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Abstract

Muscle contraction at the macro level is a physiological process that is ultimately due
to the interaction between myosin and actin proteins at the micro level. The actin-myosin
interaction involves slow attachment and detachment responses and a rapid temporal change in
protein conformation called power-stroke. Jump-diffusion models that combine jump processes
between attachment and detachment with a mechanical description of the power-stroke have
been proposed in the literature. However, the current formulations of these models are not
fully compatible with the principles of thermodynamics.

To solve the problem of coupling continuous mechanisms with discrete chemical transitions,
we rely on the mathematical formalism of Poisson random measures. First, we design an efficient
stochastic formulation for existing muscle contraction PDE models. Then, we write a new jump-
diffusion model for actin-myosin interaction. This new model describes both the behavior of
muscle contraction on multiple time scales and its compatibility with thermodynamic principles.
Finally, following a classical calibration procedure, we demonstrate the ability of the model to
reproduce experimental data characterizing muscle behavior on fast and slow time scales.

1 Introduction

In muscle cells, force is generated by a highly ordered structure of contractile units called sarcomeres.
The sarcomeres are arranged in series and form a dense network of fibrils. Each sarcomere is an
array of interlocking myosin (thick) and actin (thin) filaments that slide past each other in opposite
directions during contraction. The sliding is caused by the ATP-consuming cyclic interaction
of the myosin heads, which protrude from the thick filament, with the actin filament. Under
steady-state activation conditions, cardiac cells require about 100ms to reach the peak force of
a single twitch contraction at fixed sarcomere length (Janssen & Hunter, 1995). This duration
reflects the characteristic timescale of the actin-myosin interaction cycle and, in particular, the
typical rates (30-40 s−1) at which myosin heads attach to and detach from actin filaments. The
process of attachment and detachment alone does not provide a complete explanation of how
the actin-myosin interaction generates tension. It has indeed been shown that the force itself is
generated by the power-stroke: a conformational change of the myosin executed while the myosin is
attached to the actin. This fundamental event of the actin-myosin interaction can be interpreted as
the swift relaxation towards thermal equilibrium of the internal degrees of freedom characterizing
the conformation of the myosin protein (Huxley & Simmons, 1971). This rapid relaxation can
be monitored in situ during the transient response of a muscle cell to rapid changes in loading
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conditions (Ford et al., 1977; Caremani et al., 2016; Irving et al., 2000). The timescale associated
with this response is a few milliseconds, supporting the idea that the power-stroke is a purely
mechanical phenomenon operating independently of ATP hydrolysis (Marcucci & Truskinovsky,
2010; Caruel & Truskinovsky, 2018).

This multi-timescale nature of actin-myosin interaction raises the question of choosing an ap-
propriate modeling framework. The dynamics of protein-protein interactions and conformational
changes can be simulated using molecular dynamics techniques that provide access to the motion
of protein structure in a high-dimensional environment at short time scales (typically on the order
of picoseconds) (Tuckerman, 2023; Lelièvre et al., 2010). This type of framework is therefore not
adequate to model the actin-myosin attachment-detachment process, nor the power-stroke. Molec-
ular processes occurring at a millisecond timescale can be simulated with coarse grained molecular
dynamics, based on the definition of collective variables diffusing in a lower dimension energy land-
scape. These models often take the form of Langevin dynamics in non-convex multi-dimensional
potentials. In such potentials, transition between metastable states can be further simplified if
energy barriers are high enough for the so-called Kramers approximation to be valid (Schuss, 2010;
Van Kampen, 1992). In this case, inter-basin dynamics are adequately described by classical first-
order reaction kinetics, in which the remaining information about the underlying energy landscape
is embedded in detailed balance laws between forward and reverse reaction rates.

The latter formulation provides the framework for the vast majority of available muscle con-
traction models, in which the entire actin-myosin interaction cycle is represented by a sequence
of chemical-mechanical reactions (Månsson, 2010; Caremani et al., 2015; Månsson, 2016), each
reaction being equipped with transition rates that satisfy the detailed balance. This formulation
guarantees the compatibility of the model with the principles of thermodynamics, as shown in the
seminal work of T. L. Hill (Hill, 1974).

In the last decade, another approach was proposed to model the power- stroke (Marcucci &
Truskinovsky, 2010; Caruel & Truskinovsky, 2018), based on the definition of a onedimensional
(coarse) collective variable representing the conformation of the myosin motor. The dynamics of
this variable is a one-dimensional continuous stochastic process driven by the energy gradient flow
and thermal noise (Marcucci & Truskinovsky, 2010; Caruel & Truskinovsky, 2018). The associated
energy landscape has two wells representing the pre- and the post-power- stroke conformations.

More recently, this approach has been coupled with the more classical representation of the
(slower) attachment-detachment process, viewed as chemical reactions (Caruel et al., 2019; Kimmig
& Caruel, 2020). The resulting multi-timescale model of the actin-myosin interaction is param-
eterized by two continuous variables, and one discrete binary variable. The continuous variables
represent the position of the myosin head and its conformation, respectively. The discrete variable,
inherited from classical models, describes the binary state of attachment of the head (attached or
detached). Its dynamics is a jump process with transition rates parameterized by the continuous
variables and by the relative position of specific binding sites on the actin filament.

A salient feature of this class of jump-diffusion models is that when a binding event occurs,
the position of the head instantaneously jumps to the position of the binding site and follows its
deterministic motion until it unbinds. In this context, the binding event leads to the projection
of a two-dimensional continuous dynamics in the detached state (position and conformation of the
myosin head) onto a one-dimensional manifold in the attached state (conformation of the myosin
head only, the position being deterministic). The reverse of this event is a jump from this one-
dimensional space to the detached two-dimensional space. In particular, the position of the head
immediately after a detachment event is probabilistic, which makes the formulation of the classical
Hill-type detailed balance relation between forward and reverse rates nontrivial.

To circumvent this difficulty, the original paper (Caruel et al., 2019) makes the simplifying
assumption that the detachment occurs without changes in the internal state of the myosin head.
In particular, the position of the myosin head does not change; detachment occurs in place. This
assumption comes at the cost of not being able to demonstrate general agreement with thermody-
namic principles. In this paper, we propose a solution to this problem by proving that generalized
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detailed balance relations can be used to ensure compatibility of our multi-timescale jump-diffusion
model with the second principle of thermodynamics, thereby extending the approach initially pro-
posed by T. L. Hill.

Our method is based on a reformulation of the model proposed by Caruel et al. (2019), using
Poisson random measures, which provides an appropriate framework to describe the jump rates
between multidimensional spaces.

We show that the resulting model is capable of quantitatively reproducing experimental bench-
mark observations that characterize both the timescale of the fast transient and the time scale of the
entire actin-myosin interaction cycle. In addition, we also make predictions regarding the energy
balances, and the thermodynamic efficiency associated with steady-state isotonic shortening.

That this new jump-diffusion model also provides an alternative to the fully mechanical de-
scription, including for the attachment-detachment process, proposed by Sheshka & Truskinovsky
(2014). Our jump-diffusion model indeed shares with this latter model the desirable property
of compatibility with thermodynamics but encompass the discrete description of the attachment-
detachment transitions, which is widely used in the literature.

Recently, a new approach for modeling the actin-myosin interaction has been proposed (Chain-
tron et al., 2023). It relies on a new paradigm reformulating the Huxley-Hill framework (Huxley,
1957; Eisenberg & Hill, 1978) in an Eulerian setting. From a mathematical point of view, the
Eulerian formulation provides relaxed conditions to establish the well-posedness of the equations.
Moreover, for the same modeling complexity, the myosin tip can be located at an arbitrarily distant
position from its anchor point. The model formulated in this framework, called the h-model, also
ensures the compatibility with thermodynamics. It however differentiates itself from the present
model on several points. On the one hand, the present model uses the classical Huxley-Hill frame-
work, which uses the reference position of the myosin head as the model parametrization, while the
h-model uses a Eulerian framework. On the other hand, the h-model does not include a description
of the power-stroke and is thus unable to capture the fast timescale of muscle contraction.

The manuscript is organized as follows. We begin with a reformulation of the jump process be-
tween binding and unbinding using Poisson random measures, using the classical Huxley’57 model
as a prototypical example of dynamics on the slow time scale, see Section 2. In the following section,
we present the integration of the fast time scale by invoking the previously proposed mechanical
model of power-stroke to formulate a complete jump-diffusion model that can be made compatible
with thermodynamic principles using appropriate detailed balance relations, see Section 3. Em-
phasis is placed on the discretization of the model in Section 4, where we again begin with the
prototypical example of Huxley’57 before turning to the full jump-diffusion model. Finally, in Sec-
tion 5 we show how the simulation of the model compares with experimental benchmark results on
fast and slow time scales.

2 Revisiting Huxley in a stochastic framework

2.1 The Huxley–Hill model

The seminal work of A.F. Huxley, begun in the 1950s and completed by T.L. Hill in the 1970s,
led to the establishment of the so-called Huxley–Hill model (Huxley, 1957; Hill, 1974, 1976). This
model describes the interaction between myosin filaments and actin filaments, both assumed to be
rigid. The description focuses on the myosin head, and the population of myosin heads is assumed
to be represented by a single individual interacting with a single actin filament.

This classical assumption is justified by the large number of myosin molecules within a half-
sarcomere and by the probable absence of strong short-range elastic interaction between them
along thick and thin filaments (Ford et al., 1981; Pertici et al., 2019). This implies that the
motors effectively operate in parallel in physiological conditions. In such framework, we consider
that the myosin heads are independent and that a large cluster is likely well represented by a
representative element. This point is further discussed in Section 6 The binding actin sites are
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Figure 1: (a) Huxley-Hill model, displayed in the attached state. The state of the myosin head
is characterized by a single discrete stochastic variable α characterizing the state of attachment:
α = 0 for the detached state and α = 1 for the attached state. The attachment and detachment
rates are denoted by f and g, respectively. The energy of the head is w0 in the detached state and
w1 in the attached state. In the attached state, the head is located at the nearest binding side
whose position is denoted by s, and its energy is usually defined as quadratic in s (linear spring).
(b) Proposed jump-diffusion model, displayed in the detached state. The state of the myosin head
is characterized by three stochastic variables: X, Y and α, which represent the position of the head,
the conformation and the state of attachment, respectively. The position of the nearest binding
site is still denoted by s. The attachment-detachment process is characterized by four jumps whose
rates are denoted k0→1, krev0→1, k1→0 and krev1→0. The energy landscape has two main ingredients: a
quadratic term representing the elasticity of the head and a double-well potential associated with
the conformational change.

periodically located along the actin filament with a spatial period of length d. We define a possibly
non-symmetric binding window [s−, s+] of length d around the myosin head anchor point. Without
loss of generality, in the theoretical representation of the model, we assume that the attachment
window is equal to [−d/2, d/2]. We denote by s the distance between the anchor point of the
myosin head and the actin site located in the attachment window (see Figure 1(a)). In the context
of the Huxley–Hill model, at any given time, the myosin head can interact with one actin site only:
the actin site located in the attachment window. As a consequence, the myosin head cannot be
attached to an actin site that leaves the attachment window. The actin site velocity is assumed to
be given and is denoted by ẋc(t) with the convention that ẋc(t) < 0 in the case of contraction.

The discrete variable α characterizes the binding state of the myosin head (α = 1 when the
myosin head is bound to the actin site and α = 0 when it is detached). The dynamics of α
are determined by the rate functions for attachment and detachment. Attachment (transition
α = 0→ α = 1) occurs at the rate f(s) and detachment (transition α = 1→ α = 0) occurs at the
rate g(s). The functions f and g are defined in the interval (−d/2,+d/2) and are non-negative.
The ratio of myosin heads whose actin site is at s at time t is denoted by P1(s, t). The dynamics
of P1(s, t) is governed by

∂tP1(t, s) + ẋc(t)∂sP1(t, s)

= −g(s)P1(t, s) + f(s)
(
1− P1(t, s)

)
, t > 0, s ∈ (−d/2, d/2),

P1(t,−d/2) = P1(t, d/2), t ≥ 0,

P1(0, s) = P ini
1 (s) ∈ [0, 1], s ∈ [−d/2, d/2].

(1a)
(1b)

(1c)

The ratio of myosin heads whose actin site is in s at time t and which are detached is simply given
by P0(s, t) = 1 − P1(s, t). We enforce periodic boundary conditions on the domain of definition
of P1 to ensure the well-posedness of the model (1) (Chaintron et al., 2023). However, describing
the physiological system with the assumption that a myosin head can interact with a single actin
requires not only that the values of the ratio of attached heads P1 on both sides of the definition
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interval are the same, but also that this value is zero. To obtain this property, the following
condition is imposed on the attachment rates

lim
s→±d/2

f(s) = 0, lim
s→±d/2

g(s) = +∞. (2)

2.2 Stochastic formalism using Poisson random measures

In this section, the Huxley–Hill model is described in terms of stochastic processes. This formulation
will be useful to describe a more elaborated model in Section 3.2. We have chosen a formal approach
here, but a more rigorous representation is possible by following the more mathematically sound
presentation that has recently been proposed (Chaintron et al., 2023).

The state variable as a stochastic process. Our aim is to describe the myosin head at time
t by defining a random variable αt ∈ {0, 1}. The detached state corresponds to {αt = 0}, while
{αt = 1} stands for the attached state. We recall that t 7→ s(t) is the location in time of the
closest actin site in the window [−d/2,+d/2]. This site slides with a given speed ẋc(t), so that
ṡ(t) = ẋc(t). The following behavior is to be modeled:

• when αt = 0, αt jumps to 1 within the infinitesimal time-interval [t, t + δt] with probability
δtf(s(t)) (attachment event).

• when αt = 1, αt jumps to 0 within the infinitesimal time-interval [t, t + δt] with probability
δtg(s(t)) (detachment event).

We assume that the number of jumps within disjoint time intervals are independent, which means
that when αt = 0, the waiting time ∆Tt for the next attachment event 0→ 1 follows an exponential
law with rate f(s(t)). This jump rate is time inhomogeneous since it depends on the current time
t through s(t). Equivalently, for any t′ ≥ 0,

P(∆Tt ≤ t′) = 1− exp

[
−

∫ t+t′

t
f(s(r))dr

]
. (3)

The same is true for the detachment event 1 → 0. We now set up a stochastic equation for αt

that accounts for this behavior. This requires the mathematical notion of Poisson random measure
which relies on an elaborated stochastic theory (Ikeda & Watanabe, 2014; Del Moral & Penev,
2017) that we will not detail here. Instead, we will rather focus on practical aspects. Formally, this
theory allows us to write that

αt =

∫ t

0
1αr−=0

∫
R+

1z≤f(s(r))N0→1(dr, dz)−
∫ t

0
1αr−=1

∫
R+

1z≤g(s(r))N1→0(dr, dz), (4)

where N0→1(dt,dz) and N1→0(dt,dz) are two independent Poisson random measures on R+ ×R+

with intensity measure dt ⊗ dz. The integral terms
∫
R+

1z≤f(s(r))N0→1(dr, dz)

and
∫
R+

1z≤g(s(r))N1→0(dr, dz) can be seen as stochastic entities that select random jump times at
the desired rate, as described below.

Differential formulation using Poisson random measures. The random measure
N0→1(dt,dz) can be defined from a sequence (T jump

n , Zn)n≥1 of random variables. The T jump
n

are candidate jump times, while Zn ∈ R+ is a random variable uniformly chosen at each candidate
jump time T jump

n (since R+ has infinite Lebesgue mass, the term “uniformly chosen” requires fur-
ther explanation, for which we refer to (Del Moral & Penev, 2017)). The T jump

n are default jump
times that are chosen with rate 1: the probability that a default jump occurs in the infinitesimal
time-interval [t, t+ δt] is δt. If Zn ≤ f(s(T jump

n )), the candidate jump time T jump
n is accepted and

a jump 0 → 1 occurs for αt. Otherwise, nothing happens for αt until the next candidate jump
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time. This way of selecting jump times for αt guarantees that waiting times satisfy (3), since the
probability that a jump 0 → 1 for αt occurs within [t, t + δt] is δt

∫
R+

1z≤f(s(t))dz = δtf(s(t)), as
desired. The same is true for the detachment times 1→ 0 for αt. We can write down the Poisson
random measure N0→1(dt,dz) using Dirac masses as

N0→1(dt,dz) :=
∑
n≥1

δ
(T jump

n ,Zn)
(dt,dz),

shedding lights on the integrals in (4). The same goes for the random measure N1→0(dt,dz). This
way of selecting jump times from a given random collection allows for a unified description of jump
processes using equations like (4), the source of randomness being isolated in the default stochastic
clocks N0→1(dt,dz) and N1→0(dt,dz). Further generalizations are possible, choosing Zn at random
in a general set E instead of R+. Moreover, the random variables Zn can be involved in the jump
amplitudes, and not only in the selection of jump times. This allows us to define more general
processes Xt of the kind:

Xt :=

∫ t

0

∫
E
Φ(r, z)N0→1(dr, dz) =

∑
n≥1

1
T jump
n ≤t

Φ(T jump
n , Zn), (5)

for a function Φ : R+ × E → R. Equation (4) corresponds to the case E = R+ and Φ(r, z) =
1z≤f(s(r)). In Section 3.2, we will use this stochastic formalism with E = (−d/2,+d/2) × R+. In
particular, we will directly write N0→1(dt,du,dv) rather than N0→1(dt,dz) with z = (u, v). To
conclude this informal presentation, we point out that the stochastic theory rather writes

dXt =

∫
E
Φ(t, z)N0→1(dt,dz),

instead of (5), so that (4) reads in differential form:

dαt = 1αt−=0

∫
R+

1z≤f(s(t))N0→1(dt,dz)− 1αt−=1

∫
R+

1z≤g(s(t))N1→0(dt,dz). (6)

This stochastic equation prescribes the (random) increment dαt ∈ {−1, 0, 1} of αt at time t, as a
differential equation.

Recovering the Huxley–Hill equations on the density. From (6), we now show how to
recover the Huxley–Hill system (1) on Pα(t, s); this will assess the consistency of our stochastic
formulation with (1). For t ≥ 0 and α in {0, 1}, Pα(t, s) will be seen as the probability that αt = α
at t while knowing that s(t) = s. This means that α 7→ Pα(t, s(t)) is the density of the law of the
random variable αt. As a consequence, for every test function φ : {0, 1} → R,

Eφ(αt) =

∫
{0,1}

φ(α)Pα(t, s(t))dα = φ(0)P0(t, s(t)) + φ(1)P1(t, s(t)).

Using that jump events 0 → 1 and 1 → 0 occur with respective rates f(s(t)) and g(s(t)), we get
that

Eφ(αt+δt)− Eφ(αt−)

= δtf(s(t))E1αt−=0[φ(1)− φ(0)] + δtg(s(t))E1αt−=1[φ(0)− φ(1)] + o(δt), (7)

as δt→ 0. Let us define the operator Lt which maps a function φ to Ltφ : {0, 1} → R such that

Ltφ(α) := f(s(t))1α=0[φ(1)− φ(0)]− g(s(t))1α=1[φ(1)− φ(0)]. (8)

In the stochastic literature this operator is called the infinitesimal generator (Del Moral & Penev,
2017) of the stochastic process αt. Equation (7) rewrites

∀φ, d

dt

∫
{0,1}

φ(α)Pα(t, s(t))dα =

∫
{0,1}

Ltφ(α)Pα(t, s(t))dα. (9)
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By duality, we now define the operator L⋆
t on Pt : α 7→ Pα(t, s(t)) by

∀φ,
∫
{0,1}

φ(α)L⋆
tPt(α)dα =

∫
{0,1}

Ltφ(α)Pt(α)dα. (10)

From (8)-(10), we get that

L⋆
tPt(α) = 1α=0[−f(s(t))Pt(0) + g(s(t))Pt(1)] + 1α=1[−g(s(t))Pt(1) + f(s(t))Pt(0)]. (11)

Since (9) holds for every φ, we deduce from (10) that

∂tPt(α) = L⋆
tPt(α),

that is, using (11), 
d

dt
P0(t, s(t)) = −f(s(t))P0(t, s(t)) + g(s(t))P1(t, s(t)),

d

dt
P1(t, s(t)) = −g(s(t))P1(t, s(t)) + f(s(t))P0(t, s(t)).

Since d
dtPα(t, s(t)) = ∂tPα(t, s(t)) + ẋc(t)∂sPα(t, s(t)), this exactly recovers (1a). As usual, the

boundary condition on P1(t, s(t)) stems from the compulsory detachment condition g(±d/2) = +∞
on the boundary. The above developments show the consistency of our stochastic formulation with
the Huxley–Hill model (1).

2.3 Including thermodynamic constraints

The myosin motors convert chemical energy extracted from the hydrolysis of ATP molecules into
mechanical work. Accurately representing these energetic aspects of the physiology is a challenge for
biophysical models. The thermodynamic properties of the Huxley–Hill models, which are computed
as averages over the whole population of heads, are well established in the literature (Hill, 1977;
Eisenberg & Hill, 1978; Eisenberg et al., 1980; Kimmig et al., 2019). In this section, we show that
these properties can be obtained from the stochastic reformulation of the model (6).

We denote by wα(s), defined on (−d/2, d/2), the energy of myosin head in the attached (α = 1)
and the detached (α = 0) configurations, see Figure 1(a). The Huxley–Hill model does not describe
the different configurations of myosin head in the detached state; the energy function w0 is thus
a constant (green line in Figure 1(a)). The energy function w1 can be seen as the – possibly
non-linear – elastic potential of the myosin head in the attached configuration (dashed red line in
Figure 1(a)).

The concentration of ATP molecules being maintained constant in the cell, the input of energy
by the hydrolysis of ATP molecules is represented by a constant chemical potential µT .

As shown in the seminal works of T.L. Hill (Hill, 1977; Eisenberg & Hill, 1978; Eisenberg et al.,
1980), the compatibility with the principles of thermodynamics can be obtained if the system
allows, for any transition, that a reverse transition returning to the initial state can also take place.
The hydrolysis of ATP molecules occurs during the detachment of the myosin head from the actin
site, and the associated energy brought to the system modifies its energy landscape. Consequently,
the apparent attachment – whose rate is given by f – and the apparent detachment – whose rate is
given by g – cannot be considered as reverse from one another. Therefore, we define the following
transitions:

• direct attachment : a jump 0→ 1 with rate k0→1(s);

• reverse attachment : a jump 1→ 0 with rate krev0→1(s);

• direct detachment : a jump 1→ 0 with rate k1→0(s);

• reverse detachment : a jump 0→ 1 with rate krev1→0(s).

7



The apparent transition rates f and g can be recovered as:

f(s) = k0→1(s) + krev1→0(s), g(s) = k1→0(s) + krev0→1(s). (12)

The boundary condition (2) now becomes

lim
s→±d/2

k0→1(s) = lim
s→±d/2

krev1→0(s) = 0 and lim
s→±d/2

k1→0(s) = lim
s→±d/2

krev0→1(s) = +∞.

First principle. Let w0 denote the energy of the detached myosin head, and let w1(s) be the
energy of the head when attached to an actin site located at s. The internal energy of the system
is the average energy over the window:

U(t) := 1

d

∫ +d/2

−d/2
[w0(s)P0(t, s) + w1(s)P1(t, s)] ds.

The instantaneous power of external efforts is defined as

Ẇ(t) := ẋc(t)τc(t),

the force generated by the attached motors being

τc(t) :=
1

d

∫ +d/2

−d/2
∂sw1(s)P1(t, s)ds.

Each time a myosin head transitions from the attached state to the detached state, an ATP molecule
is consumed and the system is provided with an energy supply µT . The energy supply flux is thus
given by

Ė(t) := 1

d

∫ +d/2

−d/2
µT [k1→0(s)P1(t, s)− krev1→0(s)P0(t, s)]ds,

where [k1→0(s)P1(t, s)− krev1→0(s)P0(t, s)] is the net detachment flux. The heat dissipation eventu-
ally reads

Q̇(t) := −1

d

∫ +d/2

−d/2
[w0 − w1(s)][k0→1(s)P0(t, s)− krev0→1(s)P1(t, s)]ds

− 1

d

∫ +d/2

−d/2
[w1(s)− (w0 − µT )][k1→0(s)P1(t, s)− krev1→0(s)P0(t, s)]ds, (13)

so that the model satisfies the first principle of thermodynamics

d

dt
U(t) = Ẇ(t) + Ė(t) + Q̇(t), (14)

which appears as a direct consequence of (1a). Notice that the terms in the right hand side are
positive when received by the system. In particular, mechanical power is produced when Ẇ ≤ 0,
which is achieved when producing a positive force during shortening.

Second principle. The chemical potential of the state α at time t is defined (Hill, 1977) as

µ(t, α, s) = wα(s) + kBT lnPα(t, s),

where T is the absolute temperature and kB is the Boltzmann constant. The free energy of the
system then reads

F(t) := 1

d

∫ +d/2

−d/2

[
µ(t, 0, s)P0(t, s) + µ(t, 1, s)P1(t, s)

]
ds.
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The system satisfies the second principle of thermodynamics if

d

dt
F(t) = Ė(t) + Ẇ(t)− T Ṡprod(t), (15)

with Ṡprod(t) ≥ 0. Using (15), it is possible to obtain Ṡprod(t) from the above formulae for F(t),
Ė(t) and Ẇ(t). This classical computation (Hill, 1977; Caruel et al., 2019; Chaintron et al., 2023)
yields

Ṡprod(t) =
1

Td

∫ +d/2

−d/2

[
µ(t, 1, s)− µ(t, 0, s)

][
krev0→1(s)P1(t, s)− k0→1(s)P0(t, s)

]
ds

+
1

Td

∫ +d/2

−d/2

[
µ(t, 1, s)− (µ(t, 0, s)− µT )

][
k1→0(s)P1(s, t)− krev1→0(s)P0(t, s)

]
ds.

As desired, the above quantity is always non-negative if forward and reverse rates satisfy the well-
known detailed balance conditions (Hill, 1977)

k0→1(s) = exp

[
−w1(s)− w0

kBT

]
krev0→1(s), (16a)

k1→0(s) = exp

[
−(w0 − µT )− w1(s)

kBT

]
krev1→0(s). (16b)

3 The power-stroke fast time-scale integration

3.1 Mechanical model of the power-stroke

The Huxley–Hill model presented in the previous section dates back to the original description
of actin-myosin interaction by A.F. Huxley in 1957 (Huxley, 1957). This model was originally
formulated to reproduce isotonic shortening experiments, in particular the force-velocity curve
obtained experimentally by A.V. Hill (Hill, 1938; Huxley, 1957), and therefore does not describe
the internal conformational change of the power-stroke. The model in its original form is thus
unable to reproduce the fast transient response observed after rapid changes in loading conditions.

The Huxley–Hill model is usually supplemented by additional states that account for the con-
formational changes associated with the power-stroke. However, it has been shown that a simple
model with only two attached states, pre- and post-power-stroke, cannot be calibrated with phys-
iological parameters to reproduce the fast transients (Huxley & Tideswell, 1996). One way to
circumvent this problem is to divide the power-stroke into several sub-steps, each with as many
additional transition rates (Huxley & Simmons, 1971; Piazzesi & Lombardi, 1995; Caremani et al.,
2015; Månsson, 2016; Smith et al., 2008).

An alternative approach was proposed in (Marcucci & Truskinovsky, 2010). It consists in
representing the conformational change as a one-dimensional continuous stochastic process in a
non-convex energy landscape that includes both the mechanics and the kinetics of the power-stroke.

Further elaboration have been proposed where this continuous representation of the power-
stroke has been combined with the stochastic formulation of the classical discrete Huxley–Hill
model presented in the previous section (Caruel et al., 2019; Kimmig & Caruel, 2020).

The model is parameterized by three stochastic variables, see Figure 1(b). The first variable,
denoted Xt, is the position of the myosin head with respect to its anchor point on the thick filament.
The second variable, denoted by Yt, represents the conformation of the head (power-stroke). The
third variable is αt and defines the attachment state of the myosin head, as in the Huxley–Hill
model. The energy of the head comprises an elastic term and a non-convex term whose form
depends on the attachment state α.
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3.2 Complete jump-diffusion model

We now formulate our jump-diffusion model describing the dynamics of the variables Xt, Yt and
αt. The position in time of the nearest actin site t 7→ s(t) ∈ [−d/2,+d/2] is a given function
with speed ẋc(t). The random variable Xt is confined in the open interval (−d/2,+d/2), and Xt

is discontinuous at attachment and detachment times. The internal variable Yt is continuous with
values in R. The full Markov process (Zt)t≥0 reads

Zt = (αt, Xt, Yt) ∈ {0, 1} × (−d/2,+d/2)× R.

The internal variable Yt follows an overdamped Langevin dynamics with energy landscape y 7→
wαt(Xt, y) and viscous damping coefficient ηy. When the head is detached (αt = 0), Xt follows a
continuous overdamped dynamics with energy landscape x 7→ w0(x, Yt) and damping coefficient ηx.
When the head attaches, Xt jumps to the location s(t) of the nearest actin site, and then Xt follows
a deterministic dynamics with speed ẋc(t) until the next detachment event, so that Xt = s(t) while
αt = 1. To ensure thermodynamic consistency, four jumps are involved: binding and unbinding
reactions, together with their reverse reactions. The process (Zt)t≥0 is then defined through the
following stochastic differential equation (SDE):

dαt = 1αt−=0

[∫
R+

1z≤K0→1(Xt− ,Yt,s(t))N0→1(dt,dz)

+

∫
R+

1z≤Krev
1→0(Xt− ,Yt,s(t))N

rev
1→0(dt,dz)

]
− 1αt−=1

[∫ +d/2

−d/2

∫
R+

1z≤K1→0(x,Yt,s(t))N1→0(dt,dx,dz)

+

∫ +d/2

−d/2

∫
R+

1z≤Krev
0→1(x,Yt,s(t))N

rev
1→0(dt,dx,dz)

]
,

dXt = 1αt−=0

[
−η−1

x ∂xw0(Xt, Yt)dt+

√
2η−1

x kBT dBx
t

]
+ 1αt−=1ẋc(t)dt

+ 1αt−=0

[∫
R+

(s(t)−Xt−)1z≤K0→1(Xt− ,Yt,s(t))N0→1(dt,dz)

+

∫
R+

(s(t)−Xt−)1z≤Krev
1→0(Xt− ,Yt,s(t))N

rev
1→0(dt,dz)

]
+ 1αt−=1

[∫ +d/2

−d/2

∫
R+

(x− s(t))1z≤K1→0(x,Yt,s(t))N1→0(dt,dx, dz)

+

∫ +d/2

−d/2

∫
R+

(x−Xt−)1z≤Krev
0→1(x,Yt,s(t))N

rev
0→1(dt,dx,dz)

]
,

dYt = −η−1
y ∂ywαt(Xt, Yt)dt+

√
2η−1

y kBT dBy
t .

(17)

The values of diffusion coefficients for overdamped Langevin dynamics obey Einstein’s law for
diffusion. The stochastic processes (Bx

t )t≥0 and (By
t )t≥0 are independent Brownian motions which

model thermal fluctuations (white noise), T being the absolute temperature of the system. Four
Poisson random measures are used, each of them modelling one chemical reaction corresponding to
a jump for (αt, Xt). The internal variable Yt is continuous, and is not affected by the jumps. As in
(6), an extra variable z is used to account for inhomogeneous jump rates. In the present situation,
jump rates depend on the current configuration (Xt, Yt, s(t)) of the entire system.

• N0→1(dt,dz) is a Poisson random measure on R+ × R+ with intensity measure dt ⊗ dz.
This measure models the direct attachment jump 0 → 1 for αt. At attachment events, the
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myosin head binds at the nearest actin whose location is s(t), so that the head position Xt

undergoes a jump of amplitude s(t)−Xt− . The rate of the jump (0, x, y, s)→ (1, s, y, s) for
(αt, Xt, Yt, s(t)) is K0→1(x, y, s).

• N rev
0→1(dt,dx, dz) is a Poisson random measure on R+ × (−d/2,+d/2) × R+ with intensity

measure dt ⊗ dx ⊗ dz. This measure models a jump 1 → 0 for αt that corresponds to the
reverse of the attachment reaction. In this reverse reaction, the myosin head detaches from
the actin fiber and jumps to a new random location x. The jump amplitude is thus x− s(t).
This random location x is chosen by the Poisson random measure, in such a way that the rate
of the jump (1, s, y, s) → (0, x′, y, s) for (αt, Xt, Yt, s(t)) where x′ belongs to an infinitesimal
cell of size dx around x is Krev

0→1(x, y, s)dx.

• N1→0(dt,dx, dz) is a Poisson random measure on R+ × (−d/2,+d/2) × R+ with intensity
measure dt ⊗ dx ⊗ dz. This measure models a jump 1 → 0 for αt that corresponds to the
direct detachment reaction. In this reaction, the myosin head detaches from the actin fiber
and jumps to a new random location x. The jump amplitude is thus x− s(t). This random
location x is chosen by the Poisson random measure, in such a way that the rate of the jump
(1, s, y, s) → (0, x′, y, s) for (αt, Xt, Yt, s(t)) where x′ belongs to an infinitesimal cell of size
dx around x is K1→0(x, y, s)dx.

• N rev
1→0(dt,dz) is a Poisson random measure on R+×R+ with intensity measure dt⊗ dz. This

measure models a jump 0 → 1 for αt that corresponds to the reverse of the detachment
reaction. In this reverse reaction, the myosin head attaches to the actin fiber at the location
s(t) of the nearest actin site, so that the jump amplitude is s(t)−Xt− . Similarly, the rate of
this jump (0, x, y, s)→ (1, s, y, s) for (αt, Xt, Yt, s(t)) is Krev

1→0(x, y, s).

Detailed balance conditions. Compared to previous works (Caruel et al., 2019), a major chal-
lenge here is to write balance conditions for continuous-to-discrete jumps and their reverse. A way
to ensure that the model obeys the second principle of thermodynamics is to formulate detailed
balance conditions between the jump rates defined above that are analogous to (16a)-(16b) used in
Section 2.3.

The reverse attachment reaction involves a discrete-to-continuous jump and must select a new
random location x for the detached myosin head. The probability law that selects this new location
should be compatible with balance conditions. To solve this issue, it is convenient to look at jumps
at the level of the entire system (αt, Xt, Yt, s(t)). The detailed balance conditions are then written
on the total jumps (0, x, y, s)→ (1, s, y, s) and (1, s, y, s)→ (0, x, y, s):

K0→1(x, y, s) = hx exp

[
−w1(s, y)− w0(x, y)

kBT

]
Krev

0→1(x, y, s), (18a)

K1→0(x, y, s) = h−1
x exp

[
−(w0(x, y)− µT )− w1(s, y)

kBT

]
Krev

1→0(x, y, s), (18b)

where hx is the characteristic length for x. The length hx is taken equal to the characteristic length
of the power stroke stochastic dynamics. This characteristic length is needed to account for the
discrete-to-continuous jumps and guarantees that (18a)-(18b) are homogeneous. It is sufficient to
impose e.g. h−1

x K0→1(x, y, s) and h−1
x Krev

1→0(x, y, s) to prescribe all the rates.

Global jump rates. From the above rate K1→0(x, y, s), it is possible to recover the global
detachment rate - independently of the position resulting from the detachment jump - by integrating
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(18b):

k1→0(y, s) :=

∫ +d/2

−d/2
K1→0(x, y, s)dx

=

∫ +d/2

−d/2
h−1
x exp

[
−(w0(x, y)− µT )− w1(s, y)

kBT

]
Krev

1→0(x, y, s)dx. (19)

The above rate is the analogous of k1→0(s) that appears in Section 2.3. By integrating
Krev

0→1(x, y, s) over x, we similarly define the global rate krev0→1(y, s).

PDE formulation. Let p(t, s, α, x, y) denote the probability density of (αt, Xt, Yt). When α = 1,
we define p(t, s, 1, y) := p(t, s, 1, s, y). As in Section 2.2, we want to write a PDE system coupling
p(t, s, 0, x, y) and p(t, s, 1, y). To do so let φ : {0, 1} × (−d/2,+d/2)×R→ R denote any bounded
C2 test function whose derivatives are also bounded. By definition,

E[φ(αt, Xt, Yt)] =

∫ d/2

−d/2

∫
R

[
φ(0, x, y)p(t, s(t), 0, x, y)dx+ φ(1, x, y)p(t, s(t), 1, y)δs(t)(dx)

]
dy.

As in Section 2.2, we look for a linear operator Lt such that

∀φ, d

dt
E[φ(αt, xt, Yt)] = E[Ltφ(αt, xt, Yt)],

in order to obtain that
∂tp = L⋆

t p, (20)

where L⋆
t is the dual operator of Lt. In the present situation, the infinitesimal generator Lt can be

decomposed as
Lt = Lt,cont + Lt,0→1 + Lrev

t,0→1 + Lt,1→0 + Lrev
t,1→0,

where the operators Lt,0→1, Lrev
t,0→1, Lt,1→0 and Lrev

t,1→0 correspond to the contributions of each
jump. From the Ito formula, it is standard (Del Moral & Penev, 2017; Caruel et al., 2019) that the
contribution related to the continuous part of the dynamics reads

Lt,contφ(α, x, y) = 1αt−=0[−η−1
x ∂xw0(Xt, Yt)∂xφ(0, x, y) + η−1

x kBT∂
2
xxφ(0, x, y)]

+ 1αt−=1ẋc(t)∂xφ(1, x, y)− η−1
y ∂ywα(Xt, Yt)∂yφ(α, x, y) + η−1

y kBT∂
2
yyφ(α, x, y).

For each jump event, we then reason as in (7) to obtain the corresponding operator. The analogous
of (11) for the direct attachment jump is

Lt,0→1φ(α, x, y) = 1α=0K0→1(x, y, s(t))[φ(0, s(t), y)− φ(0, x, y)],

and

Lt,1→0φ(α, x, y) = 1α=1

∫ +d/2

−d/2
[φ(1, x′, y)− φ(1, x, y)]K1→0(x

′, y, x)dx′,

for the direct detachment jump. We proceed similarly for Lrev
t,0→1 and Lrev

t,1→0. We then compute
the dual operators L⋆

t,cont, L⋆
t,0→1, (Lrev

t,0→1)
⋆, L⋆

t,1→0 and (Lrev
t,1→0)

⋆ for each component, and we
sum them to obtain L⋆. After straightforward computations, (20) eventually reads, for (t, x, y) in
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R+ × (−d/2,+d/2)× R,

∂tp(t, s, 0, x, y) = −ẋc(t)∂sp(t, s, 0, x, y)
+∂x[η

−1
x ∂xw0(x, y)p(t, s, 0, x, y) + η−1

x kBT∂xp(t, s, 0, x, y)]

+∂y[η
−1
y ∂yw0(x, y)p(t, s, 0, x, y) + η−1

y kBT∂yp(t, s, 0, x, y)]

−[K0→1(x, y, s) +Krev
1→0(x, y, s)]p(t, s, 0, x, y)

+[K1→0(x, y, s) +Krev
0→1(x, y, s)]p(t, s, 1, y),

∂tp(t, s, 1, y) = −ẋc(t)∂sp(t, s, 1, y)
+∂y[η

−1
y ∂yw1(s, y)p(t, s, 1, y) + η−1

y kBT∂yp(t, s, 1, y)]

−p(t, s, 1, y)
∫ +d/2

−d/2
[K1→0(x, y, s) +Krev

0→1(x, y, s)]dx

+

∫ +d/2

−d/2
[K0→1(x, y, s) +Krev

1→0(x, y, s)]p(t, s, 0, x, y)dx,

p(t,±d/2, 0, x, y) = 0, p(t, s, 0,±d/2, y) = 0, p(t,±d/2, 1, y) = 0.

(21)

This provides a PDE formulation for our model that is equivalent to (17).

Recovering the Huxley–Hill model back. To obtain the Huxley–Hill PDE system (1) as a
limit case of (21), let us assume that rates K0→1, Krev

0→1, K1→0 and Krev
1→0 do not depend on y

anymore. We then define the averaged rates

f(s) :=
1

d

∫ +d/2

−d/2

∫
R
[K0→1(x, y, s) +Krev

1→0(x, y, s)]dydx,

g(s) :=

∫ +d/2

−d/2

∫
R
[K1→0(x, y, s) +Krev

0→1(x, y, s)]dydx,

together with the integrated densities

P0(t, s) :=

∫ +d/2

−d/2

∫
R
p(t, s, 0, x, y)dydx and P1(t, s) :=

∫
R
p(t, s, 1, y)dy.

Integrating (21) over x and y then exactly recovers the Huxley–Hill system (1) on P0 and P1.
There exist other possible ways to recover (1) which are based on thermalisation assumptions on
the internal variable y (Caruel et al., 2019; Kimmig & Caruel, 2020).

3.3 Thermodynamic balances

Following Section 2.3, it is now possible to compute the energy and entropy balances. The detail
of the computations is provided in appendix.

First principle. The first principle of thermodynamics reads

d

dt
U(t) = Ẇ(t) + Ė(t) + Q̇(t), (22)

where the above quantities stand for:

• The internal energy:

U(t) :=
∫ +d/2

−d/2

∫
R

[
w0(x, y)p(t, s(t), 0, x, y)dx+ w1(s(t), y)p(t, s(t), 1, y)δs(t)(dx)

]
dy.

13



• The power of external efforts:

Ẇ(t) := ẋc(t)τc(t) := ẋc(t)

∫
R
∂sw1(s(t), y)p(t, s(t), 1, y)dy.

• The flux term:

Ė(t) =
∫ +d/2

−d/2

∫
R
µT [K1→0(x, y, s(t))p(t, s(t), 1, y)−Krev

1→0(x, y, s(t))p(t, s(t), 0, x, y)]dxdy.

(23)

• The heat dissipation:

Q̇(t) =−
∫ +d/2

−d/2

∫
R
η−1
x (∂xw0(x, y))

2p(t, s(t), 0, x, y)dydx

−
∫ +d/2

−d/2

∫
R
η−1
y (∂yw0(x, y))

2p(t, s(t), 0, x, y)dydx

−
∫
R
η−1
y (∂yw1(s(t), y))

2p(t, s(t), 1, y)dy

+

∫ +d/2

−d/2

∫
R

kBT

ηx
∂2
xxw0(x, y)p(t, s(t), 0, x, y)dydx

+

∫ +d/2

−d/2

∫
R

kBT

ηy
∂2
yyw0(x, y)p(t, s(t), 0, x, y)dydx

+

∫
R

kBT

ηy
∂2
yyw1(s(t), y)p(t, s(t), 1, y)dy

−
∫ +d/2

−d/2

∫
R

{
[w0(x, y)− w1(s(t), y)]

× [K0→1(x, y, s(t))p(t, s(t), 0, x, y)−Krev
0→1(x, y, s(t))p(t, s(t), 1, y)]

}
dydx

−
∫ +d/2

−d/2

∫
R

{
[w1(s(t), y) + µT − w0(x, y)]

× [K1→0(x, y, s(t))p(t, s(t), 1, y)−Krev
1→0(x, y, s(t))p(t, s(t), 0, x, y)]

}
dydx.

The flux term accounts for the energy input due to ATP consumption. The heat dissipation
involves the energy dissipated by the gradient system and thermal dissipation due to the noise,
together with the heat productions which stem from jumps.

Second principle. Using (21), analogous developments give the free energy balance

d

dt
F(t) = Ẇ(t) + Ė(t)− T Ṡprod(t) (24)

The definition free energy here reads

F(t) :=
∫
R

∫ +d/2

−d/2
[µ(t, s(t), 0, x, y)p(t, s(t), 0, x, y)dx+ µ(t, s(t), 1, y)p(t, s(t), 1, y)δs(t)(dx)]dy,

where the state chemical potentials at time t are

µ(t, s(t), 0, x, y) := w0(x, y) + kBT ln[hxhyp(t, s(t), 0, x, y)],

µ(t, s(t), 1, y) := w1(s(t), y) + kBT ln[hyp(t, s(t), 1, y)],
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where hx and hy respectively denote the characteristic lengths for x and y. Both lengths are taken
equal to the characteristic length of the power stroke stochastic dynamics. The scale hy plays no
role in the following since it vanishes when computing differences. On the opposite, hx is needed
to account for the discrete-to-continuous jumps. A direct computation gives the produced entropy

T Ṡprod(t) =

∫ +d/2

−d/2

∫
R
η−1
x (∂xµ0(x, y))

2p(t, s(t), 0, x, y)dydx

+

∫ +d/2

−d/2

∫
R
η−1
y (∂yµ0(x, y))

2p(t, s(t), 0, x, y)dydx

+

∫
R
η−1
y (∂yµ1(s(t), y))

2p(t, s(t), 1, y)dy

+

∫ +d/2

−d/2

∫
R

{
[µ(t, s(t), 0, x, y)− µ(t, s(t), 1, y)]

× [K0→1(x, y, s(t))p(t, s(t), 0, x, y)−Krev
0→1(x, y, s(t))p(t, s(t), 1, y)]

}
dydx

+

∫ +d/2

−d/2

∫
R

{
[µ(t, s(t), 1, y) + µT − µ(t, s(t), 0, x, y)]

× [K1→0(x, y, s(t))p(t, s(t), 1, y)−Krev
1→0(x, y, s(t))p(t, s(t), 0, x, y)]

}
dydx.

Using the detailed balance conditions (18), this quantity is always non-negative. Therefore, the
entropy production rate is always positive, as required by the second principle of thermodynamics.

The above developments show that the model can be made compatible with the first and the
second principles of thermodynamics, if the condition of detailed balance (18) is satisfied.

To illustrate a consequence of this result, we consider a closed actin-myosin interaction cycle C,
and integrate the free energy balance (24) over that cycle, we obtain∫

C

d

dt
F(t)dt =

∫
C
Ẇ(t)dt+

∫
C
Ė(t)dt− T

∫
C
Ṡprod(t)dt = 0.

In the absence of metabolic energy, µT = 0 which implies Ė(t) = 0, this equality becomes∫
C
Ẇ(t)dt = T

∫
C
Ṡprod(t)dt ≥ 0.

Hence, as expected, no net work can be produced in the absence of ATP. The result that the myosin
heads produce work even though the rates locally verify the detailed balance condition comes from
the fact that the energy level at the beginning and at the end of the interaction differ by µT , hence
breaking the overall balance of the cycle (Jülicher et al., 1997).

Finally, as the transition rates usually depend in a complex way on the state of the myosin head,
the detailed balance constraint makes the calibration of the model more robust as transitions that
are unfavorable from a thermodynamic point of view will be negligible “by design”, see Section 5.1.

4 Discretization aspects

In this section, we detail how the system (27) can be simulated numerically. The following presen-
tation does not use a rigorous mathematical framework. Our objective is to allow the interested
reader to implement our model and to give an additional point of view on the Poisson random
measures. We first present how to deal with a single Poisson jump process and we then introduce a
numerical scheme approximating the complete system coupling jump processes with over-damped
Langevin dynamics.
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4.1 Discretization of a single jump

We first present how to numerically simulate a stochastic process driven by a Poisson random
measure. We consider a R-valued stochastic process (Xt)t≥0 whose dynamics is given by the
equation

dXt =

∫
R
x1z≤K(x,y(t))N(dt,dz, dx), (25)

where y is a continuous time-dependent parameter, and N(dt,dz, dx) is a Poisson random measure
on R+ × R+ × R with intensity measure dt ⊗ dz ⊗ dx. Each possible jump Xt → Xt + x has
individual rate K(x, y(t)). The global jump rate for Xt at time t (according to the definition given
in Section 3.2) is

k(y(t)) :=

∫
R
K(x, y(t))dx.

We have seen in Section 2.2 that the waiting time ∆Tt for the next jump of Xt is an exponential
variable with (time-inhomogeneous) rate k(y(t)) (see Equation (3) for more details). Such a variable
∆Tt can be simulated by

∆Tt = inf

{
t′ > 0,

∫ t+t′

t
k(y(r))dr ≥ eJ

}
, (26)

where eJ ∼ E(1) is an exponential variable with parameter 1. At the jump time t+∆Tt, the jump
amplitude is a random variable with law k−1(y(t+∆Tt))K(x, y(t+∆Tt))dx.

We consider a numerical scheme with fixed time step δt and we define the discretized times tn
by tn := t0 + nδt, ∀n ∈ N. We denote by Xn the approximation of Xtn . We assume that the time
step is adapted to the rate of the considered random process, i.e. δt ·maxy [k(y]≪ 1.

To numerically approximate the waiting time ∆Tt between two jump events, we draw an expo-
nential random variable eJ with parameter 1 and we discretize the integral defining ∆Tt in (26) with
the time step δt. The approximation of the integral is cumulatively updated along the simulated
path X1, . . . , Xn.

When the next jump time tn is reached, the increment ∆Xn for Xn is drawn from the probability
law k−1(y(tn))K(x, y(tn))dx. Drawing a uniform variable U ∼ U [0, 1], we simulate the increment
by

∆Xn =

[
x 7→

∫ x

−d/2
k−1(y(tn))K(x′, y(tn))dx

′

]−1

(U).

The integral can be computed using standard quadrature methods, and an approximated inver-
sion can be performed using a dichotomy algorithm. The numerical scheme to simulate Xn is
summarized in Algorithm 1.

4.2 Complete model discretization

To simulate (17), we couple the numerical scheme for the jump process described in 4.1 with a
classical Euler-Maruyama scheme for over-damped Langevin equations. The variables α and X
share the same jump clock. Therefore, only four jump events need to be considered. A counter cJ
and a threshold eJ are associated with each of the four jumps. However, the four jumps cannot be
simultaneously triggered at the same time. Indeed, in the detached state only attachment jumps
are admissible, and conversely in the attached state. Therefore, the terms that update the counters
are weighted by the activation factors αn and 1 − αn. Furthermore, in the case where two jumps
are triggered in the same time interval δt, we select the jump for which the residual cJ + kδt − eJ
is the greatest. Once a jump occurs, the counters are reset to 0 and the thresholds are replaced by
new unit exponential variables.
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Algorithm 1: Numerical scheme of time step δt to simulate an approximation Xn of the
variable Xtn which is driven by a Poisson random measure. The jump dynamics is defined
by the rate K with associated global rate k. The variable cJ is a counter, and the unit
exponential variable eJ acts as a threshold. The final simulation time is given by nmaxδt.

Initial state: n← 0, cJ ← 0, eJ ∼ E(1)
while n < nmax do

while cJ < eJ do
cJ ← cJ + k(y(tn))δt
Xn+1 ← Xn

n← n+ 1
end
∆Xn ∼ k−1(y(tn))K(x, y(tn))dx
Xn+1 ← Xn +∆Xn

cJ ← 0, eJ ∼ E(1)
n← n+ 1

end

The numerical scheme for the complete system (17) is given by

Xn+1 = Xn + δt
[
αnẋc(tn) + (1− αn) η

−1
x ∂xwαn (Xn, Yn)

]
+ (1− αn)

√
2η−1

x kBTδtG
x
n+1

+ (1− αn) [sn −Xn]1cJ0→1+(1−αn)K0→1δt≥eJ0→1

+ (1− αn) [sn −Xn]1crevJ1→0+(1−αn)Krev
1→0δt≥erevJ1→0

,

+ αn

[
X+,rev

n+1 −Xn

]
1crevJ0→1+αnkrev0→1δt≥erevJ0→1

+ αn

[
X−

n+1 −Xn

]
1cJ1→0+αnk1→0δt≥eJ1→0

,

Yn+1 = Yn + δtη−1
y ∂ywαn (Xn, Yn) +

√
2η−1

y kBTδtG
y
n+1,

αn+1 = αn

+ (1− αn) [1− 2αn]1cJ0→1+(1−αn)K0→1δt≥eJ0→1

+ (1− αn) [1− 2αn]1crevJ1→0+(1−αn)Krev
1→0δt≥erevJ1→0

+ αn [1− 2αn]1crevJ0→1+αnkrev0→1δt≥erevJ0→1

+ αn [1− 2αn]1cJ1→0+αnk1→0δt≥eJ1→0
,

sn+1 = sn + δtẋc(tn) in T0
d,

(27)

where

Gx
n+1 ∼ N (0, 1),

Gy
n+1 ∼ N (0, 1).

5 Numerical validations

In this section we show that the stochastic model is able to quantitatively reproduce the fast and
slow timescale responses of a cardiac muscle fiber submitted to rapid change in loading conditions
applied at the peak of a twitch contraction. More details about the experimental methodology can
be found in Caremani et al. (2016).
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Figure 2: Energy landscape of the myosin head. (a) Double quadratic functions representing the
energy uα, intrinsic to the power-stroke. (b) & (c) Energy of the myosin head in the detached
and attached states, respectively. The horizontal dashed lines shows the separation between the
pre- and the post-power-stroke conformations. The oblique line in (c) of equation y = −s shows
the separation between the region where the tension generated by the cross-bridge is positive
(right, traction) and the region where it is negative (left, compression). Detailed expressions and
parameters values of the functions are available in Table 1.
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Figure 3: Global jump rates of the four jumps. (a) & (b) Direct attachment and reverse detachment,
respectively. (c) & (d) Reverse attachment and direct detachment, respectively. Notice that the
rates are strictly positive, even in the white regions. The level sets of the detachment rates are
intentionally cut-of at 4 µs−1 for visibility, but the rate value are in fact above this threshold in the
corresponding regions. Detailed expressions and parameters values of the functions are available in
Table 1.
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5.1 Calibration principles

The calibration of the model follows the procedure detailed in Kimmig & Caruel (2020), of which
we here recall the main principles. The detailed expressions of the different model ingredients can
be found in Table 1.

Our model is based on the definition of a fixed binding window [s−, s+] of length d. We have
chosen a non-symmetric interval with s− = −30 nm and s+ = 10nm. This choice is made to
allow the heads to remain attached over a long distance before reaching the limit of the interval
during contraction. The distance d = 40nm corresponds to the length of the actin regulatory units
(Gordon et al., 2000).

The energy landscapes wα are decomposed as follows

wα(x, y) = uα(y) +
1

2
κ(x+ y)2,

where u is a double quadratic function (see Figure 2(a), showing the energy landscape along the
line x + y = 0) and the second term accounts for the elasticity of the myosin head. The level set
of the two landscapes w0(x, y) and w1(s, y) are shown in Figure 2(b) and (c), respectively.

The parameters of w1 are adjusted so that the tension obtained from the thermal equilibrium
distribution of Y at a given s matches the tension measured at the end of the fast transient
phases (phase I and phase II), taking into account the distribution of the attached heads before
the application of the fast load change, i.e., under isometric conditions.

The parameters of the detached potential w0 are chosen such that the gradient flow brings
the particles towards the pre-power-stroke configuration corresponding to low values of y, see
Figure 2(a) and (b). Fine tuning can be made on this detached landscape parameters as there
are no direct experimental constraint available.

The model is parameterized by four rates. According to the detailed balance conditions (18),
only two of them need to be calibrated. We assume that the rate K0→1 depends only on y and s.
We choose for K0→1 the regularized piecewise constant function shown in Figure 3(a). Attachment
is allowed with a nonzero value if the head is in the pre-power stroke (low values of y) and if the
site is close to s = 0. The value of this increased rate and the corresponding s interval are adjusted
so that the fraction of attached myosin heads in the isometric state is equal to the experimentally
measured value of 0.15 (Caremani et al., 2016). The reverse attachment rate Krev

0→1 is then obtained
from the detailed balance relation (18a).

The global rate k1→0(y, s) (see equation 19) is the direct detachment rate 1 → 0 knowing the
value (y, s) of (Yt, s(t)). Writing that

k1→0(y, s)J1→0(y, s,dx) := K1→0(x, y, s)dx,

defines the jump measure J1→0(y, s,dx). At detachment events of global rate k1→0(y, s), this jump
measure is the probability law that selects the new value of Xt after detachment. Other jump
measures could be similarly defined for the three other jumps. In the case of attachment events,
these measures degenerate into Dirac masses, since x = s is imposed after attachment.

Following the classical approach (Eisenberg & Hill, 1978; Piazzesi & Lombardi, 1995), also used
in a previous work (Kimmig & Caruel, 2020), we assume that the global detachment rate k1→0 is
a regularized piecewise constant function of s, shown in Figure 3(d). The jump measure is then
defined as J1→0(y, s,dx) = (1/λ)1|s−x|≤λ/2 dx, which corresponds to a uniform distribution of Xt

after detachment on the interval [s− λ/2, s+ λ/2], where λ is a parameter. Hence the position of
the head after detachment remains close to its previous attached position. The detachment rate
krev1→0 is finally computed from the detailed balance relation (18b), and is represented in Figure 3(b).
This rate is positive only around the line s = x, and in a ∼5 nm interval around s = −17 nm. The
location around the line s = x is a direct consequence of the choice of the jump measure J1→0,
which defines the possible starting points for reverse detachment. The location around s = −17 nm
is the consequence of the thermodynamic constraint imposed by the detailed balance conditions:
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it is in this region where the energy levels w1(y, s) and w0(x, y, s)− µT are close to each other, see
Figure 2.

In the next sections, we compare the simulation of our model with experimental data from
two benchmark experiments: the A.V. Hill force-velocity curve and the quick force recovery after
a fast sarcomere length change. In the first case, we impose a constant negative sliding velocity
(ṡ = ẋc ≤ 0), and in the second case, we maintain the system in isometric condition (ṡ = 0) until it
reaches a steady state and then apply an instantaneous length change δs. In both cases, the average
active tension τc is computed from 5× 105 independent realizations of the stochastic process. The
macroscopic stress is then given by Tc = ρsurfτc, where ρsurf = 1.25 × 1017m−2 (Pinzauti et al.,
2018) is the number of myosin heads in a longitudinal portion of a cell that has a thickness equal
to the half-sarcomere length ℓhs ≈ 1 µm per cross-sectional area, both quantities being defined in
the reference configuration.

5.2 Slow time-scale validation
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Figure 4: Slow timescale validation of the model. (a) Force-velocity relation showing the steady
state force obtained while imposing the shortening velocity, averaged over 1× 105 realizations. On
this curve, three points, marked A, B and C have been selected to illustrate the internal steady
state of the system in these shortening regimes. Experimental data are marked with open circles:
circles (Caremani et al., 2016), squares (Van Heuningen et al., 1982), diamonds (de Tombe & ter
Keurs, 1992), pentagons (de Tombe & ter Keurs, 1990) and triangles (Daniels et al., 1984). (b)
Distribution of the system in the attached state. The level sets reproduce the energy landscape
shown in figure 2(c), and the colored dots show three snapshots of the stochastic realizations
corresponding to the points A, B and C shown in (a) for a subset of 5 × 103 randomly chosen
realizations. (c) Distributions P1 of attached heads at points A, B and C. (d) Distributions in the
double well potential at point A, B and C, for the selected values of s marked the star symbols
beside the vertical dashed lines in (b).

The force-velocity relation produced by the calibrated model is in good agreement with available
experimental data gathered from several sources Figure 4(a). The average tension Tc is normalized
by the stall force T0 obtained in isometric condition (point A). In our simulation we obtained
T0 = 116 kPa, which is in agreement with physiological measurements in situ (Caremani et al.,
2016) (118 kPa). This value corresponds to a total fraction of attached heads of 0.146, which is
also compatible with the value inferred from experimental data (Pinzauti et al., 2018) (0.15).
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In Figure 4(b-d), we illustrate the microscopic configuration of the model in the steady state
regimes corresponding to the points labeled A, B and C in panel (a). The simulations are performed
using 1× 105 stochastic realizations to produce the average results. Each colored dot in panel (b)
represents one of the stochastic realizations for a subset of 5 × 103 randomly chosen realizations.
The distributions of attached heads and the distribution of the variable Yt are represented in panels
(c) and (d), respectively for each of the three sliding velocities. The distribution of Yt is shown
for selected values of s: s = 2nm for isometric condition (point A, blue) and s = −3 nm for
intermediate and fast shortening velocities (point B, orange, and C, green).

In isometric condition (Point A, illustrated in blue), the distribution of attached heads reflects
the form of the attachment rate, which is high only in the vicinity of the line s = 0. A few particles
are also attached at s ≈ −12 nm as a consequence of the reverse detachment jump, see Figure 3(b).
The conformation of the attached heads is split between pre- and post-power-stroke, see panel(d)
with a majority of heads in pre-power-stroke at s = 2nm.

During steady state shortening (points B and C), the particles shift toward lower values of
s and higher values of y, following the minimum of the energy landscape (see panel (b)). As
the shortening velocity increases, less particles are attached compared to the isometric condition,
as shown by the lower density of dots in panel (b) and by the reduction in the integral of the
distribution P1 of attached heads in panel (c). For small to medium shortening velocities, the
conformation distribution favors the post-power-stroke state (see the orange curve in panel (d)),
but at larger velocities, for the same value of s (here −3 nm), we observe that a significant fraction
of attached heads remain in the pre-power-stroke conformation, see the green curve in (d). This
phenomenon reflects the fact that for large velocities, the heads that are attached in per-power-
stroke have less time to undergo their conformational change before being dragged by the sliding.

Because the model is compatible with thermodynamics, energetic quantities can be computed
to better characterize the bioenergetics of muscle contraction and to further validate the capacity
of the model to capture the physiology. We first compute the prediction of the power of external
forces, whose generation is the main purpose of cardiac muscles. The model predictions show a good
match with experimental data (see Figure 5(a)). Then, we turn our attention to the consumption of
ATP, which constitutes the energy source of muscle cell for the production of mechanical work. The
model predicts a steady increase of energy consumption with the shortening velocity. Here, only
the data point in isometric conditions is available in the literature, and it is correctly predicted by
the model. Finally, we compute the efficiency of the contraction, which is defined as η = Ẇ/Ė . We
obtain a maximum efficiency of contraction around 40%, which is compatible with experimental
estimates (Smith et al., 2005; Han et al., 2013).

The energy input rate shown in Figure 5(b) is by definition proportional to the net detachment
flux, see (23). We show in Appendix6 that the detailed conditions imply that if ATP is withdrawn
from the system by setting µT = 0 without changing the attachment and reverse detachment rates
– see Figure3 and Table1 – the net attachment flux becomes zero in steady state and so is the net
detachment flux. Hence, the overall steady state cycling rate is also zero in the absence of ATP, as
expected from thermodynamics.

5.3 Fast time-scale validation

The fast timescale response of the system after instant change of the sarcomere length is illustrated
in Figure 6. We simulate the response of the system to a step applied on the variable s with 1×105

stochastic realizations. Since the filaments elasticity is not taken into account explicitly in the model
the results of our simulations must be post-processed to incorporate this effect and be compared
to the experimental data, see Kimmig & Caruel (2020); Caruel et al. (2019) for more details. We
use here a filament compliance of 17 nmMPa−1 obtained from experimental data (Pinzauti et al.,
2018) and the resulting step size is denoted by δhs and expressed in nanometer per half-sarcomere.

When the step is applied, the tension drops from the isometric value T0 down to a minimum
value to T1 which depends linearly on the step size. The value of T1 resulting from a step in s of
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−ẋc (µm s−1)

η

Model

(a) (b) (c)

Figure 5: Slow timescale thermodynamic predictions of the model in the steady state at various
imposed shortening velocities. The mechanical work, consumed ATP energy flux and the contrac-
tion efficiency are presented in panels (a), (b) and (c), respectively. They are computed according
to their definitions given in Section 3.3 with averages computed over 1× 105 thermodynamics real-
izations. Panel (a) presents the power of external efforts compared with experimental data. Exper-
imental data are marked with open circles: circles (Caremani et al., 2016), squares (Van Heuningen
et al., 1982), diamonds (de Tombe & ter Keurs, 1992), pentagons (de Tombe & ter Keurs, 1990) and
triangles (Daniels et al., 1984). Panel (b) presents the consumed ATP energy flux. The associated
experimental data in isometric conditions is computed from the measurements on skinned cardiac
trabeculae (de Tombe & Stienen, 2007). The observed ATP consumption is 0.1085ATP/s/kPa
per myosin head. For an isometric stress of 118 kPa (Caremani et al., 2016) and an energy input
of 100 zJ per ATP molecule (Barclay, 2015), this translates into an ATP energy consumption of
1.28 zJms−1. Panel (c) presents the efficiency of contraction defines as the quotient of the power
of external efforts by the consumed ATP energy flux.

δs = −4 nm, which corresponds to δhs = −5.6 nm per half-sarcomere when the filament elasticity
is taken into account, is indicated by the labeled box in Figure 6(a).

Simultaneously with the step, the isometric internal distribution translates leftward, see the
blue and violet dots and curves in panels (b-d)). In particular, the distribution of the conformation
variable Yt does not change significantly.

After the quick tension recovery, the tension reaches a level T2, see the labeled box in Figure 6(a).
During this transition, the distribution P1 of attached heads does not change, see (b and c), but
the conformation relaxes towards the post-power-stroke energy well, see the upward displacement
of the dots in (b) and the corresponding shift in the distribution in (d). This observation is fully
compatible with the experimental observation that the fast transient response is essentially due to
the internal relaxation of the power-stroke, without significant change of the number of attached
myosin heads (Reconditi et al., 2004). It also validates the method used to calibrate the attached
potential w1.
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Figure 6: Fast times-scale validation of the model against experimental data (Caremani et al.,
2016). The simulations are performed using 1 × 105 stochastic realizations. (a) Tension obtained
at the end of phase I (T1, dark blue circles) and at the end of phase II (T2, orange triangles) for
different instantaneous half-sarcomere shortening (δhs) applied in isometric condition (T0). The
shortening values this take into account the filament compliance (see first paragraph of Section 5.3).
The insert shows a typical evolution of the tension in response such shortening step, here δhs =
5.6 nm per half-sarcomere. (b) Scatter plot of the attached heads superimposed on the energy
landscape w1. Each dot represents one stochastic realization for a subset of 5 × 103 randomly
chosen stochastic realizations. The three sets of dots represent the state of the system at T0 (blue,
isometric contraction), T1 (dark blue, end of phase I) and T2 (orange, end of phase II) for a step
δs = −4 nm. The corresponding points on panel (a) are marked with the square boxes. (c) & (d)
Distribution of attached heads and the distribution of Yt corresponding to the same points. For
the distribution of Yt in (d), the value selected for s are 2, for the isometric state T0 and -2 for the
two other stages T1 and T2. These values are indicated by the vertical dashed lines in (b).

6 Conclusion and perspectives

In this paper, we propose a model of the actin-myosin interaction in the framework of muscle
contraction. The model enhances a previously published model (Caruel et al., 2019) by improving
it in a comprehensive formulation, which makes it consistent with thermodynamics. It describes
the population of myosin heads inside the sarcomere by a representative head, which interacts with
its nearest actin site. Our model couples the fast timescale internal mechanical behavior of the
myosin to the slow timescale attachment-detachment dynamics of the myosin head. The internal
mechanical state myosin head is characterized by two continuous variables, one being associated
with the position of the myosin head tip and the other one with the power-stroke. The binding
state (attached or detached) is accounted for by a discrete binary variable.

We first formulate the model in a stochastic framework. To do so, we rely on Poisson random
measures. Using this mathematical object, the model equations can be unified in a jump-diffusion
equations system. The associated Fokker-Planck equations are then established and the compati-
bility with the first and second principles of thermodynamics is demonstrated. This property was
not guaranteed with the original model. The model is then calibrated using simple rules following
strategies proposed in the literature (Caruel et al., 2019; Kimmig & Caruel, 2020). Using this cali-
bration, we display its ability to reproduce experimental data characterizing the various timescales
at which muscles operate. In addition, our formulation allows to predict energy balances over
the whole range of the force-velocity curve, which could to be validated when the corresponding
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experimental data become available.
Moreover, its thermodynamic properties make our model directly compatible with space multi-

scale framework (Kimmig et al., 2019) paving the way for the coupling of the nano-scale power-
stroke conformation change to the macroscopic organ deformation.

Several extensions of our newly proposed model may constitute valuable improvements.
In the literature, models sometimes rely on the hypothesis that the periodicity of the actin

sites available for attachment along the actin filament is smaller than the periodicity of the actin
filament helix (Piazzesi & Lombardi, 1995; de Tombe & Stienen, 2007; Pertici et al., 2018). In
this case, the assumption that the representative myosin interacts with a single actin site is no
longer valid and a multi-site framework must be considered. Our model could also be extended to
a multi-site framework.

A natural perspective would also be to couple our current model with a model of actin activation
by calcium, which is essential to simulate the contraction of cardiac cells. Such coupling has already
been formalized in the framework of the Huxley’57 model (Kimmig et al., 2022) and could be
adjusted for our jump-diffusion model.

In this paper, we chose to remain within the classical Huxley-Hill framework, where motor-
motor interactions are neglected. As mentioned in our introduction, this assumption is justified by
the large number of myosins within a sarcomere and by the relatively small lineic compliance of
the myofilaments, which is compatible with mechanical models where the motors operate in paral-
lel, thus without nearest neighbor interactions (Linari et al., 1998; Powers et al., 2020). However,
the parallel arrangement induces long-range (mean-field-type) interactions which generate cooper-
ative effects, indeed. For instance a lump representation of the filament elasticity in series with
a parallel cluster of myosin motors, allows the cross-bridges to synchronize their working stroke
during short-timescale force recovery experiments, where the number of attached myosin heads is
constant (Caruel & Truskinovsky, 2018; Caruel et al., 2013; Caruel & Truskinovsky, 2017). At
longer timescales, these long-range interactions can generate dynamic instabilities and some inter-
esting finite size effects that have been studied (Jülicher et al., 1997; Guérin et al., 2010, 2011;
Vilfan & Duke, 2003; Erdmann & Schwarz, 2012; Wagoner & Dill, 2021) though without complete
quantitative comparison with physiological data from muscle contraction. The consequences of
motor-motor interactions are also studied in the context of cargo transport by processive molecular
motors, where finite size effects are more prominent (Leighton & Sivak, 2022; Wijeratne et al.,
2022; Geyer & Diez, 2023; Syed & Lee, 2019).

Furthermore, the model developed in this paper is used for computing the force in response to
an imposed velocity. A natural perspective of our work is then to simulate the model in imposed
force conditions or in imposed length conditions with explicit account of the filament elasticity, and
study for instance whether dynamic instabilities are obtained with our physiological calibration.

These further developments provide the opportunity to take into account the long-range inter-
actions between myosin heads working in parallel, and quantify their effect on the thermodynamic
properties of the system in different loading conditions. Finally, using the tools of statistical physics,
the average force generated by the population of myosin heads can then be related to the macro-
scopic deformation of the sarcomere. In this way, an additional meso-scale would be introduced
into the spatial hierarchical modeling framework between the nano-scale and the macro-scale.

Appendices

Thermodynamic balances computation

We compute the thermodynamic balances along a trajectory s(t). The sliding velocity is given by
ẋc = ṡ(t). Equivalent thermodynamic balances can also be obtained averaging over all possible
values of the parameter s.

24



First principle

The internal energy is defined as

U(t) =
∫
R

∫ +d/2

−d/2

[
w0(x, y)p(t, s(t), 0, x, y)dx+ w1(s(t), y)p(t, s(t), 1, y)δs(t)(dx)

]
dy.

Differentiating with respect to time, we obtain

dU
dt

(t) =

∫ +d/2

−d/2

∫
R
w0(x, y) [∂tp(t, s(t), 0, x, y) + ẋc∂sp(t, s(t), 0, x, y)] dydx

+

∫
R
ẋc∂xw1(s(t), y)p(t, s(t), 1, y)dy

+

∫
R
w1(s(t), y) [∂tp(t, s(t), 1, y) + ẋc∂sp(t, s(t), 0, x, y)] dy.

Using (21), we obtain

dU
dt

(t) =

∫ +d/2

−d/2

∫
R
w0(x, y)

[
∂x[η

−1
x ∂xw0(x, y)p(t, s(t), 0, x, y) + η−1

x kBT∂xp(t, s(t), 0, x, y)]

+ ∂y[η
−1
y ∂yw0(x, y)p(t, s(t), 0, x, y) + η−1

y kBT∂yp(t, s(t), 0, x, y)]

− [K0→1(x, y, s(t)) +Krev
1→0(x, y, s(t))]p(t, s(t), 0, x, y)

+ [K1→0(x, y, s(t)) +Krev
0→1(x, y, s(t))]p(t, s(t), 1, y)

]
dydx

+

∫
R
ẋc∂sw1(s(t), y)p(t, s(t), 1, y)dy

+

∫
R
w1(s(t), y)

[
∂y[η

−1
y ∂yw1(s(t), y)p(t, s(t), 1, y) + η−1

y kBT∂yp(t, s(t), 1, y)]

− p(t, s(t), 1, y)

∫ +d/2

−d/2
[K1→0(x, y, s(t)) +Krev

0→1(x, y, s(t))]dx

+

∫ +d/2

−d/2
[K0→1(x, y, s(t)) +Krev

1→0(x, y, s(t))]p(t, s(t), 0, x, y)dx

]
dy.
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Integrating by parts, we have
dU
dt

(t) =

∫
R
ẋc∂sw1(s(t), y)p(t, s(t), 1, y)dy

−
∫ +d/2

−d/2

∫
R

[
η−1
x (∂xw0(x, y))

2p(t, s(t), 0, x, y) + η−1
y (∂yw0(x, y))

2p(t, s(t), 0, x, y)
]
dydx

−
∫
R
η−1
y (∂yw1(s(t), y))

2p(t, s(t), 1, y)dy

+

∫ +d/2

−d/2

∫
R

[kBT
ηx

∂2
xxw0(x, y)p(t, s(t), 0, x, y) +

kBT

ηy
∂2
yyw0(x, y)p(t, s(t), 0, x, y)

]
dydx

+

∫
R

kBT

ηy
∂2
yyw1(s(t), y)p(t, s(t), 1, y)dy

−
∫ +d/2

−d/2

∫
R

{
[w0(x, y)− w1(s(t), y)]

× [K0→1(x, y, s(t))p(t, s(t), 0, x, y)−Krev
0→1(x, y, s(t))p(t, s(t), 1, y)]

}
dydx

−
∫ +d/2

−d/2

∫
R

{
[w1(s(t), y)− w0(x, y)]

× [K1→0(x, y, s(t))p(t, s(t), 1, y)−Krev
1→0(x, y, s(t))p(t, s(t), 0, x, y)]

}
dydx

Introducing µT leads to
dU
dt

(t) =

∫
R
ẋc∂sw1(s(t), y)p(t, s(t), 1, y)dy

+

∫ +d/2

−d/2

∫
R
µT [K1→0(x, y, s(t))p(t, s(t), 1, y)−Krev

1→0(x, y, s(t))p(t, s(t), 0, x, y)]dydx

−
∫ +d/2

−d/2

∫
R

[
η−1
x (∂xw0(x, y))

2p(t, s(t), 0, x, y) + η−1
y (∂yw0(x, y))

2p(t, s(t), 0, x, y)
]
dydx

−
∫
R
η−1
y (∂yw1(s(t), y))

2p(t, s(t), 1, y)dy

+

∫ +d/2

−d/2

∫
R

[kBT
ηx

∂2
xxw0(x, y)p(t, s(t), 0, x, y) +

kBT

ηy
∂2
yyw0(x, y)p(t, s(t), 0, x, y)

]
dydx

+

∫
R

kBT

ηy
∂2
yyw1(s(t), y)p(t, s(t), 1, y)dy

−
∫ +d/2

−d/2

∫
R

{
[w0(x, y)− w1(s(t), y)]

× [K0→1(x, y, s(t))p(t, s(t), 0, x, y)−Krev
0→1(x, y, s(t))p(t, s(t), 1, y)]

}
dydx

−
∫ +d/2

−d/2

∫
R

{
[w1(s(t), y) + µT − w0(x, y)]

× [K1→0(x, y, s(t))p(t, s(t), 1, y)−Krev
1→0(x, y, s(t))p(t, s(t), 0, x, y)]

}
dydx,

and we can identify the first term with the power of external efforts Ẇ, the second term with the
ATP energy flux term Ė and the last terms with the heat dissipation Q̇ and we retrieve the first
principle (22)

dU
dt

(t) = Ẇ(t) + Ė(t) + Q̇(t).
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that are presented in Section 3.3.

Second principle

The free energy is defined as

F(t) =
∫
R

∫ +d/2

−d/2

[
µ0(t, s(t), x, y)p(t, s(t), 0, x, y)dx+ µ1(t, s(t), y)p(t, s(t), 1, y)δs(t)(dx)

]
dy.

Differentiating with respect to time, we obtain

dF
dt

(t) =

∫ +d/2

−d/2

∫
R

d

dt
µ0(t, s(t), x, y)p(t, s(t), 0, x, y)dydx

+

∫ +d/2

−d/2

∫
R
µ0(t, s(t), x, y) [∂tp(t, s(t), 0, x, y) + ẋc∂sp(t, s(t), 0, x, y)] dydx

+

∫
R

d

dt
µ1(t, s(t), y)p(t, s(t), 1, y)dy

+

∫
R
µ1(t, s(t), y) [∂tp(t, s(t), 1, y) + ẋc∂sp(t, s(t), 1, y)] dy.

Noticing that∣∣∣∣∣∣∣∣
d

dt
µ0(t, s(t), x, y)p(t, s(t), 0, x, y) = kBT

d

dt
p(t, s(t), 0, x, y),

d

dt
µ1(t, s(t), y)p(t, s(t), 1, y) = ẋc∂sω1(s(t), y)p(t, s(t), 1, y) + kBT

d

dt
p(t, s(t), 1, y),

we obtain

dF
dt

(t) =

∫ +d/2

−d/2

∫
R
kBT [∂tp(t, s(t), 0, x, y) + ẋc∂sp(t, s(t), 0, x, y)] dydx

+

∫ +d/2

−d/2

∫
R
µ0(t, s(t), x, y) [∂tp(t, s(t), 0, x, y) + ẋc∂sp(t, s(t), 0, x, y)] dydx

+

∫
R
ẋc∂sω1(s(t), y)p(t, s(t), 1, y)dy

+

∫
R
kBT [∂tp(t, s(t), 1, y) + ẋc∂sp(t, s(t), 1, y)] dy

+

∫
R
µ1(t, s(t), y) [∂tp(t, s(t), 1, y) + ẋc∂sp(t, s(t), 1, y)] dy.
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Using (21) the first and fourth terms cancel out. Using also (21) in the second and fifth terms, we
have

dF
dt

(t) =

∫
R
ẋc∂sω1(s(t), y)p(t, s(t), 1, y)dy

+

∫ +d/2

−d/2

∫
R
µ0(t, s(t), x, y)

[
∂x[η

−1
x ∂xw0(x, y)p(t, s(t), 0, x, y) + η−1

x kBT∂xp(t, s(t), 0, x, y)]

+ ∂y[η
−1
y ∂yw0(x, y)p(t, s(t), 0, x, y) + η−1

y kBT∂yp(t, s(t), 0, x, y)]

− [K0→1(x, y, s(t)) +Krev
1→0(x, y, s(t))]p(t, s(t), 0, x, y)

+ [K1→0(x, y, s(t)) +Krev
0→1(x, y, s(t))]p(t, s(t), 1, y)

]
dydx

+

∫
R
µ1(t, s(t), y)

[
η−1
y ∂yw1(s, y)p(t, s, 1, y) + η−1

y kBT∂yp(t, s, 1, y)

− p(t, s, 1, y)

∫ +d/2

−d/2
[K1→0(x, y, s) +Krev

0→1(x, y, s)]dx

+

∫ +d/2

−d/2
[K0→1(x, y, s) +Krev

1→0(x, y, s)]p(t, s, 0, x, y)dx

]
dy.

Noticing that∣∣∣∣∣∣∣
∂xw0(x, y)p(t, s(t), 0, x, y) + kBT∂xp(t, s(t), 0, x, y) = ∂xµ0(t, s(t), x, y)p(t, s(t), 0, x, y),

∂yw0(x, y)p(t, s(t), 0, x, y) + kBT∂yp(t, s(t), 0, x, y) = ∂yµ0(t, s(t), x, y)p(t, s(t), 0, x, y),

∂yw1(s(t), y)p(t, s(t), 1, y) + kBT∂yp(t, s(t), 1, y) = ∂yµ1(t, s(t), y)p(t, s(t), 1, y),

and integrating by parts, we have

dF
dt

(t) =

∫
R
ẋc∂sω1(s(t), y)p(t, s(t), 1, y)dy

−
∫ +d/2

−d/2

∫
R
η−1
x (∂xµ0(x, y))

2p(t, s(t), 0, x, y)dydx

−
∫ +d/2

−d/2

∫
R
η−1
y (∂yµ0(x, y))

2p(t, s(t), 0, x, y)dydx

−
∫
R
η−1
y (∂yµ1(s(t), y))

2p(t, s(t), 1, y)dy

−
∫ +d/2

−d/2

∫
R

{
[µ(t, s(t), 0, x, y)− µ(t, s(t), 1, y)]

× [K0→1(x, y, s(t))p(t, s(t), 0, x, y)−Krev
0→1(x, y, s(t))p(t, s(t), 1, y)]

}
dydx

−
∫ +d/2

−d/2

∫
R

{
[µ(t, s(t), 1, y)− µ(t, s(t), 0, x, y)]

× [K1→0(x, y, s(t))p(t, s(t), 1, y)−Krev
1→0(x, y, s(t))p(t, s(t), 0, x, y)]

}
dydx.
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Introducing µT , we have

dF
dt

(t) =

∫
R
ẋc∂sω1(s(t), y)p(t, s(t), 1, y)dy

+

∫ +d/2

−d/2

∫
R
µT [K1→0(x, y, s(t))p(t, s(t), 1, y)−Krev

1→0(x, y, s(t))p(t, s(t), 0, x, y)]dydx

−
∫ +d/2

−d/2

∫
R
η−1
x (∂xµ0(x, y))

2p(t, s(t), 0, x, y)dydx

−
∫ +d/2

−d/2

∫
R
η−1
y (∂yµ0(x, y))

2p(t, s(t), 0, x, y)dydx

−
∫
R
η−1
y (∂yµ1(s(t), y))

2p(t, s(t), 1, y)dy

−
∫ +d/2

−d/2

∫
R

{
[µ(t, s(t), 0, x, y)− µ(t, s(t), 1, y)]

× [K0→1(x, y, s(t))p(t, s(t), 0, x, y)−Krev
0→1(x, y, s(t))p(t, s(t), 1, y)]

}
dydx

−
∫ +d/2

−d/2

∫
R

{
[µ(t, s(t), 1, y) + µT − µ(t, s(t), 0, x, y)]

× [K1→0(x, y, s(t))p(t, s(t), 1, y)−Krev
1→0(x, y, s(t))p(t, s(t), 0, x, y)]

}
dydx.

and we can identify the first term with the power of external efforts Ẇ, the second term with the
ATP energy flux term Ė and the last terms with T Ṡprod and we retrieve the second principle (24)

d

dt
F(t) = Ẇ(t) + Ė(t)− T Ṡprod(t).

The quantity Ṡprod is defined such that

T Ṡprod(t) =

∫ +d/2

−d/2

∫
R
η−1
x (∂xµ0(x, y))

2p(t, s(t), 0, x, y)dydx

+

∫ +d/2

−d/2

∫
R
η−1
y (∂yµ0(x, y))

2p(t, s(t), 0, x, y)dydx

+

∫
R
η−1
y (∂yµ1(s(t), y))

2p(t, s(t), 1, y)dy

+

∫ +d/2

−d/2

∫
R

{
[µ(t, s(t), 0, x, y)− µ(t, s(t), 1, y)]

× [K0→1(x, y, s(t))p(t, s(t), 0, x, y)−Krev
0→1(x, y, s(t))p(t, s(t), 1, y)]

}
dydx

+

∫ +d/2

−d/2

∫
R

{
[µ(t, s(t), 1, y) + µT − µ(t, s(t), 0, x, y)]

× [K1→0(x, y, s(t))p(t, s(t), 1, y)−Krev
1→0(x, y, s(t))p(t, s(t), 0, x, y)]

}
dydx.
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Figure 7: Net fluxes and cycling rate obtained with µT = 100 zJ (black) and µT = 0 zJ (blue)
during an isometric contraction (ẋc = 0). The simulations are performed with 1 × 105 stochastic
realizations. We assume an initial distribution in which all myosin heads are detached, the (x, y)
variables are distributed according to the Boltzmann distribution associated with the detached
energy potential ω0(x, y), and the values of s are uniformly distributed in [s−, s+].

The positivity of the first three terms is straightforward. For the last two terms, the positivity
follows from the detailed balance conditions (18). Indeed, we have

[µ(t,s(t), 0, x, y)− µ(t, s(t), 1, y)]

× [K0→1(x, y, s(t))p(t, s(t), 0, x, y)−Krev
0→1(x, y, s(t))p(t, s(t), 1, y)]

= [ω0(x, y) + kBT ln[hxhyp(t, s(t), 0, x, y)]− ω1(s(t), y)− kBT ln[hyp(t, s(t), 1, y)]]

×K0→1(x, y, s(t))

(
p(t, s(t), 0, x, y)− h−1

x exp

[
w1(s(t), y)− w0(x, y)

kBT

]
p(t, s(t), 1, y)

)
,

= kBTK0→1(x, y, s(t)) exp

[
−ω0(x, y)

kBT

]
h−1
x h−1

y

×
[
ln

(
hxhy exp

[
ω0(x, y)

kBT

]
p(t, s(t), 0, x, y)

)
− ln

(
hy exp

[
ω1(xs(t)

kBT

]
p(t, s(t), 1, y)

)]
×
(
hxhy exp

[
ω0(x, y)

kBT

]
p(t, s(t), 0, x, y)− hy exp

[
w1(s(t), y)

kBT

]
p(t, s(t), 1, y)

)
.

Since [log a− log b][a− b] ≥ 0 for every a, b > 0, we have the inequality

[µ(t, s(t), 0, x, y)− µ(t, s(t), 1, y)]

× [K0→1(x, y, s(t))p(t, s(t), 0, x, y)−Krev
0→1(x, y, s(t))p(t, s(t), 1, y)] ≥ 0.

Similarly,

[µ(t, s(t), 1, y) + µT − µ(t, s(t), 0, x, y)]

× [K1→0(x, y, s(t))p(t, s(t), 1, y)−Krev
1→0(x, y, s(t))p(t, s(t), 0, x, y)] ≥ 0,

and therefore Ṡprod(t) ≥ 0.

Cycling rate and influence of the ATP chemical potential

We define the net attachment and detachment fluxes by

k∗0→1 =

∫ +d/2

−d/2

∫
R
[K0→1(x, y, s(t))p(t, s(t), 0, x, y)−Krev

1→0(x, y, s(t))p(t, s(t), 1, y)]dxdy

k∗1→0 =

∫ +d/2

−d/2

∫
R
[K1→0(x, y, s(t))p(t, s(t), 1, y)−Krev

1→0(x, y, s(t))p(t, s(t), 0, x, y)]dxdy,
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respectively. The cycling rate r can then be computed by counting positively the net fluxes in the
direction of the Lymn-Taylor cycle and negatively the net fluxes in opposite direction:

r = min(k∗0→1, k
∗
1→0)1k∗0→1>01k∗1→0>0 −min(−k∗0→1,−k∗1→0)1k∗0→1<01k∗1→0<0.

The evolution of the attachment and detachment fluxes, and of the cycling rate is shown in Figure7,
starting from a configuration where all myosin heads are detached. As expected from thermody-
namics, the cycling rate rapidly converges to zero in the absence of ATP (µT = 0, blue lines) and
reaches a positive value in the presence of ATP (µT = 100 zJ, black lines).

Calibration parameters

In Table 1, we gather all models parameters with associated selected values. The calibration
principles are presented in Section 5.1. More details about the calibration method can be found in
a previous paper (Kimmig & Caruel, 2020).

Table 1: Calibrated jump-diffusion model parameters.

Parameter Symbol Value
Characteristic dimensions

Drag coefficients ηx, ηy 0.0972ms pNnm−1

Temperature T 298K
Boltzmann constant kB 1.38× 10−23 JK−1

Characteristic length in x-direction hx 11 nm
Characteristic length in y-direction hy 11 nm

Power stroke potentials
Bistable element in attached state (α = 1)

u1(y) =

{
κ1pre/2 (y − y1pre)

2 + v1 if y < ℓ1,

κ1post/2 (y − y1post)
2 otherwise,

κ1pre 5.60 pNnm−1

κ1post 1.33 pNnm−1

ℓ1 1.42 nm

v1 = κ1post/2 (ℓ1 − y1post)
2 − κ1pre/2 (ℓ1 − y1pre)

2 y1post 11 nm
y1pre 0 nm

Bistable element in detached state (α = 0)

u0(y) =

{
κ0pre/2 (y − y0pre)

2 + v0 + E if y < ℓ0,

κopost/2 (y − y0post)
2 + E otherwise,

κ0pre 6.5 pNnm−1

κopost 0.60 pNnm−1

ℓ0 1.42 nm

v0 = κopost/2 (ℓ0 − y0post)
2 − κ0pre/2 (ℓ0 − y1pre)

2
y0post 6 nm
y0pre 0
E 80 zJ

Energy landscapes wα(y) = uα(y) +
1
2κ(x+ y)2 (Figure 2)

uα(y) = uα(y + s̃α)

κ 1.34 pNnm−1

s̃0 1.2 nm
s̃1 1.2 nm
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Parameter Symbol Value
Attachment rates (Figure 3)

K0→1(x, y, s) =kmax

[
1− tanh(αy

(
y − y0)

)]
·
[
1/2

(
1 + tanh

[
αs(s+ sℓ0→1)

])
1(s<0)(s)

+ 1/2
(
1− tanh

[
αs(s− sr0→1)

])
1(s≥0)(s)

]
kmax 1.21ms−1

αy 8 nm−1

αs 8 nm−1

sℓ0→1 3.82 nm
sr0→1 3.82 nm

Krev
1→0(x, y, s) = exp

[w0(x, y)− µ∗
T − w1(s, y)

kBT

]
·
{
kwℓ

[
1/2

(
1 + tanh

[
αx,wℓ(x− s+ ℓwℓ)

])
1x−s<0(x, s)

+ 1/2
(
1− tanh

[
αx,wℓ(x− s− ℓwℓ)

])
1x−s<0(x, s)

]
· 1/2

(
1− tanh

[
αs,wℓ

(
s− swℓ)

)])
+ kwr

[
1/2

(
1 + tanh

[
αx,wr(x− s+ ℓwr)

])
1x−s<0(x, s)

+ 1/2
(
1− tanh

[
αx,wr(x− s− ℓwr)

])
1x−s<0(x, s)

]
· 1/2

(
1− tanh

[
αs,wr

(
s− swr)

)])
+ kp

[
1/2

(
1 + tanh

[
αx,p(x− s+ ℓp)

])
1x−s<0(x, s)

+ 1/2
(
1− tanh

[
αx,p(x− s− ℓp)

])
1x−s<0(x, s)

]
· 1/2

(
1− tanh

[
αs,p

(
s− sp)

)])
+ kb

[
1/2

(
1 + tanh

[
αb(x− s+ ℓb)

])
1x−s<0(x, s)

+ 1/2
(
1− tanh

[
αb(x− s− ℓb)

])
1x−s<0(x, s)

]}
· (1− 1xh>x>xℓ)(x) · 1y−yℓ>0(y) · 1sh>s>sℓ(s)

µ∗
T 100 zJ

kwℓ 4ms−1

αx,wℓ 5 nm−1

ℓwℓ 10 nm
αs,wℓ 8 nm−1

swℓ −19 nm
kwr 5ms−1

αx,wr 5 nm−1

ℓwr 10 nm
αs,wr 4 nm−1

swr 9 nm
kp 1ms−1

αx,p 5 nm−1

ℓp 1 nm
αs,p 10 nm−1

sp −9 nm
kb 1.89ms−1

αb 5 nm−1

ℓb 0.2 nm
xℓ −12 nm
xh −8 nm
yℓ 12.5 nm
sℓ −24 nm
sh −16 nm

Geometric parameter
Lower bound of the reachable actin sites interval s− −30 nm
Upper bound of the reachable actin sites interval s+ 10 nm
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