
HAL Id: hal-04264291
https://hal.science/hal-04264291v2

Preprint submitted on 23 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The Treewidth Boundedness Problem for an Inductive
Separation Logic of Relations

Marius Bozga, Lucas Bueri, Radu Iosif, Florian Zuleger

To cite this version:
Marius Bozga, Lucas Bueri, Radu Iosif, Florian Zuleger. The Treewidth Boundedness Problem for an
Inductive Separation Logic of Relations. 2023. �hal-04264291v2�

https://hal.science/hal-04264291v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

THE TREEWIDTH BOUNDEDNESS PROBLEM FOR AN INDUCTIVE

SEPARATION LOGIC OF RELATIONS

MARIUS BOZGA a, LUCAS BUERI a, RADU IOSIF a, AND FLORIAN ZULEGER b

aUniv. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000, France

b Institute of Logic and Computation, Technische Universität Wien, Austria

Abstract. The treewidth boundedness problem for a logic asks for the existence of an
upper bound on the treewidth of the models of a given formula in that logic. This problem
is found to be undecidable for first order logic. We consider a generalization of Separation
Logic over relational signatures, interpreted over standard relational structures, and describe
an algorithm that decides the treewidth boundedness problem for this logic. Furthermore,
our algorithm can give an estimate of the bound of the models of a given formula, in case
there is a finite such bound.

1. Introduction

The treewidth of a graph is a positive integer measuring, informally speaking, how far a graph
is from a tree. For instance, trees have treewidth one, series-parallel graphs (i.e., circuits
with one input and one output that can be either cascaded or overlaid) have treewidth two,
whereas k × k square grids have treewidth k, for any k ≥ 1. The treewidth parameter is a
cornerstone of algorithmic tractability. For instance, many NP-complete graph problems
such as Hamiltonicity and 3-Colorability become polynomial-time, when restricted to inputs
whose treewidth is bounded by a constant (see, e.g., [FG06, Chapter 11] for a survey of
classical treewidth-parameterized tractable problems).

Structures are interpretations of relation symbols that define the standard semantics of
first and second order logic [vD94]. They provide a unifying framework for reasoning about
a multitude of graph types e.g., graphs with multiple edges, labeled graphs, colored graphs,
hypergraphs, etc. The notion of treewidth is straightforwardly generalized from graphs to
structures. In this context, bounding the treewidth by a constant sets the frontier between
the decidability and undecidability of monadic second order (MSO) logical theories. A
result of Courcelle [Cou90] proves that MSO is decidable over bounded treewidth structures,
by reduction to the emptiness problem of tree automata. A dual result of Seese [See91]
proves that each class of structures with a decidable MSO theory necessarily has bounded
treewidth. Since MSO is the yardstick of graph specification logics [CE12], these results
show that treewidth bounded classes of structures are tantamount to the existence of decision
procedures for important classes of properties, in those areas of computing where graphs are
relevant such as, e.g., static analysis [JM82], databases [ABS00] and concurrency [DNM08].

Key words and phrases: Model Theory, Treewidth, Separation Logic.

Preprint submitted to
Logical Methods in Computer Science

© M. Bozga, L. Bueri, R. Iosif, and F. Zuleger
CC⃝ Creative Commons

https://orcid.org/0000-0003-4412-5684
https://orcid.org/0000-0002-8589-6955
https://orcid.org/0000-0003-3204-3294
https://orcid.org/0000-0003-1468-8398
http://creativecommons.org/about/licenses

2 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

This paper considers the treewidth boundedness problem, which asks for the existence
of a bound on the treewidths of the models of a formula given in input. We show that for
first-order logic (and implicitly MSO) the problem is already undecidable. This negative
result for classical logics motivates our focus on substructural logics that have, in addition to
boolean conjunction, a conjunction-like connective, for which Gentzen’s natural deduction
rules of weakening and contraction do not hold. We prove the decidability of this problem
for a generalization of Separation Logic to relational signatures, interpreted over structures.

Separation Logic (SL) [IO01, Rey02, CGG02] is a first order substructural logic with a
separating conjunction ∗ that decomposes structures. For reasons related to its applications
to the deductive verification of pointer-manipulating programs, the models of SL are finite
partial functions, called heaps. In SL, the separating conjunction stands for the union of
heaps with disjoint domains.

When combined with inductive definitions [Acz77], SL gives concise descriptions of the
recursive data structures (singly- and doubly-linked lists, trees, etc.) used in imperative
programming (e.g., C, C++, Java, etc.). The shape of these structures can be described
using only existentially quantified separating conjunctions of (dis-)equalities and points-to
atoms. This subset of SL is referred to as the symbolic heap fragment.

SL is a powerful tool for reasoning about low-level pointer updates. It allows to describe
actions locally, i.e., only with respect to the resources (e.g., memory cells, network nodes)
involved, while framing out the part of the state that is irrelevant for the action. This
principle of describing mutations, known as local reasoning [COY07], is at the heart of scalable
compositional proof techniques for pointer programs [CDOY11, CDNQ12, DPJ08, BCO06].

The Separation Logic of Relations (SLR) is the generalization of SL to relational
signatures, interpreted over structures. This logic has been first considered for relational
databases and object-oriented languages [KR04]. Here the separating conjunction splits the
interpretation of each relation symbol from the signature into disjoint parts. For instance,
the formula r(x1, . . . , xn) describes a structure in which all relations are empty and r consists
of a single tuple of values x1, . . . , xn, whereas r(x1, . . . , xn) ∗ r(y1, . . . , yn) says that r consists
of two distinct tuples, i.e., the values of xi and yi differ for at least one index 1 ≤ i ≤ n.
Moreover, when encoding graphs by structures, SLR allows to specify edges that have no
connected vertices, isolated vertices, or both. The same style of composition is found in
other spatial logics interpreted over graphs, such as the GL logic of Cardelli et al [CGG02].

Our motivation for studying the models of SLR arose from recent work on deductive
verification of self-adapting distributed systems, where Hoare-style local reasoning is applied
to write correctness proofs for systems with dynamically reconfigurable network architectures
[ABIK22, BBI22a, BBI22b]. The assertion language of these proofs is SLR, with unary
relation symbols used to model nodes (processes) of the network and relation symbols of
arity two or more used to model links (communication channels) between nodes. Just as
user-defined inductive predicates are used in SL to describe data structures (lists, trees, etc.),
SLR inductive predicates are used to describe common architectural styles (e.g., pipelines,
rings, stars, etc.) that ensure correct and optimal behavior of many distributed applications.

The decidability result from this paper defines the class of SLR formulæ whose models
are treewidth bounded and provides a reasonable estimate on the bound, in case one exists.
On one hand, this algorithm answers the question does the set of structures defined by
a given system of inductive definitions have a decidable MSO theory? If this is the case,
problems such as, e.g., Hamiltonicity, k-Colorability, Planarity, etc. are decidable on this set
of structures. Another application is the decidability of the entailment problem [[ϕ]]∆ ⊆ [[ψ]]∆

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 3

asking if each model of a formula ϕ is also a model of another formula ψ, when the predicate
symbols in ϕ and ψ are interpreted by a set of inductive definitions ∆. In principle, the
decidability of this problem depends on (i) ϕ having only treewidth bounded models, for
a computable upper bound, and (ii) both ϕ and ψ being MSO-definable [IRS13]. The
algorithm described in the paper provides a key ingredient for defining fragments of SLR
with a decidable entailment problem, which is tantamount to automating proof generation
in Hoare logic [BBI22a, BBI22b].

1.1. Related work. One of the first fragments of SL with a decidable entailment problem
relied on an ad-hoc translation into equivalent MSO formulæ, together with a static guarantee
of treewidth boundedness, called establishment [IRS13]. More recently, the entailment
problem in this fragment of SL has been the focus of an impressive body of work [CHO+11,
KZ20, EIP21a, EIP21b, LL23]. In particular, the establishment problem “is a given set of
inductive definitions established” has been found to be co-NP-complete [JKM+17]. Moreover,
lifting the establishment condition leads to the undecidability of entailments, as showed
in [EIP22]. The establishment problem can, in fact, be seen as the precursor of the treewidth
boundedness problem studied in the present paper.

The treewidth parameter showed also in a recent comparison between the expressivity of
SLR with inductive definitions and that of MSO [IZ23]. When restricting the interpretation
of the logics to treewidth bounded graphs, SLR strictly subsumes MSO, i.e., for each MSO
formula ϕ and integer k ≥ 1, there exists a formula ψ of SLR that defines the models of
ϕ of treewidth at most k. Moreover, the logics are incomparable for classes of graphs of
unbounded treewidth.

1.2. Motivating examples. We introduce the reader to SLR and the treewidth boundedness
problem by means of examples. Figure 1 (a) shows a chain, defined by an unfolding of the
inductive predicate A(x1, x2). The chain starts at x1 and ends at x2. The elements of the
chain are labeled by a unary relation symbol a and the neighbours are linked by a binary
relation r. Each unfolding of the inductive definition A(x1, x2)← ∃y . a(x1)∗r(x1, y)∗A(y, x2)
instantiates the existential quantifier to an element distinct from the existing ones. This
is because every instantiation of an existential quantifier is placed into a set labeled by a
and the semantics of the separating conjunction requires that these sets must be disjoint in
each decomposition of a model of a(x1) ∗ r(x1, y) ∗A(y, x2) into models of a(x1) ∗ r(x1, y) and
A(y, x2). Then, each model of ∃x1∃x2 . A(x1, x2) is a possibly cyclic chain, because nothing
is enforced on x2, which can be mapped back to a previous instantiation of y. Hence each
model of this sentence has treewidth two at most.

Figure 1 (b) shows a family of models for a slightly modified definition of the chain
from Figure 1 (a), given by the recursive rule A(x1, x2)← ∃y . r(x1, y) ∗ A(y, x2), where the
instantiations of the existential quantifiers are not placed into any particular set. In this
case, one can fold a sufficiently large chain onto itself and creating a square grid, by using
the same element of the structure more than once to instantiate a quantifier. Then, the
sentence ∃x1∃x2 . A(x1, x2) has an infinite set of models containing larger and larger square
grid minors, thus having unbounded treewidth.

Since placing every quantifier instance into the same set guarantees treewidth bounded-
ness, as in, e.g., Figure 1 (a), a natural question that arises is what happens when these
instances are placed into two (not necessarily disjoint) sets? The inductive definition of the

4 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

predicate A in Figure 1 (c) creates an unbounded number of disconnected r-edges whose
endpoints are arbitrarily labeled with a and b, respectively. In this case, one can instantiate
a a-labeled (resp. b-labeled) variable with a new element or a previous b (resp. a) element
and build chains (or sets of disconnected chains), of treewidth two at most two. Again, this
is because a simple cycle with more than two elements has treewidth two.

(c)

A() ← ∃x∃y. b(x) ∗ r(x, y) ∗ c(y) ∗ A()
A() ← ∃x∃y. a(x) ∗ r(x, y) ∗ c(y) ∗ A()
A() ← emp

(d)

A(x1, x2) ← ∃y. a(x1) ∗ r(x1, y) ∗ A(y, x2)

A() ← empA(x1, x2) ← x1 = x2

. . .
rrr

a aa

. . .
r r r

a, b a, ba ba

a

a. . .
r r

. . .
r r

r r

r

r

r

...

. . .

.
...

... a, b, c

a, b, c b

A(x1, x2) ← ∃y. r(x1, y) ∗ A(y, x2)

A(x1, x2) ← x1 = x2

a

b
a, b, c

b

a, b, c
a

a, b, c

a
b

a, b, c
b

a

a, b, c

a, b, c

b

a

a

(b)

b b

(a)

A() ← ∃x∃y. a(x) ∗ r(x, y) ∗ b(y) ∗ A()

A() ← ∃x∃y. a(x) ∗ r(x, y) ∗ b(y) ∗ A()

Figure 1: Examples of bounded and unbounded treewidth models

Let us now consider three unary relation symbols a, b and c and three types of dis-
connected r-edges (according to the labels of their endpoints) created by three recursive
definitions of Figure 1 (d), namely a-b, b-c and a-c edges. In this case, the sentence A(),
where A is a predicate symbol of zero arity, has models with unboundedly large square
grid minors, obtained by “glueing” these edges (i.e., instantiating several quantifiers with
the same element from different sets). The glued pairs are connected with dotted lines in
Figure 1 (d). Hence, these structures form a set of unbounded treewidth.

These examples highlight the main ideas behind an algorithm that decides the existence
of a bound on the treewidths of the models of a given formula, with predicates interpreted
by set of inductive definitions. First, one needs to identify the definitions that can iterate
any number of times producing building blocks of unboundedly large grids (modulo edge
contractions). Second, these structures must connect elements from different sets, e.g., a,
b or c in Figure 1. A complication is that these sets can be defined not only by monadic
relation symbols, but also by n-ary relation atoms where all but one variable have the same
values for any occurrence. For instance, the variable x2 in Figure 1 (a) has the same value in
an arbitrarily long unfolding of A(x1, x2) and we could have written r(x1, x2) instead of a(x1)
in the first rule, with the same effect, while avoid using ‘a’ altogether. Last, the interplay
between the connectivity and labeling of the building blocks is important. For instance,
in Figure 1 (d), the building blocks of the grid are structures consisting of six elements,

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 5

that connect three ‘a’ with three ‘b’ elements. In fact, as we shall prove, a necessary and
sufficient condition for treewidth-boundedness is that any two such “iterable” substructures
that connect at least three elements must also place these elements in at least one common
set (e.g., a, b or c in our example).

2. The Separation Logic of Relations

This section defines formally the Separation Logic of Relations (SLR) and its corresponding
treewidth boundedness problem. It also introduces most of the technical notions used
throughout the paper.

Let N be the set of positive integers, zero included and N+
def

= N \ {0}. Given integers i
and j, we write [i..j] for the set {i, i+ 1, . . . , j}, assumed to be empty if i > j. For a set A,
we denote by pow(A) its powerset. The cardinality of a finite set A is card(A). By writing
S = S1 ⊎ S2, we mean that S1 and S2 partition S, i.e., that S = S1 ∪ S2 and S1 ∩ S2 = ∅.

Multisets are denoted as {{a, b, . . .}} and all set operations (union, intersection, etc.) are
used with multisets as well. In particular, a binary operation involving a set and a multiset
implicitly lifts the set to a multiset and returns a multiset. The multi-powerset (i.e., the set
of multisets) of A is denoted as mpow(A).

For a binary relation R ⊆ A×A, we denote by R∗ its reflexive and transitive closure
and by R= the smallest equivalence relation that contains R, i.e., the closure of R∗ by
symmetry. For a set S ⊆ A, we denote by R⇃S the relation obtained by removing from R
all pairs with an element not in S. A binary relation R ⊆ A × B is an A-B matching iff
{a, b} ∩ {a′, b′} = ∅, for all distinct pairs (a, b), (a′, b′) ∈ R.

2.1. Structures. Let R be a finite and fixed set of relation symbols, of arities #r ≥ 1, for
all r ∈ R. A relation symbol of arity one (resp. two) is called unary (resp. binary).

A structure is a pair S = (U, σ), where U is an infinite set called the universe and
σ : R→ pow(U+) is an interpretation mapping each relation symbol r into a finite subset
of U#r. We consider only structures with finite interpretations, because the logic under
consideration (defined below) can only describe sets of finite structures. The support

supp(σ)
def

= {ui | ⟨u1, . . . , u#r⟩ ∈ σ(r), i ∈ [1..#r]} of an interpretation is the (necessarily
finite) set of elements that occur in a tuple from the interpretation of a relation symbol.
The support of a structure is the support of its interpretation.

Two structures (U1, σ1) and (U2, σ2) are locally disjoint iff σ1(r) ∩ σ2(r) = ∅, for all
r ∈ R and disjoint iff supp(σ1) ∩ supp(σ2) = ∅. Two structures are isomorphic iff they differ
only by a renaming of their elements (see, e.g., [EF95, Section A3] for a formal definition of
isomorphism between structures).

We consider the composition as a partial binary operation between structures, defined
as pointwise disjoint union of the interpretations of relation symbols:

Definition 2.1. The composition of two locally disjoint structures (U1, σ1) and (U2, σ2) is

(U1, σ1) • (U2, σ2)
def

= (U1 ∪ U2, σ1 ⊎ σ2), where (σ1 ⊎ σ2)(r)
def

= σ1(r) ⊎ σ2(r), for all r ∈ R. The
composition is undefined if (U1, σ1) and (U2, σ2) are not locally disjoint.

For example, Figure 2 shows the composition of two structures S1 and S2, whose interpre-
tations are represented as hyper-graphs with edges denoting tuples from the interpretation of
relation symbols a, b and c, of arities 3, 2 and 2, respectively. Note that S1 and S2 are locally

6 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

disjoint but not disjoint, for instance the elements u2 and u3 are present in the support of
both structures.

a
u4

u2
a

u3

a
c

u3

u2

b
u4

a
u5

b

u2

u6 u1 u6

b b

S1 • S2S2

−→
•

u3

u1

u5

c

S1

Figure 2: Composition of structures

2.2. Treewdith. A graph is a pair G = (N , E), such that N is a finite set of nodes and
E ⊆ N × N is a set of edges. A (simple) path in G is a sequence of (pairwise distinct)
nodes v1, . . . , vn, such that (vi, vi+1) ∈ E , for all i ∈ [1..n− 1]. We say that v1, . . . , vn is an
undirected path if {(vi, vi+1), (vi+1, vi)} ∩ E ≠ ∅ instead, for all i ∈ [1..n− 1]. A set of nodes
S ⊆ N is connected in G iff between any two nodes in S there is an undirected path in G
that involves only nodes from S. A graph G is connected iff N is connected in G.

Given a set Ω of labels, a Ω-labeled unranked tree is a tuple T = (N , E , r, λ), where
(N , E) is a graph, r ∈ N is a designated node called the root, such that there exists a unique
simple path from r to any other node n ∈ N \ {r} and no path from r to r in (N , E). The
mapping λ : N → Ω associates each node of the tree a label from Ω.

Definition 2.2. A tree decomposition of a structure S = (U, σ) is a pow(U)-labeled unranked
tree T = (N , E , r, λ), such that the following hold:

(1) for each relation symbol r ∈ R and each tuple ⟨u1, . . . , u#r⟩ ∈ σ(r) there exists a node
n ∈ N , such that {u1, . . . , u#r} ⊆ λ(n),

(2) for each element u ∈ supp(σ), the set of nodes {n ∈ N | u ∈ λ(n)} is nonempty and
connected in (N , E).

The width of the tree decomposition is wd(T)
def

= maxn∈N card(λ(n))− 1. The treewidth of

the structure σ is tw(σ)
def

= min{wd(T) | T is a tree decomposition of σ}.

Note that, since we consider only structures with finite support, tree decompositions
are finite trees with finite sets as labels, hence the treewidth of a structure is a well-defined
integer. A set of structures is treewidth-bounded iff the set of corresponding treewidths is
finite and treewidth-unbounded otherwise. We assume basic acquaintance with the notions of
grid and minor. It is known that a set of structures having infinitely many minors isomorphic
to some n× n grid is treewidth-unbounded [Bod98].

2.3. Separation Logic of Relations. The Separation Logic of Relations (SLR) uses a set
of variables V = {x, y, . . .} and a set of predicates P = {A,B, . . .} with given arities #A ≥ 0.
A predicate of zero arity is called nullary.

The formulæ of SLR are defined by the syntax in Figure 3 (a). A variable is free if it
does not occur within the scope of an existential quantifier and fv(ϕ) denotes the set of free
variables of ϕ. A sentence is a formula with no free variables. For a formula ϕ, we denote by

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 7

ϕ∃ the sentence obtained by existentially quantifying its free variables. A formula without
quantifiers is called quantifier-free.

Instead of the standard boolean conjunction, SLR has a separating conjunction ∗. The
formulæ x ≠ y and A(x1, . . . , x#A) are called disequalities and predicate atoms, respectively.
To alleviate notation, we denote by A the predicate atom A(), whenever A is nullary. A
formula without predicate atoms is called predicate-free. A qpf formula is both quantifier-
and predicate-free.

ϕ := emp | x = y | x ̸= y | r(x1, . . . , x#r) | A(x1, . . . , x#A) | ϕ ∗ ϕ | ∃x . ϕ
(a)

(U, σ) |=s
∆ emp

def⇐⇒ σ(r) = ∅, for all r ∈ R
(U, σ) |=s

∆ x ∼ y def⇐⇒ (U, σ) |=s
∆ emp and s(x) ∼ s(y), for ∼ ∈{=, ̸=}

(U, σ) |=s
∆ r(x1, . . . , xk)

def⇐⇒ σ(r) = {⟨s(x1), . . . , s(xk)⟩} and σ(r′) = ∅, for r′ ∈ R \ {r}
(U, σ) |=s

∆ A(y1, . . . , yn)
def⇐⇒ σ |=s

∆ ϕ[x1/y1, . . . , xn/yn], for some A(x1, . . . , xn)← ϕ ∈ ∆

(U, σ) |=s
∆ ϕ1 ∗ ϕ2

def⇐⇒ exist structures (Ui, σi), where (U, σ) = (U1, σ1) • (U2, σ2)
and (Ui, σi) |=s

∆ ϕi, for both i = 1, 2

(U, σ) |=s
∆ ∃x . ϕ def⇐⇒ σ |=s[x←u]

∆ ϕ, for some u ∈ U

(b)

Figure 3: The syntax (a) and semantics (b) of the Separation Logic of Relations

Definition 2.3. A set of inductive definitions (SID) is a finite set ∆ of rules of the form
A(x1, . . . , x#A) ← ϕ, where x1, . . . , x#A are pairwise distinct variables, called parameters,
such that fv(ϕ) ⊆ {x1, . . . , x#A}.

The semantics of SLR is given by the satisfaction relation (U, σ) |=s
∆ ϕ between structures

and formulæ, parameterized by a store s and a SID ∆. We write s[x← u] for the store that
maps x into u and agrees with s on all variables other than x. By [x1/y1, . . . , xn/yn] we denote
the substitution that replaces each free variable xi by yi in a formula ϕ. The result of applying
the substitution [x1/y1, . . . , xn/yn] to the formula ϕ is denoted as ϕ[x1/y1, . . . , xn/yn], where,
by convention, the existentially quantified variables from ϕ are renamed to avoid clashes
with y1, . . . , yn. Then |=s

∆ is the least relation that satisfies the constraints in Figure 3 (b).
Note that the interpretation of equalities and relation atoms differs in SLR from first-

order logic, namely x = y requires that the structure is empty and r(x1, . . . , x#r) denotes the
structure in which all relations symbols are interpreted by empty sets, except for r, which
contains the tuple of store values of x1, . . . , x#r only. Moreover, every structure (U, σ), such
that (U, σ) |=s

∆ ϕ, interprets each relation symbol as a finite set of tuples, defined by a finite
least fixpoint iteration over the rules from ∆. The assumption that each structure has an
infinite universe excludes the cases in which a formula becomes unsatisfiable because there
are not enough elements to instantiate the quantifiers introduced by the unfolding of the
rules, thus simplifying the definitions.

If ϕ is a sentence (resp. a predicate-free formula), we omit the store s (resp. the SID ∆)

from S |=s
∆ ϕ. For a SLR sentence ϕ, let [[ϕ]]∆

def

= {S | S |=∆ ϕ} be the set of ∆-models of ϕ.
If ϕ is, moreover, predicate-free we say that ϕ is satisfiable iff [[ϕ]] ̸= ∅.

8 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

For a qpf formula ϕ, we write x ≈ϕ y (resp. x ̸≈ϕ y) iff x = y is (resp. is not) a logical
consequence of ϕ, i.e., s(x) = s(y) for each store s and structure S, such that S |=s ϕ. Note
that x ̸≈ϕ y is the negation of x ≈ϕ y, which is different from that x ̸= y is implied by ϕ.
We define several quantitative measures relative to SIDs:

Definition 2.4. Let ∆ be a SID. We denote by:

▷ maxVars(∆) the maximum number of variables that occur, either free or existentially
quantified, in a rule from ∆,

▷ maxRelAtoms(∆) the maximum number of relation atoms that occur in a rule from ∆,
▷ maxPredAtoms(∆) the maximum number of predicates that occur in a rule from ∆,
▷ maxRelArity(∆) the maximum arity of relation symbols occurring in ∆,
▷ predNo(∆) the number of predicate symbols occurring in ∆,
▷ relNo(∆) the number of relation symbols occurring in ∆.

2.4. Simplifying assumptions. In the rest of this paper, we simplify the technical de-
velopment by two assumptions, that lose no generality. The first assumption is that no
equalities occur in the given SID (Lemma 2.6).

Definition 2.5. A formula is equality-free iff it contains no equalities nor predicate atoms
in which the same variable occurs twice. A rule A(x1, . . . , xn)← ϕ is equality-free iff ϕ is
equality-free. A SID is equality-free iff it consists of equality-free rules.

Lemma 2.6. Given a SID ∆, one can build an equality-free SID ∆′, such that [[A]]∆ = [[A]]∆′ ,
for each nullary predicate A. Moreover, all quantitative measures (Definition 2.4) of ∆′ are

the same as for ∆, except for predNo(∆′) ≤ predNo(∆) ·maxVars(∆)maxVars(∆).

Proof. See [IZ23, Lemma 9]. The construction of ∆′ considers predicates AI1,...,In , where A
is a predicate symbol that occurs in ∆ and I1 ⊎ . . . ⊎ In = [1..#A] is a partition. Since the

number of partitions of [1..#A] is asymptotically bounded by #A#A ≤ maxVars(∆)maxVars(∆),
we obtain the bound on predNo(∆′).

The following notion of unfolding is used to define several technical notions and state
the second simplifying assumption. Let ϕ and ψ be formulæ and ∆ be a SID. We denote by
ϕ⇒∆ ψ the fact that ψ is obtained by replacing a predicate atom A(y1, . . . , yn) in ϕ by a
formula ρ[x1/y1, . . . , xn/yn], where A(x1, . . . , xn)← ρ is a rule from ∆. A ∆-unfolding is a
sequence of formulæ ϕ1 ⇒∆ . . .⇒∆ ϕn. The ∆-unfolding is complete if the last formula is
predicate-free. The following statement is a direct consequence of the semantics of SLR:

Proposition 2.7. Let ϕ be a sentence, ∆ a SID and S a structure. Then S ∈ [[ϕ]]∆ iff
S |=s ψ, for a store s and complete ∆-unfolding ϕ ⇒∗∆ ∃x1 . . . ∃xn . ψ, where ψ is a qpf
formula.

Proof. “⇐” By induction on the definition of the satisfaction relation |=s
∆. “⇒” By induction

on the length of the ∆-unfolding.

The second assumption is that any ∆-unfolding of a nullary predicate by the given SID
yields a predicate-free formula that is satisfiable. Again, this assumption loses no generality
(Lemma 2.9).

Definition 2.8. A SID ∆ is all-satisfiable for a nullary predicate A iff each predicate-free
formula ϕ which is the outcome of a complete ∆-unfolding A⇒∗∆ ϕ is satisfiable.

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 9

Lemma 2.9. Given a SID ∆ and a nullary predicate A, one can build a SID ∆ all-satisfiable
for A, such that [[A]]∆ = [[A]]∆. Moreover, all quantitative measures (Definition 2.4) of ∆′ are

the same as for ∆, except for predNo(∆) ≤ predNo(∆) · relNo(∆) ·maxVars(∆)maxRelArity(∆).

Proof. For space reasons, this proof is given in subsection A.1.

2.5. The treewidth boundedness problem. We are ready to state the main problem
addressed in this paper. Before, we state two technical lemmas that state several relations
between qpf formulæ and the upper bounds on the treewidth of their models:

Lemma 2.10. Let ϕ, ψ be qpf formulæ, x0, x1, x2, . . . , xk variables and r a relation symbol
of arity k. Then, the following hold:

(1) tw([[(ϕ ∗ ∗ki=1 x0 = xi)
∃
]]) ≤ tw([[ϕ∃]]),

(2) tw([[ϕ∃]])− 1 ≤ tw([[(ϕ ∗ ∗ki=1 x0 ̸= xi)
∃
]]) ≤ tw([[ϕ∃]]) if ϕ ∗ ∗ki=1 x0 ̸= xi satisfiable,

(3) tw([[ϕ∃]])− 1 ≤ tw([[(ϕ ∗ r(x1, . . . , xk))∃]]) ≤ tw([[ϕ∃]]) + k if ϕ ∗ r(x1, . . . , xk) satisfiable.
(4) tw([[(ϕ ∗ ψ)∃]]) ≤ tw([[ϕ∃]]) + card(fv(ψ)) if ψ contains only relation atoms.

Proof. For space reasons, this proof is given in subsection A.2.

Lemma 2.11. Let ϕ and ψ be qpf formulæ and F
def

= fv(ϕ) ∩ fv(ψ), such that ϕ ∗ ψ is

satisfiable and x ̸≈ϕ y, for all x, y ∈ F . Let η
def

=∗x,y∈F, x≈ψy x = y. Then, tw([[(ϕ ∗ η)∃]]) ≤
tw([[(ϕ ∗ ψ)∃]]) + card(F).

Proof. For space reasons, this proof is given in subsection A.3.

The main result of this paper is a decidability proof for the following decision problem:

Definition 2.12. The TWBSLR problem asks whether the set [[ϕ]]∆ is treewidth-bounded,
for an SID ∆ and SLR sentence ϕ given as input.

This result is tightened by a proof of the undecidability of the treewidth-boundedness
problem for first-order logic (section 5), that further improves our understanding of the
relation between the expressivity of classical and substructural logics. The decidability proof
proceeds in two steps. First, we show the decidability of the problem for sentences of the
form A, where A is a nullary predicate symbol, and a class of SIDs having a particular
property, called expandability, defined below (section 3). Second, we show how to reduce the
treewidth-boundedness problem for arbitrary sentences and SIDs to the problem for nullary
predicate atoms and expandable SIDs (section 4).

3. Expandable Sets of Inductive Definitions

This section introduces the formal definitions of canonical models and expandable SIDs,
needed for the first part of the proof of decidability of the TWBSLR problem. The main result
of this section is that the treewidth boundedness problem is decidable for the sets of models
of a nullary predicate defined by an expandable SID.

For simplicity, in the rest of this paper we shall represent sentences ϕ by nullary predicate
atoms A. This loses no generality since [[ϕ]]∆ = [[A]]∆∪{A←ϕ} provided that A is not defined

by any other rule in ∆. In the rest of this section we fix an arbitrary SID ∆ and nullary
predicate A.

10 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

3.1. Canonical models. Intuitively, a ∆-model of A is canonical if it can be defined using
a store that matches only those variables that are equated in the outcome of the complete
∆-unfolding of A that “produced” the model, in the sense of Proposition 2.7. A rich canonical
model records, moreover, the disequalities introduced during the unfolding.

Definition 3.1. A store s is canonical for ϕ iff s(x) = s(y) only if x ≈ϕ y, for all x, y ∈ fv(ϕ).
A rich canonical ∆-model of a sentence ϕ is a pair (S, d), where S = (U, σ) is a structure
and d ⊆ U × U is a symmetric relation, such that there exists a complete ∆-unfolding
ϕ⇒∗∆ ∃x1 . . . ∃xn . ψ, where ψ is qpf, and a store s canonical for ψ, such that S |=s ψ and
d(u, v) iff there exist variables x ∈ s−1(u), y ∈ s−1(v) and the disequality x ̸= y occurs in ψ.

We denote by [[ϕ]]r∆ the set of rich canonical ∆-models of ϕ and [[ϕ]]c∆
def

= {S | (S, d) ∈ [[ϕ]]r∆}
the set of canonical ∆-models of ϕ. If ϕ is predicate-free, we write [[ϕ]]c (resp. [[ϕ]]r) instead
of [[ϕ]]c∆ (resp. [[ϕ]]r∆).

A store s is injective over a set of variables x1, . . . , xn iff s(xi) = s(xj) implies i = j, for
all i, j ∈ [1..n]. Note that the canonical ∆-models of an equality free SID ∆ can be defined
considering injective, instead of canonical stores. Nevertheless, this more general definition
of canonical models using canonical stores will become useful later on, when predicate-free
formulæ with equalities will be considered.

Canonical models are important for two reasons. First, their treewidth is bounded:

Lemma 3.2. tw(S) ≤ maxVars(∆)− 1, for any S ∈ [[A]]c∆.

Proof. Let S = (U, σ) ∈ [[A]]c∆ be a canonical ∆-model of A. We define a tree decomposition
T = (N , E , r, λ) of S as follows. The graph of T is any derivation tree of ∆ whose outcome is
S. This is a tree labeled with rules from ∆, whose parent-child relation is defined as follows:
if n is a node labeled with a rule ρ, for each predicate atom B(z1, . . . , z#B) that occurs in ρ,
there is exactly one child m of n whose label is a rule that defines B. The bag λ(n) contains
exactly those elements that are the store values of the variables occurring free or bound in ρ.
We check that T is a tree decomposition of S by proving the two points of Definition 2.2:

(1) each tuple ⟨u1, . . . , u#r⟩ ∈ σ(r) occurs in S because of a relation atom r(z1, . . . , z#r) that
occurs in the label of a node n from the parse tree. Then u1, . . . , u#r ∈ λ(n), by the
definition of T .

(2) let n,m ∈ N be nodes of T and u ∈ λ(n) ∩ λ(m) be an element. Then the label of each
node on the path between n and m in the parse tree contains a variable whose store
value is u, hence the set {p ∈ N | u ∈ λ(p)} is non-empty and connected in T .

Second, any model is obtained via an internal fusion of a rich canonical model. The
internal fusion is a unary operation that takes as input a structure and outputs a set of
structures obtained by joining certain elements from its support. This operation is formally
defined as quotienting with respect to certain equivalence relations:

Definition 3.3. Let S = (U, σ) be a structure and≈⊆ U×U be an equivalence relation, where

[u]≈ is the equivalence class of u ∈ U. The quotient S/≈ = (U/≈, σ/≈) is U/≈
def

= {[u]≈ | u ∈ U}
and σ/≈(r)

def

= {⟨[u1]≈, . . . , [u#r]≈⟩ | ⟨u1, . . . , u#r⟩ ∈ σ(r)}, for all r ∈ R.

For example, Figure 4 (a) shows the outcome of quotienting a structure with respect to
an equivalence relation, whose equivalence classes are encircled with dashed lines.

A fusion operation glues elements without losing tuples from the interpretation of a
relation symbol. For this reason, we consider only equivalence relations that are compatible
with a given structure and define internal fusion as the following unary operation:

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 11

Definition 3.4. An equivalence relation ≈ ⊆ U×U is compatible with a structure S = (U, σ)
iff for all r ∈ R and any two tuples ⟨u1, . . . , u#r⟩, ⟨v1, . . . , v#r⟩ ∈ σ(r), there exists i ∈ [1..#r]
such that ui ̸≈ vi. An internal fusion of S is a structure isomorphic to S/≈, for an
equivalence relation ≈ compatible with S. Let IF(S) be the set of internal fusions of S and

IF(S) def

=
⋃

S∈S IF(S), for a set S of structures.

For example, Figure 4 (b) shows a possible internal fusion of a structure. Note that the
equivalence relation from Figure 4 (a) is not compatible with the structure and cannot be
used in a fusion.

S/≈

S

S

∈ IF(S)→

(a)

(b)

→

Figure 4: Quotient (a) and internal fusion (b)

For technical reasons, we introduce also the internal fusion of a rich canonical model,
as quotienting with respect to an equivalence relation that does not violate the disequality
relation:

Definition 3.5. An equivalence relation ≈ ⊆ U×U is compatible with a rich canonical model
(S, d) iff it is compatible with S = (U, σ) and d(u, v) only if u ̸≈ v. We denote by ĨF(S, d)
the set of structures isomorphic to S/≈, where ≈ is some equivalence relation compatible
with (S, d).

The following lemma relates the sets of models, canonical and rich canonical models of
a sentence, via the two types of internal fusion:

Lemma 3.6. [[A]]∆ = ĨF([[A]]r∆) ⊆ IF([[A]]c∆).

Proof. It is sufficient to prove [[A]]∆ = ĨF([[A]]r∆), since ĨF([[A]]r∆) ⊆ IF([[A]]c∆) is immediate,
by Definition 3.5, because any equivalence relation that is compatible with a rich canonical
∆-model (S, d) is also compatible with the canonical ∆-model S.
“⊆” Let S ∈ [[A]]∆ be a structure. By Proposition 2.7, we have S |= ∃y1 . . . ∃ym . ψ, where ψ
is a qpf formula, such that fv(ψ) = {y1, . . . , ym} and A⇒∗∆ ∃y1 . . . ∃ym . ψ is a complete ∆-
unfolding. Then there exists a store s, such that S |=s ψ. Let S = (U, σ) be a structure and s
be an injective store over y1, . . . , ym. Since ∆ is equality-free, there are no equality atoms in ψ,
hence such a structure and injective store exist. We consider ≈ ⊆ U×U to be the least equiv-
alence relation such that s(yi) ≈ s(yj)

def⇐⇒ s(yi) = s(yj), for all 1 ≤ i < j ≤ m. To prove

that ≈ is compatible with S, consider two tuples ⟨s(z1), . . . , s(z#r)⟩, ⟨s(z′1), . . . , s(z′#r)⟩ ∈ σ(r),
for some r ∈ R and suppose, for a contradiction, that s(zi) ≈ s(z′i), for all i ∈ [1..#r]. Then
r(z1, . . . , z#r) ∗ r(z′1, . . . , z′#r) is a subformula of ψ, modulo a reordering of atoms. By the

definition of ≈, we have s(zi) = s(z′i), for all i ∈ [1..#r], in contradiction with S |=s ψ and

the semantics of the separating conjunction. Since S |=s ψ and s is injective over y1, . . . , ym,

12 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

we obtain that s⇃{y1,...,ym} is a bijection between {y1, . . . , ym} and supp(σ) hence s−1(u) is

a singleton, for each u ∈ supp(σ). Let d ⊆ U× U be the relation defined as d(u, v) iff the
disequality s−1(u) ̸= s−1(u) occurs in ψ. Then ≈ is compatible with (S, d) ∈ [[A]]r∆ hence

S/≈ ∈ ĨF([[A]]r∆). Finally, the mapping h : supp(σ)→ supp(σ) defined as h(s(yi))
def

= [s(yi)]≈,

for all i ∈ [1..m] is shown to be an isomorphism between S and S/≈, leading to S ∈ ĨF([[A]]r∆),

by the fact that the set ĨF([[A]]r∆) is closed under isomorphism (Definition 3.5).

“⊇” Let S ∈ ĨF([[A]]r∆) be a structure. Then there exists a rich canonical ∆-model (S, d) ∈ [[A]]r∆,

where S = (U, σ) and an equivalence relation ≈ ⊆ U × U such that ≈ is compatible with
(S, d) and S is isomorphic to S/≈. Since (S, d) ∈ [[A]]r∆, there exists a complete ∆-unfolding
A⇒∗∆ ∃y1 . . . ∃ym . ψ, such that ψ is qpf and a store s, injective over y1, . . . , ym, such that
S |=s ψ and d(s(z), s(z′)) for each disequality z ̸= z′ from ψ. Let s be the store defined as
s(yi) = [s(yi)]≈, for all i ∈ [1..m]. We prove S/≈ |=s ψ by induction on the structure of ψ,
considering the following cases:

▷ ψ = yi ̸= yj : because ≈ is compatible with (S, d), we have [s(yi)]≈ ̸= [s(yj)]≈, hence
s(yi) ̸= s(yj).

▷ ψ = r(yi1 , . . . , yi#r
): because S |=s r(yi1 , . . . , yi#r

), we have σ(r) = {⟨s(yi1), . . . , s(yi#r
)⟩}

and σ/≈(r) = {⟨[s(yi1)]≈, . . . , [s(yi#r
)]≈⟩}, by Definition 3.3.

▷ ψ = ψ1 ∗ ψ2: because S |=s ψ1 ∗ ψ2, there exist locally disjoint structures S1 • S2 = S, such
that Si |=s ψi, for i = 1, 2. Since ≈ is compatible with S, the structures S1/≈ and S2/≈
are locally disjoint, by Definition 3.4. Then their composition is defined and we have
S/≈ = S1/≈ • S2/≈. By the inductive hypothesis, we have Si/≈ |=σ ψi, for i = 1, 2, thus

S/≈ |=σ ψ1 ∗ ψ2.

Hence S/≈ ∈ [[A]]∆ and S ∈ [[A]]∆ follows, since the set [[A]]∆ is closed under isomorphism,
see, e.g., [IZ23, Proposition 7] for a proof.

3.2. Expandable sets of inductive definitions. We introduce the notion of expandable
SID, a key ingredient of our proof of decidability for the TWBSLR problem. A structure is a
substructure of another if the former is obtained from the latter by removing elements from
its support:

Definition 3.7. Let Si = (Ui, σi) be structures, for i = 1, 2. S1 is included in S2 iff U1 ⊆ U2

and σ1(r) ⊆ σ2(r), for all r ∈ R. S1 is a substructure of S2, denoted S1 ⊑ S2, iff S1 ⊆ S2 and
σ1(r) = {⟨u1, . . . , u#r⟩ ∈ σ2(r) | u1, . . . , u#r ∈ supp(σ1)}, for all r ∈ R.

A SID is expandable if any set of canonical models of a sentence are all substructures of
the same canonical model of that sentence, that can be, moreover, placed “sufficiently far
away” one from another.

Definition 3.8. A SID Γ is expandable for a nullary predicate A iff for each sequence of
pairwise disjoint canonical models S1 = (U1, σ1), . . . ,Sn = (Un, σn) ∈ [[A]]cΓ, there exists a
rich canonical model (S, d) ∈ [[A]]rΓ, where S = (U, σ), such that:

(1) S1 • . . . • Sn ⊑ S,
(2) d(u, v) holds for no u ∈ supp(σi) and v ∈ supp(σj), where 1 ≤ i < j ≤ n, and
(3) for no relation symbol r ∈ R and tuples ⟨u1, . . . , u#r⟩, ⟨v1, . . . , v#r⟩ ∈ σ(r) there exist

1 ≤ i < j ≤ n, such that {u1, . . . , u#r} ∩ supp(σi) ̸= ∅, {v1, . . . , v#r} ∩ supp(σj) ̸= ∅ and
{u1, . . . , u#r} ∩ {v1, . . . , v#r} ≠ ∅.

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 13

Example 3.9. The SID ∆ from Figure 5 is expandable for A, because any choice of pairwise
disjoint canonical models of A (here S1, S2 and S3) can be embedded in a canonical model
of A, such that there are no pairs, in the interpretation of the binary relation symbol e, that
stretch from one such model to another (the pairs not entirely inside the support of either
S1, S2 or S3 are depicted in dashed lines).

A() ← ∃y. B(y)
B(x1) ← ∃y. a(x1) ∗ e(x1, y) ∗ B(y)
B(x1) ← a(x1)

a

e e
e

S1 S2 S3

e
a

a

e

a

e
a e

e

aaa e aa

S

Figure 5: An expandable SID

Example 3.10. (continued from Example 3.9) Consider the SID ∆′ obtained from ∆ by
changing its last rule into B(x1)← emp. ∆′ is not expandable for A, because the canonical
models of A are acyclic chains of elements, whose neighbours are related by e, such that
all but the last element is labeled by a. Then, two such structures S1 and S2 cannot be
embedded in a third structure S as substructures, because of the last non-labeled element
of S1 that occurs in the middle of S and must be labeled by a. This violates the definition
of substructures (see Definition 3.7), in which the labeling of an element is the same in a
substructure and in its enclosing structure.

The external fusion is a binary operation that glues elements from disjoint structures:

Definition 3.11. An external fusion of the structures S1 = (U1, σ1) and S2 = (U2, σ2) is
a structure isomorphic to (S′1 • S′2)/≈, where S′i = (U′i, σ

′
i) are disjoint isomorphic copies of

Si and ≈⊆ U′1 × U′2 is the smallest equivalence relation containing a nonempty supp(σ′1)-
supp(σ′2) matching that is compatible with S′1 • S′2. Let EF(S1,S2) be the set of external
fusions of S1 and S2. For a set of structures S, let EF∗(S) (resp. IEF∗(S)) be the closure of
S under taking external (resp. both internal and external) fusions.

For example, Figure 6 shows the external fusion of two disjoint structures via a matching
relation (the equivalence classes of the matching relation are encircled with dashed lines).
Note that the conditions (2) and (3) of Definition 3.8 ensure that the external fusion of these
substructures is not hindered by their position inside the larger structure. For instance, any
matching relation between the supports of the substructures S1, S2 and S3 from Figure 5 can
be used to define an external fusion of these structures. This is because there are no pairs,
from the interpretation of the e relation symbol in S, that have an element in common and
the other non-common elements in the support of two different substructures. If such pairs
existed, the non-common elements could not be fused by an equivalence relation compatible
with Si • Sj , for any 1 ≤ i < j ≤ 3.

The following lemma proves one direction of the equivalence between the treewidth
boundedness of [[A]]∆ and that of the set of structures obtained by applying both internal
and external fusion to the canonical models from [[A]]c∆.

Lemma 3.12. Let ∆ be an expandable SID for a nullary predicate A. Then, (1) IEF∗([[A]]c∆) is
treewidth-bounded only if (2) [[A]]∆ is treewidth-bounded only if (3) EF∗([[A]]c∆) is treewidth-bounded.

14 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

(S1 • S2)/≈S1 S2

Figure 6: External fusion

Proof. “(1) ⇒ (2)” IF([[A]]c∆) ⊆ IEF∗([[A]]c∆) holds trivially, by Definition 3.11, leading
to [[A]]∆ ⊆ IEF∗([[A]]c∆), by Lemma 3.6. “(2) ⇒ (3)” Let S = (U, σ) ∈ EF∗([[A]]c∆) be
a structure. It is sufficient to prove that S ⊑ S′ for another structure S′ ∈ [[A]]∆, be-
cause tw(S) ≤ tw(S′), in this case. Then there exist pairwise disjoint structures S1 =
(U1, σ1), . . . ,Sn = (Un, σn) ∈ [[A]]c∆ and an equivalence relation ≈ ⊆

(⋃n
i=1 Ui

)
×
(⋃n

i=1 Ui
)
,

that is compatible with S1 • . . . • Sn, matches only elements from different structures and
is not the identity, such that S is isomorphic to (S1 • . . . • Sn)/≈. By Definition 3.8, there
exists a rich canonical model (S′′, d) ∈ [[A]]r∆, such that (1) S ⊑ S′′, (2) d(u, v) holds for
no u ∈ supp(σi) and v ∈ supp(σj), where 1 ≤ i < j ≤ n, and (3) for no relation symbol
r ∈ R and tuples ⟨u1, . . . , u#r⟩, ⟨v1, . . . , v#r⟩ ∈ σ(r), there exist 1 ≤ i < j ≤ n, such that
{u1, . . . , u#r}∩supp(σi) ̸= ∅, {v1, . . . , v#r}∩supp(σj) ̸= ∅ and {u1, . . . , u#r}∩{v1, . . . , v#r} ≠ ∅.
By the last two conditions, ≈ is compatible with (S′′, d), leading to S′′/≈ ∈ ĨF([[A]]r∆) = [[A]]∆
by Lemma 3.6. We conclude by taking S′ = S′′/≈.

The missing direction EF∗([[A]]c∆)⇒ IEF∗([[A]]c∆), that allows to establish the equivalence
of the three points of Lemma 3.12, requires the introduction of further technical notions. The
proof of the main result of this section relies on an algorithm for the treewidth boundedness
of sets EF∗([[A]]c∆), obtained by external fusion of disjoint canonical ∆-models of A. By the
equivalence of the treewidth boundedness of the sets [[A]]∆ and EF∗([[A]]c∆) (Lemma 3.12 and
Lemma 3.26), this is also an algorithm for the TWBSLR problem for expandable SIDs.

3.3. Color schemes. Intuitively, the color of an element from the support of a structure
is the set of relation symbols labeling solely that element. For the given set R of relation
symbols, we define the set of colors as C def

= pow(R). The elements of a structure are labeled
with colors as follows:

Definition 3.13. The coloring of a structure S = (U, σ) is the mapping CS : U→ C defined

as CS(u)
def

= {r ∈ R | ⟨u, . . . , u⟩ ∈ σ(r)}.

Moreover, we define an abstraction of structures as finite multisets of colors:

Definition 3.14. The multiset color abstraction S♯ ∈ mpow(C) of a structure S = (U, σ)

is S♯
def

= {{CS(u) | u ∈ supp(σ)}}. For an integer k ≥ 0, the k-multiset color abstraction

S♯k ⊆ mpow(C) is S♯k def

= {M ⊆ S♯ | card(M) ≤ k}. These abstractions are lifted to sets S of

structures, yielding the sets of multisets S♯ def

= {S♯ | S ∈ S} and S♯k def

=
⋃

S∈S S
♯k.

Colors are organized in RGB color schemes, defined below:

Definition 3.15. A partition (Cred,Cgreen,Cblue) of C is an RGB-color scheme iff:

(1) C1 ∩ C2 ̸= ∅, for all C1, C2 ∈ Cblue,
(2) C1 ∩ C2 ̸= ∅, for all C1 ∈ Cgreen and C2 ∈ Cblue,
(3) for all C1 ∈ Cred there exists C2 ∈ Cblue such that C1 ∩ C2 = ∅.

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 15

Note that an RGB-color scheme is fully specified by the set Cblue. Indeed, any color not
in Cblue is unambiguously placed within Cred or Cgreen, depending on whether it is disjoint
from some color in Cblue. For example, Figure 7 shows several RGB-color schemes for the
relational signature R = {a, b, c}.

Cgreena, b, c

a, c

a c

∅

a, b b, c a, c

cab

a, b, c

∅ ∅

a, b a, c

b c

b, c

a

Cblue

Cred

Cblue

Cred Cred

Cblue

Cgreen

Cblue
a, b b, c

b

a, b, c

Figure 7: Examples of RGB color schemes

Because a fusion operation only joins element with disjoint colors, blue elements can
only be joined with red elements, green elements can be joined with green or red elements,
whereas red elements can be joined with elements of any other color, provided that they are
disjoint subsets of R. Moreover, a fusion operation can always join a pair of elements with
disjoint colors:

Lemma 3.16. Let S1 = (U1, σ1) and S2 = (U2, σ2) be disjoint structures. Let u1 ∈ supp(σ1),
u2 ∈ supp(σ2) be elements such that CS1(u1) ∩ CS2(u2) = ∅. Then, the equivalence relation
on U1 ∪ U2 generated by (u1, u2) is compatible with S1 • S2.

Proof. We denote by ≈ the relation {(u1, u2)}= in the following. Let r ∈ R be a relation
and let ⟨u1,1, u1,2, . . . , u1,#r⟩ ∈ σ1(r), ⟨u2,2, u2,2, . . . , u2,#r⟩ ∈ σ2(r) be distinct tuples. If for
some index i ∈ [1..#r] either u1,i ̸= u1 or u2,i ̸= u2 then u1,i ̸≈ u2,i, by the definition of ≈.
Otherwise, if for all indices i ∈ [1..#r] both u1,i = u1 and u2,i = u2 then r ∈ CS1(u1) and
r ∈ CS2(u2). This implies CS1(u1) ∩ CS2(u2) ̸= ∅ and contradicts the hypothesis about the
choice of u1, u2. Therefore, no tuples from S1 and S2 respectively are merged by the fusion.
Finally, it is also an easy check that no tuples from S1 (resp. S2) are merged, because when
restricted to S1 (resp. S2) the equivalence ≈ becomes the identity.

The first ingredient of a decidable condition, equivalent to the treewidth boundedness
of a set EF∗([[A]]c∆), is conformance with an RGB color scheme, defined below:

Definition 3.17. A set S of structures conforms to (Cred,Cgreen,Cblue) if and only if:

(1) for all structures S = (U, σ) ∈ S, if CS(u) ∈ Cred, for some element u ∈ supp(σ), then
CS(u′) ∈ Cblue, for all other elements u′ ∈ supp(σ) \ {u}, and

(2) S♯ ∩ Cgreen ⊆ {{C, C | C ∈ Cgreen}}, for all structures S ∈ EF∗(S).
Moreover, a structure S ∈ S is said to be of either type:

▷ R if S♯ ∈ mpow(Cblue ∪ Cred) and card(S♯ ⊓ Cred) = 1,
▷ G if S♯ ∈ mpow(Cblue ∪ Cgreen) and card(S♯ ⊓ Cgreen) > 0, and
▷ B if S♯ ∈ mpow(Cblue).

Conformance to some RGB color scheme is the key to bounding the treewidth of the
sets of structures obtained by external fusion of a treewidth bounded set of structures.

16 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

An equivalence relation ≈ is said to be generated by a set of pairs (u1, v1), . . . , (uk, vk)
if it is the least equivalence relation, such that ui ≈ vi, for all i ∈ [1..k]. Furthermore, we
say that ≈ is k-generated if k is the minimal cardinality of a set of pairs that generates ≈.

Lemma 3.18. Let S be a treewidth bounded set of structures conforming to an RGB color
scheme. Then, for any structure S ∈ EF∗(S), the following hold:

(1) S is of type either R, G or B,
(2) if S = (S1 • S2)/≈ for some S1, S2 ∈ EF∗(S) then exactly one of the following hold:

(a) ≈ is 1-generated, or
(b) ≈ is 2-generated and either (i) S1, S2 are of type R, or (ii) S1, S2 are of type G and

card(S1
♯ ⊓ Cgreen) = card(S2

♯ ⊓ Cgreen) = 2
(3) tw(S) ≤ tw(S) + 1.

Proof. (1) By induction on the derivation of S ∈ EF∗(S) from S. Table 1 summarizes the
possible types of EF(S1,S2) on structures S1 and S2 of types R, G or B, respectively.

EF(S1,S2) S2 of R type S2 of G type S2 of B type

S1 of R type R,G,B G,B B

S1 of G type G,B G,B ⊥
S1 of B type B ⊥ ⊥

Table 1: The types of structures obtained by external fusion (⊥ means none)

(2) We distinguish two cases:

▷ S1 is of type R: If S2 is of type B or G then S1 and S2 can be fused only by equivalences
≈ generated by a single pair, that contains the element from the support of S1 with color
in Cred, thus matching the case (1) from the statement. Else, if S2 is of type R then S1
and S2 can be fused by equivalences generated by at most two pairs, each containing an
element with color from Cred, from either S1 or S2, thus matching the case (2(b)i) from
the statement.

▷ S1, S2 are both of type G: By contradiction, assume they can be fused by an equivalence
≈ generated by three pairs of elements (u1i, u2i)i=1,2,3. Let G1i = CS1(u1i), G2i = CS2(u2i)
be the colors from Cgreen of the matching elements in the two structures, for i = 1, 2, 3.
Then, we can construct structures using S1 and S2 where any of these colors repeat strictly
more than twice, henceforth, contradicting the conformance property to the RGB color
scheme. The principle of the construction is depicted in Figure 8. Finally, note that the
construction depicted in Figure 8 fuse actually only pairs of colors (G1i, G2i) for i = 1, 2.
Henceforth, the conformance property is also contradicted if S1 and S2 can be fused by a
2-generated equivalence relation ≈, such that the support of either S1 or S2 contains more
than three elements with colors in Cgreen.

(3) The previous point shows that, under the hypotheses of the lemma, every structure in
EF∗(S) is constructed by external fusion with matchings generated by one or two pairs of
elements. This result can be actually refined, i.e., we can consider only external fusions
where the 1-generated matchings are applied before the 2-generated matchings. That is,
assume S = ((S1 • S2)/≈2

• S3)/≈1
where ≈1, ≈2 are 1-, resp. 2-generated and S1, S2,

S3 ∈ EF∗(S). Without loss of generality, assume moreover, ≈1 is matching some element

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 17

u23 u23

u22 u21 u22 u21

u11 u12 u11 u12 u11 u12

u13 u13 u13

Figure 8: External fusion of G structures by 3-generated matchings

of S3 with an element of S1 (the other case is symmetric). Then, we can find 1-, resp.
2-generated matchings ≈′1, ≈′2 such that S = ((S1 • S3)/≈′

1
• S2)/≈′

2
. That is, first fuse S1 and

S3 by a single matching pair, then fuse the result with S2 by two matching pairs. Therefore,
we can w.l.o.g. assume in the following that EF∗(S) = EF∗2(EF

∗
1(S)), where EF∗k denotes the

external fusion using only k-generated matchings.
Given a tree decomposition T for a structure S = (U, σ) and an equivalence relation

≈ ⊆ U×U, we denote by T/≈ the tree decomposition of the quotient structure S/≈, obtained
by the relabeling of elements u in the bags of T by their representatives [u]≈. We prove the
following facts:

Fact 3.19. tw(EF∗1(S)) ≤ tw(S).

Proof. By induction on the derivation of S ∈ EF∗1(S) from S.
Base case: Immediate, as for any S ∈ S we have tw(S) ≤ tw(S).
Induction step: Consider S = (S1 • S2)/≈ where ≈ = {(u1, u2)}=. Let T1, T2 be tree
decompositions of respectively S1, S2 such that wd(T1),wd(T2) ≤ tw(S). We first build a
tree decomposition T12 of S1 • S2 by

▷ transforming T2 into T
′
2 by reversing edges such that a node n2 containing u2 in T2 becomes

the root of T ′2 and
▷ linking the root of T ′2 to a node n1 of T1 containing u1.

This ensures that T12/≈ is a valid tree decomposition for S, and moreover wd(T12/≈) =
wd(T12) = max(wd(T1),wd(T2)) ≤ tw(S).

Fact 3.20. Let S = (U, σ) ∈ EF∗2(EF
∗
1(S)) be a structure. Then, one of the following holds:

(A) tw(S) ≤ tw(S),
(B) S is of type B, tw(S) ≤ tw(S) + 1,
(C) S is of type G and there exists T = (N , E , r, λ) a tree decomposition of S such that

wd(T) ≤ tw(S) + 1 and CS(u) ∈ Cgreen implies u ∈ λ(r), for all u ∈ supp(σ).

Proof. By induction on the derivation of S ∈ EF∗2(EF
∗
1(S)) from EF∗1(S).

Base case: Immediate, as we already shown tw(S) ≤ tw(S), that is, (A) for any S ∈ EF∗1(S).
Induction step: Consider S = (S1 • S2)/≈ where ≈ = {(u11, u21), (u12, u22)}=. Since ≈ is
2-generated, we know from the previous point (2) that either:

▷ S1, S2 are of type R: From the induction hypothesis on S1 and S2 it follows that both
must satisfy (A), hence tw(S1) ≤ tw(S), tw(S2) ≤ tw(S) respectively. We are therefore
in the situation of composing two structures of type R by a 2-generated matching, hence
obtaining the structure S of type B. Without loss of generality consider CS1(u11) ∈ Cred,

18 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

CS1(u12) ∈ Cblue, CS2(u21) ∈ Cblue, CS2(u22) ∈ Cred. Let T1, T2 be tree decompositions of
S1, S2 respectively. First, we construct a tree decomposition T12 for S1 • S2 as follows:
– construct T ′1 from T1 by propagating the element u11 to all the nodes,
– construct T ′2 from T2 by propagating the element u22 to all the nodes and then reverting

the edges such that a node n2 containing the element u21 becomes the root,
– link the root node of T ′2 to a node n1 of T ′1 containing the element u12.
This ensures that T12/≈ is a valid tree decomposition for S, and moreover wd(T12/≈) =
wd(T12) = max(wd(T ′1),wd(T

′
2)) = max(wd(T1) + 1,wd(T2) + 1) ≤ tw(S) + 1. This

completes the proof that S satisfies condition (B).

▷ S1, S2 are of type G and card(S1
♯ ⊓ Cgreen) = card(S2

♯ ⊓ Cgreen) = 2: First, let us observe
that the structure S is either of type B or G. According to the induction hypothesis, we
consider the following two cases:
– both S1 and S2 satisfy the condition (C), namely there exist the tree decompositions
T1, T2 of width at most tw(S) + 1 such that moreover all the elements with colors in
Cgreen are located at their root nodes. Then, we can construct a tree decomposition
T12 for S1 • S2 by simply linking the root of T2 as a child to the root of T1. We
obtain that T12/≈ is a valid decomposition for S and satisfies wd(T12/≈) = wd(T12) =
max(wd(T1),wd(T2)) ≤ tw(S) + 1. Moreover, if S is of type G observe that all the
elements with colors in Cgreen are located at the root node of T12/≈. Therefore, in any
case, the structure S satisfies either (B) or (C).

– either one or both of S1 or S2 satisfy the condition (A). Without loss of generality

consider tw(S1) ≤ tw(S). We know however that S1 satisfies card(S1
♯ ⊓ Cgreen) = 2,

that is, it has exactly two elements with colors in Cgreen. But then, we can show that
S1 satisfies the condition (C) as well. That is, consider a tree decomposition T1 for S1
such that wd(T1) ≤ tw(S). Let u11, u12 be the two elements with colors in Cgreen. We
can build a tree decomposition T ′1 fulfilling (C) by first propagating the element u11 to
all the nodes of T1 and then reverting the edges such that some node containing the
element u12 becomes the root. Obviously, wd(T ′1) = wd(T1) + 1 ≤ tw(S) + 1 and all the
elements with color in Cgreen are located at the root node. We can proceed similarly
with S2. Then, the proof is completed as in the first case.

This completes the proof of the point (3) from the statement.

Moreover, conformance with RGB schemes allow us to infer a bound on the set obtained
by applying external fusion to a treewidth bounded set of structures:

Lemma 3.21. Let S be a treewidth bounded set of structures, that conforms to an RGB
color scheme. Then, we have tw(IF(EF∗(S))) ≤ tw(S) + 1.

Proof. EF∗(S) is treewidth bounded as a direct consequence of Lemma 3.18, that establishes
the bounds for every type of structure from EF∗(S). Moreover, IF(EF∗(S)) is treewidth-
bounded because, using the tree decompositions T constructed for structures S in EF∗(S) one
obtains tree decomposition T ′ and treewidth bounds for any structures S′ = S/≈ obtained
by internal fusion, as follows:

▷ if S is of type R then by internal fusion one glues the unique element u1 with color in
Cred to some other element in the structure. We know, from the inductive property used
in the proof of Lemma 3.18 (3) that if S is of type R then it must satisfies condition
(A) of Fact 3.20 that is, tw(S) ≤ tw(S). Therefore, one can construct T ′ from T by

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 19

replicating u1 in all nodes and then T ′/≈ is a valid tree decomposition for S′. Obviously

wd(T ′) ≤ wd(T) + 1 ≤ tw(S) + 1.
▷ if S is of type G then by internal fusion one glue elements with color in Cgreen. As before,
using the same inductive property, we know that S satisfies either condition (A) or (C)
of Fact 3.20. If S satisfies condition (C), as all elements that could be glued are already
present in the root node, T/≈ is a valid tree decomposition for S′. Obviously, the treewidth
bound remains unchanged, that is, at most tw(S) + 1. If S satisfies condition (A) and two
of its nodes u1, u2 with colors in Cgreen can be fused, then two copies of S, respectively S′,
S′′ can also be fused via the two-pair matching (u′1, u

′′
2), (u

′′
1, u
′
2). Henceforth, u1 and u2

must be the unique elements with colors in Cgreen, otherwise contradicting the point (2)
of Lemma 3.18. But then, from the tree decomposition T of S such that wd(T) ≤ tw(S)
we can construct the tree decomposition T ′ be simply propagating u2 to all other nodes
in T and hence, preserving the bound of tw(S) + 1.

▷ if S is of type B then no non-trivial internal fusion exists, and obviously, the treewidth
bound remains unchanged.

3.4. Connected structures. We shall check conformance with RGB schemes for sets of
maximally connected structures, defined below:

Definition 3.22. A path from u to v in a structure S = (U, σ) is a finite sequence of tuples:

⟨u1,1, . . . , u1,n1⟩ ∈ σ(r1), . . . , ⟨uk,1, . . . , uk,nk⟩ ∈ σ(rk), for some r1, . . . , rk ∈ R
where u ∈ {u1,1, . . . , u1,n1}, v ∈ {uk,1, . . . , uk,nk} and {ui,1, . . . , ui,ni}∩{ui+1,1, . . . , ui+1,ni+1} ≠
∅, for all i ∈ [1..k − 1]. The structure S is connected iff there exists a path from u to v, for
all u, v ∈ supp(σ).

Definition 3.23. A structure S1 is a maximal connected substructure of another structure
S2, denoted S1 ⊑mc S2, iff (i) S1 ⊑ S2 (see Definition 3.7), (ii) S1 is connected, and (iii) for
any connected substructure S′1 ⊑ S2, we have S1 ⊑ S′1 only if S1 = S′1. For a structure S we

denote by split(S)
def

= {S′ | S′ ⊑mc S} the set of maximally connected substructures, lifted

to sets of structures S as split(S) def

= ∪S∈Ssplit(S).
Note that tw(S) = tw(split(S)) for any set of structures S. The next lemma shows

that both internal and external fusions preserve maximally connected substructures:

Lemma 3.24. For each set S of structures, the following hold:

(1) split(EF∗(S)) = EF∗(split(S)), and
(2) split(IEF∗(S)) = IEF∗(split(S)).
Proof. For space reasons, this proof is given in subsection B.1.

The core of our algorithm is a decidable equivalent condition for the treewidth bounded-
ness of a set obtained by applying external fusion to a set of connected structures. This
condition is that, in any of the structures produced by external fusion, there is no way of
connecting six elements u1, v1, w1 and u2, v2, w2, labeled with non-disjoint colors C1 and
C2, respectively. Assume that this condition is violated by some structures S1 and S2 with
elements u1, v1, w1 and u2, v2, w2, such that C1 ∩ C2 = ∅. In this case, Figure 9 depicts the
construction of a structure with an n× n square grid minor, of treewidth at least n, for any
n ≥ 1. Intuitively, C1 ∩ C2 = ∅ allows to glue the elements u1 with u2, v1 with v2 and w1

with w2, respectively.

20 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

Lemma 3.25. The following are equivalent, for any treewidth-bounded set S of structures:

(1) EF∗(S) is treewidth bounded,
(2) {{C1, C1, C1}}, {{C2, C2, C2}} ∈ (EF∗(split(S)))♯3 implies C1 ∩ C2 ̸= ∅, for all C1, C2 ∈ C,
(3) split(S) conforms to some RGB color scheme.

Proof. “(1)⇒ (2)” If EF∗(S) is treewidth-bounded then split(EF∗(S)) is treewidth-bounded.
Using Lemma 3.24 the later set is equal to EF∗(split(S)) and henceforth treewidth bounded
as well. By contradiction, assume that (2) does not hold. Then, there exist colors C1, C2 ∈ C,
connected structures S1, S2 ∈ EF∗(split(S))) such that {{C1, C1, C1}} ∈ S♯1, {{C2, C2, C2}} ∈ S♯2
and moreover C1 ∩ C2 = ∅. We shall use S1 and S2 to build infinitely many connected
structures containing arbitrarily large square grid minors. First, construct the connected
structure S12 ∈ EF∗(split(S)) by fusing one pair (u1, u2) with colors C1, C2. Let v1, w1

resp. v2, w2 be the remaining distinct elements of S12 with color C1, C2 from respectively

S1, S2. For arbitrarily positive n, consider n× n disjoint copies (Si,j12)i,j=1,n of S12. Let ≈1,j

be {(v1,j1 , v1,j−12)}=, ≈i,1 be {(wi,12 , wi−1,11)}=, ≈i,j be {(vi,j1 , vi,j−12), (wi,j2 , wi−1,j1)}= for all
i, j = 2, n. Second, construct the grid-like connected structure Xn,n ∈ EF∗(split(S)):

Xn,n = (...(...((S1,112 • S
1,2
12)/≈1,2 • S2,112)/≈2,1 • ... • Si,j12)/≈i,j • ... • S

n,n
12)/≈n,n

where structures Si,j12 are added to the fusion in increasing order of i+ j. The construction is
illustrated in Figure 9. We can show that Xn,n contains an n×n square grid minor. Finally,
as n can be taken arbitrarily large, we conclude that EF∗(split(S)) contains structures with
arbitrarily large square grid minors, it is not treewidth-bounded, contradicting (1).

...

...

v2 v2

v1

w1

... ...

w1 w1

v1 u2u1 v1 u2

u2u1 v2 v1 u1 u2 v2 v1 u1 u2 v2

S1,3
12 w2S1,2

12 w2S1,1
12 w2

u1

S2,1
12 w2 S2,2

12 w2

w1w1

Figure 9: The principle of grid construction

“(2) ⇒ (3)” We define a RGB color scheme by selecting:

Cblue = {C ∈ C | {{C, C, C}} ∈ (EF∗(split(S)))♯3}

Since (2) holds, this is a valid definition for Cblue, which induces a partitioning of the
remaining colors into Cgreen and Cred. We show that split(S) is conforming to this RGB
partitioning, by checking the two points of Definition 3.17:

(1) Let S ∈ split(S) and prove that for any two colors C1, C2 ∈ C, if {{C1, C2}} ⊆ S♯ and
C1 ∈ Cred then C2 ∈ Cblue. Since C1 ∈ Cred, there must exists a color C′1 ∈ Cblue,
such that C1 ∩ C′1 = ∅, by Definition 3.15. By the definition of Cblue in our RGB-color

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 21

scheme, this further implies {{C′1, C′1, C′1}} ∈ (EF∗(split(S)))♯3. Henceforth, there exists a
structure S′ ∈ EF∗(split(S)) such that {{C′1, C′1, C′1}} ⊆ S′♯. We can now use S′ and three
disjoint copies of S to build a new structure S′′ by gluing progressively, each one of the
three elements of color C′1 in S′ to the element of color C1 of S. Then, by construction,
the structure S′′ will also contain three elements of color C2, one from each disjoint

copy of S. Therefore, {{C2, C2, C2}} ∈ S′′♯ and because S′′ ∈ EF∗(split(S)) this implies
{{C2, C2, C2}} ∈ (EF∗(split(S)))♯3 and therefore C2 ∈ Cblue.

(2) By contradiction, let S ∈ EF∗(split(S)) be such that S♯ ⊓Cgreen ̸⊆ {{C, C | C ∈ Cgreen}}.
Then there exists C′ ∈ (S♯⊓Cgreen)\{{C, C | C ∈ Cgreen}}, i.e., C′ ∈ Cgreen and {{C′, C′, C′}} ⊆
S♯. The latter implies {{C′, C′, C′}} ∈ S♯3 ⊆ (EF∗(split(S)))♯3. But this implies C′ ∈ Cblue
according to the definition of the RGB color scheme, contradicting C′ ∈ Cgreen.

“(3) ⇒ (1)” By Lemma 3.21, EF∗(split(S)) is treewidth bounded. Then, by Lemma 3.24,
split(EF∗(S)) is treewidth bounded, thus EF∗(S) is treewidth bounded.

A first consequence of this result is the equivalence between the treewidth boundedness of
the sets [[A]]∆ and EF∗([[A]]c∆). The following lemma establishes this equivalence, by providing
the missing direction to Lemma 3.12:

Lemma 3.26. Given a SID ∆ and a nullary predicate symbol A, EF∗([[A]]c∆) is treewidth
bounded only if IEF∗([[A]]c∆) is treewidth bounded.

Proof. For any set of structures S, we have IEF∗(S) = IF(EF∗(S)), because the operations
of internal and external fusion commute, namely EF(IF(S1), S2) ⊆ IF(EF(S1,S2)), for any
structures S1,S2. By Lemma 3.25, EF∗([[A]]c∆) is treewidth-bounded only if split([[A]]c∆)
conforms to an RGB color scheme. Then, IF(EF∗(split([[A]]c∆))) = IEF∗(split([[A]]c∆)) =
split(IEF∗([[A]]c∆)) is treewidth-bounded, by Lemma 3.21 and Lemma 3.24. Thus, IEF∗([[A]]c∆)
is treewidth bounded.

Our algorithm that decides the treewidth boundedness of a set EF∗([[A]]c∆) checks whether
the set (EF∗(split([[A]]c∆)))

♯3 meets condition (2) of Lemma 3.25. For this check to be effective,
the latter set must be constructed in finite time from the description of ∆ and A, provided as
input. This construction proceeds in three consecutive stages. First, we show that, for any
set S of structures, the k-color abstraction (♯kEF∗(S)) can be built from S♯k by an effectively
computable abstract operator. Second, we build a SID Γ and a nullary predicate P, such
that [[P]]cΓ = split([[A]]c∆), i.e., it encodes the set of maximally connected substructures from
some canonical ∆-model of A (subsection 3.6). Finally, we compute the k-multiset color
abstraction of [[P]]cΓ (subsection 3.7). We end this section with a proof of decidability for the
treewidth boundedness problem for expandable SIDs (Theorem 3.33).

3.5. Color abstractions of externally fused sets. We describe now the effective construc-
tion of a k-multiset abstraction (EF∗(S))♯k from the abstraction S♯k of a set S of structures,
for a given integer k ≥ 1. First, as we are interested only in k-multisets color abstractions,
we can restrict external fusion to 1-generated matchings, with no loss of generality.

Definition 3.27. The single-pair external fusion of disjoint structures S1 = (U1, σ1) and
S2 = (U2, σ2) is the external fusion (Definition 3.11) induced by 1-generated matchings. We
denote by EF1(S1,S2) the set of structures obtained by single-pair external fusion of S1 and
S2. For a set of structures S, we denote by EF∗1(S) the closure of S under single-pair external
fusions.

22 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

In general, the single-pair external fusion is strictly less expressive than external fusion,
yet it produces the same k-multiset color abstractions:

Lemma 3.28. (EF∗(S))♯k = (EF∗1(S))
♯k for any set S of structures and integer k ≥ 1.

Proof. “(EF∗1(S))
♯k ⊆ (EF∗(S))♯k” This direction follows directly from EF∗1(S) ⊆ EF∗(S).

“(EF∗(S))♯k ⊆ (EF∗1(S))
♯k” We prove the stronger property:

∀S ∈ EF∗(S). ∃S′ ∈ EF∗1(S). S♯ ⊆ S′
♯

By induction on the derivation of S ∈ EF∗(S) from S.
Base case: Assume S ∈ S. Then S′ = S satisfies the property.
Induction step: Assume S = (S1 • S2)/≈ for some S1,S2 ∈ EF∗(S) and some equivalence
relation ≈, defined as {(u1i, u2i) | i ∈ [1..n]}=, that conforms to the requirements of external
fusion for S1,S2. Let C1i = CS1(u1i), C2i = CS2(u2i), for all i ∈ [1..n]. According to the
definition of external fusion, S = (S1 • S2)/≈ implies C1i ∩ C2i = ∅ and moreover:

S♯ = {{(C1i ∪ C2i) | i ∈ [1..n]}} ∪ (S1
♯ \ {{(C1i) | i ∈ [1..n]}}) ∪ (S2

♯ \ {{(C2i) | i ∈ [1..n]}})

By induction hypothesis, for S1, S2 there exists S
′
1, S
′
2 ∈ EF∗1(S) such that S1

♯ ⊆ S′1
♯, S2

♯ ⊆ S′2
♯.

We use S′1 and n disjoint copies S′2,1, ..., S
′
2,n of S′2 to construct S′ with the required property.

The idea is that, for every pair u1i ≈ u2i, we fuse some element u′1i with color C1i from
S′1 with some element u′2i with color C2i from S′2,i. Such elements always exist, because

S1
♯ ⊆ S′1

♯, S2
♯ ⊆ S′2

♯. Therefore, consider the equivalence relations ≈′i= (u′1i, u
′
2i)

= for some
pair of elements as above, for all i ∈ [1..n] and define:

S′ = (. . . ((S′1 • S′2,1)/≈′
1
• S′2,2)/≈′

2
• . . . • S′2,n)≈′

n

Then S′ ∈ EF∗1(S) and, moreover, we have S♯ ⊆ S′♯, because:

S′
♯
= {{(C1i ∪ C2i) | i ∈ [1..n]}} ∪ (S′1

♯ \ {{(C1i) | i ∈ [1..n]}}) ∪
⋃

i∈[1..n]
(S′2

♯ \ {{C2i}})

Second, the closure (EF∗1(S))
♯k can be computed by a least fixpoint iteration of an

abstract operation on the domain of k-multiset color abstractions. As the later domain is
finite, this fixpoint computation is guaranteed to terminate.

Definition 3.29. The single-pair multiset fusion is defined below, for M1,M2 ∈ mpow(C):

ef♯1(M1,M2)
def

=
{
M ∈ mpow(C) | ∃C1 ∈M1. ∃C2 ∈M2. C1 ∩ C2 = ∅,

M = {{C1 ∪ C2}} ∪
⋃

i=1,2
(Mi \ {{Ci}})

}
Given an integer k ≥ 1, the single-pair k-multiset fusion is defined for M1, M2 ∈ mpow(C),
such that card(M1) ≤ k and card(M2) ≤ k:

ef♯k1 (M1,M2)
def

= {M | ∃M ′ ∈ ef♯1(M1,M2). M ⊆M ′, card(M) ≤ k}
For a setM of multisets (resp. k-multisets) of colors, let ef♯∗1 (M) (resp. ef♯k∗1 (M)) be the
closure ofM under taking single-pair fusion on multisets (resp. k-multisets).

Lemma 3.30. (EF∗1(S))
♯k = ef♯k∗1 (S♯k), for any set S of structures and integer k ≥ 1.

Proof. Abusing notation, we write M ♯k def

= {M ′ | M ′ ⊆M, card(M ′) ≤ k}. Then, we have

(EF∗1(S))
♯k = ((EF∗1(S))

♯)
♯k
, by Definition 3.14. Using Definition 3.27 of single pair external

fusion and Definition 3.29 of single pair fusion of multisets, we can prove that for all

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 23

structures S1,S2 it holds (EF1(S1,S2))
♯ = ef♯1(S1

♯, S2
♯). This immediately extends to their

respective closure, henceforth, (EF∗1(S))
♯ = ef♯∗1 (S♯). Henceforth, we are left with proving

that (ef♯∗1 (S♯))
♯k
= ef♯k∗1 (S♯k).

“(ef♯∗1 (S♯))
♯k ⊆ ef♯k∗1 (S♯k)” We prove that, for all M ∈ ef♯∗1 (S♯), we have M ♯k ⊆ ef♯k∗1 (S♯k).

The proof goes by induction on the derivation of M ∈ ef♯∗1 (S♯) from S♯.
Base case: Assume M ∈ S♯. Then M ♯k ⊆ (S♯)♯k = S♯k ⊆ ef♯k∗1 (S♯k).
Induction step: Assume M ∈ ef♯1(M1,M2) for some multisets of colors M1, M2 such that

M1
♯k,M2

♯k ⊆ ef♯k∗1 (S♯k). Then, there exists C1 ∈ M1, C2 ∈ M2 such that C1 ∩ C2 = ∅ and
M = (M1 \ {{C1}}) ∪ (M2 \ {{C2}}) ∪ {{C1 ∪ C2}}, by Definition 3.29. Let M ′ ∈ M ♯k, that is,
M ′ ⊆M , card(M ′) ≤ k. We distinguish several cases:

▷ M ′ ⊆M1 (the case M ′ ⊆M2 is symmetric): M ′ ∈M1
♯k, thus M ′ ∈ ef♯k∗1 (S♯k).

▷ M ′ ̸⊆ Mi, for i = 1, 2 and C1 ∪ C2 ̸∈ M ’: M ′ can be partitioned in two nonempty parts
M ′1 ⊆ M1, M

′
2 ⊆ M2 such that M = M ′1 ⊎M ′2. As both parts are not empty, we have

M ′1 ∈M1
♯k−1, M ′2 ∈M2

♯k−1, thus (M ′1 ∪ {{C1}}) ∈M1
♯k, (M ′2 ∪ {{C2}}) ∈M2

♯k. It is an easy
check that M ′ ∈ ef♯k1 ((M

′
1 ∪ {{C1}}), (M ′2 ∪ {{C2}})). This implies M ′ ∈ ef♯k∗1 (S♯k) as both

subterms belong to ef♯k∗1 (S♯k).
▷ M ′ ̸⊆Mi, for i = 1, 2 and C1∪C2 ∈M ′: we proceed as in the previous case but considering
a partitioning of M ′ \ {{C1 ∪ C2}}. We obtain M ′ ∈ ef♯k∗1 (S♯k), as well.

“ef♯k∗1 (S♯k) ⊆ (ef♯∗1 (S♯))
♯k
” We prove that, for all k-multiset M ′ ∈ ef♯k∗1 (S♯k), there exists

M ∈ ef♯∗1 (S♯), such that M ′ ⊆M , by induction on the derivation of M ′ from S♯k.
Base case: Assume M ′ ∈ S♯k = (S♯)♯k. Then, there exists M ∈ S♯ such that M ′ ⊆ M .
Obviously, M ∈ ef♯∗1 (S♯).
Induction step: Assume M ′ ∈ ef♯k1 (M

′
1,M

′
2) for some k-multisets of colors M ′1,M

′
2 ∈

ef♯k∗1 (S♯k). By the inductive hypothesis, there exists multisets M1,M2 ∈ ef♯∗1 (S♯) such
that M ′1 ⊆M1, M

′
2 ⊆M2. Since M

′
1,M

′
2 can be composed such that to obtain (a superset

of) the multiset M ′, one can use precisely the same pairs of colors to compose M1,M2 and
henceforth to obtain the multiset M ∈ ef♯∗1 (S♯), which is the superset of M ′.

3.6. Maximally connected substructures. Since we consider canonical models, we can
assume w.l.o.g. that the given SID ∆ contains no disequalities (such atoms are trivially
unsatisfiable or valid). We represent the set of maximally connected structures split([[A]]c∆)
as a set of canonical models [[P]]cΓ, for a fresh nullary predicate P and a SID Γ, whose
construction is described next.

Given a qpf formula ψ, we define conn(ψ) ⊆ fv(ψ)× fv(ψ) to be the least equivalence
relation such that (y, z) ∈ conn(ψ) if r(x1, . . . , x#r) occurs in ψ and y, z ∈ {x1, . . . , x#r},
for some r ∈ R. Intuitively, conn(ψ) consists of the pairs of free variables of ψ that are
connected by a path (see Definition 3.22) in each canonical model of ψ.

Let B(y1, . . . , y#B) be a predicate atom, J = {j1, . . . , jp} ⊆ [1..#B] be a set of indices

ordered as j1 ≤ . . . ≤ jp, ξ ⊆ J × J be an equivalence relation and Bξ be a fresh predicate

of arity p. In particular, #Bξ = 0 if ξ = ∅ is the empty relation. We define the shorthands:

fvJ(B(y1, . . . , y#B))
def

= {yj | j ∈ J} ξ(B(y1, . . . , y#B))
def

={(yj , yk) | (j, k) ∈ ξ}

B(y1, . . . , y#B)/ξ
def

=Bξ(yj1 , . . . , yjp)

24 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

We build definitions for the predicate atoms Bξ(xj1 , . . . , xjp), by “narrowing” the definitions of

B(x1, . . . , x#B), respectively. More precisely, every structure S ∈ [[Bξ(yj1 , . . . , yjp)
∃
]]
c

∆
will cor-

respond to a set of maximally connected substructures in a structure S′ ∈ [[B(y1, . . . , y#B)
∃]]

c

∆
such that, moreover (i) for every such substructure, there exists an element associated with
yj , for some j ∈ J , and (ii) yj and yk are mapped to elements from the same connected
substructure of S′ if and only if (j, k) ∈ ξ. In other words, the equivalence relation ξ is used
to summarize the information about the maximally connected structures from any canonical
model of Bξ.

We describe the construction of Γ next. Consider a rule of ∆ of the form:

B0(x1, . . . , x#B0)← ∃y1 . . . ∃ym . ψ ∗ ∗ℓi=1 Bi(zi,1, . . . , zi,#Bi) (3.1)

formulæ ψ′, ψ′′, sets Ji ⊎J i = [1..#Bi], equivalence relations ξi ⊆ Ji×Ji, for all i ∈ [1..ℓ], an
equivalence relation Ξ ⊆

(
{x1, . . . , x#B0} ∪ {y1, . . . , ym}

)
×
(
{x1, . . . , x#B0} ∪ {y1, . . . , ym}

)
,

such that the following hold:

(1) ψ = ψ′ ∗ ψ′′ modulo a reordering of atoms, such that fv(ψ′) ∩ fv(ψ′′) = ∅,
(2) fvJi(Bi(zi,1, . . . , zi,#Bi)) ∩ fv(ψ′′) = ∅ and

fvJi(Bi(zi,1, . . . , zi,#Bi)) ∩ fv(ψ′) = ∅, for all i ∈ [1..ℓ],

(3) Ξ =
(
conn(ψ′) ∪

⋃ℓ
i=1 ξi(Bi(zi,1, . . . , zi,#Bi))

)=
.

Intuitively, the conditions (1)–(3) above guarantee that the models of Bi(zi,1, . . . , zi,#Bi)/ξi
(recall, these are sets of maximally connected structures) compose with a model of ψ′ without
losing neither connectivity nor maximality, in the context of the rule (3.1). At this point,
we distinguish two cases:

▷ If there exist sets J0 ⊎ J0 = [1..#B0], J0 ̸= ∅ and an equivalence relation ξ0 ⊆ J0 × J0,
such that:
(4) fvJ0(B0(x1, . . . , x#B0)) ∩ fv(ψ′′) = ∅ and fvJ0(B0(x1, . . . , x#B0)) ∩ fv(ψ′) = ∅,
(5) fvJ0(B0(x1, . . . , x#B0)) ∩ fvJi(Bi(zi,1, . . . , zi,#Bi)) = ∅ and

fvJ0(B0(x1, . . . , x#B0)) ∩ fvJi(Bi(zi,1, . . . , zi,#Bi)) = ∅, for all i ∈ [1..ℓ],

(6) for all y ∈
(
fv(ψ′) ∪

⋃ℓ
i=1 fvJi(Bi(zi,1, . . . , zi,#Bi))

)
∩ {y1, . . . , ym}

there exists x ∈ fvJ0(B0(x1, . . . , x#B0)), such that (x, y) ∈ Ξ,
(7) ξ0(B0(x1, . . . , x#B0)) = Ξ⇃{x1,...,x#B0

} ∪{(x, x) | x ∈ fvJ0(B0(x1, . . . , x#B0))}
then we add to Γ the following rule:

B0(x1, . . . , x#B0)/ξ0 ← ∃y1 . . . ∃ym . ψ′ ∗ ∗ i∈[1..ℓ],Ji ̸=∅ Bi(zi,1, . . . , zi,#Bi)/ξi (3.2)

Intuitively, the conditions (4)–(7) identify the set J0 and the equivalence relation ξ0 for
which the result of the composition becomes a model of B0(x1, . . . , x#B0)/ξ0 . Altogether,
these lead to the definition of the rules of the form 3.2 which propagate the construction
of maximally connected structures in Γ.

▷ If (8) Ξ defines an unique equivalence class, and (9) (x, x) ̸∈ Ξ for all x ∈ {x1, . . . , x#B0}
then we add to Γ the following rule:

P← ∃y1 . . . ∃ym . ψ′ ∗ ∗ i∈[1..ℓ],Ji ̸=∅ Bi(zi,1, . . . , zi,#Bi)/ξi (3.3)

Intuitively, conditions (8)–(9) in addition to (1)–(3), ensure that by composing the models
of Bi(zi,1, . . . , zi,#Bi)/ξi with a model of ψ′ we obtain a single maximally connected structure
in the context of the rule (3.1), which is moreover not referred by any of the parameters
of B0. Henceforth, the result of this composition is actually a model of split([[A]]c∆) and
consequently is added as a model of P by the rules of the form 3.3.

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 25

Recall that ∆ was assumed to be equality-free (Definition 2.5) and all-satisfiable for A
(Definition 2.8). Moreover, we assume that every predicate defined by a rule of ∆ occurs on
some complete ∆-unfolding of A. Obviously, the rules that do not meet this requirement
can be removed from ∆ without changing [[A]]c∆. The following lemma shows that the set of
canonical Γ-models of P is a correct representation of the set of canonical ∆-models of A:

Lemma 3.31. For each equality-free SID ∆, which is all-satisfiable for a nullary pred-
icate symbol A, one can effectively build a SID Γ and a nullary predicate P, such that
split([[A]]c∆) = [[P]]cΓ.

Proof. For space reasons, this proof is given in subsection B.2.

3.7. Color abstractions of canonical models. We compute the k-multiset color abstrac-
tion ([[P]]cΓ)

♯k by a least fixpoint iteration in a finite abstract domain, defined directly from
the rules in the SID. The elements of the domain are composed of the colors of parameter
values and the k-multiset color abstraction of the elements not referenced by parameters.

A k-bounded color triple ⟨X, c,M⟩ consists of a finite set of variables X ⊆ V, a mapping
c : X → C, and a multiset M ∈ mpow(C), such that card(M) ≤ k. Since X and R are finite,
there are finitely many color triples. The following operations on color triples are lifted to
sets, as usual:

k-composition: ⟨X1, c1,M1⟩ •♯k ⟨X2, c2,M2⟩
def

=

{⟨X1 ∪X2, c12,M12⟩ | c12(x) = c1(x) ⊎ c2(x), for all x ∈ X1 ∩X2,

c12(x) = ci(x) for all x ∈ Xi \X3−i, for all i ∈ {1, 2},
M12 ⊆M1 ∪M2, card(M12) ≤ k}

This operation is undefined, if c1(x) ∩ c2(x) ̸= ∅, for some x ∈ X1 ∩X2.

substitution: ⟨X, c,M⟩[s] def

= ⟨Y, c ◦ s,M⟩, for any bijection s : Y → X

k-projection: (X, c,M)⇃♯kY
def

= {⟨Y, c⇃Y ,M ′⟩ | M ′ ⊆M ∪ {{c(x) | x ∈ X \ Y }}, card(M ′) ≤ k},
for Y ⊆ X.

For a qpf formula ψ, let γ(ψ)
def

= ⟨fv(ψ), λx ∈ fv(ψ) . {r ∈ R | r(x, . . . , x) occurs in ψ}, ∅⟩.
Given a predicate B, we denote by ⟨⟨B⟩⟩♯kΓ the least sets of k-bounded color triples over the
variables x1, . . . , x#B, the satisfies the following constraints:

⟨⟨B0⟩⟩♯kΓ ⊇
(
γ(ψ) •♯k •♯ki∈[1..ℓ]⟨⟨Bi⟩⟩♯kΓ [x1/zi,1, . . . , x#Bi/zi,#Bi]

)
⇃♯k{x1,...,x#B0

} (3.4)

one for each rule of Γ of the form (3.1). Note that the operations on sets of color triples
are monotonic and the sets thereof are finite, since the arity of predicates is finite and k is
fixed. Henceforth, the least solution can be computed in finite time by an ascending Kleene
iteration. For a n-ary relation R, we denote by πk(R) the set of elements that occur on the
k-th position in a tuple from R.

Lemma 3.32. ([[P]]cΓ)
♯k = π3(⟨⟨P⟩⟩♯kΓ), for any k ≥ 1, SID Γ and nullary predicate P.

Proof. For space reasons, this proof is given in subsection B.3.

26 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

3.8. The expandable treewidth boundedness problem. We end this section with a
proof of decidability for the treewidth boundedness problem of the sets of ∆-models of a
nullary predicate A, provided that ∆ is an expandable SID (see Definition 3.8). In case such
a bound exists, we provide the optimal upper bound, in terms of the input SID ∆. We recall
that maxVars(∆) is the maximum number of variables that occur, either free or bound by
an existential quantifier, in some rule from ∆ (Lemma 3.2).

Theorem 3.33. There exists an algorithm that decides, for each expandable SID ∆ and
nullary predicate A, whether the set [[A]]∆ has bounded treewidth. If, moreover, this is the
case then tw([[A]]∆) ≤ maxVars(∆).

Proof. Because ∆ is expandable, by Lemma 3.12 and Lemma 3.26, [[A]]∆ is treewidth bounded
iff EF∗([[A]]c∆) is treewidth bounded. By Lemma 3.25, EF∗([[A]]c∆) is treewidth bounded iff
{{C1, C1, C1}}, {{C2, C2, C2}} ∈ (EF∗(split([[A]]c∆)))

♯3 ⇒ C1 ∩ C2 ̸= ∅, for all C1, C2 ∈ C. The
latter condition can be effectively checked by computing the finite set (EF∗(split([[A]]c∆)))

♯3.
By Lemma 3.28 and Lemma 3.30, we have (EF∗(split([[A]]c∆)))

♯3 = ef♯k∗1 (split([[A]]c∆)
♯k).

By Lemma 3.31, one can effectively build a SID Γ and a nullary predicate P, such that
split([[A]]c∆) = [[P]]cΓ. Moreover, by Lemma 3.32, we obtain ([[P]]cΓ)

♯3 = π3(⟨⟨P⟩⟩♯3Γ), hence
(EF∗(split([[A]]c∆)))

♯3 = π3(⟨⟨P⟩⟩♯3Γ), which is effectively computable by a ascending Kleene
iteration in the finite domain of 3-bounded color triples.

For the upper bound, since [[A]]∆ ⊆ IEF∗([[A]]c∆) (Lemma 3.6), we have tw([[A]]∆) ≤
tw(IEF∗([[A]]c∆)). By Lemma 3.21, tw([[A]]∆) ≤ tw([[A]]c∆) + 1 and, by Lemma 3.2, we obtain
tw([[A]]∆) ≤ maxVars(∆).

The bound given by Theorem 3.33 is optimal, as shown by the following example:

Example 3.34. Let us consider the following SID:

∆ =

{
A← ∃y1∃y2 . a(y1) ∗ e(y1, y2) ∗ A
A← emp

This SID is expandable for A, because any canonical ∆-model S = (U, σ) of A consists of
a set of pairs (u1, u2) ∈ σ(e), such that u1 ∈ σ(a) and u2 ̸∈ σ(a). Hence, any sequence of
canonical ∆-models of A can be embedded as substructures in a canonical ∆-model of A.
Moreover, maxVars(∆) = 2 and any cyclic list of e-related adjacent elements labeled by a is
a ∆-model of A of treewidth 2.

4. The Reduction to Expandable Sets of Inductive Definitions

This section completes the proof of decidability of the treewidth boundedness problem
TWBSLR, by showing a reduction to the decidable treewidth boundedness problem for
expandable SIDs (Theorem 3.33). Moreover, an analysis of this reduction allows to compute
upper bounds on the treewidth of the set of models of an SLR sentence, provided that such
a bound exists. The core of the reduction is the following lemma:

Lemma 4.1. Let ∆ be a SID and A be a nullary predicate. Then, one can build finitely
many SIDs Γ1, . . . ,Γn, that are expandable for a nullary predicate B, such that [[A]]∆ is
treewidth bounded iff each [[B]]Γi is treewdith bounded, for i ∈ [1..n].

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 27

The rest of this section is concerned with the proof of this lemma. For technical reasons,
the construction of expandable SIDs with an equivalent treewidth boundedness problem
uses a representation of the SID as a tree automaton (subsection 4.1). This representation
allows to distinguish the purely structural aspects, related to the dependencies between rules,
from details related to the flow of parameters. An important class of automata distinguish
between the so-called 1-transitions, that occur exactly once, from the ∞-transitions, that
may occur any number of times on an accepting run. These automata are called choice-free
(Definition 4.5). Each automaton admits a finite choice-free decomposition that preserves its
language (Lemma 4.9).

Next, we consider tree automata whose alphabets are finite sets of qpf formulæ (subsec-
tion 4.2). The trees recognized by these automata are representations of the predicate-free
formulæ produced by the complete ∆-unfoldings of A. Since we assume that ∆ is all-
satisfiable for A (Definition 2.8), each accepting run of an automaton “produces” a canonical
∆-model of A (Lemma 4.13).

Furthermore, we define persistent variables, whose values are carried along each sequence
of ∞-transitions of a choice-free automaton (Definition 4.14). Identifying and removing the
persistent variables from a choice-free automaton with an alphabet of qpf formulæ constitutes
an important ingredient of the construction, because of point (3) of Definition 3.8, that
requires the embedded canonical models of an expandable SID to be placed sufficiently far
away one from another. In particular, this guarantees that the coloring (Definition 3.13) of
an element from an embedded substructure does not change in the larger structure. The
effective transformation of a choice-free automaton over an alphabet of qpf formulæ into an
automaton without persistent variables is described in subsection 4.4. This transformation
does not preserve the language, nor the set of models corresponding to the trees recognized
by the automaton, but is shown to preserve the existence of a (computable) bound on the
treewidths of these models.

4.1. Tree Automata. Let A be a ranked alphabet, each symbol a ∈ A having an associated
integer rank ρ(a) ≥ 0. The elements of N∗+ are finite sequences of strictly positive natural

numbers, called positions. We write pq for the concatenation of p, q ∈ N∗ and q · P def

=
{qp | p ∈ P}, for P ⊆ N∗. A ranked tree is a finite partial function t : N∗ → A, such that the
set dom(t) is prefix-closed, i.e., for each p ∈ dom(t), if q is a prefix of p, then q ∈ dom(t),
and sibling-closed, i.e., {i ∈ N | pi ∈ dom(t)} = {1, . . . , ρ(t(p))}, for all p ∈ dom(t). The

frontier of t is the set fr(t)
def

= {p ∈ dom(t) | p1 ̸∈ dom(t)}. We denote by t|p the subtree of t
at position p ∈ dom(t) i.e., t|p is the tree such that dom(t|p) = {q ∈ N∗ | pq ∈ dom(t)} and
t|p(q) = t(pq), for each q ∈ dom(t|p). A tree u is embedded in t at position p ∈ dom(t) iff
pq ∈ dom(t) and u(q) = t(pq), for each q ∈ dom(u).

Definition 4.2. An (A-labeled tree) automaton is A = (A,Q, I, δ), where Q is a finite set of
states, I ⊆ Q is a set of initial states (if I is a singleton, we denote it by ι ∈ Q), δ is a finite

set of transitions τ : q0
a−→ (q1, . . . , qρ(a)). For a transition τ : q0

a−→ (q1, . . . , qℓ) ∈ δ, let •τ
def

= q0

be the source and τ•
def

= {{q1, . . . , qℓ}} the multiset of targets of τ . For a set of transitions

T ⊆ δ, let •T
def

= {•τ | τ ∈ T} and T •
def

=
⋃
τ∈T τ

•. For a set of states S ⊆ Q, let •S def

=

{τ | •τ ̸∈ S, τ• ∩ S ̸= ∅}, S• def

= {τ | •τ ∈ S, τ• ∩ S = ∅} and •S• def

= {τ | •τ ∈ S, τ• ∩ S ̸= ∅}.

The following notions concern the structure of automata. The relation ⇝ ⊆ Q×Q is
defined as q ⇝ q′ iff there exists τ ∈ δ such that q = •τ and q′ ∈ τ•. A strongly connected

28 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

component (SCC) is a maximal set S ⊆ Q, such that q ⇝∗ q′, for all q, q′ ∈ S. An SCC
S is nonlinear iff there exists a transition τ ∈ •S• such that card(τ• ∩ S) ≥ 2 and linear

otherwise. The SCC graph of A is the directed graph GA
def

= (N , E), where N is the set of
SCCs of A and (S, S′) ∈ E iff S ̸= S′ and there exists q ∈ S and q′ ∈ S′, such that q ⇝ q′,
for all S, S′ ∈ N . We write GA = (N , E , S) if GA is a tree with root S ∈ N .

The execution of automata is defined next. A run θ of A over a ranked tree t is a
tree θ : dom(t) → Q such that θ(p)

t(p)−−→ (θ(p1), . . . , θ(pℓ)) ∈ δ, for all p ∈ dom(t), where
ℓ = ρ(t(p)). Note that the frontier of a run is labeled by states q such that there exists a
transition q

α−→ () ∈ δ, in analogy to the final states of a word automaton. A weaker notion
is that of partial runs, where the previous condition holds for dom(t) \ fr(t), instead of the

entire dom(t). A run θ is accepting if θ(ϵ) ∈ I. The language of A is L(A) def

=
⋃
q∈I Lq(A),

where Lq(A)
def

= {t | A has a run θ over t and θ(ϵ) = q}.
An automaton is rooted iff I = {ι} and ι ̸∈ δ•. For an automaton A one can build finitely

many rooted automata A1, . . . ,An such that L(A) =
⋃n
i=1 L(Ai). A rooted automaton A

is trim iff ι ⇝∗ q and Lq(A) ̸= ∅, for each state q ∈ Q. Each automaton with non-empty
language can be transformed into a trim one with the same language, by a simple marking
algorithm. We use the following notions of simulation and refinement between automata:

Definition 4.3. Let A = (A,QA, ιA, δA) and B = (A,QB, ιB, δB) be automata. A mapping
h : QA → QB is a simulation if and only if the following hold:

(1) h(ιA) = ιB and
(2) q0

a−→ (q1, . . . , qℓ) ∈ δA only if h(q0)
a−→ (h(q1), . . . , h(qℓ)) ∈ δB, for all q0, . . . , qℓ ∈ QA.

A simulation h is a refinement if and only if, moreover:

(3) q′0
a−→ (q′1, . . . , q

′
ℓ) ∈ δB only if there exist q0 ∈ h−1(q′0), . . . , qℓ ∈ h−1(q′ℓ), such that

q0
a−→ (q1, . . . , qℓ) ∈ δA, for all q0 ∈ QA and q′1, . . . , q

′
ℓ ∈ QB.

If h : QA → QB is a simulation then B simulates A. If h is a refinement then A refines B.

The key properties of simulations and refinements are stated and proved below:

Lemma 4.4. If B simulates A then L(A) ⊆ L(B). If A is a refinement of B then L(A) =
L(B).

Proof. Let A = (A,QA, ιA, δA), B = (A,QB, ιB, δB) and h : QA → QB be a mapping. “⊆”
Assume that h is a simulation. Let t ∈ L(A) be a tree and θ be an accepting run of A over
t. Then one shows that h ◦ θ is an accepting run of B over t, by induction on t, using points
(1) and (2) of Definition 4.3. “⊇” Assume that h is a refinement. Let t ∈ L(B) be a tree
and θ be an accepting run of B over t. We build an accepting run of A over t by induction
on t, using points (1) and (3) of Definition 4.3.

The following structural property of automata is key for building expandable SIDs:

Definition 4.5. An automaton A = (A,Q, ι, δ) is choice-free iff the following hold:

(1) the SCC graph of A is a tree GA = (N , E , S0), where •S = {τ} and card(τ• ∩ S) = 1, for
all S ∈ N \ {S0}, i.e., any non-root SCC is entered by one branch of a single transition,

(2) there exists a mapping Λ : N ∪ δ → {1,∞} such that:
(a) for all S ∈ N , if S is linear and Λ(S) = 1 then card(S•) = 1.
(b) for all τ ∈ δ, Λ(τ) = 1 iff τ ∈ S•, for some linear S ∈ N such that Λ(S) = 1,
(c) for all S ∈ N , Λ(S) = 1 iff S = S0 or •S = {τ}, for some τ ∈ δ such that Λ(τ) = 1.

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 29

q0
a−→ (q0, q1) (∞) q2

a−→ (q2, q2) (∞)

q1
b−→ (q1) (∞) q2

b−→ (q3) (∞)

q1
c−→ () (∞) q2

b−→ (q4) (∞)

q0
b−→ (q2) (1) q3

c−→ () (∞)

q0
b−→ (q5) q4

c−→ () (∞)

q5
c−→ ()

L L

LNL

L L

∞

1

1

∞∞

{q0} {q1}

{q3} {q4}

{q2} {q5}

Figure 10: A choice-free tree automaton and its non-choice-free extension

Let δ = δ1 ⊎ δ∞, where δk def

= {τ ∈ δ | Λ(τ) = k} and k ∈ {1,∞}, be the partition of the
set of transitions induced by the mapping Λ. A state q ∈ (δ1)

• ∩ •(δ∞) is called a pivot
state. Let R∞q (A) denote the set of partial runs θ of A, such that θ(ϵ) = q and for all

p ∈ dom(θ) \ fr(θ), there exists a ∈ A such that θ(p)
a−→ (θ(p1), . . . , θ(pn)) ∈ δ∞.

Intuitively, the structure of choice-free automata allows them to traverse a unique
sequence of linear SCCs, before entering a non-linear SCC. Note that the labeling Λ of
SCCs and transitions from Definition 4.5 is unique, because the SCC graph of a choice-free
automaton is a tree whose root is a 1-SCC, and Λ is determined by the linearity of the SCCs
in this tree. Hence, the partition of the transitions of a choice-free automaton into 1- and
∞-transitions is unambiguous.

Example 4.6. The automaton from Figure 10 is choice free. The linear (resp. nonlinear)
SCCs are labeled by L (resp. NL). The labeling of transitions and SCCs, resp. the SCC
graph by Λ are represented in Figure 10 (resp. right). The choice-freeness is violated by

adding the transitions q0
b−→ (q5) and q5

c−→ () (in red), because the linear SCC {q0} is labeled
with 1 and has two outgoing transitions, thus contradicting point (2a) of Definition 4.5 (the
additional transitions are not labeled).

The transitions from δ1, called 1-transitions, are used to move from one linear SCC to
another, hence all of them occur exactly once on each accepting run:

Lemma 4.7. Let A = (A,Q, ι, δ) be a choice-free automaton, such that δ = δ1 ⊎ δ∞
(Definition 4.5) and let θ be an accepting run of A over a tree t. Then, for each 1-transition
q0

a−→ (q1, . . . , qℓ) ∈ δ1 there exists exactly one position p ∈ dom(θ), such that θ(p) = q0,
t(p) = a and θ(pi) = qi, for all i ∈ [1..ℓ].

Proof. For space reasons, the proof of this lemma is given in subsection C.1.

The transitions from δ∞, called ∞-transitions, can be applied any number of times on
some accepting run. This fact occurs as an easy consequence of the lemma below:

Lemma 4.8. Let A = (A,Q, ι, δ) be a choice-free automaton, where δ = δ1 ⊎ δ∞ (Defini-
tion 4.5). Then, for any state q ∈ •(δ∞) there exists a pivot state q0 ∈ (δ1)

• ∩ •(δ∞) and
a partial run θ0 ∈ R∞q0(A) consisting only of ∞-transitions, such that θ0(p) = q for some
p ∈ fr(θ0) and either:

(1) {{q, q0}} ⊆ {{θ0(p) | p ∈ fr(θ0)}}, i.e., if q = q0 then q occurs twice on fr(θ0), or
(2) each partial run θ ∈ R∞q(A) can be extended to a partial run θ′ ∈ R∞q(A) such that q0

occurs on the frontier of θ′.

Proof. For space reasons, the proof of this lemma is given in subsection C.2.

30 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

Moreover, any automaton can be decomposed into finitely many choice-free automata:

Lemma 4.9. Given an automaton A = (A,Q, ι, δ), one can build finitely many choice-free
automata Ai = (A,Qi, ιi, δi), for i ∈ [1..n], such that L(A) =

⋃n
i=1 L(An) and, moreover,

card(δ1i) ≤ max(card(Q),max{ρ(a) | a ∈ A}card(Q)), for all i ∈ [1..n].

Proof. For space reasons, the proof of this lemma is given in subsection C.3.

Example 4.10. The choice-free decomposition of the automaton A from Figure 10 consists
of the following choice-free automata, with transitions labeled according to Definition 4.5:

A1 =

q0
a−→ (q0, q1) (∞)

q1
b−→ (q1) (∞)

q1
c−→ () (∞)

q0
b−→ (q2) (1)

q2
a−→ (q2, q2) (∞)

q2
b−→ (q3) (∞)

q2
b−→ (q4) (∞)

q3
c−→ () (∞)

q4
c−→ () (∞)

A2 =

q0
a−→ (q0, q1) (∞)

q1
b−→ (q1) (∞)

q1
c−→ () (∞)

q0
b−→ (q5) (1)

q5
c−→ () (1)

It can be seen that Lq0(A) = Lq0(A1) ∪ Lq0(A2) because A has the choice in q0 between

taking the transition q0
b−→ (q2) or q0

b−→ (q5). Since these transitions occur at most once
in each accepting run of A, the choice-free decomposition of A produces two automata in
which each such transition occurs exactly once on each accepting run.

4.2. Automata with Alphabets of Formulæ. The construction of the expandable SIDs
from Lemma 4.1 uses automata that recognize trees labeled with qpf formulæ taken from a
finite set. We recall that every model of a sentence is defined by a complete unfolding that
replaces the predicate atoms with corresponding definitions, recursively. The steps of these
unfoldings can be placed into a tree labeled with predicate-free formulæ from an alphabet Σ,
reflecting the partial order in which the rules from the SID are applied. These unfolding
trees form the language of an automaton defined directly from the syntax of the SID. Dually,
from any Σ-labeled automaton one can build a SID whose unfolding trees form the language
of the automaton.

Definition 4.11. Let Σ be the set of qpf formulæ α of rank ρ(α) = ℓ, such that:

(1) fv(α) ⊆ {x[ϵ]

1 , . . . , x
[ϵ]
n0} ∪ {y

[ϵ]

1 , . . . , y
[ϵ]
m} ∪

⋃ℓ
i=1{x

[i]

1 , . . . , x
[i]
ni}, for some m,n0, . . . , nℓ ∈ N;

a variable x[i]

j is called a i-variable, for all i ∈ {ϵ} ∪ [1..ℓ],

(2) x[i]

j ̸≈α x
[i]

k , for all i ∈ [1..ℓ] and 1 ≤ j < k ≤ ni.

The characteristic formula of a Σ-labeled tree t is the qpf formula Θ(t)
def

=∗p∈dom(t) t(p)
[p],

where the formulæ t(p)[p] are obtained from t(p) ∈ Σ by replacing each occurrence of a
variable x[q] by x[pq], for all p ∈ dom(t).

Given a SID ∆, the Σ-labeled automaton A∆,A
def

= (Σ,Q∆, qA, δ∆) is defined as follows:

▷ Q∆ contains states qB, where B is a predicate occurring in ∆; each state has an associated
arity #qB

def

= #B,

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 31

▷ δ∆ contains a transition qA0

αρ−→ (qA1 , . . . , qAℓ), where αρ is the symbol:

αρ
def

= ψ[x1/x
[ϵ]

1 , . . . , xn0/x
[ϵ]
n0
, y1/y

[ϵ]

1 , . . . , ym/y
[ϵ]
m] ∗ ∗ℓi=1∗nij=1 z[ϵ]

i,j = x[i]

j

of rank ρ(αρ) = ℓ that corresponds to the rule ρ ∈ ∆, where ψ is a qpf formula:

ρ : A0(x1, . . . , xn0)← ∃y1 . . . ∃ym . ψ ∗ ∗ℓi=1 Ai(zi,1, . . . , zi,ni)

Example 4.12. Let us consider the following SID:

∆ =

 A ← ∃y1∃y2∃y3 . B(y1, y2, y3)
B(x1, x2, x3) ← ∃y4 . e(x1, x3) ∗ e(x1, y4) ∗ B(y4, x2, x3)
B(x1, x2, x3) ← e(x1, x3) ∗ e(x1, x2) ∗ e(x2, x3)

The automaton A∆,A has the following transitions:

A∆,A =

qA

y
[ϵ]
1 =x

[1]
1 ∗ y

[ϵ]
2 =x

[1]
2 ∗ y

[ϵ]
3 =x

[1]
3−−−−−−−−−−−−−−−−−→ (qB)

qB
e(x

[ϵ]
1 , x

[ϵ]
3) ∗ e(x

[ϵ]
1 , y

[ϵ]
4) ∗ y

[ϵ]
4 =x

[1]
1 ∗ x

[ϵ]
2 =x

[1]
2 ∗ x

[ϵ]
3 =x

[1]
3−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (qB)

qB
e(x

[ϵ]
1 , x

[ϵ]
3) ∗ e(x

[ϵ]
1 , x

[ϵ]
2) ∗ e(x

[ϵ]
2 , x

[ϵ]
3)

−−−−−−−−−−−−−−−−−−−−−−−→ ()

Dually, given an automaton A = (Σ,Q, ι, δ), the SID ∆A consists of the following rules,
one for each transition q0

α−→ (q1, . . . , qℓ) ∈ δ:
Aq0(x1, . . . , x#q0)← ∃y1 . . . ∃ym . α[x[ϵ]

1 /x1, . . . , x
[ϵ]

#q0
/x#q0] ∗ ∗ℓj=1 Aqj (x

[j]

1 , . . . , x
[j]

#qj
) (4.1)

where {y1, . . . , ym}
def

= fv(α) \
(
{x[ϵ]

1 , . . . , x
[ϵ]

#q0
} ∪

⋃ℓ

j=1
{x[j]

1 , . . . , x
[j]

#qj
}
)

The similarity between SIDs and Σ-labeled automata (Lemma 4.13) motivates the use

of similar terminology. For a Σ-labeled automaton A, we define [[A]] def

=
⋃
t∈L(A) [[Θ(t)∃]],

[[A]]c def

=
⋃
t∈L(A) [[Θ(t)∃]]

c
and [[A]]r def

=
⋃
t∈L(A) [[Θ(t)∃]]

r
. Moreover, a Σ-labeled automaton A

is all-satisfiable if the formula Θ(t) is satisfiable, for all t ∈ L(A). The relation between
SIDs and Σ-labeled automata is formally stated below:

Lemma 4.13.

(1) Given a SID ∆ and a nullary predicate A, one can build an automaton A∆,A such that
[[A]]∆ = [[A∆,A]]. Moreover, if ∆ is all-satisfiable for A, then A∆,A is all-satisfiable.

(2) Given an automaton A = (Σ,Q, ι, δ), one can build a SID ∆A, such that [[A]] = [[Aι]]∆A
and [[A]]r = [[Aι]]

r

∆A
, for a nullary predicate A.

Proof. For space reasons, the proof of this lemma is given in subsection C.4.

4.3. Persistent Variables. The second ingredient of the construction of the expandable
SIDs from Lemma 4.1 are the persistent variables of a Σ-labeled choice-free automaton. These
are variables introduced by the 1-transitions of the automaton, whose values propagate via
equalities throughout each run of the choice-free automaton. We define persistent variables
using the notion of profile:

Definition 4.14. Let A = (Σ,Q, ι, δ) be a choice-free automaton, where δ = δ1 ⊎ δ∞
(Definition 4.5). A positional function P : Q → pow(N) associates each state q with a set
P(q) ⊆ [1..#q]. The profile of A is the pointwise largest positional function PA such that,
for each transition q0

α−→ (q1, . . . , qℓ) ∈ δ∞, each k ∈ [1..ℓ] and each r ∈ PA(qk), there exists

32 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

s ∈ PA(q0), such that x[ϵ]
s ≈α x[k]

r . A variable x[i]

j that occurs within the label of a transition

q0
α−→ (q1, . . . , qℓ) ∈ δ is said to be persistent iff j ∈ PA(qi), for all i ∈ [0..ℓ].

Intuitively, PA(q) is the set of indices of those variables, associated with a state, that
will be equated, through a chain of equalities in the characteristic formula Θ(t), to the
same variable associated with the corresponding pivot state (Lemma 4.8) in every run of
∞-transitions of A over t. Note that the profile is computable by a finite greatest fixpoint
Kleene iteration over each SCC of the automaton (see the proof of Lemma 4.18 for an
explicit statement of that fixed point).

Without loss of generality, we assume that a Σ-labeled automaton does not have trivial
SCCs, i.e., consisting of a single state, with no transitions that are both outgoing and
incoming to that state. The profile associated with such state q would be the interval [1..#q]
and any variable in the label of an incoming or outgoing transition would be unnecessarily
considered persistent. The trivial SCCs of a Σ-labeled automaton can be eliminated by a
pre-processing step which combines the labels of the incoming and outgoing transitions and
renames the variables according to the convention (Definition 4.11).

Example 4.15. (continued from Example 4.12) The profile of the automaton A∆,A, that
corresponds to the SID ∆ from Example 4.12 associates qA with the empty set and qB
with the set {2, 3}. Note that #qA = 0 and #qB = 3. The first and third transitions in
Example 4.12 are 1-transitions, whereas the second transition is an ∞-transition. The
variables x[1]

2 and x[1]

3 from the label of the second transition (∞) are persistent.

A context θp←q is a partial run over a tree t such that p ∈ fr(θp←q), θp←q(p) = q

and θp←q(r)
t(r)−−→ (), for all r ∈ fr(θp←q) \ p, i.e., the partial run has exactly one “open”

frontier position p that is labeled with a state q. A key property of automata is that
equalities between non-persistent variables vanish in contexts consisting of ∞-transitions
only (Lemma 4.18). These contexts, called resets, are formally defined below:

Definition 4.16. A context θp←q ∈ R∞q (A) over a tree t is a q-reset iff (1) x[ϵ]

j ≈Θ(t) x
[p]

j ,

for all j ∈ PA(q), and (2) x[ϵ]

j ̸≈Θ(t) x
[p]

k , for all j, k ∈ [1..#q], such that k ̸∈ PA(q). The path
between ϵ and p in θp←q is called a reset path.

Example 4.17. (continued from Example 4.12) For instance, in the context θ1←qB , that

consists of the second transition qB
α−→ qB of the automaton in Example 4.12, we have

x[ϵ]

1 ̸≈α x
[1]

1 . Then, the value of x[ϵ]

1 is “forgotten” along any run that iterates this transition
at least twice.

Lemma 4.18. Let A = (Σ,Q, ι, δ) be a trim automaton. Then, there exists a q-reset for
(1) each pivot state q ∈ (δ1)

• ∩ •(δ∞), and (2) each state q ∈ •(δ1) ∩ •(δ∞), i.e., that is the
origin of both a 1-transition and a ∞-transition of A.

Proof. By Definition 4.14, PA is the greatest fixpoint of the monotone function F on the
domain of positional functions P : Q → pow(N) , defined below:

F(P)
def

= λq .
⋂

q0
α−→(q1,...,qℓ)∈δ∞

q=qk∈{q1,...,qℓ}

{r ∈ [1..#qk] | ∃s ∈ P(q0) . xs
[ϵ] ≈α xr [k]}

Namely, we have PA = F i(⊤) = F j(⊤), for a sufficiently large i ≥ 1 and any j ≥ i, where
⊤ is the positional function λq . [1..#q]. Now consider the following “big-step” function G

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 33

on the domain of positional functions:

G(P)
def

= λq .
⋂

θ∈R∞
q(A) partial run over t

p∈fr(θ), such that θ(p)=q

{r ∈ [1..#q] | ∃s ∈ P(q) . xs
[ϵ] ≈Θ(t) xr

[p]}

We prove the following:

Fact 4.19. gfp(F)(q) = gfp(G)(q), for any pivot state q of A.

Proof. “⊆” Each partial run θ ∈ R∞q (A) such that θ(p) = q, for some p ∈ fr(θ) corresponds

to a finite sequence of transitions from δ∞. “⊇” Since q is a pivot state we have q ∈ •(δ∞),
thus necessarily q = q0, where q0 ∈ (δ1)

•
is the state whose existence is stated by Lemma 4.8.

Then every ∞-transition incoming to q belongs to a partial run θ ∈ R∞q (A), such that q
occurs on the frontier of θ.

Back to the proof, we prove the two points of the statement below:
(1) Let q be a pivot state of A. By Fact 4.19, we have PA(q) = Gi(⊤)(q) for a sufficiently
large finite integer i ≥ 0. We show that the latter condition is equivalent to the existence of
a q-reset θp←q ∈ R∞q (A).
“⇐” Assume that there exists a q-reset θ ∈ R∞q (A) over some tree t. Then G(⊤)(q) =

{j ∈ [1..#q] | ∃k ∈ [1..#q] . xj
[ϵ] ≈Θ(t) xk

[p]} = PA(q).
“⇒” Assume there exists i ≥ 0, such that Gi(⊤)(q) = PA(q) and let i be the smallest such
integer. Then ⊤,G(⊤),G2(⊤), . . . ,Gi(⊤) is a strictly decreasing sequence hence, for each
j ∈ [1..i], there exists a partial run θj ∈ R∞q (A) over some tree tj and a position pj ∈ fr(tj),

such that θj(pj) = q and {r ∈ [1..#q] | ∃s ∈ Gj−1(⊤)(q) . xs[ϵ] ≈Θ(tj)
xr

[pj]} ⊊ Gj−1(⊤)(q).
We compose these partial runs θ1, . . . , θi by appending each θj to θj−1 at position pj−1 ∈
fr(θj−1), for all j ∈ [2..i] into a partial θ′′ ∈ R∞q (A). We define a context θpi←q by appending
to each position r ∈ fr(θ) \ {pi} a complete run starting in θ(r). By the fact that A is
trim, such a run exists. The context θpi←q satisfies condition (2) of Definition 4.16, but not
necessarily (1). Let π : PA(q)→ PA(q) be a permutation defined as π(i) = j iff xi ≈Θ(t) xj ,

there t is the tree recognized by the partial run θpi←q of A. Note that the choice of j is not
unique, but one exists, by Definition 4.14. Then we define the q-reset θpi←q by appending

θpi←q to itself at position pi a number of times equal to the order of π. Then, one can check
that θpi←q satisfies both conditions of Definition 4.16.
(2) Let S be the SCC of q in A. Since q = •τ , for some transition τ ∈ δ1, it must be the case
that S is a linear SCC, by Definition 4.5. Also q ∈ •(δ∞) thus, by Lemma 4.8, there exists
a pivot state q0 in S and let θ0 ∈ R∞q (A) be a partial run from q to q0 with transitions

from •S• ⊆ δ∞. From point (1) above we obtain a q0-reset θ
1
p1←q0 ∈ R

∞
q0(A) such that

x[ϵ]

j ≈Θ(t) y
[p1]

k , for all j, k ∈ PA(q0) and x[ϵ]

j ̸≈Θ(t) y
[p1]

k , for all j, k ∈ [1..#q0], k ̸∈ PA(q0).

Moreover, there exists another context θ2p2←q ∈ R
∞
q0(A). By the choice of the pivot state q0,

there exists a position p0 ∈ fr(θ0) such that θ0(p0) = q0. Let p
def

= p0p1p2 and θp←q be the
context consisting of θ0 to which we append, in this order:

▷ θ1 on position p0,
▷ θ2 on the position p0p2,
▷ to any other position r ∈ (fr(θ0)\{p0})∪(p0 · fr(θ1)\{p1})∪(p0p1 · fr(θ2)\{p2}) a complete
run starting in:
– θ0(r) if r ∈ fr(θ0) \ {p0},

34 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

– θ1(r′) if r = p0r
′ and r′ ∈ fr(θ1) \ {p1}, and

– θ2(r′′) if r = p0p1r
′′ and r′′ ∈ fr(θ2) \ {p2}.

Such runs exist by the assumption that A is trim. Moreover, these runs use only ∞-
transitions, because their states are from ∞-SCCs (Definition 4.5).

It is easy to check that θ satisfies condition (2) of Definition 4.16. In order to satisfy condition
(1), in addition to (2), we append θ to itself at position p, using the same idea as in the
construction at point (1).

The purpose of introducing resets is proving that any sequence of partial runs consisting
of∞-transitions can be embedded in a complete run, such that each two such partial runs are
separated by any number of resets. This is a key ingredient for the proof of the “embedding”
property of the canonical models of expandables SIDs (Definition 3.8).

ι

qi0-resetθir

ι

qi

θi

θi0

qi0-resetθir

θi0

qi
Block θ′i θi

Block θ′i

pipi

Initial run θ

extend

Case 1 Case 2

ι

qi0

qi0

qi0

qi0

qi0

qi0

qi0

Figure 11: Embedding of a partial run θi in θ

Lemma 4.20. Let A be a trim choice-free automaton. Given partial runs θ1 ∈ R∞q1(A),
. . ., θn ∈ R∞qn(A) and an integer k ≥ 1, there exists an accepting run θ of A such that:

(1) θi is embedded in θ at some position pi ∈ dom(θ), for each i ∈ [1..n],
(2) pi · dom(θi) ∩ pj · dom(θj) = ∅, for all 1 ≤ i < j ≤ n,
(3) the path between pi and pj in θ traverses k times some reset path disjoint from

⋃n
ℓ=1 pℓ ·

dom(θℓ), for all 1 ≤ i < j ≤ n.

Proof. Let θ be an arbitrary accepting run of A. By Lemma 4.7, each 1-transition occurs
exactly once on θ, hence θ visits each pivot state at least once. The partial runs θ1, . . . , θn
will be inserted into θ one by one, as described next. First, for each θi ∈ R∞qi(A), we have

a pivot state q0i and a partial run θ0i ∈ R∞q0i (A), satisfying condition 1 or 2 of Lemma 4.8.

Since q0i occurs on θ, we can insert in θ a new partial run θ′i ∈ R∞qi0(A) defined next. By

Lemma 4.18 (1), there exists a qi0-reset sequence θ
i
r ∈ R∞qi0(A). The partial run θ

′
i is obtained

by composing θir with itself k times, followed by θi0. These compositions are possible, because
qi0 occurs at the root of θir and θ

i
0, as well as the frontier of θ

i
r. Depending on which condition

of Lemma 4.8 is satisfied by qi0 and θi0, we distinguish the following cases (see Figure 11 for
an illustration):

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 35

▷ condition (1) of Lemma 4.8 holds: in this case qi and q
i
0 occur on different positions on

the frontier of θi0, thus we append θi on the position where qi occurs and the rest of θ on
the position where qi0 occurs.

▷ condition (2) of Lemma 4.8 holds: in this case only qi0 occurs on the frontier of θi0, thus

we continue with θi, which can be extended to reach qi0 again, by Lemma 4.8. From this
second occurrence of qi0, we continue with θ.

We prove the points from the statement of the Lemma below:

(1) The runs θ1, . . . , θn are inserted into θ at positions p1, . . . , pn, respectively.
(2) Since θ1, . . . , θn are inserted one after the other (the order is not important), we have

pi · dom(θi) ∩ pj · dom(θj) = ∅, for all 1 ≤ i < j ≤ n.
(3) By the definition of θ′1, . . . , θ

′
n, the path between pi and pj traverses k times the θir or θ

j
r

reset sequences that are, moreover, disjoint from each pk · dom(θk), for k ∈ [1..n].

4.4. Eliminating Persistent Variables. For the rest of this section, letA∆,A = (Σ,Q∆, qA, δ∆)
be the automaton built for the given SID ∆ and nullary predicate A, by the construction of
Lemma 4.13. Since ∆ was assumed to be all-satisfiable, the same can be assumed about
A∆,A, by Lemma 4.13 (1).

Moreover, we can assume, without loss of generality, that A∆,A is choice-free and let
δ∆ = δ1∆ ⊎ δ∞∆ be the partition of the transitions of A∆,A (Definition 4.5). If this is not the
case, we consider one of the finitely many automata in the language-preserving choice-free
decomposition of A∆,A (Lemma 4.9).

The transformation proceeds in three stages, denoted (I), (II) and (III) below. The
result of each stage is one or more choice-free automata that are treewidth bounded if and
only if the set [[A∆,A]] is treewidth bounded.

Example 4.21. We shall illustrate each stage of the construction on the following SID:

∆

A ← ∃y1∃y2∃y3 . C1(y1, y2, y3)

C1(x1, x2, x3) ← ∃y4 . e(x1, y4) ∗ e(x3, y4) ∗ C1(y4, x2, x3)
C1(x1, x2, x3) ← ∃y5 . e(x1, x2) ∗ C2(x2, y5, x3)
C2(x1, x2, x3) ← ∃y6 . e(x1, y6) ∗ e(x3, y6) ∗ C2(y6, x2, x3)
C2(x1, x2, x3) ← e(x1, x2)

For simplicity, the existentially quantified variables are given pairwise distinct names. The
automaton A∆,A has the following transitions:

A∆,A

τ1 : qA
y
[ϵ]
1 =x

[1]
1 ∗ y

[ϵ]
2 =x

[1]
2 ∗ y

[ϵ]
3 =x

[1]
3−−−−−−−−−−−−−−−−−−→ (qC1) (1)

τ2 qC1

e(x
[ϵ]
1 , y

[ϵ]
4) ∗ e(x

[ϵ]
3 , y

[ϵ]
4) ∗ y

[ϵ]
4 =x

[1]
1 ∗ x

[ϵ]
2 =x

[1]
2 ∗ x

[ϵ]
3 =x

[1]
3−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (qC1) (∞)

τ3 : qC1

e(x
[ϵ]
1 , x

[ϵ]
2) ∗ x

[ϵ]
2 =x

[1]
1 ∗ y

[ϵ]
5 =x

[1]
2 ∗ x

[ϵ]
3 =x

[1]
3−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (qC2) (1)

τ4 : qC2

e(x
[ϵ]
1 , y

[ϵ]
6) ∗ e(x

[ϵ]
3 , y

[ϵ]
6) ∗ y

[ϵ]
6 =x

[1]
1 ∗ x

[ϵ]
2 =x

[1]
2 ∗ x

[ϵ]
3 =x

[1]
3−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (qC2) (∞)

τ5 : qC2

e(x
[ϵ]
1 , x

[ϵ]
2)

−−−−−−→ () (1)

The ∆-models of A have the structure depicted in Figure 12 (a), with elements that are
values of persistent variables annotated by the name of the first occurrence of the persistent
variable during the run.

36 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

y1 y2

y3

y5

C1 C2

(a)

C2

eg eg eg eg eg eg eg

C1

(b)

Figure 12: Models of the Running Example for the Elimination of Persistent Variables

I. Removing relation and disequality atoms from 1-transitions. This step replaces
each symbol α that labels a 1-transition q0

α−→ (q1, . . . , qℓ) of AI∆,A with the symbol obtained
by removing all relation and disequality atoms from α. The outcome of this transformation
is denoted AI∆,A

def

= (Σ,Q∆, qA, δ
I
∆).

Example 4.22. (continued from Example 4.21) The result of removing the relation and
disequality atoms from the 1-transitions of the choice-free automaton given in Example 4.21
is shown below:

AI∆,A

τ1 : qA
y
[ϵ]
1 =x

[1]
1 ∗ y

[ϵ]
2 =x

[1]
2 ∗ y

[ϵ]
3 =x

[1]
3−−−−−−−−−−−−−−−−−−→ (qC1) (1)

τ2 : qC1

e(x
[ϵ]
1 , y

[ϵ]
4) ∗ e(x

[ϵ]
3 , y

[ϵ]
4) ∗ y

[ϵ]
4 =x

[1]
1 ∗ x

[ϵ]
2 =x

[1]
2 ∗ x

[ϵ]
3 =x

[1]
3−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (qC1) (∞)

τ3 : qC1

x
[ϵ]
2 =x

[1]
1 ∗ y

[ϵ]
5 =x

[1]
2 ∗ x

[ϵ]
3 =x

[1]
3−−−−−−−−−−−−−−−−−−→ (qC2) (1)

τ4 : qC2

e(x
[ϵ]
1 , y

[ϵ]
6) ∗ e(x

[ϵ]
3 , y

[ϵ]
6) ∗ y

[ϵ]
6 =x

[1]
1 ∗ x

[ϵ]
2 =x

[1]
2 ∗ x

[ϵ]
3 =x

[1]
3−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (qC2) (∞)

τ5 : qC2

emp−−→ () (1)

The formal properties of AI∆,A are stated and proved below. Note that AI∆,A is choice-free,
because A∆,A is choice-free, i.e., the re-labeling of the transitions of A∆,A does not change the
structure of its SCC graph. In the statement of this and the upcoming lemmas, we assume
addition and order within the set of natural numbers with infinity, i.e., n+∞ =∞+n =∞,
n ≤ ∞ and ∞ ≤∞, for all n ∈ N.

Lemma 4.23.

(1) AI∆,A is all-satisfiable

(2) tw([[AI∆,A]]) ≤ tw([[A∆,A]]) + card(δ1∆) · (maxRelAtoms(∆) +maxVars(∆))

(3) tw([[A∆,A]]) ≤ tw([[AI∆,A]]) + card(δ1∆) ·maxVars(∆)

Proof. For space reasons, the proof of the lemma is given in subsection C.5.

II. Removing equalities involving non-persistent variables. At this point, the labels
of the 1-transitions of AI∆,A consist of equalities only. We now remove the equalities that
would be lost when adding resets before and after 1-transitions that is, we forget equalities
involving non-persistent variables while keeping equalities between persistent ones. To this
end, we modify the label of each 1-transition q0

α−→ (q1, . . . , qℓ) of AI∆,A in two steps:

(1) for each non-persistent ϵ-variable x[ϵ]

j , i.e., j ∈ [1..#q0] \PAI∆,A
(q0), occurring in α in

some equality with a persistent i-variable, i.e., x[ϵ]

j = x[i]

k , k ∈ PAI∆,A
(qi), we substitute

x[ϵ]

j in α with a fresh variable y[ϵ] ̸∈ fv(α),

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 37

(2) remove each equality involving a non-persistent variable x[i]

j , for i = ϵ and j ∈ [1..#q0],

or i ∈ [1..ℓ] and j ∈ [1..#qi].

Example 4.24. (continued from Example 4.22) The profile of the automaton AI∆,A from

Example 4.22 is PAI∆,A
(qA) = ∅ and PAI∆,A

(qC1) = PAI∆,A
(qC2) = {2, 3}. By removing the

equalities involving non-persistent variables, we obtain AII∆,A from AI∆,A by transforming
only the 1-transition τ3 into:

τ ′3 : qC1

y
[ϵ]
5 =x

[1]
2 ∗ x

[ϵ]
3 =x

[1]
3−−−−−−−−−−−−→ (qC2) (1)

Since x[1]

1 is non-persistent, the equality x[ϵ]

2 = x[1]

1 is removed from the label of the original

transition. Note that the equalities y[ϵ]

5 = x[1]

2 and x[ϵ]

3 = x[1]

3 are kept, because x[1]

2 , x[ϵ]

3 and

x[1]

3 are persistent variables. Note that y[ϵ]

5 is not persistent, because it is not associated with
a state in τ ′3.

The result is the choice-free automaton AII∆,A
def

= (Σ,Q∆, qA, δ
II
∆), whose properties are

stated and proved below:

Lemma 4.25.

(1) AII∆,A is all-satisfiable,

(2) tw([[AII∆,A]]) ≤ tw([[AI∆,A]]) + card((δI∆)
1
) ·maxVars(∆),

(3) tw([[AI∆,A]]) ≤ tw([[AII∆,A]]).

Proof. For space reasons, the proof of this lemma is given in subsection C.6.

III. Removing persistent variables. We build from the choice-free automaton AII∆,A a

set of choice-free automata B1, . . . ,Bm, having no persistent variables within the transition
labels, such that [[AII∆,A]] is treewidth bounded if and only if [[Bi]] is treewidth bounded, for

each i ∈ [1..m].
We recall that each 1-transition of a choice free automata occurs exactly once in each

accepting run over a Σ-labeled tree t and each such occurrence corresponds to one subformula
t(p)p of Θ(t), for a position p ∈ dom(t) (Lemma 4.7). Using renaming, if necessary, we can
assume that the ϵ-variables that are not associated with the states of the transition have
distinct names between the labels of the 1-transitions of AII∆,A and let Y def

= {y[ϵ]

1 , . . . , y
[ϵ]

M}
denote their set, in the following. For instance, we have Y = {y[ϵ]

1 , y
[ϵ]

2 , y
[ϵ]

3 , y
[ϵ]

5 } in Example
4.22. The transformation is done in three steps:

(A) We annotate each state q of AII∆,A with an injective partial function a : [1..#q]→ [1..M]

that maps each persistent variable x[i]

j , associated with q, to a variable y[ϵ]

a(j) ∈ Y, such
that x[i]

j ≈Θ(t) y
[ϵ]

a(j) holds for each tree t ∈ L(AII∆,A).
(B) We split the automaton obtained from the annotation of AII∆,A into several choice-free

automata B̃1, . . . , B̃m such that L(AII∆,A) =
⋃m
i=1 L(B̃i).

(C) The annotation of the states in each B̃i is used to replace each occurrence of a relation
atom r(z[ϵ]

1 , . . . , z
[ϵ]

#r), occurring within the label of an annotated transition (q0, a0)
α−→

((q1, a1), . . . , (qℓ, aℓ)), with a fresh relation atom rg(z
[ϵ]

i1
, . . . , z[ϵ]

ik
), where g : [1..#r] →

[1..M] maps each persistent variable from the set {z[ϵ]

1 , . . . , z
[ϵ]

#r} to its corresponding

38 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

variable from Y and {z[ϵ]

i1
, . . . , z[ϵ]

ik
} are the remaining non-persistent variables. The

persistent variables are subsequently removed from α and the remaining variables are
renamed according to the conventions from Definition 4.11. Consequently, the arities
of the states (qi, ai), i ∈ [0..ℓ] are changed as well.

Example 4.26. (continued from Example 4.24) Let us consider the automaton AII∆,A from
Example 4.24. The ϵ-variables from the labels of 1-transitions, that are not associated
with states thereof, are y[ϵ]

1 , y
[ϵ]

2 , y
[ϵ]

3 , y
[ϵ]

5 , renamed as Y = {y[ϵ]

1 , y
[ϵ]

2 , y
[ϵ]

3 , y
[ϵ]

4 }, respectively. We
recall that PAII∆,A

(qA) = ∅ and PAII∆,A
(qC1) = PAII∆,A

(qC2) = {2, 3} is the profile of AII∆,A. The
automaton obtained by annotating the states of AII∆,A with assignments is already choice-free
and the result of the elimination of persistent variables is shown below:

B̃

τ1 : (qA, ∅)
emp−−→ ((qC1 , a)) (1)

τ2 : (qC1 , a)
e(x

[ϵ]
1 , y

[ϵ]
4) ∗ eg(y

[ϵ]
4) ∗ y

[ϵ]
4 =x

[1]
1−−−−−−−−−−−−−−−−−−−→ ((qC1 , a)) (∞)

τ3 : (qC1 , a)
emp−−→ ((qC2 , a)) (1)

τ4 : (qC2 , a)
e(x

[ϵ]
1 , y

[ϵ]
6) ∗ eg(y

[ϵ]
6) ∗ y

[ϵ]
6 =x

[1]
1−−−−−−−−−−−−−−−−−−−→ ((qC2 , a)) (∞)

τ5 : (qC2 , a)
emp−−→ () (1)

where:

▷ a : [1..3]→ [1..4] is the partial mapping defined as a(2) = 2, a(3) = 3 and undefined at 1,
▷ g : [1..2]→ [1..4] is the partial mapping defined as g(1) = 3 and undefined at 2.

Note that, because the equality between the persistent variables x[ϵ]

3 and x[1]

3 has been kept

in AII∆,A (see Example 4.24), both variables are mapped by g to the same variable y[ϵ]

3 , hence

the same relation symbol eg replaces both e(x[ϵ]

3 , y
[ϵ]

4) in τ2 and e(x[ϵ]

3 , y
[ϵ]

6) in τ4. Figure 12 (b)

shows the shape of the structures from [[B̃]]. Since all but the first elements in both the C1

and C2 chains are now labeled with the same unary relation symbol eg, these structures are
of treewidth at most two.

We recall that AII∆,A = (Σ,QI∆, qA, δII∆) and describe the transformation formally:

(A) Let Ã∆,A
II def

= (Σ, Q̃I∆, (qA, ∅), δ̃II∆) be the automaton, whose set of states is:

Q̃I∆
def

= {(q, a) | q ∈ QI∆, a : [1..#q]→ [1..M] is a partial injective mapping}

The initial state of Ã∆,A
II

consists of the initial state qA of AII∆,A annotated with the empty

mapping, because we have considered #qA = 0. The set δ̃II∆ contains a transition (q0, a0)
α−→

((q1, a1), . . . , (qℓ, aℓ)) if and only if either one of the following holds (by Definition 4.5, these
conditions are exclusive):

▷ q0
α−→ (q1, . . . , qℓ) ∈ (δII∆)

1
: in this case, for all k ∈ [1..ℓ] and i ∈ PAII∆,A

(qk), we define:

ak(i)
def

=

{
a0(j) if there exists j such that x[k]

i ≈α x
[ϵ]

j ,

m else, if m is such that x[k]

i ≈α y
[ϵ]
m

Note that ak is well defined, because each i-variable is equated to a unique ϵ-variable in
the definition of A∆,A and this fact is unchanged by the constructions of AI∆,A and AII∆,A.

▷ q0
α−→ (q1, . . . , qℓ) ∈ (δII∆)∞: in this case, for all k ∈ [1..ℓ] and i ∈ [1..#qk], we define

ak(i)
def

= a0(j) if there exists j, such that x[k]

i ≈α x
[ϵ]

j and undefined, otherwise.

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 39

The property of the first step of persistent variable elimination is summarized below:

Lemma 4.27. L(Ã∆,A
II
) = L(AII∆,A).

Proof. Let h : Q̃I∆ → QI∆ be the function defined as h((q, a))
def

= q, for all (q, a) ∈ Q̃I∆. We

show that h is a refinement. By Lemma 4.4, we obtain L(Ã∆,A
II
) = L(AII∆,A). We prove

the three points of Definition 4.3:

(1) h((qA, ∅)) = qA, by the definition of h.

(2) (q0, a0)
α−→ ((q1, a1), . . . , (qℓ, aℓ)) ∈ δ̃II∆ only if q0

α−→ (q1, . . . , qℓ) ∈ δII∆ , by the definition

of Ã∆,A
II
.

(3) Let q0
α−→ (q1, . . . , qℓ) ∈ δII∆ be a transition and assume w.l.o.g. that AII∆,A is trim

(if this is not the case, a trim automaton with the same language can be considered
instead). Then, there exists an accepting run θ of AII∆,A, such that the transition

q0
α−→ (q1, . . . , qℓ) occurs on θ. Each state q on θ can be annotated with an injective

partial mapping a : [1..#q] → [1..M] and the result is an accepting run of Ã∆,A
II
.

Hence there exist injective partial functions ai : [1..#qi] → [1..M], for i ∈ [0..ℓ] such

that (q0, a0)
α−→ ((q1, a1), . . . , (qℓ, aℓ)) ∈ δ̃II∆ . Moreover, (qi, ai) ∈ h−1(qi), for each

i ∈ [0..ℓ].

(B) The problem, at this point, is that Ã∆,A
II

is not necessarily choice-free, because

annotating the states of AII∆,A may cause several transitions to occur between different linear

SCCs. These transitions originate from the same 1-transition of AII∆,A and differ only in

the annotations added at step (A). We circumvent this problem by decomposing Ã∆,A
II

into choice-free automata B̃1, . . . , B̃m, such that L(Ã∆,A
II
) =

⋃m
i=1 L(B̃i). To this end, we

choose sets δ̃11 , . . . , δ̃
1
m, such that:

▷ (δ̃II)1 =
⋃m
i=1 δ̃

1
i , and

▷ for each i ∈ [1..m], the set δ̃1i contains exactly one transition (q0, a0)
α−→ ((q1, a1), . . . , (qℓ, aℓ))

from δ̃II∆ , for each transition q0
α−→ (q1, . . . , qℓ) from (δII∆)1.

Moreover, we define the set:

(δ)
∞ def

= {(q0, a0)
α−→ ((q1, a1), . . . , (qℓ, aℓ)) ∈ δ̃II∆ | q0

α−→ (q1, . . . , qℓ) ∈ (δII∆)
∞}

For each i ∈ [1..m], let B̃i
def

= (Σ, Q̃I∆, (qA, ∅), δ̃1i ⊎ δ̃∞). We prove below that B̃1, . . . , B̃m is

indeed a choice-free decomposition of Ã∆,A
II
:

Lemma 4.28.

(1) B̃i is all-satisfiable and choice-free, for i ∈ [1..m].

(2) L(Ã∆,A
II
) =

⋃m
i=1 L(B̃i).

Proof. For space reasons, the proof of this lemma is given in subsection C.7.

(C) Let us fix a choice-free automaton B̃ = (Σ, Q̃I∆, (qA, ∅), δ̃1 ⊎ δ̃∞) among B̃1, . . . B̃m.
Consider an arbitrary transition τ : (q0, a0)

α−→ ((q1, a1), . . . , (qℓ, aℓ)) ∈ δ̃1 ⊎ δ̃∞. We denote

by P0
def

= {x[ϵ]

j | j ∈ dom(a0)} ∪ {y[ϵ]

j ∈ fv(α) | τ ∈ δ̃1}, Pi
def

= {x[i]

j | j ∈ dom(ai)}, for i ∈ [1..ℓ]

and P
def

=
⋃ℓ
i=0 Pi the set of persistent variables occurring in α. The goal of this step is

40 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

to remove from α the variables from P . The outcome of this transformation of α will
be denoted as α. In order to guarantee the preservation of the naming conventions from
Definition 4.11, the remaining (non-persistent) variables from fv(α) \ P are renamed using
the injective mapping ζτ : fv(α) \ P → fv(α) defined as follows:

▷ ζτ (x
[i]

k)
def

= x[i]

k−p where p
def

= card({x[i]

j | j < k} ∩ Pi) for all i ∈ [0..ℓ], k ∈ [1..ni], x
[i]

k ̸∈ Pi,
▷ ζτ (y

[ϵ]

k) = y[ϵ]

k , for all k ∈ [1..m], y[ϵ]

k ̸∈ P0

where m,n0, . . . , nℓ are the numbers of y[ϵ]

j , x
[ϵ]

j , . . . , x
[i]

j , respectively (see Definition 4.11).

Intuitively, the renaming shifts to the left the j indices of the x[i]

j variables so that the
persistent variables indexed according to the assignments ai are ignored. The transformation
of α to α is described for each atom of α, as follows:

▷ every relation atom r(z[ϵ]

1 , . . . , z
[ϵ]

#r) is replaced by rg(ζτ (z
[ϵ]

i1
), . . . , ζτ (z

[ϵ]

ik
)), where rg is a fresh

relation symbol of arity k such that {zi1 , . . . , zik}
def

= {z1, . . . , z#r} \ P0 and g : [1..#r]→
[1..M] is the partial function:

g(j)
def

=

{
a0(j), if z

[ϵ]

j ∈ P0

undefined, otherwise

Note that the arity of rg is at least one, for the following reason. Since relation atoms occur
only in∞-transitions, they can repeat arbitrary many times in characteristic formulæ over
runs. Hence, if such an atom has only persistent variables, these characteristic formulæ
will become unsatisfiable if the atom repeat more than twice. This contradicts, however,

the hypothesis that B̃i is all-satisfiable.
▷ every (dis-)equality atom x ∼ y is replaced by ζτ (x) ∼ ζτ (y) for ∼∈ {=, ̸=} if {x, y}∩P = ∅
and removed otherwise. In particular, note that there is no equality in α between a variable
in P and another one not in P due to elimination of equalities with non-persistent variables
in 1-transitions and to the rule of propagation through ∞-transitions. Moreover, this
transformation turns the label of each 1-transition into emp, because the labels of 1-
transitions contain only equalities involving persistent variables.

The result of this transformation of B̃i is denoted Bi, for each i ∈ [1..m]. Let B be

any of B1, . . . ,Bm and B̃ be the corresponding automaton before the removal of persistent
variables. The properties of this transformation are stated and proved below:

Lemma 4.29.

(1) B is all-satisfiable and choice-free,

(2) tw([[B]]) ≤ tw([[B̃]]),
(3) tw([[B̃]]) ≤ tw([[B]]) + card(δ̃1) ·maxVars(∆).

Proof. For space reasons, the proof of this lemma is given in subsection C.8.

4.5. Wrapping 1-transitions. In subsection 4.4 we have transformed a given automaton
A∆,A into choice-free automata B1, . . . ,Bm without persistent variables. We can assume
w.l.o.g. that the 1-transitions of these automata are labeled by emp, because the only
remaining equalities are between variables y[ϵ] not associated with states and non-persistent

variables x[i]

j . In the following, let B = (Σ,Q, ι, δ) be any of B1, . . . ,Bm and δ = δ
1 ⊎ δ∞

be the partition of its transitions into 1- and ∞-transitions (Definition 4.5). In order to
obtain an expandable SID from B, i.e., using Lemma 4.13 (2), we must be able to embed

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 41

any sequence of runs of B into a single run of B. However, this is currently not possible,
because the labels of the 1-transitions cannot be viewed as labels of ∞-transitions. The
problem is shown by the following example:

Example 4.30. Consider two disjoint structures S1 = (U1, σ1), S2 = (U2, σ2) ∈ [[B]]c, having
the shape depicted in Figure 12 (b). Each Si has all but two elements, call them e1i and
e2i , labeled with a unary relation symbol eg. Then, the composition S1 • S2 will have four

unlabeled elements e11, e
2
1, e

1
2 and e22. Since any structure S = (U, σ) ∈ [[B]]c has exactly

two unlabeled elements, the structure S1 • S2 is not a substructure of S, according to
Definition 3.7. This is because e11, e

2
1, e

1
2, e

2
2 ∈ (supp(σ1) ∪ supp(σ2)) \ (σ1(eg) ⊎ σ2(eg))

are pairwise distinct, hence card((supp(σ1) ∪ supp(σ2)) \ (σ1(eg) ⊎ σ2(eg))) = 4, whereas
card(supp(σ) \ σ(eg)) = 2, independently of the choice of S.

For a Σ-labeled tree t, two positions p and s, such that p ∈ dom(t) (nothing is required
about s), and a sequence of variables x1, . . . , xk, we define the formula:

Ω
p/s
t (x1, . . . , xk)

def

=∗{r(x[s]

1 , . . . , x
[s]

k) | r(x
[p1]

1 , . . . , x
[pk]

k) occurs in Θ(t), x
[pi]

i ≈Θ(t) x
[p]

i , ∀i ∈ [1..k]}

For simplicity, assume, for each transition q0
emp−−→ (q1, . . . , qℓ) ∈ δ

1
of B, that q0, . . . , qℓ belong

to non-trivial SCCs. If some qi belongs to a trivial SCC, i.e., with no transitions from qi to
itself or other states in the same SCC, then #qi must be zero, because all parameters from
its profile have been removed by the previous transformation. In this case, the construction

below is adapted by replacing the formulæ Ω
ϵ/ϵ
t0

and Ω
pj/j
tj

by emp, for the corresponding

states that belong to trivial SCCs. The automaton B is obtained from B by replacing the
label of each such 1-transition with the following formula, for some trees ti corresponding to
resets θipi←qi of B, for i ∈ [0..ℓ]:

q0
∗ i1,...,ik∈[1..#q0]

Ω
ϵ/ϵ
t0

(xi1
,...,xik

) ∗ ∗ j∈[1..ℓ], i1,...,ik∈[1..#qj]
Ω
pj/j

tj
(xi1

,...,xik
)

−−−→ (q1, . . . , qℓ)

Note that the existence of such resets is guaranteed by Lemma 4.18 and the previous
assumption. This construction is illustrated by the following example:

Example 4.31. (continued from Example 4.26) The outcome of applying the above trans-
formation to the automaton B from Example 4.26 is the automaton B given below:

B =

τ1 : (qA, ∅)
eg(x

[1]
1)

−−−−→ ((qC1 , a)) (1)

τ2 : (qC1 , a)
e(x

[ϵ]
1 , y

[ϵ]
4) ∗ eg(y

[ϵ]
4) ∗ y

[ϵ]
4 =x

[1]
1−−−−−−−−−−−−−−−−−−−→ ((qC1 , a)) (∞)

τ3 : (qC1 , a)
eg(x

[1]
1)

−−−−→ ((qC2 , a)) (1)

τ4 : (qC2 , a)
e(x

[ϵ]
1 , y

[ϵ]
6) ∗ eg(y

[ϵ]
6) ∗ y

[ϵ]
6 =x

[1]
1−−−−−−−−−−−−−−−−−−−→ ((qC2 , a)) (∞)

τ5 : (qC2 , a)
emp−−→ () (1)

The transformation adds the relation atoms eg(x
[1]

1) to the labels of τ1 and τ3, respectively.
Note that τ2 and τ4 are (qC1 , a)- and (qC2 , a)-resets, respectively. The added relation atoms
correspond to the relation atoms that label the x[1]

1 variable within the labels of these resets,
taken backwards. All elements from a structure S ∈ [[B]]c are now labeled by eg, hence the
composition of any sequence of structures from [[B]]c can be embedded as a substructure of a
structure from the same set. In other words, the SID obtained from B using Lemma 4.13 (2)
is expandable (Definition 3.8).

42 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

The formal properties of B are stated and proved below:

Lemma 4.32.

(1) B is all-satisfiable,

(2) tw([[B]]) ≤ tw([[B]]) + card(δ
1
) ·maxVars(∆),

(3) tw([[B]]) ≤ tw([[B]])+card(δ
1
)·(1+maxPredAtoms(∆))·relNo(∆)·maxVars(∆)maxRelArity(∆).

Proof. For space reasons, the proof of this lemma is given in subsection C.9.

4.6. The Proof of Lemma 4.1. We have collected all the ingredients needed to prove
the decidability of the treewdith boundedness problem, for SLR formulæ interpreted over
general SIDs. The key point is the proof of Lemma 4.1, the main result being an immediate
consequence of this lemma and Theorem 3.33. To prove Lemma 4.1, we rely on Lemma 4.20,
which states that any sequence of ∞-runs of a choice-free automaton can be disjointly
embedded into an accepting run of the same automaton, such that any two of the embedded
runs are separated by a given number of reset paths in the enclosing run.

Before proving Lemma 4.1, we state a property of the outcome of the above transforma-
tion of automata (Figure 14). This property uses the following notion:

Definition 4.33. Let A be a choice-free automaton. A view for A is a tuple ⟨θ, t, s,S⟩,
such that θ ∈ R∞q (A) is a partial ∞-run over a Σ-labeled tree t, s is a canonical store
for Θ(t) and S is a structure, such that S |=s Θ(t). A structure S′ = (U′, σ′) is encap-
sulated by the view ⟨θ, t, s,S⟩ if (i) S′ ⊑ S, (ii) supp(σ′) ∩ s({x[ϵ]

1 , . . . , x
[ϵ]

#θ(ϵ)}) = ∅, and
(iii) supp(σ′) ∩ s({x[p]

1 , . . . , x
[p]

#q}) = ∅ if, moreover, the partial run θ is a θp←q context.

Intuitively, a structure is encapsulated by a view if it is a substructure of the structure
in the view and it does not “touch” the values of the variables from the root (resp. frontier)
point of the partial run in the view.

Let B be any choice-free automaton resulting from the transformation in Figure 14.
The following lemma shows that each canonical model from [[B]]c can be decomposed into
pairwise disjoint structures, each of which being encapsulated by a separate view for B:
Lemma 4.34. For each structure S = (U, σ) ∈ [[B]]c, there exist pairwise disjoint structures
S1, . . . , Sn and views ⟨θ1, t1, s1,S′1⟩, . . . , ⟨θn, tn, sn,S′n⟩ for B such that S′1, . . . , S

′
n are pairwise

disjoint, S = S1 • . . . • Sn and Si is encapsulated by ⟨θi, ti, si,S′i⟩, for each i ∈ [1..n].

Proof. Let B def

= (Σ,Q, ι, δ). Since S = (U, σ) ∈ [[B]]c, there exists a tree t0 ∈ L(B) such
that S |=s0 Θ(t0) for a store s0, that is canonical for Θ(t0). Let θ0 be an accepting run of
B over t0. Because B is choice-free, θ0 can be decomposed into (i) maximal partial runs
θ01 ∈ R∞r1(B), . . . , θ0n ∈ R

∞
rn(B) consisting of (arbitrarily many) connected ∞-transitions,

and (ii) partial runs τ1, . . . , τm consisting of a single 1-transition each, such that ri is the
state at the root of θ0i and qi is the left-hand side of a 1-transition, for each i ∈ [1..n]. We
refer to Figure 13 (a) for an illustration of the decomposition.

For every i ∈ [1..n] we define Si as the substructure of S constructed along the maximal
partial run θ0i. That is, Si contains all the relation atoms defined on∞-transitions in θ0i and
the relation atoms defined on the entering (and possibly exiting) 1-transition(s) involving
common variables for entering (resp. exiting) state(s). Intuitively, all these relation atoms
occur in the gray part in Figure 13 (a). Note that, since the 1-transitions of B do not equate
variables x[i]

j , for i ∈ N ∪ {ϵ}, the structures Si are pairwise disjoint, and S = S1 • . . . • Sn.

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 43

τℓ

.

ri

ri

τk

. . .

. . . ri

qi

qi

θiθ0iθ0

qi

(a) (b)

ri-reset

qi-reset

Figure 13: Run decomposition

We build the views {⟨θi, ti, si,S′i⟩}i∈[1..n] as follows. For every i ∈ [1..n], we define the
partial run θi by extending the partial run θ0i by the same ri- and qi-resets used in the
transformation of B into B (note that the qi-reset is needed only if θ0i reaches a 1-transition).
This construction is illustrated in Figure 13 (b). Let ti be the Σ-labeled tree corresponding
to the run θi. Let si be a canonical store for Θ(ti) constructed by extending s0 such that
s0(x

[p]) = si(x
[p′]) whenever p and p′ correspond to the same relative position within θ0i. In

other words, si preserves the elements occurring in Si and associates new distinct elements
to all other variables introduced by the resets (in particular, all variables that are equated in
Θ(ti) are mapped to the same element). The store si defines a structure S′i = (U, σ′i), such

that S′i |=si Θ(ti), as σ
′
i(r)

def

= {⟨si(z[p1]

1), . . . , si(z
[pk]

k)⟩ | r(z[p1]

1 , . . . , z
[pk]

k) occurs in Θ(ti)}, for
each relation symbol r ∈ R. We prove below that Si is encapsulated by the view ⟨θi, ti, si,S′i⟩:
▷ By the choice of si, that extends s0 as explained above, we have Si ⊆ S′i. Moreover, no
tuples are added to Si by the inserted resets, because the labeling of 1-transitions in B is
constructed precisely from the resets that guarantee this property, i.e., the construction of
B guarantees that the set of relation atoms occurring in the reset was used to label the
1-transitions. Thus, we have Si ⊑ S′i.

▷ By the construction of the partial run θi, the set of variables {x1[ϵ], . . . , x#ri [ϵ]} in θi are
not related by equalities to any of the variables at the root of θ0i in Θ(ti). In particular,
this is ensured by the fact that B has no persistent variables. Since, si is canonical for
Θ(ti), we obtain that supp(σi) ∩ {si({x[ϵ]

1 , . . . , x
[ϵ]

#ri
})} = ∅. The same argument applies

to the set of variables occurring at the frontier position of θi, i.e., when θ0i reaches the
left-hand side qi of a 1-transition, as in Figure 13 (b).

Dually, the following lemma gathers pairwise disjoint structures into a single rich
canonical model, that meets the conditions of expandability (Definition 3.8):

Lemma 4.35. Let S1, . . . ,Sn be pairwise disjoint structures encapsulated by the views
⟨θ1, t1, s1,S′1⟩, . . ., ⟨θn, tn, sn,S′n⟩ for B, where S′1, . . . ,S

′
n are also pairwise disjoint. Then,

there exists a rich canonical model (S, d) ∈ [[B]]r, such that the conditions (1), (2) and (3)
from Definition 3.8 hold for S1, . . . ,Sn and (S, d).

Proof. Since B is a choice-free automaton, by Lemma 4.20, there exists an accepting run θ
of B over a tree t, such that the following hold:

44 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

(a) each partial run θi is embedded in θ at some position ri ∈ dom(θ), for all i ∈ [1..n],
(b) ri · dom(θi) ∩ rj · dom(θj) = ∅, for all 1 ≤ i < j ≤ n,
(c) each path between the positions ri and rj traverses at least once some reset path,

disjoint from
⋃n
k=1 rk · dom(θk), for all 1 ≤ i < j ≤ n.

For each i ∈ [1..n], since ⟨θi, ti, si,S′i⟩ is a view, we have S′i |=si Θ(ti), hence si(fv(Θ(ti))) ⊆
supp(σ′i), where we assume w.l.o.g. that S′i

def

= (U, σ′i). By point (b) above, the subformulæ
corresponding to the subtrees of t with domains ri · dom(θi), for i ∈ [1..n], have disjoint sets
of free variables. We define a store s as follows, for each variable x[p] ∈ fv(Θ(t)):

▷ if p = rip
′ and p′ ∈ dom(ti), for some i ∈ [1..n], then we set s(x[p])

def

= si(x
[p′]),

▷ otherwise, we chose a fresh value s(x[p]), such that s(x[p]) ̸∈
⋃n
i=1 supp(σ

′
i) and s(x[p]) ̸=

s(z[r]), for each variable z[r], such that x[p] ̸≈Θ(t) z
[r].

By the fact that supp(σ′i) ∩ supp(σ′j) = ∅, i.e., si(fv(Θ(ti))) ∩ sj(fv(Θ(tj))) = ∅, for all

1 ≤ i < j ≤ n, and the construction of s, we obtain that s is canonical for Θ(t). The store s
defines the structure S = (U, σ), as follows:

σ(r)
def

= {⟨s(z1), . . . , s(z#r)⟩ | r(z1, . . . , z#r) occurs in Θ(t)}, for all r ∈ R

By the definition of S, we have S |=s Θ(t). Moreover, we define the relation:

d
def

= {(s(x), s(y)) | x ̸= y or y ̸= x occurs in Θ(t)}

We have obtained a rich canonical model (S, d) ∈ [[Θ(t)∃]]
r
and, since t ∈ L(B), we have

(S, d) ∈ [[B]]r. We prove below the three conditions from Definition 3.8:

(1) By the construction of S, we have S′i ⊆ S, for all i ∈ [1..n]. Since S1, . . . , Sn are pairwise
disjoint, their composition is defined, hence S1 • . . . • Sn ⊆ S′1 • . . . • S′n ⊆ S. W.l.o.g.,
let Si = (U, σi), for all i ∈ [1..n]. To prove S1 • . . . • Sn ⊑ S, by Definition 3.7, we must
prove that:

σ1(r) ⊎ . . . ⊎ σn(r) = {⟨u1, . . . , u#r⟩ ∈ σ(r) | u1, . . . , u#r ∈ supp(σ1) ∪ . . . ∪ supp(σn)} (4.2)

The “⊆” direction follows from S1 • . . . • Sn ⊆ S, hence we are left with proving the dual
“⊇” direction. Let ⟨u1, . . . , u#r⟩ ∈ σ(r) be a tuple, such that u1, . . . , u#r ∈

⋃n
i=1 supp(σi).

By the definition of σ, there exists a relation atom r(z[p]

1 , . . . , z
[p]

#r) in Θ(t), such that

s(zi) = ui, for all i ∈ [1..#r]. To simplify matters, we assume that the position of each
variable in the relation atom is the same, the case where these positions are either p
and pi, or pi and pj, for some p ∈ N∗ and i ≠ j ∈ N is treated in a similar way and left
to the reader. Moreover, for each i ∈ [1..#r], there exists a unique ki ∈ [1..n], such that
ui ∈ supp(σki). Suppose, for a contradiction, that ki ̸= kj , for some 1 ≤ i < j ≤ n. Then,
there exist paths between p and some positions si ∈ ri · dom(ti) and sj ∈ rj · dom(tj),

such that z[p]

i ≈Θ(t) ξ
[si]

i and z[p]

j ≈Θ(t) ξ
[sj]

j . Consider the case where θi and θj are runs

(the case where one of them is a context uses a similar argument and is left to the reader).
Since ti and tj are embedded in t at positions ri and rj , respectively, at least one of these

paths, say the one from p to si, contains the position ri. Then, there exists a variable x
[ri]

ℓi
,

for ℓi ∈ [1..#θi(ϵ)], such that s(x
[ri]

ℓi
) = ui. Hence, supp(σi) ∩ s({x[ri]

1 , . . . , x
[ri]

#θi(ϵ)
}) =

supp(σi)∩si({x[ϵ]

1 , . . . , x
[ϵ]

#θi(ϵ)
}) ̸= ∅, in contradiction with the fact that Si is encapsulated

by ⟨θi, ti, si, S′i⟩, by condition (ii) of Definition 4.33. We obtained that k1 = . . . = k#r,
hence u1, . . . , u#r ∈ supp(σk), leading to ⟨u1, . . . , u#r⟩ ∈ σk(r), for some index k ∈ [1..n].

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 45

This proves (4.2). Since the choice of r was arbitrary, we obtain that S1 • . . . • Sn ⊑ S,
by Definition 3.7.

(2) Suppose, for a contradiction, that there exists a pair (u, v) ∈ d, such that u ∈ supp(σi)
and v ∈ supp(σj), for some indices 1 ≤ i < j ≤ n. Then, there exists a disequality x[p] ̸=
y[p] (or y ≠ x, this case being symmetric) in Θ(t), such that s(x[p]) = u and s(y[p]) = v.

Since u ∈ supp(σi), there exists a variable ξ
[pi]

i such that pi ∈ ri ·dom(ti) and s(ξ
[pi]

i) = u.

Since s is canonical for Θ(t), we have x ≈Θ(t) ξ
[pi]

i . Suppose, for a contradiction, that
p ̸∈ ri · dom(ti). Then, by a similar argument as the one used in the proof of point (1),
we obtain a contradiction with condition (ii) of Definition 4.33, hence p ∈ ri · dom(ti).
Symmetrically, we obtain p ∈ rj · dom(tj), hence ri · dom(ti) ∩ rj · dom(tj) ̸= ∅, which
contradicts point (b) above.

(3) Suppose, for a contradiction, that there exists a relation symbol r ∈ R and tuples
⟨u1, . . . , u#r⟩, ⟨v1, . . . , v#r⟩ ∈ σ(r), such that {u1, . . . , u#r}∩supp(σi) ̸= ∅, {v1, . . . , v#r}∩
supp(σj) ̸= ∅ and {u1, . . . , u#r} ∩ {v1, . . . , v#r} ̸= ∅, for some indices 1 ≤ i < j ≤ n.

Then, there exists two distinct relation atoms r(z
[p1]

1 , . . . , z
[p1]

#r) and r(z
[p2]

1 , . . . , z
[p2]

#r) in Θ(t)

and variables ξ
[si]

i , si ∈ ri · dom(ti) and ξ
[sj]

j , sj ∈ rj · dom(tj), such that z
[p1]

k ≈Θ(t) ξ
[si]

i ,

z
[p2]

ℓ ≈Θ(t) ξ
[sj]

j , for some indices k, ℓ ∈ [1..#r]. For simplicity, we consider that the
position of the variables is the same in the above relation symbols, i.e., p1 and p2, respec-
tively. By an argument similar to the one used in the proof of point (2), we obtain that
p1 ∈ ri · dom(ti) and p2 ∈ rj · dom(tj). However, since {u1, . . . , u#r}∩ {v1, . . . , v#r} ≠ ∅,
there exist indices g, h ∈ [1..#r] such that z

[p1]
g ≈Θ(t) z

[p2]

h . For simplicity, we consider the
case where θi and θj are runs, the case where at least one of them is a context uses a
similar argument being left to the reader. Then the path between ri and rj is contained
with the path between p1 and p2. By point (c) above, this path contains a reset path
disjoint from

⋃n
k=1 rk · dom(θk). Since, moreover, B has no persistent variables, by

construction, we obtain z
[p1]
g ̸≈Θ(t) z

[p2]

h , contradiction.

Ai∆,A

A1
∆,A

An∆,A

...

...

(
Ai∆,A

)I
A∆,A

Bi1

Bimi

Bij
(
Ai∆,A

)II
Lemma 4.23Lemma 4.9

Bij
Lemma 4.32

...

...
Lemma 4.25 Lemma 4.28

Lemma 4.29

Figure 14: The Chain of Automata Transformations

We are now ready to prove Lemma 4.1:

Proof. Let A∆,A be the Σ-labeled automaton corresponding to ∆ and A, such that [[A]]∆ =
[[A∆,A]], by Lemma 4.13 (1). The chain of transformations depicted in Figure 14 produces
the set {Bij}i∈[1..n], j∈[1..mi] of choice-free and all-satisfiable automata, such that [[A∆,A]] is

treewidth bounded if and only if [[Bij]] is treewidth bounded, for each i ∈ [1..n] and j ∈
[1..mi]. In particular, A1

∆,A, . . . ,An∆,A is the language-preserving choice-free decomposition

of A∆,A (Lemma 4.9) and Bi1, . . . ,B
i
mi are obtained by removing the persistent variables

46 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

from each automaton B̃i in the language-preserving choice-free decomposition of (Ã∆,A
i
)II

(Lemma 4.28). We assume, without loss of generality, that the initial state of each Bij is

qB and let Γij be the SID, such that [[Bij]] = [[B]]Γij
and [[Bij]]

r
= [[B]]rΓij

, by Lemma 4.13 (2).

We are left with proving that Γij is expandable for B, for each i ∈ [1..n] and j ∈ [1..mi].

Let Γ be any of the SIDs Γ1
1, . . . ,Γ

n
mn and B be the automaton such that [[B]]cΓ = [[B]]c, by

Lemma 4.13 (2). Let S1, . . . ,Sk ∈ [[B]]cΓ be pairwise disjoint structures. By Lemma 4.34,
for each i ∈ [1..k] there exists a decomposition Si = Si1 • . . . • Siℓi into pairwise disjoint

structures, such that the structure Sij is encapsulated by a view ⟨θij , tij , sij ,S
i
j⟩ for B, for

each i ∈ [1..k] and j ∈ [1..ℓi]. Without loss of generality, we assume that the structures

{Sij}i∈[1..k], j∈[1..ℓi] are pairwise disjoint, hence the composition of S11, . . . , S
n
ℓn

is defined, thus

we obtain S1 • . . . • Sk = S11 • . . . • Snℓn . By Lemma 4.35, there exists a rich canonical model

(S, d) ∈ [[B]]r, such that conditions (1), (2) and (3) from Definition 3.8 hold for S1, . . . ,S
k
ℓk

and (S, d). Since [[B]]r = [[B]]rΓ, by Lemma 4.13 (2), Γ is expandable for B.

4.7. The Decidability of the Treewidth Boundedness Problem for SLR. The proof
of the main result (Theorem 4.36) uses a reduction of an arbitrary SID to a set of expandable
SIDs, having an equivalent treewidth boundedness status (Lemma 4.1). Since treewidth
boundedness is decidable for expandable SIDs (Theorem 3.33), this proves the decidability
of the problem, in the general case. We conclude this section with the proof of the main
result, that is the decidability of the TWBSLR problem, for unrestricted SIDs:

Theorem 4.36. There exists an algorithm that decides, for each SID ∆ and nullary
predicate A, whether the set [[A]]∆ has bounded treewidth. If, moreover, this is the case, then
tw([[A]]∆) ≤ maxVars(∆) +N ·M , where:

M
def

=2 ·maxVars(∆) + (1 +maxPredAtoms(∆)) · relNo(∆) ·maxVars(∆)maxRelArity(∆)

N
def

=max(K,maxPredAtoms(∆)K)

K
def

=predNo(∆) · relNo(∆) ·maxVars(∆)maxVars(∆)+maxRelArity(∆)

Proof. By Lemma 4.1, the treewidth boundedness problem for the set [[A]]∆ can be effectively
reduced to finitely many treewidth boundedness problems for sets [[B]]Γ1

, . . . , [[B]]Γk , where
Γ1, . . . ,Γk are expandable for B. The latter problem is decidable, by Theorem 3.33. The
upper bound follows from the sequence of transformations given in Figure 14. Let Γ be any of
the expandable SIDs Γ1, . . . ,Γk. By Theorem 3.33, we have tw([[B]]Γ) ≤ maxVars(∆). Note
that the maximum number of variables occurring in a rule is not increased by the construction
of Γ from ∆. By Lemma 4.23 (3), Lemma 4.25 (3), Lemma 4.29 (3) and Lemma 4.32 (3),
we obtain tw([[A]]∆) ≤ tw([[B]]Γ) + card(δ1) ·M , where δ1 is the set of 1-transitions of the
choice-free automaton used to define Γ (point (2) of Lemma 4.13) and M = 2 ·maxVars(∆)+

(1 + maxPredAtoms(∆)) · relNo(∆) · maxVars(∆)maxRelArity(∆). Note that card(δ1) · M is
the sum of the increases in the upper bounds of the treewidth along the transformation.
By Lemma 4.9, we obtain card(δ1) ≤ max(card(Q∆),maxPredAtoms(∆)card(Q∆)), where
Q∆ denotes the set of states of A∆,A (Lemma 4.13). Since the entire construction was
done assuming that ∆ is equality-free and all-satisfiable, by lifting these assumptions, we

obtain card(Q∆) ≤ predNo(∆) · relNo(∆) · maxVars(∆)maxVars(∆)+maxRelArity(∆) (Lemma 2.6
and Lemma 2.9).

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 47

Note that, unlike Theorem 3.33, that gives an optimal upper bound for the treewidths
of the structures described by an expandable SID, Theorem 4.36 does not provide such
an optimal upper bound. In particular, the upper bound of Theorem 4.36 grows doubly
exponential in the maxVars(∆) and maxRelArity(∆) parameters and simply exponential in
the predNo(∆) and relNo(∆) parameters. Finding an optimal bound for the general case is
considered as subject for future work.

5. The Treewidth Boundedness Problem for First Order Logic

This section proves the undecidability of the treewidth boundedness problem for first-order
logic. This result places the frontier of decidability for this problem between the classical
first-order logic and substructural SLR with simple inductive definitions, i.e., using only
existentially quantified separating conjunctions of atoms.

We recall that the first-order logic (FO) is the set of formulæ consisting of equalities and
relation atoms, connected by boolean conjunction, negation and existential quantification.
The semantics of first order logic is given by the satisfaction relation (U, σ) ⊩s ϕ between
structures and formulæ, parameterized by a store s : V→ U such that (U, σ) ⊩s r(x1, . . . , x#r)
iff ⟨s(x1), . . . , s(x#r)⟩ ∈ σ(r). If ϕ is a sentence the store is not important, thus we omit the
superscript and write S ⊩ ϕ instead. The set of models of a FO sentence ϕ is denoted as
[[ϕ]]

def

= {S | S ⊩ ϕ}. Although we use the same notation for the sets of models of FO and SLR
formulæ, the underlying logic is clear from the context.

This section is concerned with the proof of the following theorem:

Theorem 5.1. The problem is [[ϕ]] treewidth-bounded, for a given FO sentence ϕ with at
least two binary relation symbols and several unary relation symbols, is undecidable.

Proof. We will reduce from the undecidability of the Tiling Problem [Ber66]. We first recall
its definition. Given a finite set of tiles S = {t1, . . . , tn} is there a tiling of the plane such
that the colors of neighbouring tiles match? (We note that rotating or reflecting the tiles
is not allowed.) In more detail: We assume the plane is given by integer coordinates (x, y)
with x, y ∈ Z. We want to put a copy of a tile at every coordinate. We will require that
neighbouring tiles match. For this we assume to be given a relation H ⊆ S × S – specifying
which tiles match can be placed next to each other horizontally – and V ⊆ S×S – specifying
which tiles match can be placed next to each other vertically. We now require for every
tiling that (ti, tj) ∈ H, for all tiles ti and tj placed at coordinates (x, y) and (x+ 1, y), and
(ti, tj) ∈ V , for all tiles ti and tj placed at coordinates (x, y) and (x, y + 1). It is well-known
that it is undecidable whether such a tiling exists [Ber66]. In fact, it is known that is already
undecidable whether such a tiling exists for the upper-right quadrant of the plane, i.e., when
coordinates (x, y) are restricted to x, y ∈ N.

We will now reduce the tiling problem to deciding whether a given first-order formula
has infinitely many non-isomorphic models of unbounded treewidth. We consider some
instance of the tiling problem. For encoding this problem, we define the signature R =
{up, right, N, S, E, W, I, T1, . . . , Tn} to consist of the binary relations up and right, the unary
relations S, E, W, N, I and the unary relations T1, . . . , Tn (one for each tile in the tiling instance).
We then consider the following formula:

ϕ
def

=
∧13

i=1
ψi ∧

∧4

j=1
ϕj

where:

48 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

▷ ψ1
def

= ∀x∃≤1y . right(x, y)∧∃≤1y . right(y, x) states that right and right−1 are partial
functions, ψ2 states that that up and up−1 are partial functions,

▷ ψ3
def

= ∀x, y, z . up(x, y) ∧ right(x, z)→ ∃w.up(z, w) ∧ right(y, w) states that right and
up commute, ψ4 states that right−1 and up commute, ψ5 states that right and up−1

commute and ψ6 states that right−1 and up−1 commute,

▷ ψ7
def

= ∀x . S(x)↔ ¬∃y.up(y, x) states that south-labelled nodes are exactly the ones that
do not have incoming up edges, and ψ8, ψ9, ψ10 define the analogous property for the
west, east, and north labels,

▷ ψ11
def

= ∀x . I(x)↔ ¬(S(x) ∨ E(x) ∨ N(x) ∨ W(x)) states that internal nodes are exactly the
ones not labelled by south, east, north or west,

▷ ψ12
def

= ∀x . I(x) → ∃y . right(x, y) ∧ ∃y . right(y, x) states that internal nodes have
exactly one outgoing and exactly one incoming right edge, ψ13 states that internal nodes
have exactly one outgoing and exactly one incoming up edge,

▷ ϕ1
def

= ∀x .
∨n
i=1 Ti(x) states that every coordinate holds at least one tile,

▷ ϕ2
def

= ∀x .
∧
i ̸=j ¬Ti(x) ∨ ¬Tj(x) states that every coordinate holds at most one tile,

▷ ϕ3
def

= ∀x∀y . right(x, y)→
∨

(ti,tj)∈H Ti(x) ∧ Tj(y) states that tiles, that are next to each

other horizontally, satisfy the horizontal matching constraint, and
▷ ϕ4

def

= ∀x∀y . up(x, y) →
∨

(ti,tj)∈V Ti(x) ∧ Tj(y) states that tiles, that are next to each

other vertically, satisfy the vertical matching constraint.

As usual, the formulæ ∃≤1x . φ stand for ∃x . φ → ∀y . φ[x/y] → y = x. The proof will
make use of the fact that ϕ encodes grids and non-standard models of grids, which are
(disjoint unions of) grid-like structures. We will argue the following:

Fact 5.2. Each model of ϕ can be decomposed into (disjoint unions of) grids, cylinders, and
toruses, where grids have S, E, W, N borders, cylinders have either S, N or E, W borders, and
toruses do not have any borders and only consist of internal nodes.

Proof. We recall that we are only interested in finite models of first-order formulæ. We
note that ϕ specifies that up and right are (partial) functions, and, hence, we will use
functional notation in the following. We now fix a model (U, σ) of ϕ – as usual, we require
that U ̸= ∅. We decompose (U, σ) into its maximally connected components, connected
via up, right. We choose a representative uC , for each component C. We observe that
either there are j ≤ 0 ≤ i such that rightj(uC) is W-labelled and righti(uC) is E-labelled,
or righti(uC) = uC , for some i ≥ 0 (because the universe is finite and the functionality
of right and right−1 ensures that the only possible loop returns to uC). An analogous
statement holds for up as well as the N and S labels. We now call a component C a grid, if
uC reaches S, E, W, N via up, right and their inverses, a cylinder if uC reaches S, N or E, W via
up and its inverse resp. right and its inverse, or a torus, otherwise.

We now justify the naming of these components:

Fact 5.3. Consider a grid component C with representative uC such that rightj(uC) is
W-labelled, righti(uC) is E-labelled, up

k(uC) is S-labelled and upl(uC) is N-labelled, for some
j ≤ 0 ≤ i and k ≤ 0 ≤ l. We claim that:

(1) the elements righta(upb(uC)) exist, for all j ≤ a ≤ i and all k ≤ b ≤ l,
(2) an element righta(upb(uC)), for j ≤ a ≤ i and k ≤ b ≤ l, is E-labelled iff a = i;

analogous claims hold for the labels S, W, N,
(3) the elements righta(upb(uC)) are internal nodes, for all j < a < i and all k < b < l,

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 49

(4) the elements righta(upb(uC)) are pairwise different, for all j ≤ a ≤ i and all k ≤ b ≤ l,
(5) all elements of the component can be represented as righta(upb(uC)), for some j ≤ a ≤ i

and k ≤ b ≤ l, and
(6) the component is isomorphic to a grid.

Proof. Items (1), (2) and (3) directly follow from the commutativity requirements. For (4), we
consider some j ≤ a1, a2 ≤ i and k ≤ b1, b2 ≤ l. We will show that a1 ̸= a2 resp. b1 ̸= b2 imply
that righta1(upb1(uC)) ̸= righta2(upb2(uC)). We will assume that righta1(upb1(uC)) =
righta2(upb2(uC)) and derive a contradiction. Let us assume that a1 > a2 (the other
cases are analogous). Then, we have righta1+s(upb1(uC)) = righta2+s(upb2(uC)) for
s = i − a1 ≥ 0. However, righta1+s(upb1(uC)) is E-labelled, while righta2+s(upb2(uC))
is not, by (2), contradiction. For (5), we observe that every node reachable from uC
connected via up, right and their inverses can be represented as righta(upb(uC)), because
of the commutativity requirements; further, we must have j ≤ a ≤ i and k ≤ b ≤ l
because the S, E, W, N borders do not have outgoing edges. For (6), we observe that the
component is isomorphic to the structure with domain {(x, y) | x, y ∈ [j, i], y ∈ [k, l]},
where right is interpreted as {((x, y), (x + 1, y)) | x ∈ [j, i − 1], y ∈ [k, l]} and up as
{((x, y), (x, y + 1)) | x ∈ [j, i], y ∈ [k, l − 1]}.

Fact 5.4. Consider a cylinder component C with representative uC such that rightj(uC) is
W-labelled, righti(uC) is E-labelled, and upk(uC) = uC for some j ≤ 0 ≤ i and k ≤ 0, where
k is the smallest number with this property. (The properties stated below hold analogously
for N, S cylinders). We claim that:

(1) the elements righta(upb(uC)) exist, for all j ≤ a ≤ i and all 0 ≤ b < k,
(2) an element righta(upb(uC)), for j ≤ a ≤ i and 0 ≤ b < k, is E-labelled iff a = i; an

analogous claim hold for the label W,
(3) the elements righta(upb(uC)) are internal nodes, for all j < a < i and all 0 ≤ b < k,
(4) all the elements righta(upb(uC)) are pairwise different, for all j ≤ a ≤ i and all

0 ≤ b < k,
(5) all nodes of the component can be represented as righta(upb(uC)), for some j ≤ a ≤ i

and 0 ≤ b < k, and
(6) the component is isomorphic to a cylinder, i.e., a grid for which the north-border connects

to south-border.

Proof. Items (1), (2) and (3) directly follow from the commutativity requirements. For (4),
we consider some j ≤ a1, a2 ≤ i and 0 ≤ b1, b2 < k. We will show that a1 ̸= a2
resp. b1 ̸= b2 imply that righta1(upb1(uC)) ̸= righta2(upb2(uC)). We will assume that
righta1(upb1(uC)) = righta2(upb2(uC)) and derive a contradiction. Let us first assume
that a1 > a2 (the case a1 < a2 is symmetric). Then, we have righta1+s(upb1(uC)) =
righta2+s(upb2(uC)) for s = i − a1. However, righta1+s(upb1(uC)) is E-labelled, while
righta2+s(upb2(uC)) is not, by (2), contradiction. Now we assume a1 = a2 and b1 > b2
(the case b1 < b2 is symmetric). Then, righta1(upb1(uC)) = righta2(upb2(uC)) implies
that upb1−b2(uC)) = uC with 0 ≤ b1 − b2 < k. However, this contradicts that k is the
smallest number with this property. For (5), we observe that every node reachable from
uC connected via up, right and their inverses can be represented as righta(upb(uC)),
because of the commutativity requirements; further, we can in fact choose 0 ≤ b < k
because of commutativity and the assumption that upk(uC) = uC . Moreover, we must have
j ≤ a ≤ i because the E, W borders do not have outgoing edges. For (6), we observe that

50 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

the component is isomorphic to the structure with domain {(x, y) | x, y ∈ [j, i], y ∈ [k, l]},
where right is interpreted as {((x, y), (x + 1, y)) | x ∈ [j, i − 1], y ∈ [0, k − 1]} and up as
{((x, y), (x, y + 1)) | x ∈ [j, i], y ∈ [0, k − 2]} ∪ {((x, k), (x, 1)) | x ∈ [j, i]}.

Fact 5.5. Consider a torus component C, with representative uC such that upk(uC) = uC
and rightl(uC) = uC for some k ≤ 0 and l ≤ 0, where k and l are the smallest numbers
with this property. We claim that:

(1) the elements exists righta(upb(uC)), for all 0 ≤ a < k and all 0 ≤ b < l,
(2) the elements righta(upb(uC)) are internal nodes, for all 0 ≤ a < k and all 0 ≤ b < l,
(3) all nodes of the component can be represented as righta(upb(uC)), for some 0 ≤ a < k

and 0 ≤ b < l.

Proof. Items (1) and (2) directly follow from the commutativity requirements. For (3),
we observe that every node reachable from uC connected via up, right and their inverses
can be represented as some righta(upb(uC)) because of the commutativity requirements;
further, we can in fact choose 0 ≤ a < k and 0 ≤ b < l because of commutativity and the
assumptions that upk(uC) = uC and rightk(uC) = uC . We note that the righta(upb(uC))
are in general not pairwise different (e.g., we might have righta(uC) = upb(uC) for some
0 ≤ a < k and 0 ≤ b < l). However, in our below argument we do not need to distinguish
whether all the elements righta(upb(uC)) of a torus component are pairwise different.

The following claim reduces the treewidth boundedness problem for first-order logic to
the tiling problem for the first quadrant of the plane:

Fact 5.6. ϕ has models of unbounded treewidth iff there is a tiling of the upper-right
quadrant of the plane.

Proof. “⇐” Let us assume that there is a tiling of the upper-right quadrant of the plane.
Then, for every n ∈ N, this tiling induces a square grid Gn of size n × n with Gn |= ϕ:
simply take the tiles at positions (x, y), with x, y ∈ [1, n], from the tiling of the upper-right
quadrant, and verify that in this way we obtain a model of the formula ϕ.
“⇒” We now assume that ϕ has models of unbounded treewidth, i.e., for every i ≥ 1 there is
a finite model (U, σ) with tw((U, σ)) ≥ i. If any model (U, σ) contains a torus component C,
we immediately obtain a tiling of the upper-right quadrant by unrolling the torus: we define
the tiling of the upper right quadrant by placing the tile of the element righti(upj(uC)) at

position (i, j). It is then routine to verify that the subformula
∧4
j=1 ϕj of ϕ ensures that

the matching requirements of a tiling are satisfied. Hence, we are left with the case that no
model of ϕ contains a torus component.

We now observe that an n×m grid has treewidth min{n,m} and an n×m cylinder has
treewidth min{2n,m} resp. min{n, 2m} for E, W resp. S, N cylinders. For the n×m grid, this
follows from the k-cops and robber game, defined as follows. A position in the game is a pair
(γ, r), where γ ⊆ [1..n]× [1..m], card(γ) = k and r ∈ [1..n]× [1..m] \ γ. The game can move
from (γi, ri) to (γi+1, ri+1) iff there exists a path between ri and ri+1 in the restriction of the
grid to [1..n]× [1..m] \ (γi ∩ γi+1). We say that k cops catch the robber iff every sequence
of moves in the game is finite. It is known that, if the treewidth of the graph is greater or
equal to k, then k+1 cops catch the robber on a graph G [ST93]. Since min{n,m}− 1 cops
do not catch the robber (which can always move to the intersection of a cop-free row and a
cop-free column) it follows that the treewidth of the grid is greater than min{n,m} − 1. At
the same time, there exists a tree decomposition of width min{n,m}. For the n ×m N-S

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 51

cylinder (the case of the E-W cylinder is analogous), we need extra n cops to prevent the
robber escaping wrapping around the E-W axis, thus the treewidth is min{2n,m}.

We now consider some i ≥ 0 and some model (U, σ) with tw((U, σ)) ≥ 2i that does
not contain torus components. Then, N decomposes into grid components and cylinder
components. Because of our assumption tw((U, σ)) ≥ 2i there must be some component C
of N with tw(C) ≥ 2i. Now, we can deduce that C contains some square grid M of size i× i
as a substructure (this follows from 2i ≤ min{n,m} for grids and from 2i ≤ min{n, 2m}
resp. 2i ≤ min{2n,m} for cylinders). Hence, we can restrict our attention to models of ϕ
that are square grids. Let M1,M2, . . . be a sequence of models with Mn |= ϕ, where each Mn

is a square grid of size n×n. We are now going to construct a sequence of models G1, G2, . . .
such that each Gn is a square grid of size n with Gn |= ϕ, and each Gn is included in Gn+1,
where we say a model I of ϕ is included in a model J of ϕ if I resp. J are square grids
of size n × n resp. m ×m, and we have that n ≤ m and all tiles at positions (x, y), with
x, y ∈ [1, n], are the same in both models. We construct the sequence G1, G2, . . . inductively,
maintaining an infinite sequence of models Mn

1 ,M
n
2 , . . ., for each n ∈ N, such that Gn is

included in all Mn
i : Take G1 to be a model that consists of a single tile, which appears

infinitely often at position (1, 1) in the models M1,M2, . . .; then we obtain the sequence
M1

1 ,M
1
2 , . . . as the restriction of M1,M2, . . . to the models that include G1. Assume we have

already defined Gn. Choose some square grid Gn+1 of size n+ 1 that is included infinitely
often in models of the sequence Mn

1 ,M
n
2 , . . . (note that such a square grid must exist by the

pigeonhole principle); then obtain the sequence Mn+1
1 ,Mn+1

2 , . . . by restricting the sequence
to the Mn

1 ,M
n
2 , . . . to the models that include Gn+1. With the sequence G1, G2, . . . at hand

we now obtain a tiling of the plane: For position (i, j), with i, j ∈ N, simply take the tile at
this position in Gmax{i,j}. We now verify that the horizontal resp. vertical requirements of a
tiling are satisfied. We verify only the horizontal requirement (the vertical one is symmetric).
Consider tiles at positions (i, j) and (i+ 1, j). If i ̸= j, then both tiles have been defined
by Gmax{i,j}, and the matching requirement is satisfied because Gmax{i,j} is a model of ϕ.
If i = j then the tile at position (i, i) is defined by Gi and the tile at position (i+ 1, i) is
defined by Gi+1. Now we observe that the tile at position (i, i) in Gi is the same as the tile
at position (i, i) in Gi+1, because Gi is included in Gi+1, and the matching requirement is
satisfied because Gi+1 is a model of ϕ.

This concludes the proof of the theorem.

6. Conclusions

We have presented a decision procedure for the treewidth boundedness problem in the
context of SLR, a generalization of Separation Logic over relational signatures, interpreted
over structures. This procedure allows to define the precise fragment of SLR in which every
formula has a bound on the treewidth of its models. This fragment is the right candidate
for the definition of a fragment of SLR with a decidable entailment problem. Another
application is checking that each graph defined by a treewidth-bounded SLR formula satisfies
MSO-definable properties such as, e.g., Hamiltonicity, or 3-Colorability.

52 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

References

[ABIK22] Emma Ahrens, Marius Bozga, Radu Iosif, and Joost-Pieter Katoen. Reasoning about distributed
reconfigurable systems. Proc. ACM Program. Lang., 6(OOPSLA2):145–174, 2022. doi:10.1145/
3563293.

[ABS00] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web: From Relations to Semistruc-
tured Data and XML. Morgan Kaufmann, 2000.

[Acz77] Peter Aczel. An introduction to inductive definitions. In Handbook of Mathematical Logic, vol-
ume 90 of Studies in Logic and the Foundations of Mathematics, pages 739–782. Elsevier, 1977.
doi:10.1016/S0049-237X(08)71120-0.

[BBI22a] Marius Bozga, Lucas Bueri, and Radu Iosif. Decision problems in a logic for reasoning about
reconfigurable distributed systems. In Automated Reasoning - 11th International Joint Conference,
IJCAR 2022, Haifa, Israel, August 8-10, 2022, Proceedings, volume 13385 of Lecture Notes in
Computer Science, pages 691–711. Springer, 2022. doi:10.1007/978-3-031-10769-6_40.

[BBI22b] Marius Bozga, Lucas Bueri, and Radu Iosif. On an invariance problem for parameterized concurrent
systems. In Bartek Klin, Slawomir Lasota, and Anca Muscholl, editors, 33rd International
Conference on Concurrency Theory, CONCUR 2022, September 12-16, 2022, Warsaw, Poland,
volume 243 of LIPIcs, pages 24:1–24:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.CONCUR.2022.24.

[BCO06] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular automatic assertion
checking with separation logic. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and
Willem-Paul de Roever, editors, Formal Methods for Components and Objects, pages 115–137,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[Ber66] Robert Berger. The undecidability of the domino problem. American Mathematical Soc., 1966.
[BFPG14] James Brotherston, Carsten Fuhs, Juan Antonio Navarro Pérez, and Nikos Gorogiannis. A decision

procedure for satisfiability in separation logic with inductive predicates. In Thomas A. Henzinger
and Dale Miller, editors, Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages 25:1–25:10.
ACM, 2014. doi:10.1145/2603088.2603091.

[Bod98] Hans L. Bodlaender. A partial k -arboretum of graphs with bounded treewidth. Theor. Comput.
Sci., 209(1-2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

[CDNQ12] Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Automated verification of
shape, size and bag properties via user-defined predicates in separation logic. Science of Computer
Programming, 77(9):1006–1036, 2012. The Programming Languages track at the 24th ACM
Symposium on Applied Computing (SAC’09). doi:10.1016/j.scico.2010.07.004.

[CDOY11] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Compositional
shape analysis by means of bi-abduction. J. ACM, 58(6), December 2011. doi:10.1145/2049697.
2049700.

[CE12] Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach. Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 2012. doi:10.1017/CBO9780511977619.

[CGG02] Luca Cardelli, Philippa Gardner, and Giorgio Ghelli. A Spatial Logic for Querying Graphs. In
Peter Widmayer, Francisco Triguero Ruiz, Rafael Morales Bueno, Matthew Hennessy, Stephan
Eidenbenz, and Ricardo Conejo, editors, Proceedings of the 29th International Colloquium on
Automata, Languages and Programming (ICALP’02), volume 2380 of Lecture Notes in Computer
Science, pages 597–610. Springer, July 2002.

[CHO+11] Byron Cook, Christoph Haase, Joël Ouaknine, Matthew J. Parkinson, and James Worrell.
Tractable reasoning in a fragment of separation logic. In Joost-Pieter Katoen and Barbara König,
editors, CONCUR 2011 - Concurrency Theory - 22nd International Conference, CONCUR 2011,
Aachen, Germany, September 6-9, 2011. Proceedings, volume 6901 of Lecture Notes in Computer
Science, pages 235–249. Springer, 2011. doi:10.1007/978-3-642-23217-6_16.

[Cou90] Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

[COY07] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local action and abstract separation
logic. In 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), 10-12 July 2007,

https://doi.org/10.1145/3563293
https://doi.org/10.1145/3563293
https://doi.org/10.1016/S0049-237X(08)71120-0
https://doi.org/10.1007/978-3-031-10769-6_40
https://doi.org/10.4230/LIPIcs.CONCUR.2022.24
https://doi.org/10.1145/2603088.2603091
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1016/j.scico.2010.07.004
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1017/CBO9780511977619
https://doi.org/10.1007/978-3-642-23217-6_16
https://doi.org/10.1016/0890-5401(90)90043-H

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 53

Wroclaw, Poland, Proceedings, pages 366–378. IEEE Computer Society, 2007. doi:10.1109/LICS.
2007.30.

[DNM08] Pierpaolo Degano, Rocco De Nicola, and José Meseguer, editors. Concurrency, Graphs and Models,
Essays Dedicated to Ugo Montanari on the Occasion of His 65th Birthday, volume 5065 of Lecture
Notes in Computer Science. Springer, 2008. doi:10.1007/978-3-540-68679-8.

[DPJ08] Dino Distefano and Matthew J. Parkinson J. jStar: towards practical verification for java. In
Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented Programming Systems
Languages and Applications, OOPSLA ’08, page 213–226, New York, NY, USA, 2008. Association
for Computing Machinery. doi:10.1145/1449764.1449782.

[EF95] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Perspectives in Mathematical Logic.
Springer, 1995.

[EIP21a] Mnacho Echenim, Radu Iosif, and Nicolas Peltier. Decidable entailments in separation logic with
inductive definitions: Beyond establishment. In Christel Baier and Jean Goubault-Larrecq, editors,
29th EACSL Annual Conference on Computer Science Logic (CSL 2021), volume 183 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 20:1–20:18, Dagstuhl, Germany, 2021.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CSL.2021.20.

[EIP21b] Mnacho Echenim, Radu Iosif, and Nicolas Peltier. Unifying decidable entailments in separation
logic with inductive definitions. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction
- CADE 28 - 28th International Conference on Automated Deduction, Virtual Event, July 12-15,
2021, Proceedings, volume 12699 of Lecture Notes in Computer Science, pages 183–199. Springer,
2021. doi:10.1007/978-3-030-79876-5_11.

[EIP22] Mnacho Echenim, Radu Iosif, and Nicolas Peltier. Entailment is undecidable for symbolic heap
separation logic formulæ with non-established inductive rules. Inf. Process. Lett., 173:106169,
2022. doi:10.1016/J.IPL.2021.106169.

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

[IO01] Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable data structures.
In Chris Hankin and Dave Schmidt, editors, Conference Record of POPL 2001: The 28th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, London, UK, January
17-19, 2001, pages 14–26. ACM, 2001.

[IRS13] Radu Iosif, Adam Rogalewicz, and Jiŕı Simácek. The tree width of separation logic with recursive
definitions. In Maria Paola Bonacina, editor, Automated Deduction - CADE-24 - 24th International
Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings,
volume 7898 of Lecture Notes in Computer Science, pages 21–38. Springer, 2013. doi:10.1007/
978-3-642-38574-2_2.

[IZ23] Radu Iosif and Florian Zuleger. Expressiveness results for an inductive logic of separated relations.
In Guillermo A. Pérez and Jean-François Raskin, editors, 34th International Conference on Con-
currency Theory (CONCUR 2023), volume 279 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 20:1–20:20, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.CONCUR.2023.20.

[JKM+17] Christina Jansen, Jens Katelaan, Christoph Matheja, Thomas Noll, and Florian Zuleger. Unified
reasoning about robustness properties of symbolic-heap separation logic. In Hongseok Yang, editor,
Programming Languages and Systems - 26th European Symposium on Programming, ESOP 2017,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings, volume 10201 of Lecture Notes in Computer
Science, pages 611–638. Springer, 2017. doi:10.1007/978-3-662-54434-1_23.

[JM82] Neil D. Jones and Steven S. Muchnick. A flexible approach to interprocedural data flow analysis
and programs with recursive data structures. In Proceedings of the 9th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’82, page 66–74, New York, NY,
USA, 1982. Association for Computing Machinery. doi:10.1145/582153.582161.

[KR04] Viktor Kuncak and Martin Rinard. Generalized records and spatial conjunction in role logic. In
Static Analysis, pages 361–376, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[KZ20] Jens Katelaan and Florian Zuleger. Beyond symbolic heaps: Deciding separation logic with
inductive definitions. In Elvira Albert and Laura Kovács, editors, LPAR 2020: 23rd International
Conference on Logic for Programming, Artificial Intelligence and Reasoning, Alicante, Spain,

https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1007/978-3-540-68679-8
https://doi.org/10.1145/1449764.1449782
https://doi.org/10.4230/LIPIcs.CSL.2021.20
https://doi.org/10.1007/978-3-030-79876-5_11
https://doi.org/10.1016/J.IPL.2021.106169
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/978-3-642-38574-2_2
https://doi.org/10.1007/978-3-642-38574-2_2
https://doi.org/10.4230/LIPIcs.CONCUR.2023.20
https://doi.org/10.1007/978-3-662-54434-1_23
https://doi.org/10.1145/582153.582161

54 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

May 22-27, 2020, volume 73 of EPiC Series in Computing, pages 390–408. EasyChair, 2020.
doi:10.29007/vkmj.

[LL23] Quang Loc Le and Xuan-Bach Dinh Le. An efficient cyclic entailment procedure in a fragment
of separation logic. In Orna Kupferman and Pawel Sobocinski, editors, Foundations of Software
Science and Computation Structures - 26th International Conference, FoSSaCS 2023, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2023, Paris,
France, April 22-27, 2023, Proceedings, volume 13992 of Lecture Notes in Computer Science,
pages 477–497. Springer, 2023. doi:10.1007/978-3-031-30829-1_23.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In 17th IEEE
Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark,
Proceedings, pages 55–74. IEEE Computer Society, 2002. doi:10.1109/LICS.2002.1029817.

[See91] D. Seese. The structure of the models of decidable monadic theories of graphs. Annals of Pure
and Applied Logic, 53(2):169–195, 1991. doi:10.1016/0168-0072(91)90054-P.

[ST93] P.D. Seymour and R. Thomas. Graph searching and a min-max theorem for tree-width. Journal
of Combinatorial Theory, Series B, 58(1):22–33, 1993. doi:10.1006/jctb.1993.1027.

[vD94] Dirk van Dalen. Logic and structure (3. ed.). Universitext. Springer, 1994.

Appendix A. Proofs from section 2

A.1. Proof of Lemma 2.9. Without loss of generality, we consider that ∆ is equality-free
(Lemma 2.6). We propose a construction using an idea of Brotherston et al [BFPG14],
that characterizes the satisfiability of a predicate by an abstraction consisting of tuples of
parameters occurring in the interpretation of relation symbols. A similar abstraction has
been used to check satisfiability of SLR formulæ [BBI22a].

Definition A.1. A base σ♯ is a mapping σ♯ : R → mpow(V+) of relation symbols r into
multisets of tuples of variables of length #r each. A base is satisfiable iff σ♯(r) is a set, for
all r ∈ R. Given a set of variables X ⊆ V, let SatBase(X) denote the set of satisfiable bases

whose images contain only variables from X and let SatBase
def

= SatBase(V).

We consider three partial operations on SatBase. First, the composition is σ♯1 ⊗
σ♯2

def

= σ♯1 ∪ σ
♯
2 if σ♯1 ∪ σ

♯
2 is satisfiable, and undefined, otherwise. Second, the substitu-

tion σ♯[x1/y1, . . . , xn/yn] replaces simultaneously each occurrence of xj by yj in σ
♯, for all

j ∈ [1..n]. Third, given a set X ⊆ V of variables, the projection is:

σ♯⇃X
def

= λr . {⟨x1, . . . , xn⟩ ∈ σ♯(r) | x1, . . . , xn ∈ X}

Finally, for a qpf formula ϕ, we define:

Base(ϕ)
def

= λr . {{⟨x1, . . . , xn⟩ | r(x1, . . . , xn) occurs in ϕ}}

The predicates Bσ
♯
of the SID ∆ are obtained by annotating each predicate B that occurs

in ∆ with a satisfiable base σ♯. The arity of each predicate Bσ
♯
is the arity of B. Then ∆

contains the rules:

B
σ♯0
0 (x1, . . . , x#B0)← ∃y1 . . . ∃ym . ψ ∗ ∗ℓi=1 B

σ♯i
i (zi,1, . . . , zi,#Bi)

where B0(x1, . . . , x#B0)← ∃y1 . . . ∃ym . ψ ∗ ∗ℓi=1 Bi(zi,1, . . . , zi,#Bi) is a rule of ∆, ψ is the
largest qpf formula from its right-hand side and, moreover, the following condition holds:

σ♯0 =
(
Base(ψ)⊗

⊗ℓ

i=1
σ♯i [x1/zi,1, . . . , x#Bi/zi,#Bi]

)
⇃{x1,...,x#B0

}

https://doi.org/10.29007/vkmj
https://doi.org/10.1007/978-3-031-30829-1_23
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1016/0168-0072(91)90054-P
https://doi.org/10.1006/jctb.1993.1027

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 55

In addition, ∆ contains a rule A← Aσ
♯
, for each satisfiable base σ♯ ∈ SatBase. Note that ∆

is finite, because ∆ and SatBase are finite. We now prove the points from the statement of
Lemma 2.9:
“∆ is all-satisfiable for A” We prove the following, more general, fact:

Fact A.2. For each predicate Bσ
♯
that occurs in ∆, each predicate-free formula ϕ such that

Bσ
♯ ⇒∗

∆
ϕ and each injective store s over {x1, . . . , x#B}, there exists a structure S = (U, σ)

such that S |=s ϕ and, for all r ∈ R and tuples of variables ⟨xj1 , . . . , xj#r
⟩ with jk ∈ [1..#B]

for all k ∈ [1..#r], we have ⟨xj1 , . . . , xj#r
⟩ ∈ σ♯(r) if and only if ⟨s(xj1), . . . , s(xj#r

)⟩ ∈ σ(r).

Proof. We proceed by induction on the length of the unfolding Bσ
♯ ⇒∗

∆
ϕ. The first step of

the unfolding uses a rule:

Bσ
♯
(x1, . . . , x#B)← ∃y1 . . . ∃ym . ψ ∗ ∗ℓi=1 B

σ♯i
i (zi,1, . . . , zi,#Bi)

and for all i ∈ [1..ℓ], we have B
σ♯i
i ⇒∗∆ ϕi, such that

ϕ = ∃y1 . . . ∃ym . ψ ∗ ∗ℓi=1 ϕi[x1/zi,1, . . . , x#Bi/zi,#Bi]

modulo a reordering of atoms. Let s′ be an injective store that extends s over {y1, . . . , ym}.
For all i ∈ [1..ℓ], we define si over {x1, . . . , x#Bi} by si(xj)

def

= s′(zi,j) for all j ∈ [1..#Bi]. By

the inductive hypothesis applied to the unfolding B
σ♯i
i ⇒∗∆ ϕi, there exists a structure Si =

(Ui, σi) such that Si |=si ϕi and ⟨xj1 , . . . , xj#r
⟩ ∈ σ♯i (r) if and only if ⟨si(xj1), . . . , si(xj#r

)⟩ ∈
σi(r). We can furthermore assume for all i1 ̸= i2 ∈ [1..ℓ] that supp(σi1) ∩ supp(σi2) =
{s′(x1), . . . , s′(x#B), s

′(y1), . . . , s
′(ym)}. Since ψ is equality-free, there exists a structure Sψ

such that Sψ |=s′ ψ, and Base(ψ) is a satisfiable base. We then prove that the structure

S = (U, σ)
def

= Sψ • S1 • . . . • Sℓ is defined and meets the requirements from the statement:

▷ Let r ∈ R, and suppose, for a contradiction, that there exists a tuple ⟨u1, . . . , u#r⟩ ∈ σi1(r)∩
σi2(r) for i1 ̸= i2 ∈ [1..ℓ]. From the induction hypothesis and because s′ is injective, there ex-

ists ⟨z1, . . . , z#r⟩ ∈ σ♯i1 [x1/zi1,1, . . . , x#Bi1
/zi1,#Bi1

](r) ∩ σ♯i2 [x1/zi2,1, . . . , x#Bi2
/zi2,#Bi2

](r)

with s′(zk) = uk for all k ∈ [1..#r]. This contradicts that the following base composition:

σ♯i1 [x1/zi1,1, . . . , x#Bi1
/zi1,#Bi1

] ⊗ σ♯i2 [x1/zi2,1, . . . , x#Bi2
/zi2,#Bi2

]

is defined. However, this must be the case, for the above derivation rule to exist in ∆.
Therefore, the composition S1 • . . . • Sℓ is defined. The same type of argument can be used
if the tuple occurs in the intersection between the interpretation of a relation symbol in
Sψ and Si, for some i ∈ [1..ℓ], thus the composition Sψ • S1 • . . . • Sℓ is defined.

▷ Sψ • S1 • . . . • Sℓ |=s′ ψ ∗ ∗ℓi=1 B
σ♯i
i (zi,1, . . . , zi,#Bi) by construction, thus S |=s ϕ.

▷ Let r ∈ R and jk ∈ [1..#B] for all k ∈ [1..#r]. We omit relations that occur in ψ since this

is a simple case. Then ⟨xj1 , . . . , xj#r
⟩ ∈ σ♯(r) if and only if ⟨xj′1 , . . . , xj′#r

⟩ ∈ σ♯i (r) for some

i ∈ [1..ℓ] and xjk = zi,j′k for all k ∈ [1..#r], if and only if ⟨si(xj′1), . . . , si(xj′#r
)⟩ ∈ σi(r) by

induction hypothesis, if and only if ⟨s(xj1), . . . , s(xj#r
)⟩ ∈ σ(r).

By taking any injective store s over {x1, . . . , x#A}, for every predicate-free formula ϕ such

that Aσ
♯ ⇒∗

∆
ϕ, we find a structure S such that S |=s ϕ, by Fact A.2. Therefore, ∆ is

all-satisfiable for A.

56 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

“[[A]]∆ = [[A]]∆” The inclusion [[A]]∆ ⊆ [[A]]∆ is immediate by simply removing the base

annotations from any derivation run on ∆. For the converse, we prove the following fact:

Fact A.3. For every predicate B of ∆, for every structure S ∈ [[B]]∆ and store s such that

S |=s B(x1, . . . , x#B), there exists a satisfiable base σ♯, such that S |=s Bσ
♯
(x1, . . . , x#B), and

⟨xj1 , . . . , xj#r
⟩ ∈ σ♯(r) if and only if ⟨s(xj1), . . . , s(xj#r

)⟩ ∈ σ(r) for all r ∈ R and jk ∈ [1..#B]
for all k ∈ [1..#r].

Proof. Let S ∈ [[B]]∆ and s be such that S |=s B(x1, . . . , x#B). The proof is by induction
on the derivation of S |=s B(x1, . . . , x#B). Assume that the first step of this derivation

uses a rule B(x1, . . . , x#B)← ∃y1 . . . ∃ym . ψ ∗ ∗ℓi=1 Bi(zi,1, . . . , zi,#Bi). Then, one can split

S = Sψ • S1 • . . . • Sℓ, such that Sψ |=s′ ψ and Si |=si Bi(x1, . . . , x#Bi), where s′ extends
s0 and si(xj) = s′(zi,j) for all i ∈ [1..ℓ] and j ∈ [1..#Bi]. By the induction hypothesis, for

each i ∈ [1..ℓ], there exists a satisfiable base σ♯i , such that Si |=si B
σ♯i
i (x1, . . . , x#Bi), and

⟨xj1 , . . . , xj#r
⟩ ∈ σ♯i (r) if and only if ⟨s(xj1), . . . , si(xj#r

)⟩ ∈ σ(r). We consider:

σ♯
def

=
(
Base(ψ)⊗

⊗ℓ

i=1
σ♯i [x1/zi,1, . . . , x#Bi/zi,#Bi]

)
⇃{x1,...,x#B}

and prove that σ♯ is properly defined above:

▷ ψ is satisfiable, thus so is Base(ψ) = σ♯ψ. Projections over base pairs do not change the

satisfiability, nor substitutions because ∆ is equality-free.
▷ We check the satisfiability of the composition in the definition of σ♯. Suppose, for a con-

tradiction, that there exists a tuple ⟨z1, . . . , z#r⟩ ∈ σ♯ψ(r) ∩ σ♯i [x1/zi,1, . . . , x#Bi/zi,#Bi](r)

for some i ∈ [1..ℓ] and zk ∈ {x1, . . . , x#B, y1, . . . , ym} for all k ∈ [1..#r]. Then there

exist j1, . . . , j#r ∈ [1..#Bi] such that ⟨xj1 , . . . , xj#r
⟩ ∈ σ♯i (r) and si(xjk) = s′(zk) for all

k ∈ [1..#r]. Thus we obtain ⟨s′(z1), . . . , s′(z#r)⟩ ∈ σψ(r) ∩ σi(r), which contradicts the
composition Sψ • Si. A similar argument ensures that no collisions occur between Si1
and Si2 , for any i1 ̸= i2 ∈ [1..ℓ].

The last part of Fact A.3 is similar to the proof of Fact A.2.

Therefore, any model S of [[A]]∆ is a model of [[Aσ
♯
]]∆ with an appropriate base σ♯. The upper

bound on predNo(∆) is obtained by noticing that, for each predicate symbol A that occurs

in ∆, we introduce at most relNo(∆) ·#AmaxRelArity(∆) ≤ relNo(∆) ·maxVars(∆)maxRelArity(∆)

new predicate symbols.

A.2. Proof of Lemma 2.10. The proof follows a generic guideline. First, recall that for
any set of structures S we have

tw(S) = max
S∈S

tw(S) = max
S∈S

min{wd(T) | T is a tree decomposition of S}.

Therefore, in order to prove an inequality of the form tw([[ϕ∃]]) ≤ tw([[ψ∃]]) + k for ϕ, ψ two
qpf formulæ, we make use of the alternating max and min by proving the following:

for every structure S and store s such that S |=s ϕ

there exists a structure S′ and a store s′ such that S′ |=s′ ψ and
for every tree decomposition T ′ of S′

there exists a tree decomposition T of S such that wd(T) ≤ wd(T ′) + k.

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 57

(1) The first point is immediate since [[(ϕ ∗ ∗ki=1 x0 = xi)
∃
]] ⊆ [[ϕ∃]].

(2) Since [[(ϕ ∗ ∗ki=1 x0 ̸= xi)
∃
]] ⊆ [[ϕ∃]], we obtain immediately tw([[(ϕ ∗ ∗ki=1 x0 ̸= xi)

∃
]]) ≤

tw([[ϕ∃]]). For the reverse inequality, recall that ϕ ∗ ∗ki=1 x0 ̸= xi is satisfiable. Then ϕ
must also be satisfiable, so let S = (U, σ) be a model and s a store such that S |=s ϕ. We
distinguish two cases:

▷ if s(x0) ̸= s(xi) for all i ∈ [1..k] then let S′ = S, s′ = s hence S′ |=s′ ϕ ∗ ∗ki=1 x0 ̸= xi and
tw(S) = tw(S′).

▷ if s(x0) = s(xi) for some i ∈ [1..k] then let us consider a new fresh element e ∈ U and

define a new store s′ by s′(y)
def

= e if y ≈ϕ x0, and s′(y)
def

= s(y) otherwise. We define
the S′ = (U ∪ {e}, σ′) as follows. For every r ∈ R, for every tuple ⟨u1, . . . , u#r⟩ ∈ σ(r),
there exists a unique relation atom r(y1, . . . , y#r) occurring in ϕ such that s(yj) = uj
for all j ∈ [1..#r]. Then, add the tuple (s′(y1), . . . , s

′(y#r)) to σ′(r). By construction

S′ |=s′ ϕ ∗ ∗ki=1 x0 ̸= xi. Let T
′ be a tree decomposition of S′. We define T by removing

the element e from T ′ and adding s(x0) in every node of T ′. T is a tree decomposition of
S of width at most wd(T ′) + 1. Therefore wd(T) ≤ wd(T ′) + 1, hence the result.

In both cases we obtain the expected result tw([[ϕ∃]]) ≤ tw([[(ϕ ∗ ∗ki=1 x0 ̸= xi)
∃
]]) + 1.

(3) We prove tw([[(ϕ ∗ r(x1, . . . , xk))∃]]) ≤ tw([[ϕ∃]]) + k. Let S = (U, σ) and s such that
S |=s ϕ∗ r(x1, . . . , xk). We define S′ = (U, σ′) from S by removing the tuple ⟨s(x1), . . . , s(xk)⟩
from σ(r). Let T ′ be a tree decomposition of S′. We define T by adding the elements
s(x1), . . . , s(xk) to every node in T ′. This construction does not break connectedness of
the subtree of T containing any element, T still contains a node with all elements of any
relation in σ′, and moreover (since T ′ is not empty) T contains a node (in fact all nodes)
with elements s(x1), . . . , s(xk) simultaneously. Therefore T is a tree decomposition of S of
width at most wd(T ′) + k.

We now prove that tw([[ϕ∃]]) ≤ tw([[(ϕ ∗ r(x1, . . . , xk))∃]]) + 1. Recall ϕ ∗ r(x1, . . . , xk) is
satisfiable from the hypothesis. Let S = (U, σ) |=s ϕ, and we distinguish two cases:

▷ If ⟨s(x1), . . . , s(xk)⟩ /∈ σ(r), then consider s′ = s and S′ obtained by adding the above

tuple to σ(r). Then S′ |=s′ ϕ ∗ r(x1, . . . , xk) and for any tree decomposition T ′ of S′ we
have T = T ′ is also a tree decomposition for S hence ensuring wd(T) = wd(T ′).

▷ If ⟨s(x1), . . . , s(xk)⟩ ∈ σ(r) then, because ϕ ∗ r(x1, . . . , xk) is satisfiable, there must exist
variables x′1, . . . , x

′
k and j ∈ [1..k] such that r(x′1, . . . , x

′
k) occurs in ϕ, s(xi) = s(x′i), for

every i ∈ [1..k], and moreover xj ̸≈ϕ x′j . Let us consider a new fresh element e ∈ U
and define a new store s′ by s′(y) = e if y ≈ϕ x′j , and s′(y) = s(y) otherwise. Let

S′ = (U∪{e}, σ′) defined as follows. For every r′ ∈ R, for every tuple ⟨u1, . . . , u#r′⟩ ∈ σ(r′),
there exists a unique relation atom r′(y1, . . . , y#r′) occurring in ϕ such that s(yj) = uj
for all j ∈ [1..#r′]. Then, add the tuple (s′(y1), . . . , s

′(y#r′)) to σ′(r). Finally, add the

tuple ⟨s′(x1), . . . , s′(xk)⟩ to σ′(r). By construction S′ |=s′ ϕ ∗ r(x1, . . . , xk). Let T ′ be a
tree decomposition of S′. We define T by removing the element e from T ′ and adding
s(x′j) in every node of T ′. T is a tree decomposition of S of width at most wd(T ′) + 1,

that is, wd(T) ≤ wd(T ′) + 1.

In both cases we obtain the expected result, that is, tw([[ϕ∃]]) ≤ tw([[(ϕ ∗ r(x1, . . . , xk))∃]])+1.
(4) Similar to point (3), it generalizes the (right) inequality from formulæ consisting of a
single relation atom to formulæ consisting of arbitrarily many relation atoms.

58 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

A.3. Proof of Lemma 2.11. Note that fv(η) ⊆ F ⊆ fv(ϕ) and henceforth, fv(ϕ ∗ η) = fv(ϕ).
We follow a similar strategy as in the proof of Lemma 2.10. Consider a structure S = (U, σ)
and a store s, such that S |=s ϕ ∗ η. We build a store s′ and a structure S′ such that

S′ |=s′ ϕ ∗ψ and tw(S) ≤ tw(S′) + card(F). First, consider a store s′′, that is canonical for ψ

(Definition 3.1), and a structure S′′ = (U′′, σ′′), such that S′′ |=s′′ ψ. Such store and structure
exist, because ψ is satisfiable. Assume without loss of generality that S′′ and S are disjoint
structures, that is, s′′(fv(ψ)) ∩ s(fv(ϕ)) = ∅. Second, we define the store s′, as follows:

s′(y)
def

=

 s′′(y) if y ∈ fv(ψ)
s′′(y′) if y ∈ fv(ϕ) \ fv(ψ) and there exists y′ ∈ F such that y ≈ϕ y′
s(y) otherwise

Note that the definition of s′ is consistent. In particular, for any y ∈ fv(ϕ) \ fv(ψ) there
exists at most one variable y′ ∈ F , such that y ≈ϕ y′, because otherwise, the hypothesis
x ̸≈ϕ y for all x, y ∈ F would not hold. We build now the structure S′ = (U′, σ′) where

U′
def

= U ∪ U′′ and σ′(r) is defined for every relation symbol r ∈ R as follows:

▷ add each tuple ⟨u1, . . . , u#r⟩ ∈ σ′′(r) to σ′(r),
▷ for every tuple ⟨u1, . . . , u#r⟩ ∈ σ(r), there exists a unique relation atom r(y1, . . . , y#r)
occurring in ϕ, such that s(yi) = ui for all i ∈ [1..#r]; we add the tuple ⟨s′(y1), . . . , s′(y#r)⟩
to σ′(r).

▷ nothing else belongs to σ′(r).

This construction guarantees that S′ |=s′ ϕ ∗ ψ. Equality and disequality atoms in ϕ ∗ ψ are
satisfied, by the definition of s′. With regard to relation atoms, notice that no tuple is added
twice to σ′(r) in the definition above. That is, if some ⟨s′(y1), . . . , s′(y#r)⟩ obtained from
σ(r) exists also in σ′′(r), then ϕ ∗ ψ would not be satisfiable. Let T ′ be a tree decomposition
of S′. We define a tree decomposition T by:

▷ removing {s′(y) | y ∈ fv(ψ)} from every bag of T ′,
▷ adding {s(y) | y ∈ F} to every bag of T ′.

The result is a tree decomposition T of S of width wd(T) ≤ wd(T ′) + card(F). Since the
choice of T ′ was arbitrary, we obtain tw(S) ≤ tw(S′) + card(F). Since the choice of S was

arbitrary, we obtain tw([[(ϕ ∗ η)∃]]) ≤ tw([[(ϕ ∗ ψ)∃]]) + card(F).

Appendix B. Proofs from section 3

B.1. Proof of Lemma 3.24. (1) “EF∗(split(S)) ⊆ split(EF∗(S))” By induction on the
derivation of S ∈ EF∗(split(S)) from split(S).
Base case: Let S ∈ split(S). We have:

∃S′ ∈ S. S ∈ split(S′)⇒ ∃S′ ∈ EF∗(S). S ∈ split(S′)⇒ S ∈ split(EF∗(S))
Induction step: Assume S = (S1 • S2)/≈ for some S1,S2 ∈ EF∗(split(S)) and ≈ satisfying
the conditions of Definition 3.11 for external fusion of S1 and S2. Moreover, assume the
induction hypothesis S1, S2 ∈ split(EF∗(S)). Then

S1,S2 ∈ split(EF∗(S)), S = (S1 • S2)/≈ ⇒
(∃S′1, S′2 ∈ EF∗(S). S1 ⊑mc S′1, S2 ⊑mc S′2), S = (S1 • S2)/≈ ⇒

∃S′1, S′2 ∈ EF∗(S). (∃ ≈′ . S ⊑mc (S′1 • S′2)/≈′)⇒

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 59

∃S′ ∈ EF∗(S). S ⊑mc S′ ⇒ S ∈ split(EF∗(S))

In the above, the equivalence ≈′ is taken as the extension by equality of ≈ and henceforth
it satisfies the conditions of Definition 3.11 for external fusion of S′1, S

′
2.

“split(EF∗(S)) ⊆ EF∗(split(S))” By induction on the derivation of S′ ∈ EF∗(S) from S.
Base case: Let S ∈ split(S′) for some S′ ∈ S. We have:

S ∈ split(S′)⇒ S ∈ EF∗(split(S′))⇒ S ∈ EF∗(split(S))

Induction step: Assume S ∈ split(S′) for some S′ = (S′1 • S′2)/≈′ for some S′1,S
′
2 ∈ EF∗(S)

and equivalence ≈′ satisfying the conditions of Definition 3.11 for external fusion of S′1, S
′
2.

Assume the induction hypothesis, that is, split(S′1), split(S
′
2) ⊆ EF∗(split(S)). Then:

split(S′1), split(S
′
2) ⊆ EF∗(split(S)), S′ = (S′1 • S′2)/≈′ , S ∈ split(S′)⇒

split(S′1), split(S
′
2) ⊆ EF∗(split(S)), S′ = (S′1 • S′2)/≈′ , S ⊑mc S′

We distinguish two sub-cases:

• S is a maximally connected substructure of S′1 (the case of S′2 is symmetric) not affected
by the external fusion defined by ≈′:

split(S′1) ⊆ EF∗(split(S)), (∃S1. S1 ⊑mc S′1, S = S1)⇒
split(S′1) ⊆ EF∗(split(S)), S ∈ split(S′1)⇒ S ∈ EF∗(split(S))

• S is a connected structure including several maximally connected substructures, at least
one from each S′i, for i = 1, 2:

split(S′1), split(S
′
2) ⊆ EF∗(split(S)),

∃k1 ≥ 1. ∃S1,1...∃S1,k1 . S1,i ⊑mc S′1 for all i ∈ [1..k1],

∃k2 ≥ 1. ∃S2,1...∃S2,k2 . S2,j ⊑mc S′2 for all j ∈ [1..k2],

(∃ ≈ . S = (S1,1 • ... • S1,k1 • S2,1 • ... • S2,k2)/≈), S connected⇒
split(S′1), split(S

′
2) ⊆ EF∗(split(S)),

∃k1 ≥ 1. ∃S1,1...∃S1,k1 . S1,i ∈ split(S′1) for all i ∈ [1..k1],

∃k2 ≥ 1. ∃S2,1...∃S2,k2 . S2,j ∈ split(S′2) for all j ∈ [1..k2],

(∃ ≈ . S = (S1,1 • ... • S1,k1 • S2,1 • ... • S2,k2)/≈), S connected⇒
∃k1 ≥ 1. ∃S1,1...∃S1,k1 . S1,i ∈ EF∗(split(S)) for all i ∈ [1..k1],

∃k2 ≥ 1. ∃S2,1...∃S2,k2 . S2,j ∈ EF∗(split(S)) for all j ∈ [1..k2],

(∃ ≈ . S = (S1,1 • ... • S1,k1 • S2,1 • ... • S2,k2)/≈), S connected⇒ S ∈ EF∗(split(S))

In the above, the equivalence ≈ is the restriction of ≈′ to the substructures included in
the composition. As ≈′ is conforming for external fusion of S′1, S

′
2 and since the resulting

structure S is connected, it is always possible to obtain S as a sequence of external fusions
conforming to Definition 3.11 from the respective substructures.
(2) “IEF∗(split(S)) ⊆ split(IEF∗(S))” By induction on the derivation of S ∈ IEF∗(split(S))
from split(S). The induction proceeds as for (1), with one additional case in the induction
step.
Induction step: Let S = (S1)/≈ for some S1 ∈ IEF∗(split(S)) and equivalence relation
≈ conforming to internal fusion of S1. Moreover, assume the induction hypothesis S1 ∈

60 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

split(IEF∗(S)). Then
S1 ∈ split(IEF∗(S)), S = (S1)/≈ ⇒

(∃S′1 ∈ IEF∗(S). S1 ⊑mc S′1), S = (S1)/≈ ⇒
∃S′1 ∈ IEF∗(S). (∃ ≈′ . S ⊑mc (S′1)/≈′)⇒

∃S′ ∈ IEF∗(S), S ⊑mc S′ ⇒ S ∈ split(IEF∗(S))
In the above, the equivalence ≈′ is taken as the extension by equality of ≈ and hence
conforming for internal fusion of structure S′1.
”split(IEF∗(S)) ⊆ IEF∗(split(S))” By induction on the derivation of S′ ∈ IEF∗(S) from S.
The induction proceeds as for (1), with one additional case in the induction step.
Induction step: Let S ∈ split(S′) for some S′ = (S′1)/≈′ for some S′1 ∈ IEF∗(S) and

equivalence ≈′ conforming for internal fusion of S′1. Moreover, assume the induction
hypothesis split(S′1) ⊆ IEF∗(split(S)). Then

split(S′1) ⊆ IEF∗(split(S)), S′ = (S′1)/≈′ , S ∈ split(S′)⇒
split(S′1) ⊆ IEF∗(split(S)), S′ = (S′1)/≈′ , S ⊑mc S′ ⇒

split(S′1) ⊆ IEF∗(split(S)),
∃k ≥ 1. ∃S1,1...∃S1,k. S1,i ⊑mc S′1 for all i ∈ [1..k],

(∃ ≈ . S = (S1,1 • ... • S1,k)/≈, S connected)⇒
split(S′1) ⊆ IEF∗(split(S)),

∃k ≥ 1. ∃S1,1...∃S1,k. S1,i ∈ split(S′1) for all i ∈ [1..k],

(∃ ≈ . S = (S1,1 • ... • S1,k)/≈, S connected)⇒
∃k ≥ 1. ∃S1,1...∃S1,k. S1,i ∈ IEF∗(split(S)) for all i ∈ [1..k],

(∃ ≈ . S = (S1,1 • ... • S1,k)/≈, S connected)⇒ S ∈ IEF∗(split(S))
In the above, the equivalence ≈ is taken as the restriction of ≈′ to the maximal connected
substructures included in the construction of connected S. Henceforth, ≈ is conforming for
internal fusion as well. As the resulting structure S is connected, it is always possible to
construct it in IEF∗(split(S)) i.e., first by using external fusion conforming to Definition 3.11
to connect all the included substructures and second, by using internal fusion to further
restrict the result if needed.

B.2. Proof of Lemma 3.31. “split([[∆]]cA) ⊆ [[Γ]]cP” We prove first the following fact:

Fact B.1. Let B0(x1, . . . , x#B0) ⇒∗∆ ∃y1 . . . ∃yn . ϕ be a complete ∆-unfolding, where
ϕ is a qpf formula, s a store injective over {x1, . . . , x#B0} ∪ {y1, . . . , yn}, S = (U, σ) a
structure such that S |=s ϕ and S′ = (U′, σ′) a structure, such that S′ ⊑mc S and supp(σ′) ∩
{s(x1), . . . , s(x#B0)} ̸= ∅. Then, there exist a nonempty set J0 ⊆ [1..#B0], equivalence
relation ξ0 ⊆ J0 × J0 and complete Γ-unfolding B0(x1, . . . , x#B0)/ξ0 ⇒∗Γ ∃y1 . . . ∃yn . ϕ′,
where ϕ′ is a qpf formula, such that S′ |=s ϕ′.

Proof. By induction on the length of the ∆-unfolding. Assume the first rule in this unfolding
to be of the form (3.1), for a qpf formula ψ0. Then, there exist:

▷ unfoldings Bi(x1, . . . , x#Bi) ⇒∗∆ ∃yji,1 . . . ∃yji,ki . ϕi, where yji,1 , . . . , yji,ki ∈ {y1, . . . , yn}
and ϕi are qpf formulæ, for all i ∈ [1..ℓ], and

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 61

▷ structures S0 = (U0, σ0), . . . ,Sℓ = (Uℓ, σℓ), such that S0 • . . . • Sℓ = S, S0 |=s ψ0 and

Si |=s ϕiθi, where θi
def

= [x1/zi,1, . . . , x#Bi/zi,#Bi], for all i ∈ [1..ℓ].

Since S′ ⊑mc S0 • . . . • Sℓ is a maximally connected structure, there must exist structures
S′0 = (U0, σ

′
0), S

′
i1
= (Ui1 , σ

′
i1
), . . . ,S′ik = (Uik , σ

′
ik
), for i1, . . . , ik ∈ [1..ℓ], such that:

▷ S′ = S′0 • S′i1 • . . . • S
′
ik
,

▷ supp(σ′ih) ∩ {s(zih,1), . . . , s(zim,#Bih
)} ≠ ∅ and S′ih ⊑

mc Sih , for all h ∈ [1..k],

▷ supp(σ′) ∩ {s(zi,1), . . . , s(zi,#Bi)} = ∅, for all i ∈ [1..ℓ] \ {i1, . . . , ik}.

Since Sih |=s ϕihθih , we have Sih |=
s◦θ−1

ih ϕih , for all h ∈ [1..k]. By the inductive hypothesis,
there exist nonempty sets Ji1 ⊆ [1..#Bi1], . . . , Jik ⊆ [1..#Bik], equivalence relations ξi1 ⊆
Ji1 × Ji1 , . . . , ξik ⊆ Jik × Jik and complete Γ-unfoldings:

Bih(x1, . . . , x#Bih
)/ξih

⇒∗Γ ∃yjih,1 . . . ∃yjih,kih . ϕ
′
ih

such that S′ih |=
s◦θ−1

ih ϕ′ih , for all h ∈ [1..k]. Then, we define:

▷ sets J ih
def

= [1..#Bi] \ Jih , for all h ∈ [1..k],
▷ qpf formulæ ψ′0 and ψ′′0 satisfying points (1) and (2) from the construction of Γ,

▷ an equivalence relation Ξ
def

=
(
conn(ψ′0) ∪

⋃k
h=1 ξih(Bih(zih,1, . . . , zih,#Bih

))
)=

.

We argue that the construction of the formulæ ψ′0 and ψ′′0 is effective. There are no (dis-)
equalities in ∆, i.e., ψ0 consists of relation atoms only. Each atom α of ψ0, such that
fv(α)∩ fvJih (Bih(zih,1, . . . , zih,#Bih

)) ̸= ∅, for some h ∈ [1..k], is added to ψ′0. Moreover, each

atom α of ψ0, such that fv(α) ∩ fvJih
(Bih(zih,1, . . . , zih,#Bih

)) = ∅, for all h ∈ [1..k] is added

to ψ′′0 . Note that, each atom can only be added either to ψ′0 or ψ′′0 but not to both, because
S′ih ⊑

mc Sih and S′ih |=
s ϕ′ih imply that no further element can be added to S′ih , for all h ∈

[1..k]. The rest of the atoms α from ψ0, i.e., such that fv(α)∩fvJih (Bih(zih,1, . . . , zih,#Bih
)) = ∅

and fv(α) ∩ fvJih (Bih(zih,1, . . . , zih,#Bih
)) = ∅, for all h ∈ [1..k], are split between ψ′0 and ψ′′0 ,

by repeating the following steps until a fixpoint is reached:

▷ if fv(α) ∩ fv(ψ′0) ̸= ∅, then update ψ′0 as ψ′0 ∗ α,
▷ else, update ψ′′0 as ψ′′0 ∗ α.
By construction, we obtain that fv(ψ′0) ∩ fv(ψ′′0) = ∅, as required at point (1).

Let J0
def

= {j ∈ [1..#B0] | s(xj) ∈ supp(σ′)}. Note that J0 ≠ ∅ because supp(σ′) ∩
{s(x1), . . . , s(x#B0)} ≠ ∅. We define the equivalence relation ξ0 ⊆ J0 × J0 as follows:

(i, j) ∈ ξ0
def⇐⇒ (xi, xj) ∈ Ξ

Moreover, one can show that S′0 |=s ψ′0, by the construction of ψ′0 and ψ′′0 , hence ξ0 satisfies
the conditions (4)–(7) from the definition of Γ, hence Γ contains a rule of the form (3.2), with

qpf formula ψ′0. Since S′ |=s ψ′0 ∗∗kh=1 ϕ
′
ih
θh and ϕ′ = ψ′0 ∗∗kh=1 ϕ

′
ih
θh modulo a reordering

of atoms, we obtain that S′ |=s ϕ′.

The proof is completed as follows. Let S′ ∈ split([[A]]c∆) be a maximally connected
substructure of a canonical model S ∈ [[A]]c∆. Then, there exists a complete ∆-unfolding

A⇒∗∆ ∃y1 . . . ∃ym . ϕ and a store s, injective over y1, . . . , ym, such that S |=s ϕ. Because S′

is connected, there exists a unique (i) predicate atom B0(z1, . . . , z#B0), (ii) subformula ϕ of

ϕ and (iii) structure S′′ ⊑ S, such that B0(z1, . . . , z#B0) ⇒∗∆ ∃yi1 . . . ∃yin . ϕ is a complete
unfolding, supp(S′′) ∩ {s(z1), . . . , s(z#B0)} = ∅, S′′ |=s ϕ and S′ ⊑mc S′′. Without losing
generality, we assume that the above is the smallest ∆-unfolding with these properties

62 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

and assume that the first rule of the ∆-unfolding is of the form (3.1), with a qpf formula
ψ. Then, because S′ is connected, the right-hand side of this rule contains zero or more
predicate atoms Bih(zih,1, . . . , zih,#Bih

), for ih ∈ {i1, . . . , ik} ⊆ [1..ℓ], such that supp(σ′) ∩
{s(zih,1), . . . , s(zih,#Bih

)} ≠ ∅. Accordingly, we decompose S′′ = S′′0 • . . . • S′′k such that

S′′0 |=s ψ0 and S′′h |=s ϕh, where Bih(zih,1, . . . , zih,#Bih
)⇒∗∆ ∃yjh,1 . . . ∃yjh,mh . ϕh are complete

unfoldings, for all h ∈ [1..k]. This decomposition of S′′ induces a decomposition of S′ ⊑mc S′′
as S′0 • . . .•S′k = S′ such that S′h ⊑mc S′′h and supp(σ′h)∩{s(zih,1), . . . , s(zih,#Bih

)} ≠ ∅, for all
h ∈ [1..k]. Applying Fact B.1, we find nonempty subsets Jh ⊆ [1..#Bih], equivalence relations
ξh ⊆ Jh × Jh and complete Γ-unfoldings Bih(zih,1, . . . , zih,#Bih

)/ξh ⇒
∗
Γ ∃yph,1 . . . ∃yph,nh . ϕ

′
h,

such that S′h |=s ϕ′h, for all h ∈ [1..k]. We define the sets Jh = [1..#Bih] \ Jh and the

formulæ ψ′0 and ψ′′0 such that conditions (1) and (2) are met. Let Ξ
def

=
(
conn(ψ′0) ∪⋃k

h=1 ξih(Bih(zih,1, . . . , zih,#Bih
))
)=

be an equivalence relation. Since S′ is connected, we

argue that Ξ has a single equivalence class. Moreover, (z, z) ̸∈ Ξ, for all z ∈ {z1, . . . , z#B0},
since supp(S′′) ∩ {s(z1), . . . , s(z#B0)} = ∅ and s is injective. Then, by definition, Γ contains
a rule of the form (3.3). This rule and the complete unfoldings Bih(zih,1, . . . , zih,#Bih

)⇒∗Γ
∃yjh,1 . . . ∃yjh,mh . ϕ

′
h, for all h ∈ [1..k], are composed to make up a complete Γ-unfolding

P ⇒Γ ∃yq1 . . . ∃yqr . ψ′0 ∗ ∗kh=1 ϕ
′
h, such that S′ |=s ψ′0 ∗ ∗kh=1 ϕ

′
h. Since yq1 , . . . , yqr ∈

{y1, . . . , ym} and s is injective over y1, . . . , ym, we obtain that S′ ∈ [[P]]cΓ.
“[[Γ]]cP ⊆ split([[∆]]cA)” We prove first two related facts. First, let B0(x1, . . . , x#B0)/ξ0 ⇒∗Γ
∃y1 . . . ∃yn . ϕ be a complete Γ-unfolding, where ϕ is a qpf formula, J0 ⊆ [1..#B0] a nonempty
set and ξ0 ⊆ J0 × J0 an equivalence relation, s be a store injective over {x1, . . . , x#B0} ∪
{y1, . . . , yn} and S = (U, σ) be a structure such that S |=s ϕ. Given an equivalence class
I ⊆ J0 of ξ0, we define the structure:

reachsS(I)
def

= (U, λr . {⟨u1, . . . , u#r⟩ ∈ σ(r) | ∀j ∈ [1..#r] ∃i ∈ I . s(xi) connected to uj in S})

Fact B.2. reachsS(I) ⊑mc S.

Proof. By induction on the length of the Γ-unfolding. Assume that the first rule of the
unfolding is of the form (3.2), with a qpf formula ψ0. Then, there exist nonempty sets
Jih ⊆ [1..#Bih] and equivalence relations ξih ⊆ Jih × Jih , for some i1, . . . , ik ∈ [1..ℓ] and all
h ∈ [1..k] and an equivalence relation Ξ ⊆

(
{x1, . . . , x#B0}∪{y1, . . . , ym}

)
×
(
{x1, . . . , x#B0}∪

{y1, . . . , ym}
)
, that satisfy points (1)–(7) from the definition of Γ. By point (7), {xi | i ∈ I}

is an equivalence class of Ξ⇃x1,...,x#B0
and let X ⊆ fv(ψ′0) ∪

⋃k
h=1{zih,1, . . . , zih,#Bih

} be the

unique equivalence class of Ξ that contains it. For each h ∈ [1..k], let Ih ⊆ [1..#Bih] be the
equivalence class of ξih used to define X (3).

Let Bih(x1, . . . , x#Bih
) ⇒∗Γ ∃yjh,1 . . . ∃yjh,mh . ϕh be complete Γ-unfoldings, such that

ϕ = ψ′0 ∗ ∗kh=1 ϕhθh, where θh
def

= [x1/zih,1, . . . , x#Bih
/zih,#Bih

], for each h ∈ [1..k]. Since

S |=s ϕ, there exist structures S0 = (U0, σ0), . . . ,Sk = (Uk, σk) such that S0 |=s ψ′0 and

Sh |=s ϕhθh, or equivalently, Sh |=s◦θ−1
h ϕh for all h ∈ [1..k]. By the inductive hypothesis, we

have reach
s◦θ−1

h
Sh

(Ih) ⊑mc Sh, for all h ∈ [1..k]. Since X is an equivalence class of Ξ, by point

(3) of the definition of Γ, we obtain that reachsS(I) ⊑mc S.

Second, let B0(x1, . . . , x#B0) ⇒∗∆ ∃y1 . . . ∃ym . ϕ′ be the complete ∆-unfolding obtained
by replacing each rule of the form (3.2) with its corresponding rule (3.1) in the above

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 63

Γ-unfolding, such that ϕ′ is a qpf formula and y1, . . . , yn ∈ {y1, . . . , ym}. Note that the latter
can be assumed w.l.o.g., if necessary, by a renaming of the quantified variables.

Fact B.3. There exists a store s′, that is injective over y1, . . . , ym and agrees with s over
y1, . . . , yn, and a structure S′ = (U, σ′), such that S′ |=s′ ϕ′ and reachsS(I) ⊑mc S′, for each
equivalence class I ⊆ J0 of ξ0.

Proof. The store s′ is defined as:

▷ s′(yi) = s(yi), for each i ∈ [1..n],
▷ s′(yi) is chosen from U \ {s(y1), . . . , s(yn)} such that, moreover, s′(yi) ̸= s′(yj), for all
n+ 1 ≤ i < j ≤ m.

Note that s′ can be build, because U is infinite. Because of the assumption that each
predicate defined by a rule from ∆ occurs on some complete ∆-unfolding of A, there exists a
complete ∆-unfolding:

A⇒∆ . . .⇒∆ B0(z1, . . . , z#B0) ∗ ϕ′′ ⇒∆ (∃y1 . . . ∃ym . ϕ′)[x1/z1, . . . , x#B0/z#B0] ∗ ϕ′′

where ϕ′′ is a predicate-free formula, possibly containing existential quantifiers. Since every
complete ∆-unfolding of A yields a satisfiable formula, there exists a store s′′ that agrees
with s′ ◦ [z1/x1, . . . , z#B0/x#B0] over y1, . . . , ym and a structure S′′, such that:

S′′ |=s′′ (∃y1 . . . ∃ym . ϕ′)[x1/z1, . . . , x#B0/z#B0] ∗ ϕ′′

Note that, in the above construction, we have taken s′′ to agree with s′ over y1, . . . , ym. This
is possible because there are no (dis-)equalities in ∆ and the set of models of a qpf formula
is closed under isomorphism-preserving renaming of elements.

Let S′ and S′′′ be structures such that S′′ = S′ • S′′′, S′ |=s′′ ϕ′[x1/z1, . . . , x#B0/z#B0],

or equivalently S′ |=s′ ϕ′, and S′′′ |=s′′ ϕ′′. By induction on the length of the ∆-unfolding,
relying on by point (1) of the definition of Γ, one can prove that ϕ′ = ϕ ∗ ϕ, where ϕ is a qpf

formula, such that fv(ϕ)∩ fv(ϕ) = ∅. Since S′ |=s′ ϕ′, there exists a structure S = (U, σ), such
that S′ = S • S. Moreover, since s′ is injective over y1, . . . , ym, by construction, we obtain
supp(σ) ∩ supp(σ) = ∅. Let I ⊆ J0 be an equivalence class of ξ0. By Fact B.2, we have
reachsS(I) ⊑mc S. Since S′ = S•S and supp(σ)∩supp(σ) = ∅, we obtain reachsS(I) ⊑mc S′.

The proof is completed as follows. Let S ∈ [[P]]cΓ be a canonical Γ-model of P, i.e., there
exists a complete Γ-unfolding P ⇒∗Γ ∃y1 . . . ∃yn . ϕ, where ϕ is a qpf formula, and a store
s injective over y1, . . . , yn such that S |=s ϕ. By the definition of Γ, the first rule of
this unfolding is of the form (3.3), with a qpf formula ψ0. Then there exist Γ-unfoldings
Bi(x1, . . . , x#Bi)/ξi ⇒∗Γ ∃yji,1 . . . ∃yji,mi . ϕi, for some sets Ji ⊆ [1..#Bi] and equivalence

relations ξi ⊆ Ji × Ji, for i ∈ [1..ℓ], such that:

ϕ = ψ0 ∗ ∗ i∈[1..ℓ],Ji ̸=∅ ϕiθi
where θi

def

= [x1/zi,1, . . . , x#Bi/zi,#Bi], i ∈ [1..ℓ]. Let {i1, . . . , ik}
def

= {i ∈ [1..ℓ] | Ji ̸= ∅}. Then,
there exist structures S0 • . . . • Sk = S, such that S0 |=s ψ0 and Sj |=s ϕijθij , for i ∈ [1..ℓ].
By the definition of Γ, there exists a complete ∆-unfolding:

B0(x1, . . . , x#B0)⇒∆ ∃y1 . . . ∃ym . ψ′0 ∗ ∗ℓi=1 Bi(zi,1, . . . , zi,#Bi)⇒∆ . . .

⇒∗∆ ∃y1 . . . ∃yp . ψ′0 ∗ ∗kj=1 ϕ
′
ijθij ∗ η

64 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

for qpf formulæ ψ′0, ϕ
′
i1
, . . . , ϕ′ik and predicate-free formula η. Consider the equivalence

relation Ξ over {x1, . . . , x#B0} ∪ {y1, . . . , ym} defined as:

Ξ
def

=
(
conn(ψ0) ∪

⋃k

j=1
ξij (Bij (zij ,1, . . . , zij ,#Bij

))
)=

By point (8), Ξ has a single equivalence class X such that:

▷ X ∩ {x1, . . . , x#B0} = ∅,
▷ the sets Ij

def

= {h ∈ [1..#Bij] | zij ,h ∈ X} are unions of equivalence classes of ξij , namely
Ij = Ij,1 ⊎ . . . ⊎ Ij,qj , where Ij,h are equivalence classes of ξi, for all j ∈ [1..k].

By Fact B.3, there exist a store s′, that is injective over y1, . . . , yp and agrees with s over

y1, . . . , yn, and structures S′1, . . . ,S
′
k, such that S′j |=s′ ϕj and reachs

′
Sj
(Ij,h) ⊑mc S′j , for all

j ∈ [1..k] and h ∈ [1..qj]. We argue that Sj = •qjh=1 reach
s′
Sj
(Ij,h) ⊑mc S′j . Moreover, since

s′ is injective over y1, . . . , yn, one can build a structure S′0, such that S′0 |=s′ ψ′0. We define

S′
def

= S′0 • •kj=1 S
′
j . Thus, we have S ⊑mc S′ and we are left with showing that S′ can be

embedded in a canonical ∆-model of A.
By the assumption that each predicate defined by ∆ occurs on some complete ∆-unfolding

of A, there exists another complete ∆-unfolding:

A⇒∆ . . .⇒∆ B0(z0,1, . . . , z0,#B0) ∗ ζ

⇒∆ (∃y1 . . . ∃ym . ψ0 ∗ ∗ℓi=1 Bi(zi,1, . . . , zi,#Bi))[x1/z0,1, . . . , x#B0/z0,#B0] ∗ ζ

⇒∆ . . .⇒∆ (∃y1 . . . ∃yn . ψ′0 ∗ ∗ki=1 ϕ
′
iθi ∗ η)[x1/z0,1, . . . , x#B0/z0,#B0] ∗ ζ

for some predicate-free formula ζ
def

= ∃yn+1 . . . ∃yp . η, for some variables yn+1, . . . , yp, such
that {yn+1, . . . , yp} ∩ {y1, . . . , yn} = ∅ and a qpf formula η. Since this latter ∆-unfolding
yields a satisfiable formula, there exists a structure S′′ and a store s′′, injective over y1, . . . , yp,

that agrees with s′ over y1, . . . , yn, such that S′′ |=s′′ η. Then, S′ • S′′ ∈ [[A]]c∆ and, since
S ⊑mc S′, we obtain S ⊑mc S′ • S′′, leading to S ∈ split([[A]]c∆).

B.3. Proof of Lemma 3.32. Without loss of generality, we can consider that Γ is equality-
free (Lemma 2.6) and all-satisfiable for P (Lemma 2.9).
”([[P]]cΓ)

♯k ⊆ π3(⟨⟨P⟩⟩♯kΓ)” We prove the following, more general, property:

Let B0(x1, . . . , x#B0)⇒∗Γ ∃y1 . . . ∃yn . ϕ be a complete Γ-unfolding such that ϕ
is a qpf formula, s be a store injective over {x1, . . . , x#B0}∪{y1, . . . , yn}, S =
(U, σ) be a structure such that S |=s ϕ and D ⊆ supp(σ)\{s(x1), . . . , s(x#B0)}
be a set such that card(D) ≤ k. Then there exists ⟨{x1, . . . , x#B0}, c,M⟩ ∈
⟨⟨B0⟩⟩♯kΓ such that CS(s(xi)) = c(xi), for all i ∈ [1..#B0] andM = {{CS(u) | u ∈ D}}.

The proof is by induction on the length of the complete Γ-unfolding. Assume w.l.o.g. that
the first rule applied in the unfolding is of the form (3.1), with a qpf formula ψ0. Then,
there exist structures S0 = (U0, σ0), . . . ,Sℓ = (Uℓ, σℓ), such that:

▷ S = S0 • . . . • Sℓ,
▷ S0 |=s ψ0,
▷ there exists a complete Γ-unfolding Bi(zi,1, . . . , zi,#Bi) ⇒∗Γ ∃yji,1 . . . ∃yji,ki . ϕi, where

ji,1, . . . , ji,ki ∈ [1..n] and ϕi is a subformula of ϕ, such that Si |=s ϕi, and the indices ji,m
are pairwise distinct, for all m ∈ [1..ki], for all i ∈ [1..ℓ].

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 65

Let si be the store such that si(xj) = s(zi,j) for all j ∈ [1..#Bi] and si agrees with s
everywhere else, for all i ∈ [1..ℓ]. Then, there exists a complete Γ-unfolding:

Bi(x1, . . . , x#Bi)⇒
∗
Γ (∃yji,1 . . . ∃yji,ki . ϕi)[zi,1/x1, . . . , zi,#Bi/x#Bi] = ∃yji,1 . . . ∃yji,ki . ψi

such that Si |=si ψi, where ψi is a qpf formula, for all i ∈ [1..ℓ]. We define the sets:

D0
def

= D ∩
(
supp(σ0) ∪

⋃ℓ
i=1{s(zi,1), . . . , s(zi,#Bi)}

)
Di

def

= (supp(σi) ∩D) \ {s(zi,1), . . . , s(zi,#Bi)}, for eachi ∈ [1..ℓ]

and prove the following fact:

Fact B.4. D = D0 ⊎D1 ⊎ . . . ⊎Dℓ

Proof. The sets D0, . . . , Dℓ are pairwise disjoint, since:

D0 ⊆ supp(σ0) ∪
⋃ℓ
i=1{s(zi,1), . . . , s(zi,#Bi)}

Di ⊆ supp(σi) \ {s(zi,1), . . . , s(zi,#Bi)}, for all i ∈ [1..ℓ]

and, moreover for all 1 ≤ i < j ≤ ℓ:
▷
(
supp(σ0) ∪

⋃ℓ
i=1{s(zi,1), . . . , s(zi,#Bi)}

)
∩ supp(σi) ⊆ {s(zi,1), . . . , s(zi,#Bi)}

▷ supp(σi) ∩ supp(σj) ⊆ {s(zi,1), . . . , s(zi,#Bi)} ∩ {s(zj,1), . . . , s(zj,#Bi)}
because s is injective over y1, . . . , yn. “⊇” We have D0 ⊎ D1 ⊎ . . . ⊎ Dℓ ⊆ D because
Di ⊆ D, for all i ∈ [0..ℓ]. “⊆” Let u ∈ D be an element. By the choice of D, we have

u ∈ supp(σ) \ {s(x1), . . . , s(x#B)}. Since S = S0 • . . . • Sℓ, we have supp(σ) =
⋃ℓ
i=0 supp(σi),

hence u ∈ supp(σi), for some i ∈ [0..ℓ]. If u ∈ D0 we are done. Otherwise, u ̸∈ D0, hence
u ̸∈ supp(σ0) and u ∈ supp(σi), for some i ∈ [1..ℓ]. Moreover, u ̸∈ {s(zi,1), . . . , s(zi,#Bi)},
for all j ∈ [1..ℓ], hence u ∈ Di.

Back to the proof, since card(Di) ≤ card(D) ≤ k, for all i ∈ [1..ℓ], by the inductive
hypothesis, there exist ⟨{x1, . . . , x#Bi}, ci,Mi⟩ ∈ ⟨⟨Bi⟩⟩♯kΓ , for i ∈ [1..ℓ], such that:

▷ CS(si(xj)) = c(xj), for all j ∈ [1..#Bi],
▷ Mi = {{CSi(u) | u ∈ Di}}.
Let ⟨fv(ψ0), c0, ∅⟩

def

= γ(ψ0) be a color triple. Since S0 |=s ψ0, we have CS0(s(xj)) = c(xj),
for all j ∈ [1..#B0]. By definition, there exists a constraint of the form (3.4) for the
above rule (3.1). We prove that the •♯k-composition from the right-hand side of the
constraint is defined. Suppose, for a contradiction, that ci(x) ∩ cj(x) ̸= ∅, for some
x ∈ {zi,1, . . . , zi,#Bi} ∩ {zj,1, . . . , zj,#Bj} and 1 ≤ i < j ≤ ℓ. Then CSi(x) ∩ CSj (x) ̸= ∅,
contradicting the fact that Si • Sj is defined. The same reasoning applies if c0(x)∩ ci(x) ̸= ∅,
for some x ∈ fv(ψ) ∩ {zi,1, . . . , zi,#Bi} and i ∈ [1..ℓ]. Then, there exists a color triple:

⟨X ′, c′,M ′⟩ ∈ ⟨fv(ψ0), c0, ∅⟩ •♯k •♯ki∈[1..ℓ]⟨{x1, . . . , x#Bi}, ci,Mi⟩[x1/zi,1, . . . , x#Bi/zi,#Bi]

W.l.o.g. we can chose the tuple such that M ′ = M1 ∪ . . . ∪Mℓ. This choice is possible

since card(M ′) =
∑ℓ

i=1 card(Mi) =
∑ℓ

i=1 card(Di) ≤ card(D) ≤ k. Let ⟨X, c,M⟩ ∈
⟨X ′, c′,M ′⟩⇃♯k{x1,...,x#B0

} be such that M = M ′ ∪ {{CS0(u) | u ∈ D0}}. This choice is possible,

since card(M) ≤
∑ℓ

i=0 card(Di) ≤ k. We prove the points of the statement:

▷ Let i ∈ [1..#B0] be an index. By the definition of the •♯k-composition, we have:

CS(s(xi)) = CS0•...•Sℓ(s(xi)) =
⋃ℓ

j=0
CSj (s(xi)) =

⊎ℓ

j=0
cj(xi) = c′(xi) = c(xi)

▷ M =
⋃ℓ
i=0{{CSi(u) | u ∈ Di}} = {{CS0•...•Sℓ(u) | u ∈

⊎ℓ
i=0Di}} = {{CS(u) | u ∈ D}}

66 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

”π3(⟨⟨P⟩⟩♯kΓ) ⊆ ([[P]]cΓ)
♯k” We prove the following, more general, property:

Let ⟨{x1, . . . , x#B0}, c,M⟩ ∈ ⟨⟨B0⟩⟩♯kΓ be a color triple. Then there exists a
complete Γ-unfolding B0(x1, . . . , x#B0)⇒∗Γ ∃y1 . . . ∃yn . ϕ, whose steps belong
to a complete Γ-unfolding of P, such that ϕ is a qpf formula, a store s
injective over {x1, . . . , x#B0} ∪ {y1, . . . , yn}, a structure S = (U, σ) such that
S |=s ϕ and D ⊆ supp(σ) \ {s(x1), . . . , s(x#B0)}, card(D) ≤ k, such that
CS(s(xi)) = c(xi), for all i ∈ [1..#B0] and M = {{CS(u) | u ∈ D}}.

The proof is by induction on the length of the finite fixpoint iteration that produced
⟨{x1, . . . , x#B0}, c,M⟩. Assume that the last step of the iteration corresponds to a constraint
of the form (3.4), with a qpf formula ψ0. By definition, there exists a rule of the form (3.1)
in Γ, with the same qpf formula ψ0. Then ψ0 is satisfiable, because each Γ-unfolding of P
yields a satisfiable formula. Then there exists a color triple:

⟨X ′, c′,M ′⟩ ∈ γ(ψ0) •♯k •♯ki∈[1..ℓ]⟨⟨Bi⟩⟩♯kΓ [x1/zi,1, . . . , x#Bi/zi,#Bi]

such that

⟨{x1, . . . , x#B0}, c,M⟩ ∈ ⟨X ′, c′,M ′⟩⇃♯k{x1,...,x#B0
}

M ⊆ M ′ ∪ {c′(x) | x ∈ X ′ \ {x1, . . . , x#B0}}
Then, there exist

⟨fv(ψ0), c0, ∅⟩
def

= γ(ψ0)
⟨{zi,1, . . . , zi,#Bi}, c′i,Mi⟩ ∈ ⟨⟨Bi⟩⟩♯kΓ [x1/zi,1, . . . , x#Bi/zi,#Bi], for all i ∈ [1..ℓ]

such that

⟨X ′, c′,M ′⟩ ∈ ⟨fv(ψ0), c0, ∅⟩ •♯k •♯ki∈[1..ℓ]⟨{zi,1, . . . , zi,#Bi}, c
′
i,Mi⟩

Hence, there exist ⟨{x1, . . . , x#Bi}, ci,Mi⟩ ∈ ⟨⟨Bi⟩⟩♯kΓ such that c′i = ci◦[x1/zi,1, . . . , x#Bi/zi,#Bi],
for all i ∈ [1..ℓ]. By the inductive hypothesis, for all i ∈ [1..ℓ], there exist:

▷ a complete unfolding Bi(x1, . . . , x#Bi)⇒∗Γ ∃yji,1 . . . ∃yji,ki . ψi such that ψi is a qpf formula.
By applying an α-renaming, if necessary, we assume w.l.o.g. that the variables yj1,1 . . . yjℓ,kℓ
are pairwise distinct and, moreover, distinct from x1, . . . , x#B0 .

▷ a store si that is injective over {x1, . . . , x#Bi} ∪ {yji,1 , . . . , yji,ki}. We assume w.l.o.g. that

si(xj) = sk(xm) iff zi,j and zk,m are the same variable in the rule (3.1), for all 1 ≤ i < k ≤ ℓ,
j ∈ [1..#Bi] and m ∈ [1..#Bk]. Note that this assumption does not contradict the fact
that si is injective over {x1, . . . , x#Bi} ∪ {yji,1 , . . . , yji,ki}.

▷ a structure Si = (Ui, σi) such that Si |=si ψi. We assume w.l.o.g. that supp(σi)∩supp(σj) ⊆
{si(x1), . . . , si(x#Bi)}∩{sj(x1), . . . , sj(x#Bj)}. Note that this is possible by the assumption
that Γ is equality-free.

▷ a set Di ⊆ supp(σi) \ {si(x1), . . . , si(x#Bi)}, such that card(Di) ≤ k, CSi(si(xj)) = ci(xj),
for all j ∈ [1..#Bi] and Mi = {{CSi(u) | u ∈ Di}}.

We prove the points of the statement. Let θi be the substitution [x1/zi,1, . . . , x#Bi/zi,#Bi], for
each i ∈ [1..ℓ], where Bi(zi,1, . . . , zi,#Bi) is a predicate atom that occurs on the right-hand side
of the rule (3.1). A complete Γ-unfolding B0(x1, . . . , x#B0)⇒∗Γ ∃y1 . . . ∃yn . ψ is built from the
rule (3.1) above, with qpf formula ψ0, followed by Bi(x1, . . . , x#Bi)θi ⇒∗Γ ∃yji,1 . . . ∃yji,ki . ψiθi,
for all i ∈ [1..ℓ]. Hence ψ = ψ0 ∗ ∗ℓi=1 ψiθi modulo a reordering of atoms. Let s′i

def

= si ◦ θi
and define the store s as follows:

▷ s(z)
def

= s′i(z), for each each z ∈ fv(ψiθi),

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 67

▷ s(z) ̸∈
⋃ℓ
i=1 s

′
i(fv(ψiθi)), for each variable z ∈ fv(ψ0) \

⋃ℓ
i=1 fv(ψiθi) such that, moreover, s

is injective over fv(ψ0). Note that this is possible because we assumed Γ to be equality-free.

Then, we consider a structure S0 = (U0, σ0) such that:

▷ S0 |=s ψ0, and
▷ supp(σ0) ∩ supp(σi) ⊆ s(fv(ψ0)) ∩ s(fv(ψiθi)), for all i ∈ [1..ℓ].

Since ψ0 is satisfiable, such a structure exists and we can consider w.l.o.g. that it satisfies the
above conditions, because Γ is equality-free. It is easy to check that the structures S0, . . . , Sℓ
are pairwise locally disjoint, hence S = (U, σ)

def

= S0 • . . . • Sℓ is defined. Moreover, we have

S |=s ψ, because ψ = ψ0 ∗ ∗ℓi=1 ψiθi, S0 |=s ψ0 and Si |=s ψiθi, for all i ∈ [1..ℓ]. Further, for
all j ∈ [1..#B0], we have:

CS(s(xj)) = CS0•...•Sℓ(s(xi)) =
⊎ℓ

i=0
ci(xj) = c′(xj) = c(xj)

We consider the set D
def

= {u ∈ supp(σ) | CS(u) ∈M}. Suppose, for a contradiction, that
s(xi) ∈ D, for some i ∈ [1..#B0]. Then CS(s(xi)) ∈ M , hence c(xi) ∈ M . Since M ⊆
M ′∪{c′(x) | x ∈ X ′ \ {x1, . . . , x#B0}}, we must have c(xi) ∈M ′ ⊆

⋃ℓ
j=1Mj and let j ∈ [1..ℓ]

be such that c(xi) ∈Mj = {{CSj | u ∈ Dj}}, by the inductive hypothesis. Then there exists
k ∈ [1..#Bj] such that c(xi) = cj(xk) = CSi(sj(xk)), thus sj(xk) ∈ Dj ⊆ supp(σj) \
{sj(x1), . . . , sj(x#Bj)}, contradiction. We obtained D ⊆ supp(σ) \ {s(x1), . . . , s(x#B0)} and
are left with proving that M = {{CS(u) | u ∈ D}}. “⊇” Immediate, by the definition of D.
“⊆” Let C ∈M be a color. Then either one of the following holds:

▷ C = {r ∈ R | r(z, . . . , z) occurs in ψ0} ∪
⋃ℓ
i=1 ci(z), for some z ∈ fv(ψ0): in this case,

C = CS(s(z)) and s(z) ∈ supp(σ), hence s(z) ∈ D.
▷ C ∈ Mi, for some i ∈ [1..ℓ]: in this case, C = CS(u) = CSi(u), for some u ∈ Di, by the
inductive hypothesis. Then u ∈ supp(σi) ⊆ supp(σ), hence u ∈ D.

Appendix C. Proofs from section 4

C.1. Proof of Lemma 4.7. Assume w.l.o.g. that A is rooted and let GA = (N , E , S0)
be the SCC graph of A. By Definition 4.5, GA is a tree and, moreover, S0 = {ι}, because
A is rooted. Let Λ : N ∪ δ → {1,∞} be the labeling from Definition 4.5. For every SCC
S ∈ N \ {S0}, let entry(S) be the unique state q such that {q} = τ• ∩ S, where {τ} = •S,
by point (1) of Definition 4.5, and entry(S0)

def

= ι. Moreover, each linear SCC S ∈ N such
that Λ(S) = 1 has a unique transition τ , such that S• = {τ}, by point (2a) of Definition 4.5.
We prove first an invariant of 1-labeled linear SCCs:

Fact C.1. Let p ∈ dom(θ) be a position, such that θ(p) ∈ S, for a linear SCC S ∈ N ,
such that Λ(S) = 1. Then there exists a descendant p′ ∈ dom(θ) of p, such that θ(p′) = s0,

t(p′) = β and θ(p′i) = si, for all i ∈ [1..k], where S• = {s0
β−→ (s1, . . . , sk)}.

Proof. Suppose, for a contradiction, that s0
β−→ (s1, . . . , sk) never occurs below p in θ. Then

every transition that occurs at some position below p in θ must be from •S•. This, however,

cannot be the case for a transition θ(p′)
t(p′)−−→ (), such that p′ ∈ fr(θ). Since, moreover, θ is

an accepting run, such a transition must occur on the frontier of θ.

The following facts prove the existence and uniqueness of a position labeled with the
entry state of each 1-labeled linear SCC:

68 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

Fact C.2. For each SCC S ∈ N , such that Λ(S) = 1, there exists a position p ∈ dom(θ),
such that θ(p) = entry(S).

Proof. Because GA is a tree with root S0, we have that S is reachable from S0 in GA by a
path of pairs from E . The proof goes by induction on the length n ≥ 0 of this path. For the
base case n = 0 (i.e., S = S0) we take p = ϵ. For the inductive step, let S′ be the parent
of S in GA. By points (1) and (2c) of Definition 4.5, •S = {τ} for some τ ∈ S′• ∩ δ1, such
that {entry(S)} = τ• ∩ S. By the inductive hypothesis, there exists a position p′ ∈ dom(θ),
such that θ(p′) = entry(S′). By Fact C.1, there exists a descendant p of p′, such that
θ(p) = entry(S).

Fact C.3. For each SCC S ∈ N , such that Λ(S) = 1, there exists at most one position
p ∈ dom(θ), such that θ(p) = entry(S).

Proof. Suppose, for a contradiction, that there exist two positions p1, p2 ∈ dom(θ), such
that θ(p1) = θ(p2) = entry(S). By induction of the length of pi, we prove the existence
of a sequence Si,ki , τi,ki , . . . , Si,1, τi,1, Si,0 = S0 such that θ(pi) ∈ Si,ki ,

•Si,j = τi,j and
{τi,j} = Si,j−1

•, for all j ∈ [1..ki] and i = 1, 2. Since p1 ≠ p2, there exists an SCC
S1,j1 = S2,j2 that violates condition (1) of Definition 4.5.

Let τ : q0
α−→ (q1, . . . , qℓ) be a transition, such that Λ(τ) = 1. By point (2b) of

Definition 4.5, we have τ ∈ S• for some linear SCC S ∈ N , such that Λ(S) = 1. By Fact C.2
and Fact C.3, there exists a unique position p ∈ dom(θ), such that θ(p) = entry(S). By
Fact C.1, there exists a position p′ ∈ dom(θ), such that θ(p′) = q0, t(p

′) = α and θ(p′i) = qi,
for all i ∈ [1..ℓ]. Suppose, for a contradiction, that this position is not unique, hence there
exists another position p′′ ∈ dom(θ), such that θ(p′′) = q0, t(p

′′) = α and θ(p′′i) = qi, for all
i ∈ [1..ℓ]. Since θ(p′) = θ(p′′) = q0 ∈ S, there exists a transition τ ′ with card(τ ′• ∩ S) ≥ 2,
in contradiction with the fact that S is linear. This concludes the proof .

C.2. Proof of Lemma 4.8. Let us consider the SCC graph GA = (N , E , S0) and the
mapping Λ : N ∪ δ → {1,∞} with the properties stated in Definition 4.5 and let q ∈ •(δ∞)
be a state. W.l.o.g., we consider that L(A) ̸= ∅ and that A is trim. Then q is reachable
from S0 = {ι}, i.e., there exists a partial run θ1 on A and a position p1 such that θ1(ϵ) = ι
and θ1(p1) = q. Let p2 be the longest strict prefix of p1 such that the transition τ : θ1(p2)

a−→
⟨θ1(p21), . . . , θ1(p2ℓ)⟩ is in δ1 for some a ∈ A and index ℓ. This position p2 exists, by
Definition 4.5, because S0 = {ι} is linear, Λ(S0) = 1 by condition (2c), card(S0

•) = 1 by
condition (2a), and the only transition τ0 ∈ {ι}• is in δ1 by condition (2b). This shows that
ι /∈ •δ∞ hence q ̸= ι and τ0 is a transition in δ1 on the path from ι to q in θ1, with τ being
the last one.

We decompose p1 = p2rp3 for some index r ∈ [1..ℓ] and position p3 and define the partial

run θ2 as θ2(ϵ)
def

= θ1(p2r) and, for each u ∈ N∗ and i ∈ N such that p2rui ∈ dom(θ1) and p2ru

is a strict prefix of p1, by θ2(ui)
def

= θ1(p2ru). Then θ2 starts from the state q0
def

= θ1(p2r) ∈ τ•
and p3 ∈ fr(θ2) gives the state θ2(p3) = q. Let S ∈ N be the SCC in GA such that q0 ∈ S.
Then Λ(τ) = 1 and τ ∈ •S (hence •S = {τ} by condition (1) of Definition 4.5), thus Λ(S) = 1
by condition (2c) of Definition 4.5.

We distinguish three cases (see Figure 15 for an illustration):

▷ If S is not linear, there exists a transition τ ′ ∈ •S• such that card(τ ′• ∩ S) ≥ 2. Let q′
def

= •τ ′

and q′′, q′′′ be the states such that {{q′′, q′′′}} ⊆ τ ′• ∩ S. Since q0, q
′, q′′, q′′′ ∈ S, we can

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 69

construct a partial run θ3 ∈ R∞q0(A) with transitions taken from •S•, which reaches q′ from
q0, then applies τ ′ and reaches q0 from both q′′ and q′′′. This gives θ3(p4) = θ3(p5) = q0,
for two distinct positions p4, p5 ∈ fr(θ3). We define θ0 ∈ R∞q0(A) as the partial run

with domain dom(θ3) ∪ {p5u | u ∈ dom(θ2)}, that extends θ3 by θ0(p5u)
def

= θ2(u), for all
u ∈ dom(θ2). Then θ0 satisfies point 1 of the lemma because θ0(p4) = q0 and θ0(p5p3) = q,
with p4 ̸= p5p3 ∈ fr(θ0).

▷ If S is linear and q /∈ S, there exists a unique position p6 and a transition:

τ ′ : θ2(p6)
α−→ ⟨θ2(p61), . . . , θ2(p6k)⟩ ∈ δ∞

for some alphabet symbol α ∈ A and some index k ∈ N, such that θ2(p6) ∈ S. Moreover,
there exists an index r ∈ [1..k] such that θ2(p6r) /∈ S and p6r is a prefix of p3. Then
Λ(τ ′) = ∞ and, by condition (2b) of Definition 4.5, we have τ ′ /∈ S•, hence τ ′ ∈ •S•
and q′

def

= θ2(p6r
′) ∈ S for another index r′ ∈ [1..k] \ {r}. Then there exists a partial run

θ4 ∈ R∞q′(A) such that θ4(p7) = q0 for some position p7 ∈ fr(θ4). We define the partial

run θ0 ∈ R∞q0(A) with domain dom(θ2) ∪ {p6r′u | u ∈ dom(θ4)}, by extending θ2 with

θ0(p6r
′u)

def

= θ4(u), for all u ∈ dom(θ4). Then θ0 satisfies point 1 of the lemma because
θ0(p6r

′p7) = q0 and θ0(p3) = q, with p6r
′p7 ̸= p3 ∈ fr(θ0).

▷ If S is linear and q ∈ S, let θ ∈ R∞q (A) be a partial run. Then S• contains only one

transition in δ1, thus for every position u ∈ dom(θ) \ fr(θ), such that θ(u) ∈ S, the
transition θ(u)

α−→ ⟨θ(u1), . . . , θ(uk)⟩ belongs to •S•. Then, there exists an index i ∈ [1..k]
such that θ(ui) ∈ S, and we can find a path in θ which stays in S and reaches the frontier,

that is q′
def

= θ(p8) ∈ S, for some p8 ∈ fr(θ). Hence, there exists a partial run θ5 ∈ R∞q′(A)
such that θ5(p9) = q0, for some position p9 ∈ fr(θ5). We now can extend θ to some partial

run θ′ ∈ R∞q (A) with domain dom(θ) ∪ {p8u | u ∈ dom(θ5)}, as θ′(p8u)
def

= θ5(u) for all
u ∈ dom(θ5). The partial run θ′ satisfies point 2 of the lemma, because θ′(p8p9) = q0,
with p8p9 ∈ fr(θ′).

q

q0 q0

θ2

τ
q0

θ3

θ2

r

p4 p5

p3

p2

τ
q0

ι

p2

r

q0

q

p3
θ2

p8

p9
θ5

∀θ

τ
q0

ι

q0

q

p3

p2

r

p6
τ ′

θ4
p7

ι

Case 2 (q /∈ S) Case 3 (q ∈ S)Case 1 (S not linear)

states in S

Figure 15: The cases from the proof of Lemma 4.8

70 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

C.3. Proof of Lemma 4.9. We assume w.l.o.g. that A = (A,Q, ι, δ) is rooted. Let
GA = (N , E) be the SCC graph of A, where N = {S1, . . . , SM} is a topological ordering
of the SCCs i.e., if (Si, Sj) ∈ E then i < j, for all i, j ∈ [1..M]. For each i = 1, . . . ,M , we
iterate the following transformation of A:
▷ let Si

def

=
⋃

(Si,Sj)∈E∗ Sj be the set of states from any SCC reachable from Si in GA,

▷ let ki
def

=
∑

τ∈•Si card(τ
• ∩ Si) be the number of edges of GA incoming to Si,

▷ create ki copies of the transitions q0
a−→ (q1, . . . , qℓ) ∈ δ such that {q0, qi1 , . . . , qij} =

{q0, . . . , qℓ} ∩ Si i.e., add a transition (q0, h)
a−→ (q1, . . . , (qi1 , h), . . . , (qij , h), . . . , qℓ) for

each h ∈ [1..ki],
▷ connect these new transitions to the rest of the automaton by adequately changing the
states q ∈ τ• ∩ Si for τ ∈ •Si to their corresponding copies (q, h), for all h ∈ [1..ki].

It is easy to check that the resulting automaton fulfills condition (1) of Definition 4.5 and
has the same language as A, using Lemma 4.4. We can thus assume w.l.o.g. in the following
that GA = (N , E , S1) is a tree and let S1, . . . , SN be a topological ordering of its nodes.
We associate a variable xi (resp. yτ) ranging over {0, 1,∞} with each SCC Si ∈ N (resp.
transition τ ∈ δ). Initially, the values of these variables are all zero. We iterate over the finite
sequence S1, . . . , SN as follows. For each i ∈ [1..N], we perform the following assignments in
this order:

(i) let xi
def

=

{
1, if i = 1∑

τ∈•Si yτ · card(τ
• ∩ Si), otherwise

(ii) for each τ ∈ •Si•, let yτ
def

=

{
∞, if xi > 0
0, otherwise

(iii) if xi ∈ {0,∞} or Si is nonlinear, for each τ ∈ Si•, let yτ
def

=

{
∞, if xi > 0
0, otherwise

(iv) else (i.e., xi = 1 and Si is linear) chose for all {yτ}τ∈Si• some values from {0, 1}, such
that xi =

∑
τ∈Si• yτ .

Since, for each SCC Si ∈ N , there is at most one transition τ ∈ •Si and card(τ• ∩ Si) ≤ 1,
each variable xi is assigned either 0, 1 or ∞ at (i). Note that no variable is assigned twice in
the above iteration sequence, because every xi is assigned exactly once, every yτ , for τ ∈ •Si
is assigned before xi and every yτ , for τ ∈ •Si• ∪ Si• is assigned after xi. Furthermore,
we have •Si

• ∩ •Sj• = ∅ and Si
• ∩ Sj• = ∅, for all 1 ≤ i < j ≤ N , so that each yτ , for

τ ∈ •Si• ∪ Si•, is assigned exactly once. Moreover, since the choice at (iv) is finite, there
are finitely many outcomes of the above nondeterministic iteration, say (x1,y1), . . . , (xℓ,yℓ),
where xi = ⟨xi,j⟩j∈[1..N] and yi = ⟨yi,τ ⟩τ∈δ. For each i ∈ [1..ℓ], we define the automaton

Ai = (A,Qi, ι, δi), where Qi
def

=
⋃
{Sj | xi,j > 0, j ∈ [1..N]} and δi

def

= {τ ∈ δ | yi,τ > 0}. We
are left with proving the following facts:

Fact C.4. Each automaton Ai is choice-free, for i ∈ [1..N].

Proof. We prove below the points of Definition 4.5:
(1) Let Sj0 be an SCC of A, such that xi,j0 > 0 i.e., Sj0 is a vertex in the SCC graph GAi .
Since the variable xj0 received its value xi,j0 at (i), either j0 = 1 (in which case xi,j0 = 1) or
there exists an incoming transition τ ∈ •Sj0 such that yi,τ > 0. Let Sj1 , for some j1 < j0 be
the SCC such that •τ ∈ Sj1 . Then xi,j1 > 0. Repeating the same argument for j1, we discover
a maximal finite sequence j0, . . . , jk such that (Sji+1 , Sji) ∈ E , for all i ∈ [0..k − 1]. Moreover,
it must be the case that jk = 1, or else the sequence could be extended, contradicting its

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 71

maximality. Since GA is a tree, the path from S1 to Sj0 must be unique and, since the choice
of Sj0 was arbitrary, GAi = (Ni, Ei, S1) is a tree as well. The second point from condition
(1) holds already for GA, hence it must hold for GAi .
(2) The mapping Λi : Ni ∪ δi → {1,∞} is defined as Λi(Sj) = xi,j for each Sj ∈ Ni and
Λi(τ) = yi,τ for each τ ∈ δi. We check that Λi verifies the conditions (2) from Definition 4.5:

(2a) if Sj ∈ Ni is linear and xi,j = 1 then the choice at step (iv) was yi,τ = 1, for exactly
one transition τ ∈ Sj•.

(2b) yi,τ = 1 iff the value of yτ was set at step (iv) and τ ∈ Sj• is the unique outgoing
transition for which a nonzero value was assigned to yτ , for a linear SCC Sj with
xi,j = 1.

(2c) xi,j = 1 iff the value of xj was set at step (i) and either j = 1 or for all but one
transitions τ ∈ •Sj we have yi,τ = 1.

Fact C.5. L(A) =
⋃ℓ
i=1 L(Ai).

Proof. “⊇” Since δi ⊆ δ, we have L(Ai) ⊆ L(A), for all i ∈ [1..ℓ].
“⊆” Let t ∈ L(A) and θ be an accepting run of A over t. We show that there exists an

iteration (i)–(iv) leading to the values (xi,yi) such that, for each transition τ occurring on θ
at some position p ∈ dom(θ) i.e., θ(p) = •τ , we have:

▷ xi,j > 0, where Sj is the unique SCC of A such that •τ ∈ Sj , and
▷ yi,τ > 0.

By the second point above we obtain that θ is an accepting run of Ai. The proof is by
reverse induction on the size of the subtree of θ rooted at p.
Base case: If p = ϵ, the variable x1 is always assigned the value 1 at step (i). We chose the
values for all {yτ ′}τ ′∈S1

• , such that yτ is assigned 1 and yτ ′ is assigned 0, for all τ ′ ∈ S1• \{τ}
at step (iv).
Induction step: If p ∈ dom(θ) \ {ϵ}, since j ̸= 1, by the inductive hypothesis, the variable

yτ ′ is assigned non-zero values, for at least one τ ′ ∈ •Sj , thus we assign xj the value∑
τ ′∈•Sj yτ ′ · card(τ

• ∩ Sj) > 0 at step (i). If τ ∈ •Sj•, then yτ is assigned ∞ at step (ii).

Otherwise, it must be the case that τ ∈ Sj• and we distinguish two cases. If Sj is nonlinear,
then yτ is assigned ∞ at (iii). Else, Sj is linear and we can chose the value 1 for yτ at step
(iv), because xj has been already assigned to 1.

Let i ∈ [1..ℓ]. We prove the upper bound on card(δ1i), as follows. Since the SCC graph
of Ai is a tree, the number of 1-transitions in Ai equals the number of SCCs in Ai. Due
to the expansion of the first step of the proof, we have card(δ1i) ≤ max{ρ(a) | a ∈ A}s ≤
max{ρ(a) | a ∈ A}card(Q), where s ≤ card(Q) denotes the number of SCCs in A.

C.4. Proof of Lemma 4.13. (1) For the first part, we prove the two directions of the
following equivalence: for all structures S and predicates B of arity n, there exists a store s
such that S |=s

∆ B(x1, . . . , xn) iff there exists a tree t ∈ LqB(A∆,A) and a store s̄ such that

S |=s̄ Θ(t) and s̄(x[ϵ]

j) = s(xj) for all j ∈ [1..n].

“⇒” We proceed by induction on the definition of S |=s
∆ B(x1, . . . , xn). Then ∆ contains

a rule ρ of the form B(x1, . . . , xn) ← ∃y1 . . . ∃ym . ψ ∗ ∗ℓi=1 Bi(zi,1, . . . , zi,ni) and we can

decompose the structure S = S0 • . . . •Sℓ, such that S0 |=s′ ψ and Si |=s′
∆ Bi(zi,1, . . . , zi,ni) for

all i ∈ [1..ℓ], for a store s′ that agrees with s over {x1, . . . , xn}. For all i ∈ [1..ℓ], we consider
a store si such that si(xj) = s′(zi,j), for all j ∈ [1..ni]. We have Si |=si

∆ Bi(x1, . . . , xni)

72 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

and, by induction hypothesis, there exists a tree ti ∈ LqBi (A∆,A) and a store s̄i such that

Si |=s̄i Θ(ti) and s̄i(x
[ϵ]

j) = si(xj) for all j ∈ [1..ni]. Let s̄ be a store such that:

▷ s̄(x[ϵ]

j) = s(xj), for all j ∈ [1..n],

▷ s̄(y[ϵ]

j) = s′(yj) for all j ∈ [1..m],

▷ s̄(z[ip])
def

= s̄i(z
[p]), for all i ∈ [1..ℓ] and z[p] ∈ fv(Θ(ti)).

Note that s̄ is well defined because s̄i(z
[p]) = s̄j(z

[p]) = s′(z[p]), for all z[p] ∈ fv(Θ(ti)) ∩
fv(Θ(tj)). We have Si |=s̄ Θ(ti)

[i] for all i ∈ [1..ℓ] and S0 |=s̄ αρ, thus S |=s̄ Θ(t) where t is the
tree consisting of a root labelled by αρ and ℓ children ti for i ∈ [1..ℓ]. Since t ∈ LqB(A∆,A)

and s̄(x[ϵ]

j) = s(xj), for all j ∈ [1..n0], by definition, we obtain the result.

“⇐” The reverse implication is proven by induction on the structure of the tree t ∈ LqB(A∆,A)

such that S |=s̄ Θ(t). Since t ∈ LqB(A∆,A), there is a transition qB
t(ϵ)−−→ (qB1 , . . . , qBℓ) ∈ δ∆

such that t(ϵ) = αρ for some rule ρ of the form above and t|i ∈ LqBi (A∆,B) for all i ∈ [1..ℓ].

Meanwhile S |=s̄ t(ϵ)∗∗ℓi=1 Θ(t|i)[i], thus we can decompose the structure as S = S0 • . . .•Sℓ,
such that S0 |=s̄ αρ and Si |=s̄ Θ(t|i)[i] ∗ ∗nij=1 z[ϵ]

i,j = x[i]

j for all i ∈ [1..ℓ]. Note that the
additional equalities from αρ are necessary to remember the links between the variables
from ρ. Let s̄i be a store, such that s̄i(z

[p]) = s̄(z[ip]), for all z[p] ∈ fv(Θ(t|i)) and all i ∈ [1..ℓ].
By the inductive hypothesis on t|i, there exists a store si such that Si |=si

∆ Bi(x1, . . . , xni)

and si(xj) = s̄i(x
[ϵ]

j), for all j ∈ [1..ni]. We consider a store s′ such that s′(xj) = s̄(x[ϵ]

j),

for all j ∈ [1..n], and s′(yj)
def

= s̄(y[ϵ]

j), for all j ∈ [1..m]. For all i ∈ [1..ℓ] and j ∈ [1..ni] we

have si(xj) = s̄i(x
[ϵ]

j) = s̄(x[i]

j) = s̄(z[ϵ]

i,j) = s′(zi,j), because z
[ϵ]

i,j = x[i]

j holds for s̄ in the empty

structure. Therefore Si |=s′
∆ Bi(zi,1, . . . , zi,ni), for all i ∈ [1..ℓ]. Moreover S0 |=s′ ψ, and by

composing the structures and using ρ, we obtain S |=s′
∆ B(x1, . . . , xn).

(2) To show [[A]] = [[Aι]]∆A
we prove the following equivalence: for all structures S and states

q0 ∈ Q, there exists a tree t ∈ Lq0(A) and a store s̄ such that S |=s̄ Θ(t) iff there exists a

store s such that S |=s
∆A

Aq0(x1, . . . , x#q0) and s(xj) = s̄(x[ϵ]

j), for all j ∈ [1..#q0].

“⇒” We reason by induction on the structure of the tree t ∈ Lq0(A), such that S |=s̄ Θ(t).

Since t ∈ Lq0(A), there is a transition q0
t(ϵ)−−→ (q1, . . . , qℓ) ∈ δ such that t|i ∈ Lqi(A), for

all i ∈ [1..ℓ]. Meanwhile S |=s̄ t(ϵ) ∗ ∗ℓi=1 Θ(t|i)[i] thus, we can decompose the structure
S = S0 • . . . • Sℓ, such that S0 |=s̄ t(ϵ) and Si |=s̄ Θ(t|i)[i]. Let s̄i be a store, such that
s̄i(z

[p]) = s̄(z[ip]), for all z[p] ∈ fv(Θ(t|i)) and all i ∈ [1..ℓ]. By the inductive hypothesis
on t|i, there exists a store si such that Si |=si

∆A
Aqi(x1, . . . , x#qi) and si(xj) = s̄i(x

[ϵ]

j) for

all j ∈ [1..#qi]. We consider a store s′, such that s′(xj) = s̄(x[ϵ]

j), for all j ∈ [1..#q0],

s′(x[i]

j) = si(xj), for all i ∈ [1..ℓ] and all j ∈ [1..#qi], and s′(z) = s̄(z), for all other variables

z ∈ fv(t(ϵ)). Then Si |=s′
∆A

Aqi(x
[i]

1 , . . . , x
[i]

#qi
) and S0 |=s′ t(ϵ)[x[ϵ]

1 /x1, . . . , x
[ϵ]

#q0
/x#q0] thus,

by composing the structures, we obtain S |=s′
∆A

Aq0(x1, . . . , x#q0).
“⇐” The reverse is shown by induction on the definition of S |=s

∆A
Aq0(x1, . . . , x#q0). Then

there exists a rule in ∆A of the form (4.1) and we can decompose the structure S = S0•. . .•Sℓ
such that S0 |=s′ α[x[ϵ]

1 /x1, . . . , x
[ϵ]

#q0
/x#q0] and Si |=s′

∆A
Aqi(x

[i]

1 , . . . , x
[i]

#qi
), for all i ∈ [1..ℓ],

where s′ is a store that agrees with s over {x1, . . . , x#qi}. For all i ∈ [1..ℓ], we consider a

store si such that si(xj) = s′(x[i]

j). We have Si |=si
∆A

Aqi(x1, . . . , x#q0) and, by the inductive

hypothesis, there exists a tree ti ∈ Lqi(A) and a store s̄i such that σi |=s̄i Θ(ti) and

s̄i(x
[ϵ]

j) = si(xj), for all j ∈ [1..#qi]. Let s̄ be a store such that:

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 73

▷ s̄(x[ϵ]

j)
def

= s(xj), for all j ∈ [1..#q0],

▷ s̄(y[ϵ]

j)
def

= s′(y[ϵ]

j), for all j ∈ [1..m],

▷ s̄(z[ip])
def

= s̄i(z
[p]), for all i ∈ [1..ℓ] and all z[p] ∈ fv(Θ(ti)).

Note that s̄ is well defined because s̄i(z
[p]) = s̄j(z

[p]) = s′(z[p]), for all z[p] ∈ fv(Θ(ti)) ∩
fv(Θ(tj)). We have Si |=s̄ Θ(ti)

[i], for all i ∈ [1..ℓ] and S0 |=s̄ α, thus S |=s̄ Θ(t), where t is
the tree consisting of a root labelled by α and children ti, for i ∈ [1..ℓ]. Since t ∈ Lq0(A)
and s̄(x[ϵ]

j) = s(xj) for all j ∈ [1..#q0] by definition, we obtain the result.

To show [[A]]r ⊆ [[Aι]]
r

∆A
, let (S, d) ∈ [[A]]c, where S = (U, σ) is a structure and d ⊆ U × U

is a symmetric relation. Then there exists a tree t ∈ L(A) and a store s canonical for
Θ(t), such that S |=s Θ(t) and, for each (u, v) ∈ d, there exist variables x ∈ s−1(u) and
y ∈ s−1(v) such that the disequality x ̸= y occurs in Θ(t). Let θ be the accepting run of A
over t. By a depth-first traversal of θ, we build a complete unfolding Aι ⇒∗∆A

Θ(t)∃. Since

S |=s Θ(t), we obtain (S, d) ∈ [[Aι]]
r

∆A
, by Definition 3.1. Conversely, to show [[A]]r ⊇ [[Aι]]

r

∆A
,

let (S, d) ∈ [[Aι]]
r

∆A
, where S = (U, σ) is a structure and d ⊆ U× U is a symmetric relation.

Then, there exists a complete unfolding Aι ⇒∗∆A
∃x1 . . . ∃xn . ψ, where ψ is a qpf formula,

and a store s canonical for ψ, such that S |=s ψ and, for all (u, v) ∈ d there exist variables
x ∈ s−1(u) and y ∈ s−1(v), such that the disequality x ̸= y occurs in ψ. By induction on
the length of the unfolding, one can build an accepting run θ of A, that recognizes a tree
t ∈ L(A), such that Θ(t) differs from ψ by an α-renaming and permutation of atoms via

commutativity and associativity of the separating conjunction. Hence (S, d) ∈ [[Θ(t)∃]]
r
, thus

(S, d) ∈ [[A]]r.

C.5. Proof of Lemma 4.23. (1) Let t′ ∈ L(AI∆,A) be a tree. Since AI∆,A was ob-
tained from A∆,A by removing relation and disequality atoms from the labels of its 1-
transitions, there exists a tree t ∈ L(A∆,A), such that dom(t) = dom(t′) and Θ(t) =
Θ(t′) ∗∗ni=1 ri(zi,1, . . . , zi,ki) ∗∗mj=1 yj,1 ̸= yj,2 modulo reordering of atoms, for some relation
symbols ri and variables zi,1, . . . , zi,ki , yj,1, yj,2. By Lemma 4.13, Θ(t) is satisfiable, hence
there exists a structure (U, σ) and a store s, such that (U, σ) |=s Θ(t). We define the
interpretation σ′(r) = σ(r) \ {⟨s(zi,1), . . . , s(zi,ki)⟩ | i ∈ [1..n], ri = r}, for all r ∈ R. It is easy
to check that (U, σ′) |=s Θ(t′), hence Θ(t′) is satisfiable. Since the choice of t′ was arbitrary,
we obtain that AI∆,A is all-satisfiable.

(2) Let t′ ∈ L(AI∆,A) be a tree. By the construction of AI∆,A from A∆,A, there exists a

tree t ∈ L(A∆,A), such that dom(t) = dom(t′) and Θ(t) = Θ(t′) ∗ ∗ni=1 ri(zi,1, . . . , zi,ki) ∗∗mj=1 yj,1 ≠ yj,2 modulo reordering of atoms, for some relation symbols ri and variables

zi,1, . . . , zi,ki , yj,1, yj,2. Let Y
def

=
⋃m
j=1{yj,1, yj,2} be the set of variables occurring in disequality

atoms. By Lemma 4.7, each 1-transition of A∆,A occurs exactly once in each accepting run,
hence n ≤ card(δ1∆) ·maxRelAtoms(∆), card(Y) ≤ card(δ1∆) ·maxVars(∆). By Lemma 2.10

(2, 3), tw(Θ(t′)∃) ≤ tw(Θ(t)∃) + n+ card(Y) ≤ tw(Θ(t)∃) + card(δ1∆) · (maxRelAtoms(∆) +
maxVars(∆)). Since the choice of t′ was arbitrary, we obtain that [[AI∆,A]] is treewidth bounded,

more precisely tw([[AI∆,A]]) ≤ tw([[A∆,A]]) + card(δ1∆) · (maxRelAtoms(∆) +maxVars(∆)).

(3) Let t ∈ L(A∆,A) be a tree. By the construction of AI∆,A from A∆,A, there exists a tree t′ ∈
L(AI∆,A), such that dom(t′) = dom(t) and Θ(t) = Θ(t′) ∗∗ni=1 ri(zi,1, . . . , zi,ki) ∗∗mj=1 yj,1 ̸=
yj,2 modulo reordering of atoms, for some relation symbols ri and variables zi,1, . . . , zi,ki ,

yj,1, yj,2. Let Y
def

=
⋃n
i=1{zi,1, . . . zi,ki} be the set of variables occurring in relation atoms.

74 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

By Lemma 4.7, each 1-transition of A∆,A occurs exactly once in each accepting run, hence

card(Y) ≤ card(δ1∆) ·maxVars(∆). By Lemma 2.10 (4) tw(Θ(t)∃) ≤ tw(Θ(t′)∃) + card(Y) ≤
tw(Θ(t′)∃)+card(δ1∆)·maxVars(∆). Since the choice of t was arbitrary, we obtain that [[A∆,A]]

is treewidth bounded, more precisely tw([[A∆,A]]) ≤ tw([[AI∆,A]])+card(δ1∆) ·maxVars(∆).

C.6. Proof of Lemma 4.25. (1) Let t′ ∈ L(AII∆,A) be a tree. Since AII∆,A was obtained

from AI∆,A by removing equality atoms from the labels of its 1-transitions (2), there exists a

tree t ∈ L(AI∆,A), such that dom(t) = dom(t′) and Θ(t) = Θ(t′) ∗ψ where ψ is a conjunction

of equality atoms. By Lemma 4.23 (1), Θ(t) is satisfiable, hence there exists a structure
S and a store s such that S |=s Θ(t). We immediately obtain S |=s Θ(t′), hence Θ(t′) is
satisfiable. Since the choice of t′ was arbitrary, we obtain that AII∆,A is all-satisfiable.

(2) Let t′ ∈ L(AII∆,A) be a tree and θ′ be an accepting run over t′. We shall build a tree

t ∈ L(AI∆,A) related to t′ and θ′ and show that tw([[Θ(t′)∃]]) ≤ tw([[Θ(t)∃]]) +K, where K is

constant that does not depend on the choice of t′. The idea of the construction of t from
t′ is to add resets before and after each 1-transition in the run θ′, so that the equalities
removed by the transformation from δI∆ to δII∆ can be added back, without changing the

set of models of Θ(t′)∃. To avoid unnecessary complications, we consider each 1-transition
separately (recall that there are finitely many 1-transitions in AII∆,A).

We refer to Figure 16 for an illustration of this construction. For a given position

p ∈ dom(t′) such that θ′(p)
t′(p)−−→ (θ′(p1), . . . , θ′(pℓ)) ∈ (δII∆)

1
, we separate the run θ′ into a

context θinitp←θ(p), before the 1-transition, and ℓ
def

= ρ(t′(p)) runs θ1, . . . , θℓ, after the 1-transition,

i.e., θinitp←θ(p)(r)
def

= θ′(r) for every r ∈ dom(t′) that is not a suffix of p, and θi(r)
def

= θ′(pir) for

every i ∈ [1..ℓ] and position r with pir ∈ dom(t′).

ϵ

pℓ

ϵ

p

puℓ

puℓvℓ

pu

p

p1

pu1v1

pu1

· · ·

· · ·
αp ∈ (δI∆)

1

t′ :

θinit
p←θ′(p)

t′(p)

t :

θinit
p←θ′(p)

θ′(p)-reset

θ1 θℓ

θ1 θℓ

η

θ′(pℓ)-reset

∈ (δII∆)
1

θ′(p1)-reset

ψ

Figure 16: Construction of t from t′ (Lemma 4.25)

Then, we build t and the associated run θ by combining successive partial runs:

▷ start θ with θinitp←θ(p), i.e., no change from θ′ above position p,

▷ add a θ′(p)-reset θu←θ′(p) ∈ R∞θ′(p)(A
I
∆,A) at position p; such a reset exists by Lemma 4.18

because θ′(p) ∈
•
((δII∆)

1
) ∩ •((δII∆)

∞
), since θ′(p) belong to a non-trivial SCC,

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 75

▷ pursue at position pu with the transition θ′(p)
αp−→ (θ′(p1), . . . , θ′(pℓ)) ∈ (δI∆)

1
correspond-

ing to the original 1-transition from AI∆,A, after adding back the equalities removed by
the transformation,

▷ for every i ∈ [1..ℓ], introduce at position pui a θ′(pi)-reset θvi←θ′(pi) ∈ R∞θ′(pi)(A
II
∆,A); such

a reset exists by Lemma 4.18 since θ′(pi) ∈ ((δII∆)
1
)
•
∩ •((δII∆)

∞
) is a pivot state,

▷ continue with θi at position puivi, for every i ∈ [1..ℓ].

Fact C.6. tw([[Θ(t′)∃]]) ≤ tw([[Θ(t)∃]])+K1, whereK1 ≤ maxVars(∆) is the maximal number
of i-variables, i ∈ N ∪ {ϵ}, in any 1-transition of AII∆,A.

Proof. Let ϕ
def

= ∗p not a prefix of r t′(r)[r] ∗ ∗pir∈dom(t′) t′(pir)[puivir], which corresponds to

the characteristic formula Θ(t′) without the 1-transition at position p, and with the new
position labels in t. Now Θ(t) = ϕ ∗ ψ where ψ is the separating conjunction of all t(pr)[pr]

with pr ∈ dom(t) and uivi not the prefix of r for any i ∈ [1..ℓ] (position pr is either the

start of the 1-transition or part of one of the reset contexts). Let F
def

= fv(ϕ) ∩ fv(ψ) and

η
def

= ∗{x = y | x, y ∈ Vf , x ≈ψ y}. Then, F contains the variables at the extremity of the

added part from t′ to t, i.e., F = {x[p]

k | k ∈ [1..#t(p)]}∪{x[puivi]

j | i ∈ [1..ℓ], j ∈ [1..#t(puivi)]}.
These variables exactly correspond to the parameters appearing in the 1-transition at
position p of t′, i.e., F = {x[p]

k | k ∈ [1..#t′(p)]} ∪ {x[pi]

j | i ∈ [1..ℓ], j ∈ [1..#t′(pi)]}, hence
card(F) ≤ K1 ≤ maxVars(∆). By Definition 4.11 (2), ϕ does not induce equalities between
variables of F . On the other hand, ψ only induces equalities between persistent variables
of F , thanks to the introduced reset paths. These equalities η correspond exactly to
those occurring in t′(p), thus ϕ ∗ η is equal to Θ(t′), modulo a renaming of the variables.
Now ϕ ∗ ψ is satisfiable (since AI∆,A is all-satisfiable), thus by Lemma 2.11, we obtain

tw([[Θ(t′)∃]]) = tw([[(ϕ ∗ η)∃]]) ≤ tw([[(ϕ ∗ ψ)∃]]) +K1 = tw([[Θ(t)∃]]) +K1.
After doing this transformation (t′ to t) for all 1-transitions, the final tree t satisfies

t ∈ L(AI∆,A) since all the added transitions (1-transition or reset) appear in δI∆. With

the inequality at each step (Fact C.6) and since each 1-transition of δII∆ occurs exactly

once in the initial tree t′ (Lemma 4.7), we get tw([[Θ(t′)∃]]) ≤ tw([[Θ(t)∃]]) + K, where

K = card((δII∆)
1
) · K1 ≤ card((δII∆)

1
) · maxVars(∆). As t′ has been chosen arbitrary and

card((δII∆)
1
) = card((δI∆)

1
), we conclude that tw([[AII∆,A]]) ≤ tw([[AI∆,A]]) + card((δI∆)

1
) ·

maxVars(∆).
(3) Let t ∈ L(AI∆,A). By the construction of AII∆,A from AI∆,A, there exists a tree t′ ∈ L(AII∆,A)
such that dom(t) = dom(t′) and Θ(t) = Θ(t′) ∗ ψ where ψ is a conjunction of equalities.

Θ(t′) is a qpf formula thus by Lemma 2.10 (1), we get tw([[Θ(t)∃]]) = tw([[(Θ(t′) ∗ ψ)∃]]) ≤
tw([[Θ(t′)∃]]). As t has been chosen arbitrary, we obtain that tw([[AI∆,A]]) ≤ tw([[AII∆,A]]).

C.7. Proof of Lemma 4.28. (1) By Lemma 4.27, L(Ã∆,A
II
) = L(AII∆,A), hence Ã∆,A

II
is

all-satisfiable, because AII∆,A is all-satisfiable, by Lemma 4.25 (1). Since B̃i is obtained by

removing zero or more transitions from Ã∆,A
II
, we have L(B̃i) ⊆ L(Ã∆,A

II
), hence Bi is

all-satisfiable.

76 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

Let δ̃1 be any of the sets δ̃11 , . . . , δ̃
1
m. We prove that B̃ def

= (Σ, Q̃I∆, (qA, ∅), δ̃1 ⊎ δ̃∞) is
choice-free. To this end, we define the following labeling of transitions:

Λ(τ)
def

=

{
1 if τ ∈ δ̃1
∞ if τ ∈ δ̃∞

Let h : Q̃I∆ → QI∆ be the function defined as h((q, a))
def

= q, for all (q, a) ∈ Q̃I∆. For each

SCC S̃ of B̃, we have h(S̃) ⊆ S, for an SCC S of AII∆,A, by the definitions of Ã∆,A
II

and B̃.
Since AII∆,A is choice-free, by Lemma 4.25 (1), we can extend the labeling Λ to the SCCs of

B̃, as follows:

Λ(S̃)
def

=

{
1 if h(S̃) ⊆ S, for some 1-SCC S of AII∆,A
∞ if h(S̃) ⊆ S, for some ∞-SCC S of AII∆,A

We prove first the following fact:

Fact C.7. Let S̃ be an SCC of B̃, such that Λ(S̃) = 1. Then h(S̃) is a 1-SCC of AII∆,A.
Moreover, h(S̃) is linear if S̃ is linear.

Proof. By the definition of Λ, we have that h(S̃) ⊆ S, for a 1-SCC of AII∆,A, hence, for the
first point, it suffices to prove that h(S̃) = S. Suppose, for a contradiction, that there

exists a state q ∈ S \ h(S̃). Let q′ ∈ h(S̃) be a state. Since S is an SCC of AII∆,A, we
have q ⇝∗ q′ ⇝∗ q in AII∆,A. Since q′ ∈ h(S̃), there exists an injective partial mapping

a′ : [1..#q′] → [1..M] such that (q′, a′) ∈ S̃. By the construction of Ã∆,A
II
, we obtain

(q′, a′) ⇝∗ (q, a) in Ã∆,A
II
, for some injective partial mapping a : [1..#q] → [1..M]. To

show a contradiction, we prove that (q, a) ⇝∗ (q′, a′) in Ã∆,A
II
, hence q′ ∈ h(S̃). By the

construction of Ã∆,A
II
, there exist injective partial mappings a1, a2, . . . : [1..#q

′]→ [1..M],

such that (q, a) ⇝∗ (q′, a1) ⇝∗ (q′, a2) ⇝∗ . . . Because the underlying transitions of AII∆,A
along this path are ∞-transitions, the mappings a1, a2, . . . are undefined everywhere except
for PAII∆,A

(q′), where they are defined. Because these transitions are from •S•, each of

these mappings can be obtained from the previous one by composition with a permutation
over PAII∆,A

(q′). Since all such permutations can be enumerated in this was, this leads to

(q′, a′1)⇝
∗ (q′, a′) in Ã∆,A

II
, i.e., contradiction.

For the second point, suppose, for a contradiction, that h(S̃) is not linear. Then, there

exists a transition q0
α−→ (q1, . . . , qℓ) such that q0, qi, qj ∈ h(S̃), for some indices 1 ≤ i < j ≤ ℓ.

Since h(S̃) is a connected component of AII∆,A, we have qi ⇝∗ q0 and qj ⇝∗ q0 in AII∆,A.
Let a0, . . . , aℓ be injective partial mappings, such that (q0, a0)

α−→ ((q1, a1), . . . , (qℓ, aℓ)) is a

transition of B̃. By the above argument, we obtain (qi, ai)⇝∗ (q0, a0) and (qj , aj)⇝∗ (q0, a0),
hence S̃ is non-linear, contradiction.
Back to the main proof, we check the points of Definition 4.5 below:

(1) The SCC graph of B̃ is a tree, by the choice of the set δ̃1 corresponding to B̃. Moreover,

each non-root SCC of B̃ is entered by exactly one branch, since this is already the case for
the choice-free automaton AII∆,A.

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 77

(2a) Let S̃ be a linear SCC of B̃, such that Λ(S̃) = 1. By Fact C.7, h(S̃) is a linear 1-SCC of

AII∆,A, hence card(h(S̃)
•
) = 1. Then, we obtain card(S̃•) = 1.

(2b) Let τ̃ = (q0, a0)
α−→ ((q1, a1), . . . , (qℓ, aℓ)) be a transition of B̃. Then Λ(τ̃) = 1 iff

τ̃ ∈ δ̃1, by the definition of Λ. “⇒” Assume that τ̃ ∈ δ̃1. Then, the underlying transition
τ = q0

α−→ (q1, . . . , qℓ) is a 1-transition of AII∆,A. Since AII∆,A is choice-free, we have that

τ ∈ S•, for some linear 1-SCC S of AII∆,A. Let S̃ be an SCC of B̃ such that h(S̃) ⊆ S. Then
Λ(S̃) = 1, by the definition of Λ. Suppose, for a contradiction that S̃ is non-linear. Then,

h(S̃) is non-linear, hence S is non-linear, contradiction. Finally, τ̃ ∈ S̃• follows from τ ∈ S•.
“⇐” Assume that τ̃ ∈ S̃•, for a linear SCC S̃ of B̃, such that Λ(S̃) = 1. Then h(S̃) is a linear

1-SCC of AII∆,A, by Fact C.7. Moreover, τ ∈ h(S̃)
•
, where τ is the underlying transition of τ̃

from AII∆,A. Hence τ is a 1-transition of AII∆,A and τ̃ ∈ δ̃1, by the choice of δ̃1.

(2c) By Fact C.7, Λ(S̃) = 1 iff h(S̃) is a 1-SCC of AII∆,A, for each SCC S̃ of B̃. “⇒” Assume

that h(S̃) is a 1-SCC of AII∆,A. Since AII∆,A is choice-free, then h(S̃) is the root of the SCC

tree of AII∆,A or
•
S̃ = {τ̃}, for some transition τ̃ of B̃, such that Λ(τ̃) = 1. In the first case,

h(S̃) has no incoming transition, hence S̃ is the root of the SCC tree of B̃. In the second

case,
•
h(S̃) = {τ}, for a 1-transition τ of AII∆,A. Then,

•
S̃ = {τ̃}, for a transition τ̃ , such that

Λ(τ̃) = 1, by the definition of Λ. “⇐” If h(S̃) is the root of the SCC tree of AII∆,A, then S̃
has no incoming transitions, hence it is the root of the SCC tree of B̃. If

•
h(S̃) = {τ}, for a

1-transition τ of AII∆,A, we obtain
•
S̃ = {τ̃}, for a transition τ̃ of B̃, such that Λ(τ̃) = 1, by

the definition of Λ.
(2) Since L(B̃i) ⊆ L(AII∆,A), for each i ∈ [1..m], we have

⋃m
i=1 L(B̃i) ⊆ L(AII∆,A). By the

definition of B̃1, . . . , B̃m, for each accepting run θ of Ã∆,A
II
, there exists i ∈ [1..m], such

that θ is an accepting run of B̃i, thus L(AII∆,A) ⊆
⋃m
i=1 L(B̃i).

C.8. Proof of Lemma 4.29. First, we prove the following fact:

Fact C.8. Let t ∈ L(B̃) be a tree, θ be an accepting run of B̃ over t and p ∈ dom(t) be a

position such that θ(p) = (q, a). Then, x[p]

i ≈Θ(t) y
[ri]

a(i), for each i ∈ dom(a), such that ri is

the unique position where a variable y[ϵ]

a(i) ∈ Y occurs in Θ(t).

Proof. By induction on the structure of t.

(1) Let t ∈ L(B) be a tree. By the construction of B, the accepting run θ of B over t can

be transformed into an accepting run θ of B̃ over a tree t, such that dom(t) = dom(t), by

changing the labels α back to the original labels α. Since B̃ is all-satisfiable, by Lemma 4.28
(1), the formula Θ(t) is satisfiable, and let (U, σ) be a structure and s be a store such that
(U, σ) |=s Θ(t). However, Θ(t) is obtained from Θ(t) by removing several (dis-)equalities
from the labels of 1-transitions and by changing each relation atom r(z[p]

1 , . . . , z
[p]

#r) into

a relation atom rg(ζτ (z
[p]

i1
), . . . , ζτ (z

[p]

ik
)), according to the construction of B. Suppose, for

a contradiction, that there exist two distinct positions p1, p2 ∈ dom(t) such that the

relation atoms rg(ζτ1(z
[p1]

i1
), . . . , ζτ1(z

[p1]

ik
)) and rg(ζτ2(z

[p2]

i1
), . . . , ζτ2(z

[p2]

ik
)) occur in Θ(t) and

ζτ1(z
[p1]

ij
) ≈Θ(t) ζτ2(z

[p2]

ij
), for all j ∈ [1..k]. Then, there exist relation atoms r(z

[p1]

1 , . . . , z
[p1]

#r)

78 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

and r(z
[p2]

1 , . . . , z
[p2]

#r) that occur in Θ(t), such that i1, . . . , ik ∈ [1..#r] and, by Fact C.8

and properties of the renaming, we obtain that z
[p1]

j ≈Θ(t) z
[p2]

j , for all j ∈ [1..#r]. This

however contradicts the satisfiability of Θ(t), hence such relation atoms cannot occur in
Θ(t). Similarly, we obtain a contradiction if we suppose a disequality atom ζτ (x) ̸= ζτ (y)
occurs in Θ(t) and ζτ (x) ≈Θ(t) ζτ (y). Then, Θ(t) is satisfiable and, since the choice of t was

arbitrary, B is all-satisfiable.
(2) Let S = (U, σ) ∈ [[B]] be a structure. Then, there exists a tree t ∈ L(B) and a store s

such that S |=s Θ(t). Let t̃ be the tree obtained from t by replacing back each label α with

the original label α, according to the construction of B from B̃. Note that dom(t̃) = dom(t)

and let θ, θ̃ be two related accepting runs of B, B̃ over t, t̃ respectively. We define a store s̃
over fv(Θ(t̃)) as follows. Let p be an arbitrary position in dom(t̃). Let (q0, a0) be the state
assigned to p and τ : (q0, a0)

α−→ ((q1, a1), . . . , (qℓ, aℓ)) be the transition taken at p in the

run θ̃. Let ζτ be the renaming of variables as defined in the transformation. The store s̃ is
then defined by:

▷ s̃(y[p]

i)
def

=

{
s(y[p]

i) if τ ̸∈ δ̃1
ui if τ ∈ δ̃1 for some distinct values ui ̸∈ s(fv(Θ(t))), i ∈ [1..M]

▷ s̃(x[p]

i)
def

=

{
s(x[p]

j) if i ̸∈ dom(a0) and ζτ (x
[ϵ]

i) = x[ϵ]

j

ua0(i) if i ∈ dom(a0)

That is, the store s̃ allocates fresh distinct values for all the persistent variables and re-uses
the already given values for the non-persistent ones in s, while taking into account their

renaming by ζτ . We now consider the structure S̃ = (U, σ̃), where σ̃ is the interpretation
that assigns to each relation symbol r the set of tuples ⟨s̃(ξ1), . . . , s̃(ξ#r)⟩ for every relation

atom r(ξ1, . . . , ξ#r) in Θ(t̃). We can now check that (U, σ̃) |=s̃ Θ(t̃). Any two tuples from
σ̃(r) defined as above are necessarily distinct, unless the corresponding tuples restricted
to non-persistent variables from σ(rg) are not distinct. Similarly, equalities on disequality

atoms on non-persistent variables only hold in Θ(t̃) as they already hold in the renamed
form in Θ(t). Finally, equalities and disequalities in Θ(t̃) involving persistent variables hold

by the construction of s̃. But now, every tree decomposition of S̃ is a tree decomposition

for S. Hence, tw(S) ≤ tw(S̃) and consequently, since the choice of S was arbitrary we have

tw([[B]]) ≤ tw([[B̃]]).
(3) Let S̃ = (U, σ̃) ∈ [[B̃]] be a structure. Then, there exists a tree t̃ ∈ L(B̃) and a store

s̃, such that S̃ |=s̃ Θ(t̃). Let t ∈ L(B) be the tree obtained by changing each label α of t̃

into α, according to the construction of B. We consider the structure S
def

= (U, σ), where σ
interprets each relation symbol rg by the set of tuples ⟨s̃(ζτ (z[p]

i1
)), . . . , s̃(ζτ (z

[p]

ik
))⟩, such that

rg(ζτ (z
[p]

i1
), . . . , ζτ (z

[p]

ik
)) occurs in Θ(t). Let T be a tree decomposition of S. We consider the

tree decomposition T̃ obtained by adding the values s̃(y
[ri]

i), where ri is the unique position

where a ϵ-variable y[ϵ]

i ∈ Y occurs in Θ(t), to the label of each node in T . Then, T̃ is a tree

decomposition of S̃ and moreover wd(T̃) ≤ wd(T) +M. Since the choice of T was arbitrary

we obtain tw(S̃) ≤ tw(S) +M. Consequently, since the choice of S̃ was arbitrary and

M≤ card(δ̃1) ·maxVars(∆), we obtain that tw([[B̃]]) ≤ tw([[B]]) + card(δ̃1) ·maxVars(∆).

THE TWB PROBLEM FOR AN INDUCTIVE SEPARATION LOGIC OF RELATIONS 79

C.9. Proof of Lemma 4.32. By hypothesis, B has no persistent variables and since the
relabeling of 1-transitions introduces no existential quantifiers, then B has no persistent
variables either.
(1) Let t ∈ L(B) be a tree and let θ be an accepting run of B over t. Let us consider
the run θ′ of B obtained by replacing with emp the labels of the 1-transitions τ exp : q0

α−→
(q1, . . . , qℓ) ∈ δ1. We then define the run θ′′ of B by replacing each occurrence of a 1-transition

τ : q0
emp−−→ (q1, . . . , qℓ) in θ

′ by the partial run θτ constructed by extending τ with the resets
used in the definition of the transformation, namely:

▷ a pre- q0-reset θ
0
p0←q0 ∈ R

∞
q0(B) if q0 ∈

•(δ∞) and,

▷ a post- qi-reset θ
i
pi←qi ∈ R

∞
qi(B) for each i ∈ [1..ℓ] such that qi ∈ •(δ∞).

emp emp

q0 q0

q0

q1 qℓ

θ0

ωℓ

ω0

ω1
q1 qℓqℓ

q0

q1 qℓ

(b)(a) (c)

ω0

θ1
ωℓ

θℓ
q1

ω1

τ θτ τexp

Figure 17: Expansion of 1-transitions

The relation between τ from θτ is illustrated in Figure 17 (a,b). Note that the resets
exist according to Lemma 4.18. Then, it is easy to check that θ′′ is indeed a run of B. Let
t′′ ∈ L(B) be the tree accepted by θ′′. Since B is all-satisfiable, there exists a store s and
a structure S′′ such that S′′ |=s Θ(t′′). Now, by the definition of B, the label α of each

transition τ exp : q0
α−→ (q1, . . . , qℓ) ∈ δ1 is actually ω0 ∗ ∗ℓj=1 ωj , where:

ω0 = ∗ i1,...,ik∈[1..#q0]Ωϵ/ϵt0 (xi1 , . . . , xik)

ωj = ∗ i1,...,ik∈[1..#qj]Ωpj/jtj
(xi1 , . . . , xik), for j ∈ [1..ℓ]

and t0, t1, . . ., tℓ are the Σ-labelled trees of the corresponding resets, respectively θ0, θ1,
. . . , θℓ. This construction is illustrated in Figure 17(c). Hence, there exists a substructure
S ⊑ S′′ such that S |=s Θ(t). Actually, S is simply obtained from S′′ by removing all but the
tuples introduced by the relation atoms of ω0, . . ., ωℓ, defined along the partial runs θτ of
θ′′. Since the choice of t was arbitrary, B is all-satisfiable.
(2) Let t′ ∈ L(B) be a tree. Let t ∈ L(B) be the tree obtained by t′ be removing relational
atoms from the labels of 1-transitions, that is, reversing the transformation. As both B and
B are all-satisfiable, the characteristic formulæ Θ(t′) and Θ(t) are satisfiable. They differ,
moreover, only by finitely many relational atoms. Henceforth, by using Lemma 2.10 (4), we
obtain that the difference between the treewidth of their models is bounded by the number

of free variables occurring on these atoms, that is, at most card(δ
1
) · maxVars(∆). Then

tw([[Θ(t′)∃]]) ≤ tw([[Θ(t)∃]]) + card(δ
1
) ·maxVars(∆) and as the choice of t′ was arbitrary, we

obtain tw([[B]]) ≤ tw([[B]]) + card(δ
1
) ·maxVars(∆).

(3) Let t ∈ L(B) be a tree. Let t′ ∈ L(B) be the tree obtained from t by replacing the
emp-labels of 1-transitions by their corresponding formulæ according to the transformation.

80 M. BOZGA, L. BUERI, R. IOSIF, AND F. ZULEGER

As both B and B are all-satisfiable, the characteristic formulæ Θ(t) and Θ(t′) are satisfiable.
These formulæ differ only by a finite number of relation atoms, that is, the ones inserted
in the labels of the modified 1-transitions. Henceforth, by Lemma 2.10 (3), we obtain that
the difference between the treewidth of their models is bounded by the number K of these
relation atoms. As the choice of t was arbitrary, we obtain that tw(B) ≤ tw(B) +K.

We can further obtain an upper bound on K as follows. First, note that for a relation
symbol r ∈ R and m distinct variables there exists at most distinct m#r relation atoms.
Note that, in our context m ≤ maxVars(∆) and #r ≤ maxRelArity(∆). Second, such atoms
could be added for every 1-transition, for every one of its states qi. That is, overall we obtain

K ≤ card(δ
1
) · (1 +maxPredAtoms(∆)) · relNo(∆) ·maxVars(∆)maxRelArity(∆).

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	1.1. Related work
	1.2. Motivating examples

	2. The Separation Logic of Relations
	2.1. Structures
	2.2. Treewdith
	2.3. Separation Logic of Relations
	2.4. Simplifying assumptions
	2.5. The treewidth boundedness problem

	3. Expandable Sets of Inductive Definitions
	3.1. Canonical models
	3.2. Expandable sets of inductive definitions
	3.3. Color schemes
	3.4. Connected structures
	3.5. Color abstractions of externally fused sets
	3.6. Maximally connected substructures
	3.7. Color abstractions of canonical models
	3.8. The expandable treewidth boundedness problem

	4. The Reduction to Expandable Sets of Inductive Definitions
	4.1. Tree Automata
	4.2. Automata with Alphabets of Formulæ
	4.3. Persistent Variables
	4.4. Eliminating Persistent Variables
	4.5. Wrapping 1-transitions
	4.6. The Proof of Lemma 4.1
	4.7. The Decidability of the Treewidth Boundedness Problem for SLR

	5. The Treewidth Boundedness Problem for First Order Logic
	6. Conclusions
	References
	Appendix A. Proofs from section 2
	A.1. Proof of Lemma 2.9
	A.2. Proof of Lemma 2.10
	A.3. Proof of Lemma 2.11

	Appendix B. Proofs from section 3
	B.1. Proof of Lemma 3.24
	B.2. Proof of Lemma 3.31
	B.3. Proof of Lemma 3.32

	Appendix C. Proofs from section 4
	C.1. Proof of Lemma 4.7
	C.2. Proof of Lemma 4.8
	C.3. Proof of Lemma 4.9
	C.4. Proof of Lemma 4.13
	C.5. Proof of Lemma 4.23
	C.6. Proof of Lemma 4.25
	C.7. Proof of Lemma 4.28
	C.8. Proof of Lemma 4.29
	C.9. Proof of Lemma 4.32

