation of CA-induced anti-edematogenic and anti-inflammatory activities, as well as
improving its inhibition or sequestration antioxidant action of reactive species.
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