

#### Evaluation of 50 Computational Tools for Predicting Pathogenicity of Genetic Variants: Unveiling representativeness issues on public datasets

Ragousandirane Radjasandirane, Jean-Christophe Gelly, Julien Diharce, Alexandre de Brevern

#### ▶ To cite this version:

Ragousandirane Radjasandirane, Jean-Christophe Gelly, Julien Diharce, Alexandre de Brevern. Evaluation of 50 Computational Tools for Predicting Pathogenicity of Genetic Variants: Unveiling representativeness issues on public datasets. International Symposium on Human Genomics, Sep 2023, Paris, France. hal-04264309

HAL Id: hal-04264309

https://hal.science/hal-04264309

Submitted on 30 Oct 2023

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.





# **Evaluation of 50 Computational Tools for Predicting** Pathogenicity of Genetic Variants: Unveiling representativeness issues on public datasets



Ragousandirane Radjasandirane, Jean-Christophe Gelly, Julien Diharce and Alexandre G. de Brevern





#### INTRODUCTION

Amino acid substitutions on protein sequences are generally harmless, but a significant proportion of them can cause diseases. Accurately predicting the effect of these genetic variants can be crucial for clinicians, it can potentially speed up the diagnosis of patients having missense variants that are likely to lead to disease. Today, a variety of computational tools have been developed to predict the pathogenicity of genetic variants using numerous methodologies. The most well-known tools are SIFT [1] and PolyPhen [2], each of them accumulated more than 10,000 citations. More recently, many tools have been developed using Artificial Intelligence and other innovative approaches. It is important to evaluate and rank the performance of these different computational tools in order to guide future users and clinicians.

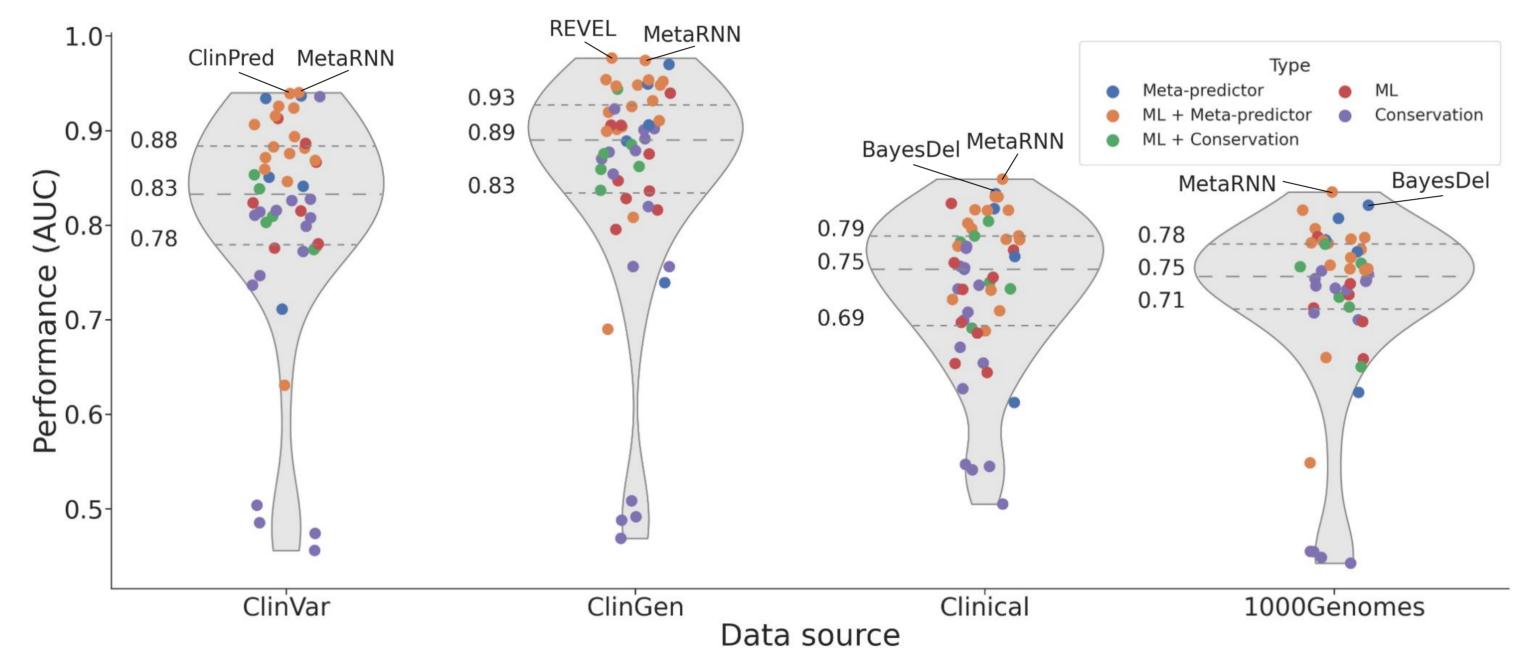
In this study, we rigorously evaluated 50 tools using quality data and measures for each computational method. In addition, we carried out a detailed analysis of the available data on genetic variants to highlight a problem inherent in public databases: the prediction quality is significantly impacted by the different variant datasets.

Our results show that variants from ClinVar appear to be easy to predict, whereas variants from other data sources are more difficult to predict. We show that the predictability of variants can be divided into two distinct categories: (i) Easy and (ii) Difficult to predict. We have therefore developed a neural network model capable of classifying variants into these categories and tested the model on cancer datasets to demonstrate its potential use.

#### **DATA**

#### Variant datasets used:

- ClinVar [3] and ClinGen [4]: Connecting human variation and observed health status
- Clinical dataset [5]: Data collected from patient
- 1000Genomes [6]: Catalogue of common human genetic variation across the world from sequencing


### **METHODS**

A total of 50 computational methods have been assessed. They are based on various algorithms among: Machine Learning (ML), Meta-prediction, Conservation and combination of algorithms (e.g., ML + Meta-prediction)

The performance of each method has been evaluated using the Area Under the Curve (AUC) metric.

#### **RESULTS**

#### Performances of 50 computational methods on 4 different datasets

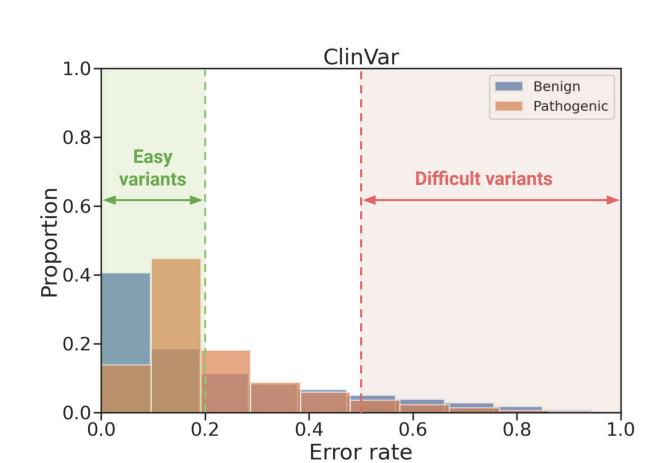


Computational methods show robust performances on ClinVar and ClinGen datasets with an median AUC of 0.89 and 0.84 respectively

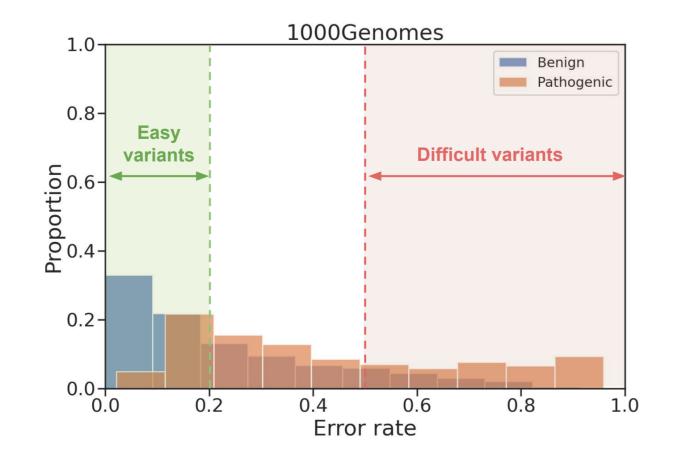
However, performances on Clinical and 1000Genomes datasets are lower with an median AUC of 0.75

Method performances are highly dependent to the **nature** of the dataset

### Performances on the clinical dataset




Best performing methods with an AUC > 0.8 are methods based on ML and/or Meta-prediction (e.g., MetaRNN [7] with an AUC of 0.84)

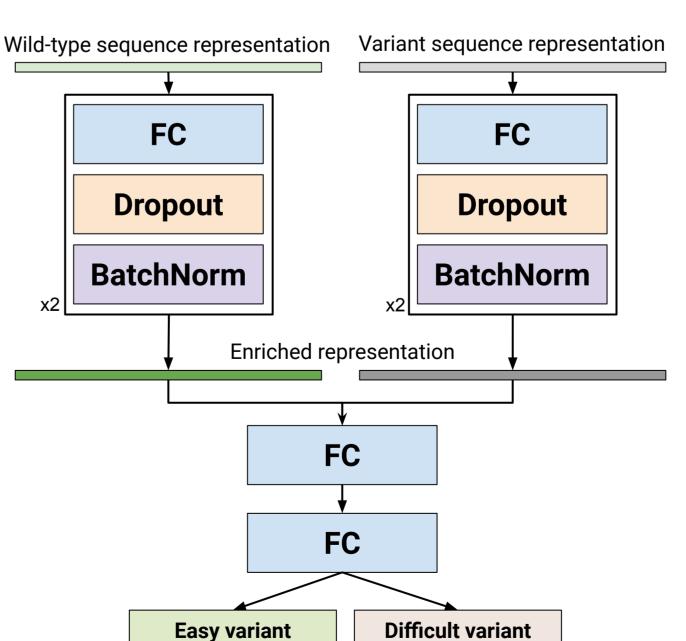

Conservation based methods are likely to be outperformed by machine learning algorithms

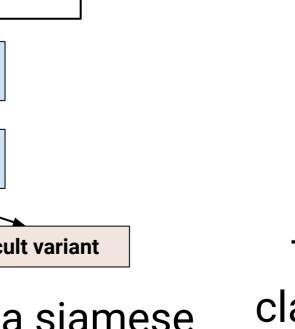
## Difficulty of variant analysis

For each variant, we can compute the proportion of tools that incorrectly predicted the variant annotation (Benign or Pathogenic), giving an error rate per variant



heterogeneity. Nucleic acids research, 45(W1), W514-W522.





According to error rates, variants can be categorized into two classes: Easy to predict and Difficult to predict

## REFERENCES

[1] Ng, P. C., & Henikoff, S. (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic acids research, 31(13), 3812-3814. [2] Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., ... & Sunyaev, S. R. (2010). A method and server for predicting damaging missense mutations. Nature methods, 7(4), 248-249. [3] Landrum, M. J., Lee, J. M., Riley, G. R., Jang, W., Rubinstein, W. S., Church, D. M., & Maglott, D. R. (2014). ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic acids research, 42(D1), D980-D985. [4] Rehm, H. L., Berg, J. S., Brooks, L. D., Bustamante, C. D., Evans, J. P., Landrum, M. J., ... & Watson, M. S. (2015). ClinGen—the clinical genome resource. New England Journal of Medicine, 372(23), 2235-2242. [5] Gunning, A. C., Fryer, V., Fasham, J., Crosby, A. H., Ellard, S., Baple, E. L., & Wright, C. F. (2021). Assessing performance of pathogenicity predictors using clinically relevant variant datasets. Journal of medical genetics, 58(8), 547-555. [6] 1000 Genomes Project Consortium. (2015). A global reference for human genetic variation. Nature, 526(7571), 68. [7] Li, C., Zhi, D., Wang, K., & Liu, X. (2022). MetaRNN: differentiating rare pathogenic and rare benign missense SNVs and InDels using deep learning. Genome Medicine, [8] Goncearenco, A., Rager, S. L., Li, M., Sang, Q. X., Rogozin, I. B., & Panchenko, A. R. (2017). Exploring background mutational processes to decipher cancer genetic

# Neural network model to predict the difficulty of variants





106 Predicted label **Preliminary results** 

75

Difficult

42

We have developed a siamese network to compare wild-type and variant sequences

The model is capable of correctly classify the difficulty of variants from a cancer dataset [8] with an sensitivity of 77% and specificity of 64%

#### CONCLUSION

- One of the **biggest benchmark** currently available
- Significant variation in performance depending on the nature of the dataset
  - Possibility to **improve** prediction of variant effects
- Difficulty of variants can be a criterion for generating representative datasets that can improve model performance