
HAL Id: hal-04264291
https://hal.science/hal-04264291v1

Preprint submitted on 30 Oct 2023 (v1), last revised 23 May 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The Treewidth Boundedness Problem for an Inductive
Separation Logic of Relations

Marius Bozga, Lucas Bueri, Radu Iosif, Florian Zuleger

To cite this version:
Marius Bozga, Lucas Bueri, Radu Iosif, Florian Zuleger. The Treewidth Boundedness Problem for an
Inductive Separation Logic of Relations. 2023. �hal-04264291v1�

https://hal.science/hal-04264291v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

The Treewidth Boundedness Problem for an Inductive
Separation Logic of Relations

Marius Bozga1, Lucas Bueri1, Radu Iosif1, and Florian Zuleger2

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000, France
2 Institute of Logic and Computation, Technische Universität Wien, Austria

Abstract. The treewidth boundedness problem for a logic asks for the existence
of an upper bound on the treewidth of the models of a given formula in that logic.
This problem is found to be undecidable for first order logic. We consider a gener-
alization of Separation Logic over relational signatures, interpreted over standard
relational structures, and describe an algorithm for the treewidth boundedness
problem in the context of this logic.

1 Introduction

The treewidth of a graph is a positive integer measuring the distance between the graph
and a tree. For instance, trees have treewidth one, series-parallel graphs (i.e., circuits
with one input and one output that can be either cascaded or overlaid) have treewidth
two, whereas n× n square grids have treewidth n, for any n ≥ 1. The treewidth is a
cornerstone of algorithmic tractability. For instance, many NP-complete graph prob-
lems such as Hamiltonicity and 3-Coloring become P, when restricted to inputs whose
treewidth is bounded by a constant, see, e.g., [23, Chapter 11].

Structures are interpretations of relation symbols that define the standard semantics
of first and second order logic [18]. They provide a unifying framework for reasoning
about a multitude of graph types e.g., graphs with multiple edges, labeled graphs, col-
ored graphs, hypergraphs, etc. The notion of treewidth is straightforwardly generalized
from graphs to structures. In this context, bounding the treewidth by a constant sets the
frontier between the decidability and undecidability of monadic second order (MSO)
logical theories. A result of Courcelle [16] proves that MSO is decidable over bounded
treewidth structures, by reduction to the emptiness problem of tree automata. A dual
result of Seese [34] proves that each class of structures with a decidable MSO theory
necessarily has bounded treewidth. Since MSO is the yardstick of graph specification
logics [17], these results show that treewidth bounded classes of structures are tanta-
mount to the existence of decision procedures for important classes of properties, in
those areas of computing where graphs are relevant such as, e.g., static analysis [28],
databases [1] and concurrency [19].

This paper considers the treewidth boundedness problem asking for the existence of
an upper bound on the treewidths of the models of a given input formula. For first or-
der logic (and implictly MSO) the problem is already undecidable (Theorem 1), hence
we focus on non-classical substructural logics3. We prove the decidability of this prob-

3 Substructural logics have, in addition to boolean conjunction, a conjunction-like connective,
for which Gentzen’s natural deduction rules of weakening and contraction do not hold.

ar
X

iv
:2

31
0.

09
54

2v
1

 [
cs

.L
O

]
 1

4
O

ct
 2

02
3

lem for a generalization of Separation Logic to relational signatures, interpreted over
structures (Theorem 2).

Separation Logic (SL) [27,33,14] is a first order substructural logic with a separat-
ing conjunction ∗ that decomposes structures. For reasons related to its applications to
the deductive verification of pointer-manipulating programs, the models of SL are finite
partial functions, called heaps. In this context, the separating conjunction is interpreted
as the union of heaps with disjoint domains. SL interpreted over heaps is a powerful
tool for reasoning about low-level pointer updates. It allows to describe actions locally,
i.e., only with respect to the resources (e.g., memory cells, network nodes) involved,
while framing out the part of the state that is irrelevant for the action. This principle of
describing mutations, known as local reasoning [12], is at the heart of scalable compo-
sitional proof techniques for pointer programs [11].

The Separation Logic of Relations (SLR) is the generalization of SL to relational
signatures, interpreted over structures. This logic has been first considered for relational
databases and object-oriented languages [30]. Here the separating conjunction splits
the interpretation of each relation symbol from the signature into disjoint parts. For
instance, the formula r(x1, . . . ,xn) describes a structure in which all relations are empty
and r consists of a single tuple of values x1, . . . ,xn, whereas r(x1, . . . ,xn) ∗ r(y1, . . . ,yn)
says that r consists of two distinct tuples, i.e., the values of xi and yi differ for at least one
index 1≤ i≤ n. Moreover, when encoding (hyper-)graphs by structures, SLR allows to
specify (hyper-)edges that have no connected vertices, isolated vertices, or both. The
same style of composition is found in other spatial logics interpreted over graphs, such
as the GL logic of Cardelli et al [14].

Our motivation for studying the models of SLR arose from recent work on deduc-
tive verification of self-adapting distributed systems, where Hoare-style local reasoning
is applied to write correctness proofs for systems with dynamically reconfigurable net-
work architectures [2,6,7]. The assertion language of these proofs is SLR, with unary
relation symbols used to model nodes (processes) of the network and relation symbols
of arity two or more used to model links (communication channels) between nodes.
Just as user-defined inductive predicates are used in SL to describe datastructures (lists,
trees, etc.), SLR inductive predicates are used to describe common architectural styles
(e.g., pipelines, rings, stars, etc.) that ensure correct and optimal behavior of many dis-
tributed applications.

A key ingredient of automated proof generation in Hoare logic is the availability of
a decision procedure for the entailment problem [[φ]]

∆
⊆ [[ψ]]

∆
asking if each model of

a formula φ is also a model of another formula ψ, when the predicate symbols in φ and
ψ are interpreted by a set of inductive definitions ∆. In principle, the decidability of this
problem depends on (1) φ having only treewidth-bounded models, and (2) both φ and ψ

being MSO-definable [25]. The decidability result from this paper (Theorem 2) defines
precisely those formulæ of SLR whose models form a treewidth-bounded set.

Motivating examples We introduce the reader to SLR and the treewidth boundedness
problem by means of examples. Fig. 1 (a) shows a chain A(x1,x2) starting at x1 and
ending at x2, whose elements are labeled by a monadic relation symbol a and linked by
a binary relation r. Each unfolding of the inductive definition A(x1,x2)← ∃y . a(x1) ∗
r(x1,y) ∗A(y,x2) instantiates the existential quantifier to an element distinct from the
existing ones. This is because every instantiation of an existential quantifier is placed
into the ’a’ set and the semantics of the separating conjunction requires that these sets

b

A() ← ∃x∃y. b(x)∗ r(x,y)∗ c(y)∗A()
A() ← ∃x∃y. a(x)∗ r(x,y)∗ c(y)∗A()
A() ← emp

(d)

. . .
rrr

a aa
. . .

r r r

a,b a,ba ba

A(x1,x2) ← ∃y. a(x1)∗ r(x1,y)∗A(y,x2)

A(x1,x2) ← x1 = x2
(a) (c)

A() ← emp

A() ← ∃x∃y. a(x)∗ r(x,y)∗b(y)∗A()

a

a. . .
r r

. . .
r r

r r

r

r

r

...

. . .

.
...

... a,b,c

a,b,c b

A(x1,x2) ← ∃y. r(x1,y)∗A(y,x2)

A(x1,x2) ← x1 = x2

a

b
a,b,c

b

a,b,c
a

a,b,c

a
b

a,b,c
b

a

a,b,c

a,b,c

b

a

a

(b)

b

A() ← ∃x∃y. a(x)∗ r(x,y)∗b(y)∗A()

Fig. 1. Examples of Bounded and Unbounded Treewidth Models

must be disjoint in the models of φ1 and φ2, that compose into a model of φ1 ∗φ2. Then,
any model of ∃x∃y . A(x,y) is a (possibly cyclic) chain, of treewidth at most two.

Fig. 1 (b) shows a family of models for a slightly modified definition of a chain,
given by the recursive rule A(x1,x2)←∃y . r(x1,y)∗A(y,x2), where the instantiations of
the existential quantifiers are not placed into a set. In this case, one can fold a sufficiently
large chain onto itself and creating a square grid, by using the same element of the
structure more than once to instantiate a quantifier. Then, the formula ∃x∃y . A(x,y) has
an infinite set of models containing larger and larger square grid minors, thus having
unbounded treewidth.

Since placing every quantifier instance into the same set guarantees treewidth bound-
edness, as in e.g., Fig. 1 (a), a natural question is what happens when these instances are
placed into two (not necessarily disjoint) sets? The inductive definition of the predicate
A in Fig. 1 (c) creates an unbounded number of disconnected r-edges whose endpoints
are arbitrarily labeled with a and b, respectively. In this case, one can instantiate a a-
labeled (resp. b-labeled) variable with a new element or a previous b (resp. a) element
and build chains (or sets of disconnected chains), of treewidth at most two4.

Let us now consider three unary relation symbols a, b and c and three types of dis-
connected r-edges (according to the labels of their endpoints) created by three recursive
definitions of Fig. 1 (d), namely a-b, b-c and a-c edges. In this case, the formula A(),
where A is a predicate symbol of zero arity, has models with unboundedly large square
grid minors, obtained by “glueing” these edges (i.e., instantiating several quantifiers
with the same element from different sets). The glued pairs are connected with dotted
lines in Fig. 1 (d). Consequently, the models of A() form a set of unbounded treewidth.

These examples highlight the ideas behind an algorithm that decides the existence of
a bound on the treewidths of the models of a given formula, with predicates interpreted

4 For instance, a simple cycle with more than two elements has treewidth two.

by set of inductive definitions. First, one needs to identify the definitions that can iterate
any number of times producing building blocks of unboundedly large grids (modulo
edge contractions). Second, these structures must connect elements from different sets,
e.g., a, b or c in Fig. 1. A complication is that such sets could be defined not only by
monadic relation symbols, but also by n-ary relation atoms where all but one variable
have the same values for any occurrence. For instance, the variable x2 in Fig. 1 (a)
has the same value in an arbitrarily long unfolding of A(x1,x2) and we could have
written r(x1,x2) instead of a(x1) in the first rule, with the same effect, while avoid
using ‘a’ altogether. Last, the interplay between the connectivity and labeling of the
building blocks is important. For instance, in Fig. 1 (d), the building blocks of the grid
are structures consisting of six elements, that connect two ‘a’ with two ‘b’ elements.

For space reasons, additional technical material relative to Sections §2, §3, §4, §5
and §6 is given in Appendix §A, §B, §C, §D and §E, respectively.

2 The Treewidth Boundedness Problem

This section defines formally the treewidth boundedness problem and introduces most
of the technical definitions.

Let N be the set of positive integers, zero included and N+
def

=N\{0}. Given integers
i and j, we write [i.. j] for the set {i, i+1, . . . , j}, assumed to be empty if i > j. For a
set A, we denote by pow(A) its powerset. The cardinality of a finite set A is card(A). By
writing S = S1⊎S2, we mean that S1 and S2 partition S, i.e., S = S1∪S2 and S1∩S2 = /0.

Multisets are denoted as [[a,b, . . .]] and all set operations are used with multisets as
well. In particular, a binary operation involving a set and a multiset considers the set to
be a multiset and yields a multiset. The multi-powerset (i.e., the set of multisets) of A is
denoted as mpow(A).

For a binary relation R⊆ A×A, we denote by R∗ its reflexive and transitive closure
and by R= the smallest equivalence relation that contains R, i.e., the closure of R∗ by
symmetry. For a set S⊆ A, we denote by R⇃S the relation obtained by removing from R
all pairs with an element not in S. A binary relation R ⊆ A×B is an A-B matching iff
{a,b}∩{a′,b′}= /0, for all distinct pairs (a,b),(a′,b′) ∈ R.

Structures Let R be a finite and fixed set of relation symbols, where #r≥ 1 denotes the
arity of r, for r ∈ R. A relation of arity one (resp. two) is called unary (resp. binary).

A structure is a pair S = (U,σ), where U is an infinite set called the universe and
σ :R→ pow(U+) is an interpretation mapping each relation symbol r into a finite subset
of U#r. We consider only structures with finite interpretations, because SLR (defined
below) can only describe such structures. The support supp(σ) def

= {ui | ⟨u1, . . . ,u#r⟩ ∈
σ(r), i∈ [1..#r]} of an interpretation is the (necessarily finite) set of elements that occur
in a tuple from the interpretation of a relation symbol. Two structures (U1,σ1) and
(U2,σ2) are locally disjoint iff σ1(r)∩σ2(r)= /0, for all r∈R and disjoint iff supp(σ1)∩
supp(σ2) = /0. Two structures are isomorphic iff they differ only by a renaming of their
elements (a formal definition is given in [20, §A3]).

We consider several operations on structures. The first operation is composition,
defined as pointwise disjoint union of the interpretations of relation symbols:

Definition 1. The composition of two locally disjoint structures (U1,σ1) and (U2,σ2)

is (U1,σ1) • (U2,σ2)
def

= (U1 ∪U2,σ1 ⊎σ2), where (σ1 ⊎σ2)(r)
def

= σ1(r)⊎σ2(r), for all
r ∈ R. The composition is undefined if (U1,σ1) and (U2,σ2) are not locally disjoint.

We define two fusion operations, that glue together elements from the same struc-
ture (internal fusion) or from distinct structures (external fusion). Fusion operations are
formally defined via quotienting with respect to certain equivalence relations:

Definition 2. Let S= (U,σ) be a structure and ≈ ⊆ U×U be an equivalence relation,
where [u]≈ is the equivalence class of u ∈ U. The quotient S/≈ = (U/≈,σ/≈) is U/≈

def

=

{[u]≈ | u ∈ U} and σ/≈(r)
def

= {⟨[u1]≈, . . . , [u#r]≈⟩ | ⟨u1, . . . ,u#r⟩ ∈ σ(r)}, for all r ∈ R.

A fusion operation glues elements without losing tuples from the interpretation of a rela-
tion symbol. For this reason, we consider only equivalence relations that are compatible
with a given structure and define internal fusion as the following unary operation:

Definition 3. An equivalence relation ≈ ⊆ U×U is compatible with a structure S =
(U,σ) iff for all r ∈ R and any two tuples ⟨u1, . . . ,u#r⟩,⟨v1, . . . ,v#r⟩ ∈ σ(r), there exists
i ∈ [1..#r] such that ui ̸≈ vi. An internal fusion of S is a structure isomorphic to S/≈, for
an equivalence relation ≈ compatible with S. Let IF(S) be the set of internal fusions of
S and IF(S) def

=
⋃

S∈S IF(S), for a set S of structures.

External fusion is a binary operation that glues elements taken from different structures:

Definition 4. An external fusion of the structures S1 = (U1,σ1) and S2 = (U2,σ2) is a
structure isomorphic to (S′1 •S′2)/≈, where S′i = (U′i,σ

′
i) are disjoint isomorphic copies

of Si and ≈⊆ U′1 ×U′2 is the smallest equivalence relation containing a nonempty
supp(σ′1)-supp(σ′2) matching that is compatible with S′1 •S′2. Let EF(S1,S2) be the set
of external fusions of S1 and S2. For a set of structures S , let EF∗(S) (resp. IEF∗(S)) be
the closure of S under taking external (resp. both internal and external) fusions.

Treewdith A graph is a pair G = (N ,E), such that N is a finite set of nodes and
E ⊆N ×N is a set of edges. A (simple) path in G is a sequence of (pairwise distinct)
nodes v1, . . . ,vn, such that (vi,vi+1) ∈ E , for all i ∈ [1..n−1]. We say that v1, . . . ,vn is
an undirected path if {(vi,vi+1),(vi+1,vi)}∩E ̸= /0 instead, for all i ∈ [1..n−1]. A set
of nodes S⊆N is connected in G iff there is an undirected path in G between any two
nodes in N. A graph G is connected iff N is connected in G.

Given a set Ω of labels, a Ω-labeled unranked tree is a tuple T = (N ,E ,r,λ), where
(N ,E) is a graph, r ∈ N is a designated node called the root, such that there exists a
unique simple path from r to any other node n ∈ N \ {r} and no path from r to r in
(N ,E). The mapping λ : N →Ω associates each node of the tree a label from Ω.

Definition 5. A tree decomposition of a structure S = (U,σ) is a pow(U)-labeled un-
ranked tree T = (N ,E ,r,λ), such that the following hold:
1. for each relation symbol r ∈ R and each tuple ⟨u1, . . . ,u#r⟩ ∈ σ(r) there exists a

node n ∈N , such that {u1, . . . ,u#r} ⊆ λ(n), and
2. for each element u∈ supp(σ), the set of nodes {n ∈N | u ∈ λ(n)} is nonempty and

connected in (N ,E).
The width of the tree decomposition is wd(T) def

= maxn∈N card(λ(n))−1. The treewidth
of the structure σ is tw(σ)

def

= min{wd(T) | T is a tree decomposition of σ}.

Note that, since we consider only structures with finite support, tree decompositions are
finite trees with finite sets as labels, hence the treewidth of a structure is a well-defined

φ := emp | x = y | x ̸= y | r(x1, . . . ,x#r) | A(x1, . . . ,x#A) | φ∗φ | ∃x . φ

(a)

(U,σ) |=s
∆
emp

def⇐⇒ σ(r) = /0, for all r ∈ R
(U,σ) |=s

∆
x∼ y def⇐⇒ (U,σ) |=s

∆
emp and s(x)∼ s(y), for ∼ ∈{=, ̸=}

(U,σ) |=s
∆
r(x1, . . . ,xk)

def⇐⇒ σ(r) = {⟨s(x1), . . . ,s(xk)⟩} and σ(r′) = /0, for r′ ∈ R\{r}
(U,σ) |=s

∆
A(y1, . . . ,yn)

def⇐⇒ σ |=s
∆

φ[x1/y1, . . . ,xn/yn], for some A(x1, . . . ,xn)← φ ∈ ∆

(U,σ) |=s
∆

φ1 ∗φ2
def⇐⇒ exist structures (Ui,σi), where (U,σ) = (U1,σ1)• (U2,σ2)

and (Ui,σi) |=s
∆

φi, for both i = 1,2
(U,σ) |=s

∆
∃x . φ

def⇐⇒ σ |=s[x←u]
∆

φ, for some u ∈ U

(b)

Fig. 2. The Separation Logic of Relations

integer. A set of structures is treewidth-bounded iff the set of corresponding treewidths
is finite and treewidth-unbounded otherwise. We assume basic acquaintance with the
notions of grid and minor. It is known that a set of structures having infinitely many
minors isomorphic to some n×n grid is treewidth-unbounded [5].

Logics Let V = {x,y, . . .} be a set of variables. First order logic (FO) is the set of
formulæ consisting of equalities x = y and relation atoms r(x1, . . . ,x#r) connected by
boolean conjunction, negation and existential quantification. A variable is free if it does
not occur within the scope of an existential quantifier and fv(φ) denotes the set of free
variables of φ. A sentence is a formula with no free variables. For a formula φ, we denote
by φ∃ the sentence obtained by existentially quantifying its free variables. A formula
without quantifiers is called quantifier-free. The semantics of first order logic is given
by a satisfaction relation (U,σ) ⊩s φ between structures and formulæ, parameterized
by a store s : V→ U such that (U,σ) ⊩s r(x1, . . . ,x#r) iff ⟨s(x1), . . . ,s(x#r)⟩ ∈ σ(r). If
φ is a sentence the store is not important, thus we omit the superscript and write S ⊩ φ

instead. The set of models of a FO sentence φ is denoted as [[φ]] def

= {S | S ⊩ φ}.
The Separation Logic of Relations (SLR) uses a set of predicates P = {A,B, . . .}

with given arities #A ≥ 0. A predicate of zero arity is called nullary. The formulæ
of SLR are defined by the syntax in Fig. 2 (a). Instead of the boolean conjunction,
SLR has a separating conjunction ∗. The formulæ x ̸= y and A(x1, . . . ,x#A) are called
disequalities and predicate atoms, respectively. To alleviate notation, we denote by A
the predicate atom A(), whenever A is nullary. A formula without predicate atoms is
called predicate-free. A qpf formula is both quantifier- and predicate-free.

Definition 6. A set of inductive definitions (SID) is a finite set of rules of the form
A(x1, . . . ,x#A)← φ, where x1, . . . ,x#A are pairwise distinct variables, called parameters,
such that fv(φ)⊆ {x1, . . . ,x#A}.

The semantics of SLR is given by the satisfaction relation (U,σ) |=s
∆

φ between struc-
tures and formulæ, parameterized by a store s and a SID ∆. We write s[x← u] for the
store that maps x into u and agrees with s on all variables other than x. By [x1/y1, . . . ,xn/yn]
we denote the substitution that replaces each free variable xi by yi in a formula φ, the
result of applying the substitution being denoted as φ[x1/y1, . . . ,xn/yn]. As a conven-
tion, the existentially quantified variables from φ are renamed to avoid clashes with
y1, . . . ,yn. Then |=s

∆
is the least relation that satisfies the constraints in Fig. 2 (b).

Note that the interpretation of equalities and relation atoms differs in SLR from first-
order logic, namely x = y requires that the structure is empty and r(x1, . . . ,x#r) denotes

the structure in which all relations symbols are interpreted by empty sets, except for r,
which contains the tuple of store values of x1, . . . ,x#r only. Moreover, every structure
(U,σ), such that (U,σ) |=s

∆
φ, interprets each relation symbol as a finite set of tuples, de-

fined by a finite least fixpoint iteration over the rules from ∆. The assumption that each
structure has an infinite universe excludes the cases in which a formula becomes unsat-
isfiable because there are not enough elements to instantiate the quantifiers introduced
by the unfolding of the rules, thus simplifying the definitions.

If φ is a sentence (resp. a predicate-free formula), we omit the store s (resp. the SID
∆) from S |=s

∆
φ. For a SLR sentence φ, let [[φ]]

∆

def

= {S | S |=∆ φ} be the set of ∆-models
of φ. If φ is, moreover, predicate-free we omit the subscript and say that φ is satisfiable
iff [[φ]] ̸= /0. Although we use the same notation for the sets of models of FO and SLR
formulæ, the underlying logic will always be clear from the context.

Given predicate-free formulæ φ and ψ, we say that ψ is a logical consequence of φ

iff for each structure (U,σ) and store s, such that (U,σ) |=s φ, there exists a structure
(U,σ′) such that σ′(r)⊆ σ(r), for all r ∈ R, and (U,σ′) |=s ψ.

Decision Problems We consider the following decision problems:

Definition 7. The TWBFO problem asks, given a FO sentence φ, if the set [[φ]] is treewidth-
bounded. The TWBSLR problem asks, given a SID ∆ and a SLR sentence φ, if the set
[[φ]]

∆
is treewidth-bounded.

First, we prove that TWBFO is undecidable:

Theorem 1. The problem is [[φ]] treewidth-bounded, for a given FO sentence φ with at
least two binary relation symbols and several unary relations, is undecidable.

See proof on page 29.
The rest of this paper is concerned with the proof of the following theorem:

Theorem 2. The TWBSLR problem is decidable.

Proof overview Let (∆,φ) be an instance of the TWBSLR problem, where ∆ is a SID and
φ is a SLR sentence. Without loss of generality, we assume that φ consists of a single
nullary predicate atom A, since [[φ]]

∆
= [[A]]

∆∪{A←φ} provided that A is not defined by
any other rule in ∆. We use a notion of canonical model, intuitively, structures obtained
by instantiating all existential quantifiers introduced by the unfolding of the rules in ∆

to pairwise distinct variables. The set of canonical ∆-models of A is denoted [[A]]c
∆

. A
formal definition is given in §3 (Def. 8). We reduce the treewidth boundedness problem
for [[A]]

∆
to the same problem for a set generated by external fusion of structures that

may occur any number of times embedded in some canonical ∆-model of A.
The first part of the proof builds finitely many SIDs Γ1, . . . ,Γn having a semantic

property, called expandability. Intuitively, a SID Γ is expandable for a nullary predicate
B iff any sequence of canonical Γ-models of B can be disjointly embedded in some
canonical Γ-model of B. A formal definition is given in §3 (Def. 12) and the proof of
the lemma below is given in §5:

Lemma 1. Let ∆ be a SID and A be a nullary predicate. Then, one can build finitely
many SIDs Γ1, . . . ,Γn expandable for a nullary predicate B, such that [[A]]

∆
is treewidth-

bounded iff [[B]]
Γi

is treewdith-bounded, for each i ∈ [1..n].

The above result allows to assume w.l.o.g. that ∆ is expandable for A.
In the second part of the proof we reduce the treewidth boundedness of [[A]]

∆
to

the treewidth boundedness of sets of structures obtained by applying both internal and
external fusion to canonical models. The proof of the lemma below in given in §5:

Lemma 2. Let ∆ be an expandable SID for a nullary predicate A. Then, (1) only if (2)
only if (3), where:
(1) IEF∗([[A]]c

∆
) is treewdith-bounded,

(2) [[A]]
∆

is treewidth-bounded,
(3) EF∗([[A]]c

∆
) is treewidth-bounded.

In the third part of the proof we establish the equivalence of the points (1-3) of
Lemma 2, by proving the missing direction (3) only if (1). This reduces the treewidth
boundedness of [[A]]

∆
to the treewidth boundedness of EF∗([[A]]c

∆
). The proofs of the

following two lemmas are given in §6:

Lemma 3. Given a SID ∆ and a nullary predicate symbol A, EF∗([[A]]c
∆
) is treewidth-

bounded only if IEF∗([[A]]c
∆
) is treewidth-bounded.

The above lemma is a consequence of the argument used to show the decidability of the
treewidth boundedness problem for sets of the form EF∗([[A]]c

∆
):

Lemma 4. The following problem is decidable: given a SID ∆ and a nullary predicate
A, is EF∗([[A]]c

∆
) treewidth-bounded?

Finally, the treewidth boundedness for EF∗([[A]]c
∆
) is shown to be equivalent to the

treewidth boundedness of a set generated by external fusion of a set S of connected
structures, i.e., in which there is a path of tuples between any two elements from the
support. We prove that (1) EF∗(S) is treewidth-unbounded iff (2) EF∗(S) contains in-
finitely many grid minors iff (3) there exist two disjoint structures (Ui,σi) ∈ EF∗(S)
and distinct elements ui,vi,wi ∈ supp(σi) labeled with disjoint sets of relation symbols
Ci, for i = 1,2. For the latter condition, Fig. 3 depicts the construction of a structure
with an n× n square grid minor, of treewidth at least n, for any n ≥ 1. Intuitively, the
condition C1 ∩C2 = /0 allows to glue the elements u1 with u2, v1 with v2 and w1 with
w2, respectively.

The existence of structures satisfying condition (3) above is checked by computing
an ascending Kleene sequence in a domain of multisets of relation symbols in which
each symbol occurs at most three times. Since this domain is finite, the least fixpoint
is attained in a finite number of steps, yielding an algorithm that decides the treewidth-
boundedness of the set [[A]]

∆
.

3 Expandable Sets of Inductive Definitions

This section introduces the formal definitions of canonical models and expandable
SIDs, thus completing the overview of the proof of Theorem 2.

Let φ and ψ be formulæ and ∆ be a SID. We denote by φ⇒∆ ψ the fact that ψ is ob-
tained by replacing a predicate atom A(y1, . . . ,yn) in φ by a formula ρ[x1/y1, . . . ,xn/yn],
where A(x1, . . . ,xn)← ρ is a rule from ∆. A ∆-unfolding is a sequence of formulæ such
that φ1 ⇒∆ . . .⇒∆ φn. The ∆-unfolding is complete iff φn is a predicate-free formula.
The following is a direct consequence of the semantics of SLR:

...

...

u1

w2

w1

v1 v2u2

S2,1
12

u1

w2

w1

v1 v2u2

S2,2
12

u1

w2

w1

v1 v2u2

S1,1
12

u1

w2

w1

v1 v2u2

S1,2
12

u1

w2

w1

v1 v2u2

S1,3
12

... ...

Fig. 3. The principle of grid construction

Proposition 1. Let φ be a sentence, ∆ a SID and S a structure. Then S∈ [[φ]]
∆

iff S |=s ψ,
for a store s and complete ∆-unfolding φ⇒∗

∆
∃x1 . . .∃xn . ψ, where ψ is a qpf formula.

Intuitively, a model of a sentence is canonical if it can be defined using a store that
matches only those variables that are equated in the result of the unfolding. For a qpf
formula φ, we write x≈φ y (resp. x ̸≈φ y) iff x = y is (resp. is not) a logical consequence
of φ. A store s is canonical for φ iff s(x) = s(y) only if x ≈φ y, for all x,y ∈ fv(φ).
Moreover, a rich canonical model stores information about the disequalities introduced
by the unfolding.

Definition 8. Let ∆ be a SID and φ a sentence. A rich canonical ∆-model of φ is a pair
(S,d), where S= (U,σ) is a structure and d⊆ U×U is a symmetric relation, such that
there exists a complete ∆-unfolding φ⇒∗

∆
∃x1 . . .∃xn . ψ, where ψ is qpf, and a store s

canonical for ψ, such that S |=s ψ and d(u,v) iff there exist variables x ∈ s−1(u) and
y ∈ s−1(v) such that x ̸= y occurs in ψ. We denote by [[φ]]r

∆
the set of rich canonical

∆-models of φ and [[φ]]c
∆

def

= {S | (S,d) ∈ [[φ]]r
∆
} the set of canonical ∆-models of φ. If φ is

predicate-free, we write [[φ]]c (resp. [[φ]]r) instead of [[φ]]c
∆

(resp. [[φ]]r
∆

).

In the rest of this section we fix the SID ∆. We simplify the technical development
assuming w.l.o.g. that no equalities occur in ∆ (Lemma 5).

Definition 9. A formula is equality-free iff it contains no equalities nor predicate atoms
in which the same variable occurs twice. A rule A(x1, . . . ,xn)← φ is equality-free iff φ

is equality-free. A SID is equality-free iff it consists of equality-free rules.

Lemma 5. Given a SID ∆, one can build an equality-free SID ∆′, such that [[A]]
∆
=

[[A]]
∆′ for any nullary predicate A.

See proof on page 33.
Canonical models are important for two reasons. First, their treewidth is bounded:

Lemma 6. Given a nullary predicate A, there exists a constant W ≥ 1, depending only
on ∆, such that tw(S)≤W, for any S ∈ [[A]]c

∆
.

See proof on page 33.
Second, any model is obtained via internal fusion of a rich canonical model:

Definition 10. An equivalence relation ≈ ⊆ U×U is compatible with a rich canonical
model (S,d) iff it is compatible with S= (U,σ) and d(u,v) only if u ̸≈ v. We denote by
ĨF(S,d) the set of structures isomorphic to S/≈, where ≈ is some equivalence relation
compatible with (S,d).

A store s is injective over a set of variables x1, . . . ,xn iff s(xi) = s(x j) implies i = j,
for all i, j ∈ [1..n]. Note that the canonical ∆-models of an equality free SID ∆ can be
defined considering injective stores in Def. 8.

Lemma 7. Let A be a nullary predicate. Then, [[A]]
∆
= ĨF([[A]]r

∆
)⊆ IF([[A]]c

∆
).

See proof on page 33.
A structure is a substructure of another if the former is obtained from the latter by
removing elements from its support:

Definition 11. Let Si = (Ui,σi) be structures, for i = 1,2. S1 is included in S2 iff U1 ⊆
U2 and σ1(r) ⊆ σ2(r), for all r ∈ R. S1 is a substructure of S2, denoted S1 ⊑ S2 iff
S1 ⊆ S2 and σ1(r) = {⟨u1, . . . ,u#r⟩ ∈ σ2(r) | u1, . . . ,u#r ∈ supp(σ1)}, for all r ∈ R.

A SID is expandable if any set of canonical models of a sentence (equivalently, a
nullary predicate) are all substructures of the same canonical model of that sentence,
that can be, moreover, placed “sufficiently far away” one from another.

Definition 12. A SID Γ is expandable for a nullary predicate B iff for each sequence
of pairwise disjoint canonical models S1 = (U1,σ1), . . . ,Sn = (Un,σn) ∈ [[B]]c

Γ
, there

exists a rich canonical model (S,d) ∈ [[B]]r
Γ
, where S= (U,σ), such that:

1. S1 • . . .•Sn ⊑ S,
2. d(u,v) holds for no u ∈ supp(σi) and v ∈ supp(σ j), where 1≤ i < j ≤ n, and
3. for no relation symbol r ∈ R and tuples ⟨u1, . . . ,u#r⟩,⟨v1, . . . ,v#r⟩ ∈ σ(r) there exist

1 ≤ i < j ≤ n, such that {u1, . . . ,u#r}∩ supp(σi) ̸= /0, {v1, . . . ,v#r}∩ supp(σ j) ̸= /0

and {u1, . . . ,u#r}∩{v1, . . . ,v#r} ̸= /0.

The conditions (2) and (3) of Def. 12 ensure that the external fusion (Def. 4) of these
substructures is not hindered by how they are placed inside the larger structure. This
definition completes the formalization of the statements of Lemmas 1 and 2 (§5) on
which the proof of Theorem 2 rests. We proceed with a proof of Lemma 2.

Proof of Lemma 2 “(1) ⇒ (2)” IF([[A]]c
∆
) ⊆ IEF∗([[A]]c

∆
) holds trivially, by Def. 4,

leading to [[A]]
∆
⊆ IEF∗([[A]]c

∆
), by Lemma 7. “(2)⇒ (3)” Let S= (U,σ) ∈ EF∗([[A]]c

∆
)

be a structure. It is sufficient to prove that S ⊑ S′ for another structure S′ ∈ [[A]]
∆

, be-
cause tw(S) ≤ tw(S′), in this case. Then there exist pairwise disjoint structures S1 =
(U1,σ1), . . . ,Sn =(Un,σn)∈ [[A]]c∆ and an equivalence relation≈⊆

(⋃n
i=1Ui

)
×
(⋃n

i=1Ui
)
,

that is compatible with S1 • . . . • Sn, matches only elements from different structures
and is not the identity, such that S is isomorphic to (S1 • . . .•Sn)/≈. By Def. 12, there
exists a rich canonical model (S′′,d) ∈ [[A]]r

∆
, such that (1) S ⊑ S′′, (2) d(u,v) holds

for no u ∈ supp(σi) and v ∈ supp(σ j), where 1 ≤ i < j ≤ n, and (3) for no relation
symbol r ∈ R and tuples ⟨u1, . . . ,u#r⟩,⟨v1, . . . ,v#r⟩ ∈ σ(r), there exist 1 ≤ i < j ≤ n,
such that {u1, . . . ,u#r}∩ supp(σi) ̸= /0, {v1, . . . ,v#r}∩ supp(σ j) ̸= /0 and {u1, . . . ,u#r}∩
{v1, . . . ,v#r} ≠ /0. By the last two conditions, ≈ is compatible with (S′′,d), leading to
S′′/≈ ∈ ĨF([[A]]

r
∆
) = [[A]]

∆
by Lemma 7. We conclude by taking S′ = S′′/≈. ⊓⊔

4 Encoding Sets of Inductive Definitions by Tree Automata

For technical reasons, the construction of expandable SIDs with an equivalent treewidth
boundness problem (Lemma 1) uses a representation of the SID as a tree automaton.
This representation allows to distinguish the purely structural aspects, related to the
dependencies between rules, from details related to the flow of parameters.

Let A be a ranked alphabet, each symbol a∈A having an associated integer ρ(a)≥
0, called the rank of a. The elements of N∗+ and finite sequences of strictly positive
natural numbers, called positions. We write pq for the concatenation of p,q∈N∗ and q ·
P def

= {qp | p ∈ P}, for P⊆N∗. A ranked tree is a finite partial function t : N∗→A, such
that the set dom(t) is prefix-closed, i.e., for each p ∈ dom(t), if q is a prefix of p, then
q ∈ dom(t), and sibling-closed, i.e., {i ∈ N | pi ∈ dom(t)} = {1, . . . ,ρ(t(p))}, for all
p ∈ dom(t). The frontier of t is the set fr(t) def

= {p ∈ dom(t) | p1 ̸∈ dom(t)}. We denote
by t|p the subtree of t at position p ∈ dom(t) i.e., t|p is the tree such that dom(t|p) =
{q ∈ N∗ | pq ∈ dom(t)} and t|p(q)= t(pq), for each q∈ dom(t|p). A tree u is embedded
in t at position p ∈ dom(t) iff pq ∈ dom(t) and u(q) = t(pq), for each q ∈ dom(u).

Definition 13. An (A-labeled tree) automaton is A = (A,Q ,I ,δ), where Q is a finite
set of states, I ⊆ Q is a set of initial states (if I is a singleton, we denote it by ι ∈
Q), δ is a finite set of transitions τ : q0

a−→ (q1, . . . ,qρ(a)). For a transition τ : q0
a−→

(q1, . . . ,qℓ) ∈ δ, let •τ def

= q0 and τ•
def

= [[q1, . . . ,qℓ]], i.e., a multiset. For a set of transitions
T ⊆ δ, let •T def

= {•τ | τ ∈ T} and T • def

=
⋃

τ∈T τ•. For a set of states S ⊆ Q , let •S def

=

{τ | •τ ̸∈ S, τ•∩S ̸= /0}, S• def

= {τ | •τ ∈ S, τ•∩S = /0} and •S• def

= {τ | •τ ∈ S, τ•∩S ̸= /0}.
The following notions concern the structure of automata. The relation⇝ ⊆ Q ×Q

is defined as q ⇝ q′ iff there exists τ ∈ δ such that q = •τ and q′ ∈ τ•. A strongly
connected component (SCC) is a maximal set S⊆Q , such that q⇝∗ q′, for all q,q′ ∈ S.
An SCC S is nonlinear iff there exists a transition τ∈ •S• such that card(τ•∩S)≥ 2 and
linear otherwise. The SCC graph of A is the directed graph GA

def

= (N ,E), where N is
the set of SCCs of A and (S,S′) ∈ E iff S ̸= S′ and there exists q ∈ S and q′ ∈ S′, such
that q⇝ q′, for all S,S′ ∈N . We write GA = (N ,E ,S) if GA is a tree with root S ∈N .

The execution of automata is defined next. A run θ of A over a ranked tree t is a tree
θ : dom(t)→ Q such that θ(p)

t(p)−−→ (θ(p1), . . . ,θ(pℓ)) ∈ δ, for all p ∈ dom(t), where
ℓ = ρ(t(p)). Note that the frontier of a run is labeled by states q such that there exists
a transition q α−→ () ∈ δ, in analogy to the final states of a word automaton. A weaker
notion is that of partial runs, where the previous condition holds for dom(t) \ fr(t),
instead of the entire dom(t). A run θ is accepting if θ(ε) ∈ I . The language of A is
L(A)

def

=
⋃

q∈I Lq(A), where Lq(A)
def

= {t | A has a run θ over t and θ(ε) = q}.
An automaton is rooted iff I = {ι} and ι ̸∈ δ•. For an automaton A one can build

finitely many rooted automata A1, . . . ,An such that L(A) =
⋃n

i=1 L(Ai). A rooted au-
tomaton A is trim iff ι⇝∗ q and Lq(A) ̸= /0, for each state q ∈ Q . Each automaton with
non-empty language can be transformed into a trim one with the same language, by a
simple marking algorithm.

The following structural property of automata is key for building expandable SIDs:

Definition 14. An automaton A = (A,Q , ι,δ) is choice-free iff the following hold:
(1) the SCC graph of A is a tree GA = (N ,E ,S0), where •S= {τ} and card(τ•∩S) = 1,

for all S ∈ N \ {S0}, i.e., any non-root SCC is entered by one branch of a single
transition,

(2) there exists a mapping Λ : N ∪δ→{1,∞} such that:
(a) for all S ∈N , if S is linear and Λ(S) = 1 then card(S•) = 1.
(b) for all τ ∈ δ, Λ(τ) = 1 iff τ ∈ S•, for some linear S ∈N such that Λ(S) = 1,
(c) for all S∈N , Λ(S)= 1 iff S= S0 or •S= {τ}, for some τ∈ δ such that Λ(τ)= 1.

Let δ = δ1 ⊎ δ∞, where δk def

= {τ ∈ δ | Λ(τ) = k} and k ∈ {1,∞}, be the partition of the
set of transitions induced by the mapping Λ. A state q ∈ (δ1)

•∩ •(δ∞) is called a pivot
state. Let R ∞

q (A) denote the set of partial runs θ of A , such that θ(ε) = q and for all
p ∈ dom(θ)\ fr(θ), there exists a ∈ A such that θ(p) a−→ (θ(p1), . . . ,θ(pn)) ∈ δ∞.

Intuitively, the structure of choice-free automata allows them to traverse a unique se-
quence of linear SCCs, before entering a non-linear SCC. The transitions from δ1, called
1-transitions in the following, are used to move from one linear SCC to another, hence
all of them occur exactly once on each accepting run:

Lemma 8. Let A = (A,Q , ι,δ) be a choice-free automaton, such that δ = δ1⊎δ∞ (Def.
14) and let θ be an accepting run of A over a tree t. Then, for each 1-transition q0

a−→
(q1, . . . ,qℓ) ∈ δ1 there exists exactly one position p ∈ dom(θ), such that θ(p) = q0,
t(p) = a and θ(pi) = qi, for all i ∈ [1..ℓ].

See proof on page 34.
On the other hand, the transitions from δ∞, called ∞-transitions in the following, can
be applied any number of times on some accepting run. This fact occurs as an easy
consequence of the lemma below:

Lemma 9. Let A = (A,Q , ι,δ) be a choice-free automaton, where δ = δ1 ⊎ δ∞ (Def.
14). Then, for any state q ∈ •(δ∞) there exists a pivot state q0 ∈ (δ1)

• ∩ •(δ∞) and a
partial run θ0 ∈ R ∞

q0
(A) consisting only of ∞-transitions, such that θ0(p) = q for some

p ∈ fr(θ0) and either:
1. [[q,q0]]⊆ [[θ0(p) | p ∈ fr(θ0)]], i.e., if q = q0 then q occurs twice on fr(θ0), or
2. each partial run θ∈R ∞

q (A) can be extended to a partial run θ′ ∈R ∞
q (A) such that

q0 occurs on the frontier of θ′.

See proof on page 35.
Importantly, any automaton can be decomposed into finitely many choice-free automata:

Lemma 10. Given an automaton A , one can build finitely many choice-free automata
A1, . . ., An, such that L(A) =

⋃n
i=1 L(An).

See proof on page 37.

Alphabets of formulæ The construction of expandable SIDs (Lemma 1) uses automata
that recognize trees labeled with qpf formulæ taken from a finite set. We recall that
every model of a sentence is defined by a complete unfolding that replaces the predicate
atoms with corresponding definitions, recursively. The steps of these unfoldings can be
placed into a tree labeled with predicate-free formulæ from an alphabet Σ, reflecting the
partial order in which the rules from the SID are applied. These unfolding trees form
the language of an automaton defined directly from the syntax of the SID. Dually, from
any Σ-labeled automaton one can build a SID whose unfolding trees form the language
of the automaton.

Definition 15. Let Σ be the set of qpf formulæ α of rank ρ(α) = ℓ, such that:
1. fv(α) ⊆ {x[ε]1 , . . . ,x

[ε]
n0} ∪ {y

[ε]

1 , . . . ,y
[ε]
m} ∪

⋃ℓ
i=1{x

[i]
1 , . . . ,x

[i]
ni}, for some m,n0, . . . ,nℓ ∈

N; a variable x[i]j is called a i-variable, for all i ∈ {ε}∪ [1..ℓ],
2. x[i]j ̸≈α x[i]k , for all i ∈ [1..ℓ] and 1≤ j < k ≤ ni.

The characteristic formula of a Σ-labeled tree t is the qpf formula Θ(t) def

=∗p∈dom(t) t(p)[p],
where the formulæ t(p)[p] are obtained from t(p) ∈ Σ by replacing each occurrence of a
variable x[q] by x[pq], for all p ∈ dom(t).

Given a SID ∆, the Σ-labeled automaton A∆,A
def

= (Σ,Q∆,qA,δ∆) is defined as follows:
– Q∆ contains states qB, where B is a predicate occuring in ∆; each state has an

associated arity #qB
def

= #B,
– δ∆ contains a transition qA0

αρ−→ (qA1 , . . . ,qAℓ
), where αρ is the symbol:

αρ

def

= ψ[x1/x[ε]1 , . . . ,xn0/x[ε]n0
, y1/y[ε]1 , . . . ,ym/y[ε]m]∗

ℓ∗
i=1

ni∗
j=1

z[ε]i, j = x[i]j (1)

of rank ρ(αρ) = ℓ that corresponds to the (equality-free) rule ρ∈ ∆, where ψ is qpf:

ρ : A0(x1, . . . ,xn0)←∃y1 . . .∃ym . ψ∗
ℓ∗

i=1
Ai(zi,1, . . . ,zi,ni) (2)

The following property of A∆,A is immediate from its definition:

Lemma 11. Let q0
α−→ (q1, . . . ,qℓ) ∈ δ∆ be a transition of A∆,A. Then, for each i ∈ [1..ℓ]

and each j ∈ [1..#qi], there exists an ε-variable z, such that x[i]j ≈α z.

See proof on page 39.
Dually, given an automaton A = (Σ,Q , ι,δ), the SID ∆A consists of the following

rules, one for each transition q0
α−→ (q1, . . . ,qℓ) ∈ δ:

Aq0(x1, . . . ,x#q0)← ∃y1 . . .∃ym . α[x[ε]1 /x1, . . . ,x
[ε]

#q0
/x#q0]∗

ℓ∗
j=1

Aq j(x
[j]
1 , . . . ,x

[j]
#q j

) (3)

where {y1, . . . ,ym}
def

= fv(α)\
(
{x[ε]1 , . . . ,x

[ε]

#q0
}∪

ℓ⋃
j=1

{x[j]1 , . . . ,x
[j]
#q j
}
)

Note that ∆A is not equality-free, but can be transformed into an equality-free SID
(Lemma 5).

Definition 16. For a Σ-labeled automaton A , let [[A]]
def

=
⋃

t∈L(A) [[Θ(t)∃]] (resp. [[A]]c
def

=⋃
t∈L(A) [[Θ(t)∃]]

c
and [[A]]r

def

=
⋃

t∈L(A) [[Θ(t)∃]]
r
). The automaton A is all-satisfiable iff

the formula Θ(t) is satisfiable, for all t ∈ L(A).

The relation between SIDs and Σ-labeled automata is stated below:

Lemma 12. (1) Given a SID ∆ and a nullary predicate A, one can build an automaton
A∆,A such that [[A]]

∆
= [[A∆,A]]. (2) Given an automaton A = (Σ,Q , ι,δ), one can build

a SID ∆A , such that [[A]] = [[Aι]]∆A
and [[A]]r = [[Aι]]

r
∆A

, for a nullary predicate A.

See proof on page 39.

Persistent variables The second ingredient of the construction of expandable SIDs
(Lemma 1) are the persistent variables introduced by 1-transitions, whose values prop-
agate via equalities throughout each run of the choice-free automaton. We introduce
these variables formally using the notion of profile:

Definition 17. Let A = (Σ,Q , ι,δ) be a choice-free automaton, where δ = δ1⊎δ∞ (Def.
14). A positional function P : Q → pow(N) associates each state q with a set P(q) ⊆
[1..#q]. The profile of A is the pointwise largest positional function PA such that, for
each transition q0

α−→ (q1, . . . ,qℓ)∈ δ∞, each k ∈ [1..ℓ] and each r ∈PA(qk), there exists
s∈PA(qε), such that x[ε]s ≈α x[k]r . A variable x[i]j that occurs within the label of a transition

q0
α−→ (q1, . . . ,qℓ) ∈ δ is said to be persistent iff j ∈PA(qi), for all i ∈ [1..ℓ]∪{ε}.

Intuitively, PA(q) is the set of indices of those variables, associated with a state, that
will be equated, through a chain of equalities in the characteristic formula Θ(t), to the
same variable associated with the entry state in every run of ∞-transitions of A over t.
Note that the profile is computable by a separate finite greatest fixpoint Kleene iteration
over sets of SCCs in the automaton interconnected by ∞-transitions.

A context θp←q is a partial run over a tree t such that p∈ fr(θp←q), θp←q(p) = q and

θp←q(r)
t(r)−→ (), for all r ∈ fr(θp←q)\ p, i.e., the partial run has exactly one “open” fron-

tier position p that is labeled with a state q. A key property of automata is that equalities
between non-persistent variables vanish in contexts consisting of ∞-transitions only:

Definition 18. A context θp←q ∈R ∞
q (A) over a tree t is a q-reset iff (1) x[ε]j ≈Θ(t) x[p]j , for

all j ∈PA(q), and (2) x[ε]j ̸≈Θ(t) x[p]k , for all j,k ∈ [1..#q], such that k ̸∈PA(q). The path
between ε and p in θp←q is a reset path.

Lemma 13. Let A = (Σ,Q , ι,δ) be a trim automaton. Then, there exists a q-reset for
(1) each pivot state q ∈ (δ1)

•∩ •(δ∞) of A and (2) each state q ∈ •(δ1)∩ •(δ∞), i.e., that
is the origin of both a 1-transition and a ∞-transition.

See proof on page 41.
Any sequence of partial runs consisting of ∞-transitions can be embedded in a complete
run, such that each two such partial runs are separated by any number of resets:

Lemma 14. Let A be a trim automaton. Given partial runs θ1 ∈ R ∞
q1
(A), . . . ,θn ∈

R ∞
qn(A) and an integer k ≥ 1, there exists an accepting run θ of A such that:

1. θi is embedded in θ at some position pi ∈ dom(θ), for each i ∈ [1..n],
2. pi ·dom(θi)∩ p j ·dom(θ j) = /0, for all 1≤ i < j ≤ n,
3. the path between pi and p j in θ traverses k times some reset path disjoint from⋃n

ℓ=1 pℓ ·dom(θℓ), for all 1≤ i < j ≤ n.

See proof on page 42.

5 A Decomposition into Expandable Sets of Inductive Definitions

This section describes the technical development leading to the proof of Lemma 1. In
the rest of this section, let ∆ be a given equality-free SID and A be a nullary predi-
cate. The automaton A∆,A recognizes the set of ∆-models of A, by Lemma 12 (1). We
shall build from A∆,A finitely many automata B1, . . . ,Bm, such that [[A∆,A]] is treewidth-
bounded iff [[Bi]] is treewidth-bounded, for each i ∈ [1..m] and, moreover, each SID
Γi

def

= ∆Bi , i.e., obtained from Bi using Lemma 12 (2) is shown to be expandable for a
nullary predicate B, for all i ∈ [1..m]. The construction of B1, . . . ,Bm proceeds in five
steps, denoted (I-V) in what follows.

The automata built in the following will be simulations and refinements of A∆,A:

Definition 19. Let A = (A,QA , ιA ,δA) and B = (A,QB , ιB ,δB) be automata. A map-
ping h : QA → QB is a simulation iff (1) h(ιA) = ιB and (2) q0

a−→ (q1, . . . ,qℓ) ∈ δA
only if h(q0)

a−→ (h(q1), . . . ,h(qℓ)) ∈ δB , for all q0, . . . ,qℓ ∈ QA . A refinement h is a
simulation such that, moreover (3) h(q0)

a−→ (q′1, . . . ,q
′
ℓ) ∈ δB only if there exist states

q1 ∈ h−1(q′1), . . . ,qℓ ∈ h−1(q′ℓ), such that q0
a−→ (q1, . . . ,qℓ) ∈ δA , for all q0 ∈ QA and

q′1, . . . ,q
′
ℓ ∈ QB . If a simulation (refinement) h : QA → QB exists then A simulates

(refines) B .

The key properties of simulations and refinements are stated and proved below:

Lemma 15. If A simulates (resp. refines) B then L(A)⊆ L(B) (resp. L(A) = L(B)).

See proof on page 43.
We shall also make use of the following relations between qpf formulæ and the

upper bounds on the treewidth of their models:

Lemma 16. Let φ be a qpf formula, x1,x2, . . . ,xk variables and r a relation symbol of
arity k, such that φ∗ x1 ̸= x2 and φ∗ r(x1, . . . ,xk) are satisfiable. Then, we have:
1. tw([[(φ∗ x1 = x2)

∃]])≤ tw([[φ∃]]),
2. tw([[φ∃]])−1≤ tw([[φ∗ x1 ̸= x2

∃]])≤ tw([[φ∃]]),
3. tw([[φ∃]])−1≤ tw([[φ∗ r(x1, . . . ,xk)

∃]])≤ tw([[φ∃]])+ k

See proof on page 44.

I. Satisfiability The first step is the construction of an automaton A I
∆,A = (Σ,Q I

∆
,qA,δI

∆
)

recognizing the set of trees from the language of A∆,A = (Σ,Q∆,qA,δ∆) that have, more-
over, a satisfiable characteristic formula. This construction uses an idea of Brotherston
et al [9], that characterizes the satisfiability of a predicate by an abstraction consisting
of tuples of parameters occurring in the interpretation of relation symbols. A similar
abstraction has been used to check satisfiability of SLR formulæ [6].

The states of A I
∆,A are base pairs, defined below:

Definition 20. A base pair (σ♯,π) consists of a mapping σ♯ : R→ mpow(V+) of rela-
tion symbols r into multisets of tuples of variables of length #r each, and a conjunction
of disequalities π. A base pair is said to be satisfiable iff π is satisfiable and the mul-
tiplicity of any tuple ⟨x1, . . . ,x#r⟩ ∈ σ♯(r) is one, for all r ∈ R. Given a set of variables
X ⊆ V, let SatBase(X) denote the set of satisfiable base pairs involving variables from
X and let SatBase def

= SatBase(V).

We consider three partial operations on SatBase. First, the composition is (σ♯
1,π1)⊗

(σ♯
2,π2)

def

= (σ♯
1∪σ

♯
2,π1 ∗π2) if (σ♯

1∪σ
♯
2,π1 ∗π2) is satisfiable, and undefined, otherwise.

Second, the substitution (σ♯,π)[x1/y1, . . . ,xn/yn] replaces simultaneously each occur-
rence of x j by y j in σ♯ and π, for all j ∈ [1..n]. Third, given a set X ⊆ V of variables,
the projection is (σ♯,π)⇃X

def

= (λr . {⟨x1, . . . ,xn⟩ ∈ σ♯(r) | x1, . . . ,xn ∈ X},π⇃X) where, for
a formula φ, the operation φ⇃X removes from φ all atoms involving variables not from
X . Finally, for a qpf formula φ = ψ ∗π, where ψ is a separated conjunction of relation
atoms and π is a pure formula, we define:

Base(φ)
def

= (λr . [[⟨x1, . . . ,xn⟩ | r(x1, . . . ,xn) occurs in ψ]],π)

We define the automaton A I
∆,A = (Σ,Q I

∆
, ιI

A,δ
I
∆
), where:

– Q I
∆

def

= {(q,(σ♯,π)) | q ∈ Q∆, (σ
♯,π) ∈ SatBase(x[ε]1 , . . . ,x

[ε]

#q)},
– ιI

A
def

= {(ιA,(σ♯
/0
,emp))}, where σ

♯
/0

interprets each relation symbol as the empty set;
recall that, since we assumed #ιA = 0, there are no tuples associated with ιA,

– δI
∆

is the set of transitions (q0,(σ
♯
0,π0))

α−→ ⟨(q1,(σ
♯
1,π1)), . . . ,(qℓ,(σ

♯
ℓ,πℓ))⟩, such

that q0
α−→ (q1, . . . ,qℓ) ∈ δ∆ and the following condition holds:

(σ♯
0,π0) =

(
Base(α)⊗

ℓ⊗
i=1

(σ♯
i ,πi)[x1/x[i]1 , . . . ,x#qi/x[i]#qi

]
)
⇃
{x[ε]1 ,...,x

[ε]
#q0
}

The formal properties of the automaton A I
∆,A are stated and proved below:

Lemma 17. (1) A I
∆,A is all-satisfiable. (2) [[A∆,A]] = [[A I

∆,A]].

See proof on page 45.
II. Removing relation atoms from 1-transitions Without loss of generality, we as-
sume that A I

∆,A is choice-free and let δ∆ = δ1
∆
⊎δ∞

∆
be the partition of the transitions of

A I
∆,A (Def. 14). If this is not the case, we decompose A I

∆,A into finitely many choice-free
automata whose union has the same language as A I

∆,A (Lemma 10).

This step replaces each symbol α that labels a 1-transition q0
α−→ (q1, . . . ,qℓ) of

A I
∆,A with the symbol obtained by removing all relation atoms from α. Let A II

∆,A be the
outcome of this transformation, whose properties are stated and proved below:

Lemma 18. (1) A II
∆,A is all-satisfiable. (2) [[A II

∆,A]] is treewidth-bounded iff [[A I
∆,A]] is

treewidth-bounded.

See proof on page 47. At this point, the labels of the 1-transitions of A II
∆,A consist of

(dis-)equalities only. Moreover, since A II
∆,A is obtained from the choice-free automaton

A I
∆,A by a structure-preserving re-labeling of transitions, it is choice-free as well.

III. Removing equalities involving non-persistent variables We modify the label of
each 1-transition q0

α−→ (q1, . . . ,qℓ) of A II
∆,A in two successive steps:

1. for each non-persistent ε-variable x[ε]j (Def. 17), for j ∈ [1..#q0], that occurs in α

in some equality with a persistent i-variable, replace α with α[x[ε]j /y[ε]k] ∗ x[ε]j = y[ε]k ,
where y[ε]k ̸∈ fv(α) is a fresh variable,

2. remove every equality involving a non-persistent variable x[i]j , for i = ε and j ∈
[1..#q0], or i ∈ [1..ℓ] and j ∈ [1..#qi].

The idea is to remove the equalities that would be lost when adding resets before and
after every 1-transitions that is, forget equalities involving non-persistent variables (2)
while keeping equalities between persistent ones (1). The result is the choice-free au-
tomaton A III

∆,A, whose properties are stated and proved below:

Lemma 19. Let q0
α−→ (q1, . . . ,qℓ) be a 1-transition of A III

∆,A. Then, for each i ∈ [1..ℓ]
and each j ∈PAIII

∆,A
(qi), there exists a ε-variable z, such that x[i]j ≈α z.

See proof on page 48.

Lemma 20. Let φ and ψ be qpf formulæ, such that φ ∗ψ is satisfiable and x ̸≈φ y,
for all x,y ∈ fv(φ)∩ fv(ψ). Let ψeq = ∗{x = y | x,y ∈ fv(φ)∩ fv(ψ), x≈ψ y}. Then,
tw([[(φ∗ψeq)

∃]])≤ tw([[(φ∗ψ)∃]])+ card(fv(φ)∩ fv(ψ)).

See proof on page 48.

Lemma 21. (1) A III
∆,A is all-satisfiable. (2) [[A III

∆,A]] is treewidth-bounded iff [[A II
∆,A]] is

treewidth-bounded.

See proof on page 49. Again, A III
∆,A is choice-free, because it is obtained by a structure-

preserving re-labeling of the choice-free automaton A II
∆,A.

IV. Removing persistent variables We build from A III
∆,A = (Σ,Q I

∆
, ιI

A,δ
III
∆
) an automa-

ton A IV
∆,A having no persistent variables at all. We recall that, by Lemma 8, each 1-

transition of a choice free automata occurs exactly once in each accepting run over a
Σ-labeled tree t and each such occurrence corresponds to one subformula t(p)p of Θ(t),
for a position p ∈ dom(t). Using a renaming, if necessary, we can assume that the ε-
variables y[ε]i , i.e., not associated with the states of the transition (Def. 15), have distinct
names between the 1-transitions of A III

∆,A and let Y def

= {y[ε]1 , . . . ,y
[ε]

M } denote their set.
First, we decorate each state q of A III

∆,A with an injective partial mapping a : [1..#q]→
[1..M] that refer each parameter from the profile of A III

∆,A at q to the unique persis-
tent variable in Y that must equal that parameter in each run. Second, we use this
information to replace each occurrence of a relation atom r(z[ε]1 , . . . ,z

[ε]

#r) on the label
of a decorated transition (q0,a0)

α−→ ((q1,a1), . . . ,(qℓ,aℓ)) with a fresh relation atom
rg(z

[ε]

i1 , . . . ,z
[ε]

ik
), where g : [1..#r]→ dom(a0) is the partial mapping of variables to persis-

tent variables and {i1, . . . , ik} are the remaining non-persistent variables.
Formally, we define A IV

∆,A = (Σ,Q IV
∆

, ιI
A,δ

IV
∆
), where:

– Q IV
∆

def

= {(q,a) | q ∈ Q I
∆
, a : PAIII

∆,A
(q)→ [1..M] is an injective mapping}, where

#(q,a) def

= #q−card(PAIII
∆,A

(q)); we recall that PAIII
∆,A

is the profile of A III
∆,A (Def. 17).

– (q0,a0)
α−→ ((q1,a1), . . . ,(qℓ,aℓ)) ∈ δIV

∆
iff either one of the following holds:

• q0
α−→ (q1, . . . ,qℓ) ∈ (δIII

∆
)

1 and, for all k ∈ [1..ℓ] and i ∈PAIII
∆,A

(qk), we have:

ak(i)
def

=

{
a0(j) , if there exists j such that x[k]i ≈α x[ε]j ,
m , otherwise m is such that x[k]i ≈α y[ε]m

By Lemma 19, one of the cases above must hold, hence ak is well defined.
• q0

α−→ (q1, . . . ,qℓ) ∈ (δIII
∆
)

∞ and, for all k ∈ [1..ℓ], we have ak
def

= a0 ◦ bk, where
bk(i) = j ⇐⇒ x[k]i ≈α x[ε]j , for all i ∈ PAIII

∆,A
(qk) and j ∈ PAIII

∆,A
(q0). Note that,

by Def. 17, bk is well defined.
The goal of this transformation is to remove, from the transition label α, the per-
sistent variables associated to one of the states q0, . . . ,qℓ. In order to preserve the
naming conventions from Def. 15, we rename the remaining (non-persistent) vari-
ables using an injective mapping η : fv(α)→ fv(α), such that:
• η({x[ε]i | i ∈PAIII

∆,A
(q0)}) = {x[ε]1 , . . . ,x

[ε]

k0
}, k0

def

= n0− card(PAIII
∆,A

(q0)),

• η({x[j]i | i ∈PAIII
∆,A

(q j)})= {x[j]1 , . . . ,x
[j]
k j
}, k j

def

= n j−card(PAIII
∆,A

(q j)), for j∈ [1..ℓ],

• η(y[ε]i) = y[ε]i , for i ∈ [1..m],
where m,n0, . . . ,nℓ are as in Def. 15. Note that, by the definition (1) of the transition
labels of A∆,A, each relation atom from α is of the form r(z[ε]1 , . . . ,z

[ε]

#r) (i.e., these
atoms are not changed by the transformations (I-III), with the exception of (II),
which removes relation atoms from the 1-transitions).
We distinguish two cases. If α is the label of a 1-transition of A III

∆,A, we define α
def

=
emp. Otherwise (α labels an ∞-transition), α is obtained by replacing each relation
atom r(z[ε]1 , . . . ,z

[ε]

#r) from α with a relation atom rg(η(z
[ε]

i1), . . . ,η(z
[ε]

ik
)), where:

• rg is a new relation symbol of arity k and g : [1..#r]→ [1..M]∪{⊥} is:

g(i) def

=

{
a0(j) , if z[ε]i and x[ε]j are the same variable, such that j ∈PAIII

∆,A
(q0)

⊥ , otherwise

• {i1, . . . , ik}
def

= [1..#r]\PAIII
∆,A

(q0).

The properties of A IV
∆,A are stated and proved below:

Lemma 22. (1) A IV
∆,A is all-satisfiable. (2) [[A IV

∆,A]] is treewidth-bounded iff [[A III
∆,A]] is

treewidth-bounded.

See proof on page 51.
The construction of A IV

∆,A incurs a slight complication. In fact, decorating the states
of A III

∆,A with assignments (tracking the values of persistent variables) may cause several
transitions to occur between different linear SCCs. These transitions originate from the
same 1-transition of A III

∆,A and differ only in the decoration of their states. We fix this
problem by splitting A IV

∆,A into finitely many choice-free automata B1, . . . ,Bm, one for
each such choice, such that L(A IV

∆,A) =
⋃m

i=1 L(B i) (each B i has no persistent variables).

Formally, we define Bi = (Σ,Q IV
∆

,(qA, /0),δi), where δi
def

= (δi)
1⊎ (δ)∞

is the follow-
ing partition of transitions:

– each (δi)
1

contains exactly one transition (q0,a0)
α−→ ((q1,a1), . . . ,(qℓ,aℓ)) ∈ δIV

∆
,

for each transition q0
α−→ (q1, . . . ,qℓ) ∈ δIII

∆
,

– (δ)
∞ def

= {(q0,a0)
α−→ ((q1,a1), . . . ,(qℓ,aℓ)) ∈ δIV

∆
| q0

α−→ (q1, . . . ,qℓ) ∈ (δIII
∆
)

∞}; note
that the set (δ)

∞
is the same in all Bi.

We prove that B1, . . . ,Bm is indeed a choice-free decomposition of A IV
∆,A. The proof

relies on a stronger notion of automata refinement:

Definition 21. An automaton A =(A,QA , ιA ,δA) is a strong refinement of B =(A,QB , ιB ,δB)
iff there exists a refinement h : QA → QB such that the following hold:
1. h−1(S) is an SCC of A , for each SCC S of B .
2. for each SCC S of B and each transition q0

a−→ (q1, . . . ,qℓ) ∈ S• there exists exactly
one transition q′0

a−→ (q′1, . . . ,q
′
ℓ) ∈ δA , such that q′i ∈ h−1(qi), for all i ∈ [0..ℓ].

If a strong refinement h : QA → QB exists then A strongly refines B .

Lemma 23. If A strongly refines B and B is choice-free, then A is choice-free.

See proof on page 52.

Lemma 24. Each B1, . . . ,Bm is all-satisfiable, choice-free and L(A IV
∆,A) =

⋃m
i=1 L(B i).

See proof on page 54.

V. Wrapping 1-transitions into partial runs of ∞-transitions At this point, we have
finitely many all-satisfiable choice-free automata B1, . . . ,Bm without persistent vari-
ables. In order to obtain expandable SIDs from these automata, using Lemma 12 (2),
any sequence of accepting runs of B i must be embedded in an accepting run of the
same automaton, for all i ∈ [1..m]. Since all 1-transitions of B i must occur on any ac-
cepting run (Lemma 8), we need to “wrap” the labels of 1-transitions into characteristic
formulæ of trees recognized by partial runs consisting of ∞-transitions only. This will
enable the use of Lemma 14 to embed several runs consisting of ∞-transitions into one
accepting run. The outcome of this transformation is denoted Bi, for all i ∈ [1..m].

Let B be any of B1, . . . ,Bm. For a Σ-labeled tree t, two positions p and s, such that
only p∈ dom(t) (i.e., nothing is required about s), and a sequence of variables x1, . . . ,xk,
we define the formula:

Ω
p/s
t (x1, . . . ,xk)

def

=∗{r(x[s]1 , . . . ,x
[s]
k) | r(x

[p1]
1 , . . . ,x[pk]

k) occurs in Θ(t), x[pi]
i ≈Θ(t) x[p]i , ∀i ∈ [1..k]}

The automaton B is obtained from B by replacing the label of each 1-transition q0
emp−−→

(q1, . . . ,qℓ) of B with the following formula, for some trees ti corresponding to some
reset θi

pi←qi
of B , for i ∈ [0..ℓ]:

∗{Ωε/ε

t0 (xi1 , . . . ,xik) | i1, . . . , ik ∈ [1..#q0]}∗∗{Ωp j/ j
t j (xi1 , . . . ,xik) | j ∈ [1..ℓ], i1, . . . , ik ∈ [1..#q j]}

Note that the existence of such resets is guaranteed by Lemma 13.

Lemma 25. (1) B is all-satisfiable. (2) [[B]] is treewidth-bounded iff [[B]] is treewidth-
bounded.

See proof on page 54.
A view for an automaton A is a tuple ⟨θ, t,s,S⟩, such that θ∈R ∞

q (A) is a partial run
over the Σ-labeled tree t, s is a canonical store for Θ(t) and S is a structure, such that
S |=s Θ(t). The key propery of this transformation is given by the following lemma:

Lemma 26. For each structure S = (U,σ) ∈ [[B]]c, there exist pairwise disjoint struc-
tures S1, . . . ,Sn and views ⟨θ1, t1,s1,S

′
1⟩, . . . ,⟨θn, tn,sn,S

′
n⟩ for B such that S′1, . . . ,S

′
n

are pairwise disjoint, S = S1 • . . .•Sn and, for all i ∈ [1..n]: (1) Si ⊑ S′i, (2) supp(σ)∩
si({x[ε]1 , . . . ,x

[ε]

#θi(ε)
}) = /0, and supp(σ)∩ si({x

[pi]
1 , . . . ,x[pi]

#qi
}) = /0 if θi is a context θpi←qi .

See proof on page 55.
Dually, the following lemma “gathers” pairwise disjoint structures into a single rich

canonical model, that meets the conditions of expandability (Def. 12):

Lemma 27. Given pairwise disjoint structures S1, . . . ,Sn and views ⟨θ1, t1,s1,S
′
1⟩, . . .,

⟨θn, tn,sn,S
′
n⟩ for B , satisfying the conditions (1) and (2) of Lemma 26, there exists a

rich canonical model (S,d) ∈ [[B]]r, such that the conditions (1), (2) and (3) from Def.
12 hold for S1, . . . ,Sn and (S,d).

See proof on page 56.

Proof of Lemma 1 For each i ∈ [1..m], let Γi be the SID corresponding to Bi, as
given by Lemma 12 (2). We assume w.l.o.g. that the automata Bi have the same initial
state and B is the predicate corresponding to it. First, we prove that [[A]]

∆
is treewidth-

bounded iff [[B]]
Γi

is treewidth-bounded, for all i∈ [1..m]. By Lemmas 12 (2) and 17 (2),
we have [[A]]

∆
= [[A∆,A]] = [[A I

∆,A]]. By Lemmas 21 (2) and 22 (2), we have that [[A]]
∆

is treewidth-bounded iff [[A IV
∆,A]] is treewidth-bounded. By Lemmas 24 and 25 (2), [[A]]

∆

is treewidth-bounded iff Bi is treewidth-bounded, for all i ∈ [1..m]. By Lemma 12 (2),
[[A]]

∆
is treewidth-bounded iff [[B]]

Γi
is treewidth-bounded, for all i ∈ [1..m].

Let Γ be any of Γ1, . . . ,Γm and we prove that it is expandable for B. Let B be
its corresponding automaton, such that [[B]]c

Γ
= [[B]]c, by Lemma 12 (2). Let S1 =

(U1,σ1), . . . ,Sn = (Un,σn) ∈ [[B]]c be pairwise disjoint structures. By Lemma 26, for
each i∈ [1..n] there exist a decomposition Si =Si,1•. . .•Si,mi and views ⟨θi, j, ti, j,si, j,Si, j⟩,
for j∈ [1..mi], such that conditions (1) and (2) hold. We assume w.l.o.g. that S1,1, . . . ,Sn,mn
are pairwise disjoint, hence their composition is defined, hence S1 • . . .•Sn = S1,1 • . . .•
Sn,mn . By Lemma 27, there exists a rich canonical model (S,d) ∈ [[B]]r = [[B]]r

Γ
(by

Lemma 12 (2)) that meets the conditions of Def. 12. ⊓⊔

6 External Fusion

This section gives the definitions and results needed for the proofs of Lemmas 3 and 4.
We start by defining connected structures and maximal connected substructures:

Definition 22. A path from u to v in a structure S = (U,σ) is a finite sequence of
tuples {⟨ui,1, . . . ,ui,ni⟩ ∈ σ(ri)}k

i=1 such that r1, . . . , rk ∈ R, u ∈ {u1,1, . . . ,u1,n1}, v ∈
{uk,1, . . . ,uk,nk} and {ui,1, . . . ,ui,ni} ∩ {ui+1,1, . . . ,ui+1,ni+1} ≠ /0, for all i ∈ [1..k−1].
The structure S is connected iff there exists a path from u to v, for all u,v ∈ supp(σ).

Definition 23. A structure S1 is a maximal connected substructure of another structure
S2, denoted S1 ⊑mc S2, iff (i) S1 ⊑ S2, (ii) S1 is connected, and (iii) for any connected
substructure S′1 ⊑ S2, we have S1 ⊑ S′1 only if S1 = S′1. For a structure S we denote by
split(S)

def

= {S′ | S′ ⊑mc S} the set of maximally connected substructures, lifted to sets
of structures S as split(S) def

= ∪S∈Ssplit(S).

Cgreena,b,c

a,c

a c

/0

a,b b,c a,c

cab

a,b,c

/0 /0

a,b a,c

b c

b,c

a

Cblue

Cred

Cblue

Cred Cred

Cblue

Cgreen

Cblue

a,b b,c

b

a,b,c

Fig. 4. Examples of RGB color schemes

Note that tw(S) = tw(split(S)) for any set of structures S . The next lemma shows
that both internal and external fusions preserve maximally connected substructures:

Lemma 28. Given a set S of structures, we have (1) split(EF∗(S))= EF∗(split(S)),
and (2) split(IEF∗(S)) = IEF∗(split(S)).

See proof on page 58.
For a given set R of relation symbols, we define the set of colors as C def

= pow(R).
The elements of a structure are labeled with colors as follows:

Definition 24. The coloring of a structure S=(U,σ) is the mapping CS :U→C defined
as CS(u)

def

= {r ∈ R | ⟨u, . . . ,u⟩ ∈ σ(r)}.

Intuitively, a fusion operation can only join pairs of elements with disjoint colors. More-
over, we define an abstraction of structures as finite multisets of colors:

Definition 25. The multiset color abstraction S♯ ∈mpow(C) of a structure S=(U,σ) is
S♯

def

= [[CS(u) | u ∈ supp(σ)]]. For an integer k ≥ 0, the k-multiset color abstraction S♯k ⊆
mpow(C) is S♯k def

= {M ⊆ S♯ | card(M)≤ k}. These abstractions are lifted to sets S of
structures as usual S ♯ def

= {S♯ | S ∈ S} and S ♯k def

=
⋃

S∈S S
♯k.

Colors are organized in so-called RGB color schemes, defined below:

Definition 26. A partition (Cred ,Cgreen,Cblue) of C is an RGB-color scheme iff:
(1) C1∩C2 ̸= /0, for all C1,C2 ∈ Cblue,
(2) C1∩C2 ̸= /0, for all C1 ∈ Cgreen and C2 ∈ Cblue,
(3) for all C1 ∈ Cred there exists C2 ∈ Cblue such that C1∩C2 = /0.

Note that an RGB-color scheme is fully specified by the set Cblue; any other color is
unambiguously placed within Cred or Cgreen, depending on its disjointness from some
color in Cblue. Fig. 4 illustrates several RGB-color schemes for a relational signature
R = {a,b,c}. Because a fusion operation only joins element with disjoint colors, blue
elements can only be joined with red elements, green elements can be joined with green
or red elements, whereas red elements can be joined with elements of any other color,
provided that they are disjoint subsets of R.

Lemma 29. Let S1 =(U1,σ1) and S2 =(U2,σ2) be disjoint structures. Let u1 ∈ supp(σ1),
u2 ∈ supp(σ2) be elements such that CS1(u1)∩CS2(u2) = /0. Then, the equivalence re-
lation {(u1,u2)}= ⊆ (U1∪U2)× (U1∪U2) is compatible with S1 •S2.

See proof on page 60.

Definition 27. A set S of structures conforms to (Cred ,Cgreen,Cblue) if and only if:
1. for all structures S = (U,σ) ∈ S , if CS(u) ∈ Cred , for some element u ∈ supp(σ),

then CS(u′) ∈ Cblue, for all other elements u′ ∈ supp(σ)\{u}, and
2. S♯∩Cgreen ⊆ [[C ,C | C ∈ Cgreen]], for all structures S ∈ EF∗(S).

If S conforms to (Cred ,Cgreen,Cblue), any structure S ∈ S is of type either:
– R if S♯ ∈mpow(Cblue∪Cred) and card(S♯⊓Cred) = 1,
– G if S♯ ∈mpow(Cblue∪Cgreen) and card(S♯⊓Cgreen)> 0, and
– B if S♯ ∈mpow(Cblue).

Conformance to an RGB color scheme is key to bounding the treewidth of structures
obtained by external fusion of a treewidth-bounded set of connected structures:

Lemma 30. Let S be a treewidth-bounded set of connected structures conforming to
an RGB color scheme. Then, for any structure S ∈ EF∗(S), the following hold:
1. S is connected and of type either R, G or B,

2. tw(S)≤

 tw(S) , if S of type R
max(tw(S)+2 · card(Cgreen),3 · card(Cgreen)) , if S of type G
max(tw(S)+2 · card(Cgreen),3 · card(Cgreen), tw(S)+1) , if S is of type B

See proof on page 60.

Lemma 31. Let S be a treewidth-bounded set of connected structures, conforming to
an RGB color scheme. Then, tw(EF∗(S)) and tw(IF(EF∗(S))) are both bounded by
max(tw(S)+2 · card(Cgreen),3 · card(Cgreen), tw(S)+1).

See proof on page 63.
The core of the treewidth boundedness algorithm is a decidable equivalent condi-

tion for the treewidth boundedness of a set obtained by external fusion of a treewidth-
bounded set of connected structures. Essentially, a set generated by external fusion is
treewidth-bounded iff there is no way of connecting six elements ui, vi and wi, labeled
with Ci, for i = 1,2, respectively, where C1∩C2 ̸= /0 (condition (2) of Lemma 32).

Lemma 32. The following are equivalent, for any treewidth-bounded set S of con-
nected structures:
1. EF∗(S) is treewidth bounded,
2. [[C1,C1,C1]], [[C2,C2,C2]] ∈ (EF∗(split(S)))♯3 implies C1∩C2 ̸= /0 for all C1,C2,
3. split(S) conforms to some RGB color scheme.

See proof on page 63. The algorithm checks if the set (EF∗(split(S))♯3 meets
condition (2) above. The check is effective, provided that this set can be built in finitely
many steps.

In order to decide whether [[A]]
∆

is treewidth-bounded, for a given SID ∆ and nullary
predicate A, we must compute the set (EF∗(split([[A]]

∆
)))♯k and check condition (2)

of Lemma 32. To this end, we first define an abstract operator ef♯k∗
1 (.) having the prop-

erty (EF∗(split(S))♯k = ef
♯k∗
1 (S ♯k), for any set S of structures. Since the set S ♯k is finite,

ef
♯k∗
1 (S ♯k) is computable by a finite least fixpoint iteration. Second, we use another finite

least fixpoint iteration to compute the k-multiset color abstraction of a set of canonical
models ([[B]]c

Γ
)♯k, for a given SID Γ and nullary predicate B. Finally, we define the set of

maximally connected components split([[A]]c
∆
) as the set of canonical models [[B]]c

Γ
,

where the SID Γ and the nullary predicate B are built from ∆ and A, respectively. Con-
sequently, the set (EF∗(split([[A]]

∆
)))♯k = ef

♯k∗
1 (([[B]]c

Γ
)♯k) can be computed effectively.

6.1 Computing k-Multiset Color Abstraction for External Fusion

We describe now the effective construction of a k-multiset abstraction (EF∗(S))♯k from
the abstraction S ♯k of a set S of structures, for a given integer k≥ 1. First, as we are inter-
ested only on k-multisets color abstractions, we can restrict external fusion to bipartite
equivalence relations generated by a single pair, without loss of precision.

Definition 28. The single-pair external fusion of disjoint structures S1 = (U1,σ1) and
S2 =(U2,σ2) is the external fusion (Def. 4) induced by equivalence relations {(u1,u2)}=,
where ui ∈ supp(σi), for i = 1,2. We denote by EF1(S1,S2) the set of structures obtained
by single-pair external fusion of S1 and S2. For a set of structures S , we denote by
EF∗1(S) the closure of S under single-pair external fusions.

In general, the single-pair external fusion is strictly less expressive than external fusion,
yet it produces the same k-multiset color abstractions:

Lemma 33. (EF∗(S))♯k = (EF∗1(S))
♯k for any set S of structures and integer k ≥ 1.

See proof on page 64. Second, the closure (EF∗1(S))
♯k can be computed by a least

fixpoint iteration of an abstract operation on the domain of k-multiset color abstractions.
As the later domain is finite, this fixpoint computation is guaranteed to terminate.

Definition 29. The single-pair multiset fusion is defined below, for M1,M2 ∈mpow(C):

ef
♯(M1 ,M2)
1

def

=
{

M ∈mpow(C) | ∃C1 ∈M1. ∃C2 ∈M2. C1∩C2 = /0,

M = [[C1∪C2]]∪
⋃

i=1,2

(Mi \ [[Ci]])
}

Given an integer k≥ 1, the single-pair k-multiset fusion is defined for M1, M2 ∈mpow(C),
such that card(M1)≤ k and card(M2)≤ k:

ef
♯k
1 (M1,M2)

def

= {M | ∃M′ ∈ ef♯(M1 ,M2)
1 . M ⊆M′, card(M)≤ k}

For a set M of multisets (resp. k-multisets) of colors, let ef♯∗
1 (M) (resp. ef♯k∗

1 (M)) be
the closure of M under taking single-pair fusion on multisets (resp. k-multisets).

Lemma 34. (EF∗1(S))
♯k = ef

♯k∗
1 (S ♯k) for any set S of structures, for any integer k ≥ 1.

See proof on page 65.

6.2 Computing k-Multiset Color Abstraction for SID Canonical Models

We shall apply Lemma 34 to compute the k-multiset color abstraction of a set [[A]]c
∆

of canonical models, for a given nullary predicate A and SID ∆. To this end, we must
first compute its k-multiset color abstraction ([[A]]c

∆
)♯k. This is done by a least fixpoint

computation in an abstract domain, defined directly from the rules in the SID, that tracks
the colors of parameter values and the k-multiset color abstraction of the elements not
referenced by parameters.

A k-bounded color triple ⟨X ,c,M⟩ consists of a set of variables X ⊆ V, a mapping
c : X → C, and a multiset M ⊆mpow(C), such that card(M)≤ k. Note that there exists
card(C)card(X)+k distinct color triples, for given X and k. We consider the following
operations on color triples, lifted to sets as usual:

k-composition: ⟨X1,c1,M1⟩ •♯k ⟨X2,c2,M2⟩
def

=

{⟨X1∪X2,c12,M12⟩ | c12(x) = c1(x)⊎ c2(x), for all x ∈ X1∩X2,

c12(x) = ci(x) for all x ∈ Xi \X3−i, for all i ∈ {1,2},
M12 ⊆M1∪M2, card(M12)≤ k}

This operation is undefined, if c1(x)∩ c2(x) ̸= /0, for some x ∈ X1∩X2.
substitution: ⟨X ,c,M⟩[s] def

= ⟨Y,c◦ s,M⟩, for any bijection s : Y → X
k-projection: (X ,c,M)⇃♯kY

def

=

{⟨Y,c⇃Y ,M′⟩ |M′ ⊆M∪ [[c(x) | x ∈ X \Y]], card(M′)≤ k}, for any Y ⊆ X

For a qpf formula ψ, let γ(ψ)
def

= ⟨fv(ψ),λx ∈ fv(ψ) . {r ∈ R | r(x, . . . ,x) occurs in ψ}, /0⟩.
Given a predicate B, we denote by ⟨⟨B⟩⟩♯k

∆
the least sets of k-bounded color triples over

the variables x1, . . . ,x#B, the satisfies the following constraints:

⟨⟨B0⟩⟩♯k∆ ⊇
(
γ(ψ)•♯k

♯k•
i∈[1..ℓ]

⟨⟨Bi⟩⟩♯k∆ [x1/zi,1, . . . ,x#Bi/zi,#Bi]
)
⇃♯k{x1 ,...,x#B0

} (4)

one for each rule of ∆ of the form:

B0(x1, . . . ,x#B0)←∃y1 . . .∃ym . ψ∗∗ ℓ
i=1Bi(zi,1, . . . ,zi,#Bi) (5)

Note that the operations on sets of color triples are monotonic and the sets thereof are
finite, since the arity of predicates is finite and k is fixed. Henceforth, the least solution
can be computed in finite time by an ascending Kleene iteration. For a n-ary relation R,
we denote by πk(R) the set of elements that occur on the k-th position in a tuple from
R.

Lemma 35. ([[A]]c
∆
)♯k = π3(⟨⟨A⟩⟩♯k∆), for any k ≥ 1, any equality-free SID ∆ and nullary

predicate A, such that each complete ∆-unfolding of A yields a satisfiable formula.

See proof on page 66.
As a remark, if the given SID is not equality-free, one can build an equivalent equality-
free SID (Lemma 5). Moreover, if there are complete unfoldings that yield unsatisfiable
formulæ, the SID can be modified to remove such unfoldings (Lemmas 12 and 17).

6.3 Computing Maximally Connected Structures for SID Canonical Models

The final step required to check the condition (2) of Lemma 32 is the computation of the
set split([[A]]c

∆
) of maximally connected substructures from any canonical ∆-model of

A. Since we consider canonical models, we can assume w.l.o.g. that the given SID ∆

contains no disequalities (such atoms are trivially unsatisfiable or valid). We represent
the set of maximally connected structures split([[A]]c

∆
) as [[P]]c

Γ
, for a fresh nullary

predicate P and a SID Γ whose construction is described next.
Given a qpf formula ψ, we define ζ(ψ) ⊆ fv(ψ)× fv(ψ) as the least equivalence

relation such that (y,z) ∈ ζ(ψ) iff r(x1, . . . ,x#r) occurs in ψ and y,z ∈ {x1, . . . ,x#r}, for
some r ∈ R. Let B(y1, . . . ,y#B) be a predicate atom, J ⊆ [1..#B] be a set of indices

j1 ≤ . . . ≤ jp and ξ ⊆ J× J be an equivalence relation and Bξ be a fresh predicate of
arity p. In particular, #Bξ = 0 if ξ = /0 is the empty relation. We define the shorthands:

fvJ(B(y1, . . . ,y#B))
def

= {y j | j ∈ J} ξ(B(y1, . . . ,y#B))
def

={(y j,yk) | (j,k) ∈ ξ}
B(y1, . . . ,y#B)/ξ

def

=Bξ(y j1 , . . . ,y jp)

Consider a rule of ∆ of the form (5), formulae ψ′, ψ′′, sets Ji⊎Ji = [1..#Bi], equivalence
relations ξi ⊆ Ji× Ji, for all i ∈ [1..ℓ], an equivalence relation Ξ ⊆

(
{x1, . . . ,x#B0} ∪

{y1, . . . ,ym}
)
×
(
{x1, . . . ,x#B0}∪{y1, . . . ,ym}

)
, such that the following hold:

(i) ψ = ψ′ ∗ψ′′ modulo a reordering of atoms and fv(ψ′)∩ fv(ψ′′) = /0,
(ii) fvJi(Bi(zi,1, . . . ,zi,#Bi))∩ fv(ψ′′) = /0 and fvJi(Bi(zi,1, . . . ,zi,#Bi))∩ fv(ψ′) = /0, for

all i ∈ [1..ℓ],
(iii) Ξ =

(
ζ(ψ′)∪

⋃ℓ
i=1 ξi(Bi(zi,1, . . . ,zi,#Bi))

)=.
We distinguish two cases. If (1) there exist sets J0⊎J0 = [1..#B0], J0 ̸= /0 and an equiv-
alence relation ξ0 ⊆ J0× J0, such that:
(iv) fvJ0(B0(x1, . . . ,x#B0))∩ fv(ψ′′) = /0 and fvJ0(B0(x1, . . . ,x#B0))∩ fv(ψ′) = /0,
(v) fvJ0(B0(x1, . . . ,x#B0)) ∩ fvJi(Bi(zi,1, . . . ,zi,#Bi)) = /0 and fvJ0(B0(x1, . . . ,x#B0)) ∩

fvJi(Bi(zi,1, . . . ,zi,#Bi)) = /0, for all i ∈ [1..ℓ],
(vi) for all y ∈

(
fv(ψ′)∪

⋃ℓ
i=1 fvJi(Bi(zi,1, . . . ,zi,#Bi))

)
∩{y1, . . . ,ym} there exists x ∈

fvJ0(B0(x1, . . . ,x#B0)), such that (x,y) ∈ Ξ,
(vii) ξ0(B0(x1, . . . ,x#B0)) = Ξ⇃{x1 ,...,x#B0

} ∪{(x,x) | x ∈ fvJ0(B0(x1, . . . ,x#B0))}
then we add to Γ the following rule:

B0(x1, . . . ,x#B0)/ξ0 ←∃y1 . . .∃ym . ψ
′ ∗ ∗

i∈[1..ℓ], Ji ̸= /0

Bi(zi,1, . . . ,zi,#Bi)/ξi (6)

Else, (2) if (viii) Ξ defines an unique equivalence class, and (ix) (x,x) ̸∈ Ξ for all x ∈
{x1, . . . ,x#B0} then we add to Γ the following rule:

P←∃y1 . . .∃ym . ψ
′ ∗ ∗

i∈[1..ℓ], Ji ̸= /0

Bi(zi,1, . . . ,zi,#Bi)/ξi (7)

Same as before (see Lemma 35 in §6.2), we can assume without loss of generality that
∆ is equality-free and produces only satisfiable formulæ starting from A. Moreover,
we assume that every predicate defined by a rule of ∆ occurs on some complete ∆-
unfolding of A. Obviously, the rules that do not meet this requirement can be removed
from ∆ without changing [[A]]c

∆
.

Lemma 36. For any equality-free SID ∆ and a nullary predicate symbol A, such that
each complete ∆-unfolding of A yields a satisfiable formula, one can effectively build a
SID Γ and a nullary predicate P such that split([[A]]c

∆
) = [[P]]c

Γ
.

See proof on page 69.

Proof of Lemma 3 For any set of structures S , we have IEF∗(S) = IF(EF∗(S)), be-
cause the operations of internal and external fusion commute, namely EF(IF(S1),S2)⊆
IF(EF(S1,S2)), for any structures S1,S2. By Lemma 32, EF∗([[A]]c

∆
) is treewidth-bounded

only if split([[A]]c
∆
) conforms to an RGB color scheme. Then, IF(EF∗(split([[A]]c

∆
)))=

IEF∗(split([[A]]c
∆
)) = split(IEF∗([[A]]c

∆
)) is treewidth-bounded, by Lemma 31 and

Lemma 28. Thus, IEF∗([[A]]c
∆
) is treewidth-bounded. ⊓⊔

Proof of Lemma 4 By Lemma 36 one builds a SID Γ and a nullary predicate B, such
that split([[A]]c

∆
) = [[B]]c

Γ
. By Lemma 35, one effectively computes ([[B]]c

Γ
)♯3 and, by

Lemmas 34 and 33, one effectively computes (EF∗([[B]]c
Γ
))♯3 = ef

♯3∗
1 (([[B]]c

Γ
)♯3). There-

fore, (EF∗(split([[A]]c
∆
)))♯3 = ef

♯3∗
1 ([[B]]c

Γ

♯3) can be effectively computed. We decide
the treewidth-boundedness of EF∗([[A]]c

∆
), by an application of Lemma 32, because,

moreover, [[A]]c
∆

is a treewidth-bounded set of structures (Lemma 6). EF∗([[A]]c
∆
) is

treewidth-bounded iff condition (2) of Lemma 32 holds for (EF∗(split([[A]]c
∆
)))♯3. ⊓⊔

7 Conclusions and Future Work

We have presented a decision procedure for the treewidth boundedness problem in the
context of SLR, a generalization of Separation Logic over relational signatures, inter-
preted over structures. This procedure allows to define the precise fragment of SLR in
which every formula has a bound on the treewidth of its models. This fragment is the
right candidate for the definition of a fragment of SLR with a decidable entailment prob-
lem. Another application is checking that each graph defined by a treewidth-bounded
SLR formula satisfies MSO-definable properties, e.g., hamiltonicity, or 3-colorability.

References
1. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to Semistructured

Data and XML. Morgan Kaufmann (2000)
2. Ahrens, E., Bozga, M., Iosif, R., Katoen, J.: Reasoning about distributed reconfigurable sys-

tems. In: Object-Oriented Programming, Systems, Languages and Applications (OOPSLA).
vol. To appear (2022), https://arxiv.org/abs/2107.05253

3. Arad, C.I.: Programming Model and Protocols for Reconfigurable Distributed Systems.
Ph.D. thesis, KTH Royal Institute of Technology (2013)

4. Berger, R.: The undecidability of the domino problem. American Mathematical Soc. (1966)
5. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Com-

put. Sci. 209(1-2), 1–45 (1998). https://doi.org/10.1016/S0304-3975(97)00228-4, https:
//doi.org/10.1016/S0304-3975(97)00228-4

6. Bozga, M., Bueri, L., Iosif, R.: Decision problems in a logic for reasoning about reconfig-
urable distributed systems. In: Automated Reasoning - 11th International Joint Conference,
IJCAR 2022, Haifa, Israel, August 8-10, 2022, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 13385, pp. 691–711. Springer (2022). https://doi.org/10.1007/978-3-031-10769-
6 40, https://doi.org/10.1007/978-3-031-10769-6_40

7. Bozga, M., Bueri, L., Iosif, R.: On an invariance problem for parameterized concur-
rent systems. In: Klin, B., Lasota, S., Muscholl, A. (eds.) 33rd International Con-
ference on Concurrency Theory, CONCUR 2022, September 12-16, 2022, Warsaw,
Poland. LIPIcs, vol. 243, pp. 24:1–24:16. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2022). https://doi.org/10.4230/LIPIcs.CONCUR.2022.24, https://doi.org/10.
4230/LIPIcs.CONCUR.2022.24

8. Bradbury, J., Cordy, J., Dingel, J., Wermelinger, M.: A survey of self-management in dy-
namic software architecture specifications. In: Proceedings of the 1st ACM SIGSOFT work-
shop on Self-managed systems. pp. 28–33. ACM (2004)

9. Brotherston, J., Fuhs, C., Pérez, J.A.N., Gorogiannis, N.: A decision procedure for satisfi-
ability in separation logic with inductive predicates. In: Henzinger, T.A., Miller, D. (eds.)
Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic
(CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014. pp. 25:1–25:10. ACM
(2014). https://doi.org/10.1145/2603088.2603091, https://doi.org/10.1145/2603088.
2603091

https://arxiv.org/abs/2107.05253
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1007/978-3-031-10769-6_40
https://doi.org/10.4230/LIPIcs.CONCUR.2022.24
https://doi.org/10.4230/LIPIcs.CONCUR.2022.24
https://doi.org/10.1145/2603088.2603091
https://doi.org/10.1145/2603088.2603091

10. Butting, A., Heim, R., Kautz, O., Ringert, J.O., Rumpe, B., Wortmann, A.: A classifica-
tion of dynamic reconfiguration in component and connector architecture description. In:
Proceedings of MODELS 2017 Satellite Event: Workshops (ModComp). CEUR Workshop
Proceedings, vol. 2019, pp. 10–16. CEUR-WS.org (2017)

11. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analysis by
means of bi-abduction. J. ACM 58(6) (Dec 2011). https://doi.org/10.1145/2049697.2049700,
https://doi.org/10.1145/2049697.2049700

12. Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic.
In: 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), 10-12 July
2007, Wroclaw, Poland, Proceedings. pp. 366–378. IEEE Computer Society (2007).
https://doi.org/10.1109/LICS.2007.30, https://doi.org/10.1109/LICS.2007.30

13. Cao, J., Chan, A.T.S., Sun, Y.: GOP: A Graph-Oriented Programming Model for Parallel and
Distributed Systems, pp. 21–36. Springer US, Boston, MA (2005), https://doi.org/10.
1007/0-387-28967-4_2

14. Cardelli, L., Gardner, P., Ghelli, G.: A Spatial Logic for Querying Graphs. In: Widmayer,
P., Ruiz, F.T., Bueno, R.M., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) Proceedings of
the 29th International Colloquium on Automata, Languages and Programming (ICALP’02).
Lecture Notes in Computer Science, vol. 2380, pp. 597–610. Springer (Jul 2002)

15. Cavalcante, E., Batista, T.V., Oquendo, F.: Supporting dynamic software architectures: From
architectural description to implementation. In: Bass, L., Lago, P., Kruchten, P. (eds.) 12th
Working IEEE/IFIP Conference on Software Architecture, WICSA 2015. pp. 31–40. IEEE
Computer Society (2015)

16. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable
sets of finite graphs. Information and Computation 85(1), 12–75 (1990).
https://doi.org/https://doi.org/10.1016/0890-5401(90)90043-H, https://www.
sciencedirect.com/science/article/pii/089054019090043H

17. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach. Encyclopedia of Mathematics and its Applications, Cam-
bridge University Press (2012). https://doi.org/10.1017/CBO9780511977619

18. van Dalen, D.: Logic and structure (3. ed.). Universitext, Springer (1994)
19. Degano, P., Nicola, R.D., Meseguer, J. (eds.): Concurrency, Graphs and Models, Essays

Dedicated to Ugo Montanari on the Occasion of His 65th Birthday, Lecture Notes in
Computer Science, vol. 5065. Springer (2008). https://doi.org/10.1007/978-3-540-68679-8,
https://doi.org/10.1007/978-3-540-68679-8

20. Ebbinghaus, H., Flum, J.: Finite model theory. Perspectives in Mathematical Logic, Springer
(1995)

21. Echenim, M., Iosif, R., Peltier, N.: Decidable Entailments in Separation Logic with Inductive
Definitions: Beyond Establishment. In: Baier, C., Goubault-Larrecq, J. (eds.) 29th EACSL
Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 183, pp. 20:1–20:18. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.CSL.2021.20,
https://drops.dagstuhl.de/opus/volltexte/2021/13454

22. Echenim, M., Iosif, R., Peltier, N.: Unifying decidable entailments in separation logic
with inductive definitions. In: Platzer, A., Sutcliffe, G. (eds.) Automated Deduction -
CADE 28 - 28th International Conference on Automated Deduction, Virtual Event, July
12-15, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12699, pp. 183–
199. Springer (2021). https://doi.org/10.1007/978-3-030-79876-5 11, https://doi.org/
10.1007/978-3-030-79876-5_11

23. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Sci-
ence. An EATCS Series, Springer (2006). https://doi.org/10.1007/3-540-29953-X, https:
//doi.org/10.1007/3-540-29953-X

24. Greibach, S.: A note on undecidable properties of formal languages. Math. Systems Theory
2, 1–6 (1968). https://doi.org/https://doi.org/10.1007/BF01691341

https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1007/0-387-28967-4_2
https://doi.org/10.1007/0-387-28967-4_2
https://www.sciencedirect.com/science/article/pii/089054019090043H
https://www.sciencedirect.com/science/article/pii/089054019090043H
https://doi.org/10.1007/978-3-540-68679-8
https://drops.dagstuhl.de/opus/volltexte/2021/13454
https://doi.org/10.1007/978-3-030-79876-5_11
https://doi.org/10.1007/978-3-030-79876-5_11
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X

25. Iosif, R., Rogalewicz, A., Simácek, J.: The tree width of separation logic with re-
cursive definitions. In: Bonacina, M.P. (ed.) Automated Deduction - CADE-24 - 24th
International Conference on Automated Deduction, Lake Placid, NY, USA, June 9-
14, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7898, pp. 21–
38. Springer (2013). https://doi.org/10.1007/978-3-642-38574-2 2, https://doi.org/10.
1007/978-3-642-38574-2_2

26. Iosif, R., Zuleger, F.: Expressiveness results for an inductive logic of separated relations.
In: 34th International Conference on Concurrency Theory. vol. 279, p. to appear. LIPIcs,
Dagstuhl (2023), https://doi.org/10.48550/arXiv.2208.01520

27. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data structures. In: Han-
kin, C., Schmidt, D. (eds.) Conference Record of POPL 2001: The 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, London, UK, January 17-
19, 2001. pp. 14–26. ACM (2001)

28. Jones, N.D., Muchnick, S.S.: A flexible approach to interprocedural data flow anal-
ysis and programs with recursive data structures. In: Proceedings of the 9th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. p. 66–74.
POPL ’82, Association for Computing Machinery, New York, NY, USA (1982).
https://doi.org/10.1145/582153.582161, https://doi.org/10.1145/582153.582161

29. Katelaan, J., Zuleger, F.: Beyond symbolic heaps: Deciding separation logic with induc-
tive definitions. In: Albert, E., Kovács, L. (eds.) LPAR 2020: 23rd International Confer-
ence on Logic for Programming, Artificial Intelligence and Reasoning, Alicante, Spain,
May 22-27, 2020. EPiC Series in Computing, vol. 73, pp. 390–408. EasyChair (2020).
https://doi.org/10.29007/vkmj, https://doi.org/10.29007/vkmj

30. Kuncak, V., Rinard, M.: Generalized records and spatial conjunction in role logic. In: Static
Analysis. pp. 361–376. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

31. Le Metayer, D.: Describing software architecture styles using graph grammars. IEEE Trans-
actions on Software Engineering 24(7), 521–533 (1998). https://doi.org/10.1109/32.708567

32. Matheja, C., Pagel, J., Zuleger, F.: A decision procedure for guarded separation logic. ACM
Trans. Comput. Logic (apr 2022). https://doi.org/10.1145/3534927, https://doi.org/10.
1145/3534927, just accepted, available online

33. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July
2002, Copenhagen, Denmark, Proceedings. pp. 55–74. IEEE Computer Society
(2002). https://doi.org/10.1109/LICS.2002.1029817, https://doi.org/10.1109/LICS.
2002.1029817

34. Seese, D.: The structure of the models of decidable monadic theories of graphs. Annals of
Pure and Applied Logic 53(2), 169–195 (1991). https://doi.org/https://doi.org/10.1016/0168-
0072(91)90054-P, https://www.sciencedirect.com/science/article/pii/
016800729190054P

35. Seymour, P., Thomas, R.: Graph searching and a min-max theorem for
tree-width. Journal of Combinatorial Theory, Series B 58(1), 22–33 (1993).
https://doi.org/https://doi.org/10.1006/jctb.1993.1027, https://www.sciencedirect.
com/science/article/pii/S0095895683710270

36. Taentzer, G., Goedicke, M., Meyer, T.: Dynamic change management by distributed graph
transformation: Towards configurable distributed systems. In: International Workshop on
Theory and Application of Graph Transformations. pp. 179–193. Springer (1998)

37. Wermelinger, M.: Towards a chemical model for software architecture reconfiguration. IEE
Proceedings-Software 145(5), 130–136 (1998)

38. Wermelinger, M., Fiadeiro, J.L.: A graph transformation approach to software architecture
reconfiguration. Sci. Comput. Program. 44(2), 133–155 (2002)

https://doi.org/10.1007/978-3-642-38574-2_2
https://doi.org/10.1007/978-3-642-38574-2_2
https://doi.org/10.48550/arXiv.2208.01520
https://doi.org/10.1145/582153.582161
https://doi.org/10.29007/vkmj
https://doi.org/10.1145/3534927
https://doi.org/10.1145/3534927
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://www.sciencedirect.com/science/article/pii/016800729190054P
https://www.sciencedirect.com/science/article/pii/016800729190054P
https://www.sciencedirect.com/science/article/pii/S0095895683710270
https://www.sciencedirect.com/science/article/pii/S0095895683710270

A Material from Section 2

Theorem 1. The problem is [[φ]] treewidth-bounded, for a given FO sentence φ with at
least two binary relation symbols and several unary relations, is undecidable.

Proof (Proof of Theorem 1). We will reduce from the undecidability of the Tiling Prob-
lem [4]. We first recall its definition. Given a finite set of tiles S = {t1, . . . , tn} is there
a tiling of the plane such that the colors of neighbouring tiles match? (We note that
rotating or reflecting the tiles is not allowed.) In more detail: We assume the plane is
given by integer coordinates (x,y) with x,y ∈ Z. We want to put a copy of a tile at ev-
ery coordinate. We will require that neighbouring tiles match. For this we assume to be
given a relation H ⊆ S× S – specifying which tiles match can be placed next to each
other horizontally – and V ⊆ S× S – specifying which tiles match can be placed next
to each other vertically. We now require for every tiling that (ti, t j) ∈ H, for all tiles
ti and t j placed at coordinates (x,y) and (x+ 1,y), and (ti, t j) ∈ V , for all tiles ti and t j
placed at coordinates (x,y) and (x,y+1). It is well known that it is undecidable whether
such a tiling exists [4]. In fact it is known that is already undecidable whether such a
tiling exists for the upper-right quadrant of the plane, i.e., when coordinates (x,y) are
restricted to x,y ∈ N.

We will now reduce the tiling problem to deciding whether a given first-order for-
mula has infinitely many non-isomorphic models of bounded tree-width. We consider
some instance of the tiling problem. For encoding this problem, we define the signature
R= {up,right,N,S,E,W,I,T1, . . . ,Tn} to consist of the binary relations up and right,
the unary relations S,E,W,N,I and the unary relations T1, . . . ,Tn (one for each tile in the
tiling instance). We then consider the following formula:

φ
def

=
13∧

i=1

ψi∧
4∧

j=1

φ j

where
– ψ1

def

= ∀x∃≤1y . right(x,y)∧∃≤1y . right(y,x) states that right and right−1 are
partial functions, ψ2 states that that up and up−1 are partial functions,

– ψ3
def

= ∀x,y,z . up(x,y)∧right(x,z)→∃w.up(z,w)∧right(y,w) states that right
and up commute, ψ4 states that right−1 and up commute, ψ5 states that right
and up−1 commute and ψ6 states that right−1 and up−1 commute,

– ψ7
def

= ∀x . S(x)↔¬∃y.up(y,x) states that south-labelled nodes are exactly the ones
that do not have incoming up edges, and ψ8, ψ9, ψ10 define the analogous property
for the west, east, and north labels,

– ψ11
def

= ∀x . I(x)↔¬(S(x)∨E(x)∨N(x)∨W(x)) states that internal nodes are exactly
the ones not labelled by south, east, north or west,

– ψ12
def

= ∀x . I(x)→∃y . right(x,y)∧∃y . right(y,x) states that internal nodes have
exactly one outgoing and exactly one incoming right edge, ψ13 states that internal
nodes have exactly one outgoing and exactly one incoming up edge,

– φ1
def

= ∀x .
∨n

i=1 Ti(x) states that every coordinate holds at least one tile,
– φ2

def

= ∀x .
∧

i̸= j¬Ti(x)∨¬T j(x) states that every coordinate holds at most one tile,
– φ3

def

= ∀x∀y . right(x,y)→
∨

(ti,t j)∈H Ti(x)∧T j(y) states that tiles, that are next to
each other horizontally, satisfy the horizontal matching constraint, and

– φ4
def

= ∀x∀y . up(x,y)→
∨

(ti,t j)∈V Ti(x)∧T j(y) states that tiles, that are next to each
other vertically, satisfy the vertical matching constraint.

As usual, the formulæ ∃≤1x . ϕ stand for ∃x . ϕ→∀y . ϕ[x/y]→ y = x. The proof will
make use of the fact that φ encodes grids and non-standard models of grids, which are
(disjoint unions of) grid-like structures. We will argue the following:

Each model of φ can be decomposed into (disjoint unions of) grids, cylinders,
and cyclic grids, where grids have S,E,W,N borders, cylinders have either S,N
or E,W borders, and cyclic grids do not have any borders and only consist of
internal nodes.

We recall that we are only interested in finite models of first-order formulae. We note
that φ specifies that up and right are (partial) functions, and, hence, we will use func-
tional notation in the following. We now fix a model (U,σ) of φ – as usual, we require
that U ̸= /0. We decompose (U,σ) into its maximally connected components, connected
via up, right. We choose a representative uC, for each component C. We observe that
either there are j ≤ 0 ≤ i such that right j(uC) is W-labelled and righti(uC) is E-
labelled, or righti(uC) = uC, for some i ≥ 0 (because the universe is finite and the
functionality of right and right−1 ensures that the only possible loop returns to uC).
An analogous statement holds for up as well as the N and S labels. We now call a com-
ponent C a grid, if uC reaches S,E,W,N via up, right and their inverses, a cylinder if uC
reaches S,N or E,W via up and its inverse resp. right and its inverse, or a cyclic grid,
otherwise. We now justify the naming of these components.

Consider a grid component C with representative uC such that right j(uC) is
W-labelled, righti(uC) is E-labelled, upk(uC) is S-labelled and upl(uC) is N-
labelled, for some j ≤ 0≤ i and k ≤ 0≤ j. We claim that:
1. the elements righta(upb(uC)) exist, for all j ≤ a≤ i and all k ≤ b≤ l,
2. an element righta(upb(uC)), for j ≤ a≤ i and k ≤ b≤ l, is E-labelled iff

a = i; analogous claims hold for the labels S,W,N,
3. the elements righta(upb(uC)) are internal nodes, for all j < a < i and all

k < b < l,
4. the elements righta(upb(uC)) are pairwise different, for all j ≤ a≤ i and

all k ≤ b≤ l,
5. all elements of the component can be represented as righta(upb(uC)), for

some j ≤ a≤ i and k ≤ b≤ l, and
6. the component is isomorphic to a grid.

Items 1., 2. and 3. directly follow from the commutativity requirements. For 4., we
consider some j ≤ a1,a2 ≤ i and k ≤ b1,b2 ≤ l. We will show that a1 ̸= a2 resp.
b1 ̸= b2 imply that righta1(upb1(uC)) ̸= righta2(upb2(uC)). We will assume that
righta1(upb1(uC)) = righta2(upb2(uC)) and derive a contradiction. Let us assume
that a1 > a2 (the other cases are analogous). Then, we have righta1+s(upb1(uC)) =
righta2+s(upb2(uC)) for s = i−a1 ≥ 0. However, righta1+s(upb1(uC)) is E-labelled,
while righta2+s(upb2(uC)) is not, by (2), contradiction. For 5., we observe that every
node reachable from uC connected via up, right and their inverses can be represented
as righta(upb(uC)), because of the commutativity requirements; further, we must have
j≤ a≤ i and k≤ b≤ l because the S,E,W,N borders do not have outgoing edges. For 6.,
we observe that the component is isomorphic to the structure with domain {(x,y) | x,y∈

[j, i],y∈ [k, l]}, where right is interpreted as {((x,y),(x+1,y)) | x∈ [j, i−1],y∈ [k, l]}
and up as {((x,y),(x,y+1)) | x ∈ [j, i],y ∈ [k, l−1]}.

Consider a cylinder component C with representative uC such that right j(uC)
is W-labelled, righti(uC) is E-labelled, and upk(uC) = uC for some j ≤ 0 ≤ i
and k ≤ 0, where k is the smallest number with this property. (The properties
stated below hold analogously for N,S cylinders). We claim that:
1. the elements righta(upb(uC)) exist, for all j ≤ a≤ i and all 0≤ b < k,
2. an element righta(upb(uC)), for j ≤ a≤ i and 0≤ b < k, is E-labelled iff

a = i; an analogous claim hold for the label W,
3. the elements righta(upb(uC)) are internal nodes, for all j < a < i and all

0≤ b < k,
4. all the elements righta(upb(uC)) are pairwise different, for all j ≤ a ≤ i

and all 0≤ b < k,
5. all nodes of the component can be represented as righta(upb(uC)), for

some j ≤ a≤ i and 0≤ b < k, and
6. the component is isomorphic to a cylinder, i.e., a grid for which the north-

border connects to south-border.

Items 1., 2. and 3. directly follow from the commutativity requirements. For 4., we
consider some j ≤ a1,a2 ≤ i and 0 ≤ b1,b2 < k. We will show that a1 ̸= a2 resp.
b1 ̸= b2 imply that righta1(upb1(uC)) ̸= righta2(upb2(uC)). We will assume that
righta1(upb1(uC)) = righta2(upb2(uC)) and derive a contradiction. Let us first as-
sume that a1 > a2 (the case a1 < a2 is symmetric). Then, we have righta1+s(upb1(uC))=
righta2+s(upb2(uC)) for s= i−a1. However, righta1+s(upb1(uC)) is E-labelled, while
righta2+s(upb2(uC)) is not, by 2., contradiction. Now we assume a1 = a2 and b1 > b2
(the case b1 < b2 is symmetric). Then, righta1(upb1(uC)) = righta2(upb2(uC)) im-
plies that upb1−b2(uC)) = uC with 0≤ b1−b2 < k. However, this contradicts that k is the
smallest number with this property. For 5., we observe that every node reachable from
uC connected via up, right and their inverses can be represented as righta(upb(uC)),
because of the commutativity requirements; further, we can in fact choose 0≤ b < k be-
cause of commutativity and the assumption that upk(uC) = uC. Moreover, we must have
j ≤ a ≤ i because the E,W borders do not have outgoing edges. For 6., we observe that
the component is isomorphic to the structure with domain {(x,y) | x,y∈ [j, i],y∈ [k, l]},
where right is interpreted as {((x,y),(x+1,y)) | x ∈ [j, i−1],y ∈ [0,k−1]} and up as
{((x,y),(x,y+1)) | x ∈ [j, i],y ∈ [0,k−2]}∪{((x,k),(x,1)) | x ∈ [j, i]}.

Consider a cyclic grid component C, with representative uC such that upk(uC)=
uC and rightl(uC) = uC for some k≤ 0 and l ≤ 0, where k and l are the small-
est numbers with this property. We claim that:
1. the elements exists righta(upb(uC)), for all 0≤ a < k and all 0≤ b < l,
2. the elements righta(upb(uC)) are internal nodes, for all 0≤ a < k and all

0≤ b < l,
3. all nodes of the component can be represented as righta(upb(uC)), for

some 0≤ a < k and 0≤ b < l.

Items 1. and 2. directly follow from the commutativity requirements. For 3., we observe
that every node reachable from uC connected via up, right and their inverses can be

represented as some righta(upb(uC)) because of the commutativity requirements; fur-
ther, we can in fact choose 0≤ a< k and 0≤ b< l because of commutativity and the as-
sumptions that upk(uC) = uC and rightk(uC) = uC. We note that the righta(upb(uC))
are in general not pairwise different (e.g., we might have righta(uC) = upb(uC) for
some 0 ≤ a < k and 0 ≤ b < l). However, in our below argument we do not need to
distinguish whether all the elements righta(upb(uC)) of a cyclic grid component are
pairwise different.

We claim that φ has models of unbounded treewidth iff there is a tiling of the
upper-right quadrant of the plane.

“⇒” Let us assume that there is a tiling of the upper-right quadrant of the plane. Then,
for every n ∈ N, this tiling induces a square grid Gn of size n× n with Gn |= φ: sim-
ply take the tiles at positions (x,y), with x,y ∈ [1,n], from the tiling of the upper-right
quadrant, and verify that in this way we obtain a model of the formula φ. “⇐” We
now assume that φ has models of unbounded treewidth, i.e., for every i ≥ 1 there is a
finite model (U,σ) with tw((U,σ))≥ i. If any model (U,σ) contains a cyclic grid com-
ponent C, we immediately obtain a tiling of the upper-right quadrant by unrolling the
cyclic grid: we define the tiling of the upper right quadrant by placing the tile of the el-
ement righti(up j(uC)) at position (i, j). It is then routine to verify that the subformula∧4

j=1 φ j of φ ensures that the matching requirements of a tiling are satisfied. Hence, we
are left with the case that no model of φ contains a cyclic grid component.

We now observe that an n×m grid has treewidth min{n,m} and an n×m cylinder
has treewidth min{2n,m} resp. min{n,2m} for E,W resp. S,N cylinders. For the n×m
grid, this follows from the k-cops and robber game, defined as follows. A position in
the game is a pair (γ,r), where γ⊆ [1..n]× [1..m], card(γ) = k and r ∈ [1..n]× [1..m]\γ.
The game can move from (γi,ri) to (γi+1,ri+1) iff there exists a path between ri and
ri+1 in the restriction of the grid to [1..n]× [1..m]\ (γi∩ γi+1). We say that k cops catch
the robber iff every sequence of moves in the game is finite. It is known that, if the
treewidth of the graph is greater or equal to k, then k+ 1 cops catch the robber on a
graph G [35]. Since min{n,m}− 1 cops do not catch the robber (which can always
move to the intersection of a cop-free row and a cop-free column) it follows that the
treewidth of the grid is greater than min{n,m}− 1. At the same time, there exists a
tree decomposition of width min{n,m}. For the n×m N-S cylinder (the case of the E-W
cylinder is analogous), we need extra n cops to prevent the robber escaping wrapping
around the E-W axis, thus the treewidth is min{2n,m}.

We now consider some i ≥ 0 and some model (U,σ) with tw((U,σ)) ≥ 2i that
does not contain no cyclic grid components. Then, N decomposes into grid components
and cylinder components. Because of our assumption tw((U,σ)) ≥ 2i there must be
some component C of N with tw(C) ≥ 2i. Now, we can deduce that C contains some
square grid M of size i× i as a substructure (this follows from 2i ≤ min{n,m} for
grids and from 2i ≤ min{n,2m} resp. 2i ≤ min{2n,m} for cylinders). Hence, we can
restrict our attention to models of φ that are square grids. Let M1,M2, . . . be a sequence
of models with Mn |= φ, where each Mn is a square grid of size n× n. We are now
going to construct a sequence of models G1,G2, . . . such that each Gn is a square grid
of size n with Gn |= φ, and each Gn is included in Gn+1, where we say a model I of
φ is included in a model J of φ if I resp. J are square grids of size n× n resp. m×m,
and we have that n≤ m and all tiles at positions (x,y), with x,y ∈ [1,n], are the same in

both models. We construct the sequence G1,G2, . . . inductively, maintaining an infinite
sequence of models Mn

1 ,M
n
2 , . . ., for each n ∈ N, such that Gn is included in all Mn

i :
Take G1 to be a model that consists of a single tile, which appears infinitely often at
position (1,1) in the models M1,M2, . . .; then we obtain the sequence M1

1 ,M
1
2 , . . . as

the restriction of M1,M2, . . . to the models that include G1. Assume we have already
defined Gn. Choose some square grid Gn+1 of size n + 1 that is included infinitely
often in models of the sequence Mn

1 ,M
n
2 , . . . (note that such a square grid must exist

by the pigeonhole principle); then obtain the sequence Mn+1
1 ,Mn+1

2 , . . . by restricting
the sequence to the Mn

1 ,M
n
2 , . . . to the models that include Gn+1. With the sequence

G1,G2, . . . at hand we now obtain a tiling of the plane: For position (i, j), with i, j ∈ N,
simply take the tile at this position in Gmax{i, j}. We now verify that the horizontal resp.
vertical requirements of a tiling are satisfied: We verify the horizontal requirement (the
vertical one is symmetric). Consider some tiles at positions (i, j) and (i+1, j). If i ̸= j,
then both tiles have been defined by Gmax{i, j}, and the matching requirement is satisfied
because Gmax{i, j} is a model of φ. If i = j, then the tile at position (i, i) is defined by
Gi and the tile at position (i+ 1, i) is defined by Gi+1. Now we observe that the tile at
position (i, i) in Gi is the same as the tile at position (i, i) in Gi+1, because Gi is included
in Gi+1, and the matching requirement is satisfied because Gi+1 is a model of φ. ⊓⊔

B Material from Section 3

Lemma 5. Given a SID ∆, one can build an equality-free SID ∆′, such that [[A]]
∆
=

[[A]]
∆′ for any nullary predicate A.

Proof (Proof of Lemma 5). See [26, Lemma 9].

Lemma 6. Given a nullary predicate A, there exists a constant W ≥ 1, depending only
on ∆, such that tw(S)≤W, for any S ∈ [[A]]c

∆
.

Proof (Proof of Lemma 6). See [26, Lemma 11].

Lemma 7. Let A be a nullary predicate. Then, [[A]]
∆
= ĨF([[A]]r

∆
)⊆ IF([[A]]c

∆
).

Proof (Proof of Lemma 7). It is sufficient to prove [[A]]
∆
= ĨF([[A]]r

∆
), since ĨF([[A]]r

∆
)⊆

IF([[A]]c
∆
) is immediate, by Def. 10 i.e., any equivalence relation that is compatible with

a rich canonical ∆-model (S,d) is also compatible with S.

“⊆” Let S∈ [[A]]
∆

be a structure. By Prop. 1, we have S |=∃y1 . . .∃ym . ψ, where ψ is qpf,
such that fv(ψ)= {y1, . . . ,ym} and A⇒∗

∆
∃y1 . . .∃ym . ψ is a complete ∆-unfolding. Then

there exists a store s, such that S |=s ψ. Let S=(U,σ) be a structure and s be a store such
that S |=s ψ and s(yi) ̸= s(y j), for all i ̸= j ∈ [1..m]. Since ∆ is equality-free, there are
no equality atoms in ψ, hence such a structure and a store exist. We consider≈⊆U×U

to be the least equivalence relation such that s(yi)≈ s(y j)
def⇐⇒ s(yi) = s(y j). To prove

that ≈ is compatible with S, consider two tuples ⟨s(z1), . . . ,s(z#r)⟩,⟨s(z′1), . . . ,s(z′#r)⟩ ∈
σ(r), for some r∈R and suppose, for a contradiction, that s(zi)≈ s(z′i), for all i∈ [1..#r].
Then r(z1, . . . ,z#r)∗ r(z′1, . . . ,z′#r) is a subformula of ψ, possibly modulo a reordering of
atoms. By the definition of ≈, we have s(zi) = s(z′i), for all i ∈ [1..#r], in contradiction
with S |=s ψ. Since S |=s ψ and s is injective over y1, . . . ,ym, we obtain that s⇃{y1 ,...,ym}

is a bijection between {y1, . . . ,ym} and supp(σ) hence s−1(u) is a singleton, for each
u∈ supp(σ). Let d⊆U×U be the relation defined as d(u,v) iff the disequality s−1(u) ̸=
s−1(u) occurs in ψ. Then ≈ is compatible with (S,d) ∈ [[A]]r

∆
hence S/≈ ∈ ĨF([[A]]r

∆
).

Finally, the mapping h : supp(σ)→ supp(σ) defined as h(s(yi))
def

= [s(yi)]≈, for all i ∈
[1..m] is shown to be an isomorphism between S and S/≈, leading to S ∈ ĨF([[A]]r

∆
).

“⊇” Let S ∈ ĨF([[A]]r
∆
) be a structure. Then there exists a rich canonical ∆-model

(S,d) ∈ [[A]]r
∆

, where S = (U,σ) and an equivalence relation ≈ ⊆ U×U such that ≈
is compatible with (S,d) and S is isomorphic to S/≈. Since (S,d) ∈ [[A]]r

∆
, there exists

a complete ∆-unfolding A⇒∗
∆
∃y1 . . .∃ym . ψ, such that ψ is qpf and a store s, injective

over y1, . . . ,ym, such that S |=s ψ and d(s(z),s(z′)) for each disequality z ̸= z′ from ψ.
Let s be the store defined as s(yi) = [s(yi)]≈, for all i ∈ [1..m]. We prove S/≈ |=s ψ by
induction on the structure of ψ, considering the following cases:

– ψ = yi ̸= y j: because ≈ is compatible with (S,d), we have [s(yi)]≈ ̸= [s(y j)]≈,
hence s(yi) ̸= s(y j).

– ψ= r(yi1 , . . . ,yi#r): because S |=s r(yi1 , . . . ,yi#r), we have σ(r)= {⟨s(yi1), . . . ,s(yi#r)⟩}
and σ/≈(r) = {⟨[s(yi1)]≈, . . . , [s(yi#r)]≈⟩}, by Def. 2.

– ψ=ψ1∗ψ2: because S |=s ψ1∗ψ2, there exist locally disjoint structures S1•S2 =S,
such that Si |=s ψi, for i = 1,2. Since ≈ is compatible with S, the structures S1/≈
and S2/≈ are locally disjoint, by Def. 3. Then their composition is defined and we
have S/≈ = S1/≈ • S2/≈. By the inductive hypothesis, we have Si/≈ |=σ ψi, for
i = 1,2, thus S/≈ |=σ ψ1 ∗ψ2.

Hence S/≈ ∈ [[A]]
∆

and S ∈ [[A]]
∆

follows, since [[A]]
∆

is closed under isomorphism [26,
Prop. 7].

C Material from Section 4

Lemma 8. Let A = (A,Q , ι,δ) be a choice-free automaton, such that δ = δ1⊎δ∞ (Def.
14) and let θ be an accepting run of A over a tree t. Then, for each 1-transition q0

a−→
(q1, . . . ,qℓ) ∈ δ1 there exists exactly one position p ∈ dom(θ), such that θ(p) = q0,
t(p) = a and θ(pi) = qi, for all i ∈ [1..ℓ].

Proof (Proof of Lemma 8). Assume w.l.o.g. that A is rooted and let GA = (N ,E ,S0)
be the SCC graph of A . By Def. 14, GA is a tree and, moreover, S0 = {ι}, because
A is rooted. Let Λ : N ∪ δ→ {1,∞} be the labeling from Def. 14. For every SCC
S ∈N \{S0}, let entry(S) be the unique state q such that {q}= τ•∩S, where {τ}= •S,
by point (1) of Def. 14, and entry(S0)

def

= ι. Moreover, each linear SCC S ∈N such that
Λ(S) = 1 has a unique transition τ, such that S• = {τ}, by point (2a) of Def. 14.

We prove first an invariant of 1-labeled linear SCCs:

Fact 1 Let p ∈ dom(θ) be a position, such that θ(p) ∈ S, for a linear SCC S ∈N , such
that Λ(S) = 1. Then there exists a descendant p′ ∈ dom(θ) of p, such that θ(p′) = s0,

t(p′) = β and θ(p′i) = si, for all i ∈ [1..k], where S• = {s0
β−→ (s1, . . . ,sk)}.

Proof. Suppose, for a contradiction, that s0
β−→ (s1, . . . ,sk) never occurs below p in θ.

Then every transition that occurs at some position below p in θ must be from •S•. This,

however, cannot be the case for a transition θ(p′)
t(p′)−−→ (), such that p′ ∈ fr(θ). Since,

moreover, θ is an accepting run, such a transition must occur on the frontier of θ. ⊓⊔
The following facts prove the existence and uniqueness of a position labeled with

the entry state of each 1-labeled linear SCC:

Fact 2 For each SCC S ∈ N , such that Λ(S) = 1, there exists a position p ∈ dom(θ),
such that θ(p) = entry(S).

Proof. Because GA is a tree with root S0, we have that S is reachable from S0 in GA by
a path of pairs from E . The proof goes by induction on the length n≥ 0 of this path. For
the base case n= 0 (i.e., S= S0) we take p= ε. For the inductive step, let S′ be the parent
of S in GA . By points (1) and (2c) of Def. 14, •S = {τ} for some τ ∈ S′•∩δ1, such that
{entry(S)} = τ• ∩ S. By the inductive hypothesis, there exists a position p′ ∈ dom(θ),
such that θ(p′) = entry(S′). By Fact 1, there exists a descendant p of p′, such that
θ(p) = entry(S). ⊓⊔

Fact 3 For each SCC S ∈ N , such that Λ(S) = 1, there exists at most one position
p ∈ dom(θ), such that θ(p) = entry(S).

Proof. Suppose, for a contradiction, that there exist two positions p1, p2 ∈ dom(θ),
such that θ(p1) = θ(p2) = entry(S). By induction of the length of pi, we prove the
existence of a sequence Si,ki ,τi,ki , . . . ,Si,1,τi,1,Si,0 = S0 such that θ(pi)∈ Si,ki ,

•Si, j = τi, j
and {τi, j} = Si, j−1

•, for all j ∈ [1..ki] and i = 1,2. Since p1 ̸= p2, there exists an SCC
S1, j1 = S2, j2 that violates condition (1) of Def. 14. ⊓⊔

Let τ : q0
α−→ (q1, . . . ,qℓ) be a transition, such that Λ(τ) = 1. By point (2b) of Def.

14, we have τ ∈ S• for some linear SCC S ∈N , such that Λ(S) = 1. By Facts 2 and 3,
there exists a unique position p ∈ dom(θ), such that θ(p) = entry(S). By Fact 1, there
exists a position p′ ∈ dom(θ), such that θ(p′) = q0, t(p′) = α and θ(p′i) = qi, for all
i∈ [1..ℓ]. Suppose, for a contradiction, that this position is not unique, hence there exists
another position p′′ ∈ dom(θ), such that θ(p′′) = q0, t(p′′) = α and θ(p′′i) = qi, for all
i∈ [1..ℓ]. Since θ(p′)= θ(p′′)= q0 ∈ S, there exists a transition τ′ with card(τ′•∩S)≥ 2,
in contradiction with the fact that S is linear. This concludes the proof.

Lemma 9. Let A = (A,Q , ι,δ) be a choice-free automaton, where δ = δ1 ⊎ δ∞ (Def.
14). Then, for any state q ∈ •(δ∞) there exists a pivot state q0 ∈ (δ1)

• ∩ •(δ∞) and a
partial run θ0 ∈ R ∞

q0
(A) consisting only of ∞-transitions, such that θ0(p) = q for some

p ∈ fr(θ0) and either:
1. [[q,q0]]⊆ [[θ0(p) | p ∈ fr(θ0)]], i.e., if q = q0 then q occurs twice on fr(θ0), or
2. each partial run θ∈R ∞

q (A) can be extended to a partial run θ′ ∈R ∞
q (A) such that

q0 occurs on the frontier of θ′.

Proof (Proof of Lemma 9). Let us consider the SCC graph GA = (N ,E ,S0) and the
mapping Λ : N ∪δ→ {1,∞} with the properties stated in Def. 14 and let q ∈ •(δ∞) be
a state. W.l.o.g., we consider that L(A) ̸= /0 and A to be trim. Then q is reachable from
S0 = {ι}, i.e., there exists a partial run θ1 on A and a position p1 such that θ1(ε) = ι and
θ1(p1) = q. Let p2 be the longest strict prefix of p1 such that the transition τ : θ1(p2)

a−→
⟨θ1(p21), . . . ,θ1(p2ℓ)⟩ is in δ1 for some a ∈ A and index ℓ. This position p2 exists
thanks to Def. 14: S0 = {ι} is linear, Λ(S0) = 1 by cond.2c, card(S0

•) = 1 by cond.2a,
and the only transition τ0 ∈ {ι}• is in δ1 by cond.2b. This shows that ι /∈ •δ∞ hence q ̸= ι

and τ0 is a transition in δ1 on the path from ι to q in θ1, with τ being the last one. We
decompose p1 = p2rp3 for some index r ∈ [1..ℓ] and position p3 and define the partial
run θ2 as θ2(ε)

def

= θ1(p2r) and, for each u ∈ N∗ and i ∈ N such that p2rui ∈ dom(θ1)

and p2ru is a strict prefix of p1, by θ2(ui) def

= θ1(p2ru). Then θ2 starts from the state
q0

def

= θ1(p2r) ∈ τ• and p3 ∈ fr(θ2) gives the state θ2(p3) = q. Let S ∈N be the SCC in
GA such that q0 ∈ S. Then Λ(τ) = 1 and τ ∈ •S (hence •S = {τ} by cond.1 of Def. 14),
thus Λ(S) = 1 by cond.2c of Def. 14.

q

q0 q0

θ2

τ

q0

θ3

θ2

r

p4 p5

p3

p2

τ

q0

ι

p2

r

q0

q

p3
θ2

p8

p9
θ5

∀θ

τ

q0

ι

q0

q
p3

p2

r

p6
τ′

θ4
p7

ι

Case 2 (q /∈ S) Case 3 (q ∈ S)Case 1 (S not linear)

states in S

Fig. 5. The cases from the proof of Lemma 9.

We distinguish three cases (see Fig. 5 for an illustration):
1. If S is not linear, there exists a transition τ′ ∈ •S• such that card(τ′•∩S) ≥ 2. Let

q′ def

= •τ′ and q′′, q′′′ be the states such that [[q′′,q′′′]] ⊆ τ′• ∩ S. Since q0,q′,q′′,q′′′ ∈
S, we can construct a partial run θ3 ∈ R ∞

q0
(A) with transitions taken from •S•,

which reaches q′ from q0, then applies τ′ and reaches q0 from both q′′ and q′′′. This
gives θ3(p4) = θ3(p5) = q0, for two distinct positions p4, p5 ∈ fr(θ3). We define
θ0 ∈ R ∞

q0
(A) as the partial run with domain dom(θ3)∪{p5u | u ∈ dom(θ2)}, that

extends θ3 by θ0(p5u) def

= θ2(u), for all u∈ dom(θ2). Then θ0 satisfies point 1 of the
lemma because θ0(p4) = q0 and θ0(p5 p3) = q, with p4 ̸= p5 p3 ∈ fr(θ0).

2. If S is linear and q /∈ S, there exists a unique position p6 and a transition:

τ
′ : θ2(p6)

α−→ ⟨θ2(p61), . . . ,θ2(p6k)⟩ ∈ δ
∞

for some alphabet symbol α ∈ A and some index k ∈ N, such that θ2(p6) ∈ S.
Moreover, there exists an index r ∈ [1..k] such that θ2(p6r) /∈ S and p6r is a prefix
of p3. Then Λ(τ′) = ∞ and, by cond.2b of Def. 14, we have τ′ /∈ S•, hence τ′ ∈
•S• and q′ def

= θ2(p6r′) ∈ S for another index r′ ∈ [1..k] \ {r}. Then there exists a
partial run θ4 ∈ R ∞

q′(A) such that θ4(p7) = q0 for some position p7 ∈ fr(θ4). We
define the partial run θ0 ∈ R ∞

q0
(A) with domain dom(θ2)∪{p6r′u | u ∈ dom(θ4)},

by extending θ2 with θ0(p6r′u) def

= θ4(u), for all u∈ dom(θ4). Then θ0 satisfies point
1 of the lemma because θ0(p6r′p7) = q0 and θ0(p3) = q, with p6r′p7 ̸= p3 ∈ fr(θ0).

3. If S is linear and q ∈ S, let θ ∈ R ∞
q (A) be a partial run. Then S• contains only

one transition in δ1, thus for every position u ∈ dom(θ) \ fr(θ), such that θ(u) ∈
S and the transition θ(u) α−→ ⟨θ(u1), . . . ,θ(uk)⟩ belongs to •S•. Then, there exists
an index i ∈ [1..k] such that θ(ui) ∈ S, and we can find a path in θ which stays
in S and reaches the frontier, that is q′ def

= θ(p8) ∈ S, for some p8 ∈ fr(θ). Hence,
there exists a partial run θ5 ∈ R ∞

q′(A) such that θ5(p9) = q0, for some position
p9 ∈ fr(θ5). We now can extend θ to some partial run θ′ ∈ R ∞

q (A) with domain
dom(θ)∪{p8u | u ∈ dom(θ5)}, as θ′(p8u) def

= θ5(u) for all u ∈ dom(θ5). The partial
run θ′ satisfies point 2 of the lemma, because θ′(p8 p9) = q0, with p8 p9 ∈ fr(θ′).

Lemma 10. Given an automaton A , one can build finitely many choice-free automata
A1, . . ., An, such that L(A) =

⋃n
i=1 L(An).

Proof (Proof of Lemma 10). We assume w.l.o.g. that A = (A,Q , ι,δ) is rooted. Let
GA = (N ,E) be the SCC graph of A , where N = {S1, . . . ,SM} is a topological ordering
of the SCCs i.e., if (Si,S j) ∈ E then i < j, for all i, j ∈ [1..m]. For each i = 1, . . . ,M, we
iterate the following transformation of A :

– let Si
def

=
⋃

(Si,S j)∈E∗ S j be the set of states from any SCC reachable from Si in GA ,

– let ki
def

= ∑τ∈•Si card(τ•∩Si) be the number of edges of GA incoming to Si,
– create ki copies of the transitions q0

a−→ (q1, . . . ,qℓ)∈ δ such that {q0,qi1 , . . . ,qi j}=
{q0, . . . ,qℓ}∩Si i.e., add a transition (q0,h)

a−→ (q1, . . . ,(qi1 ,h), . . . ,(qi j ,h), . . . ,qℓ)
for each h ∈ [1..ki],

– connect these new transitions to the rest of the automaton by adequately changing
the states q∈ τ•∩Si for τ∈ •Si to their corresponding copies (q,h), for all h∈ [1..ki].

It is easy to check that the resulting automaton fullfils condition (1) of Def. 14 and has
the same language as A , using Lemma 15. We can thus assume w.l.o.g. in the following
that GA = (N ,E ,S1) is a tree and let S1, . . . ,SN be a topological ordering of its nodes.
We associate a variable xi (resp. yτ) ranging over {0,1,∞} with each SCC Si ∈N (resp.
transition τ ∈ δ). Initially, the values of these variables are all zero. We iterate over
the finite sequence S1, . . . ,SN as follows. For each i ∈ [1..N], we perform the following
assignments in this order:

i. let xi
def

=

{
1, if i = 1
∑τ∈•Si yτ · card(τ•∩Si), otherwise

ii. for each τ ∈ •Si
•, let yτ

def

=

{
∞, if xi > 0
0,otherwise

iii. if xi ∈ {0,∞} or Si is nonlinear, for each τ ∈ Si
•, let yτ

def

=

{
∞, if xi > 0
0,otherwise

iv. else (i.e., xi = 1 and Si is linear) chose for all {yτ}τ∈Si
• some values from {0,1},

such that xi = ∑τ∈Si
• yτ.

Since for each SCC Si ∈N there is at most one transition τ ∈ •Si and card(τ•∩Si)≤ 1,
each variable xi is assigned either 0, 1 or ∞ at (i). Note that no variable is assigned
twice in the above iteration sequence, because every xi is assigned exactly once, every
yτ, for τ ∈ •Si is assigned before xi and every yτ, for τ ∈ •Si

• ∪ Si
• is assigned after

xi. Furthermore, we have •Si
• ∩ •S j

• = /0 and Si
• ∩ S j

• = /0, for all 1 ≤ i < j ≤ N, so

that each yτ, for τ ∈ •Si
• ∪ Si

•, is assigned exactly once. Moreover, since the choice at
(iv) is finite, there are finitely many outcomes of the above nondeterministic iteration,
say (x1,y1), . . . ,(xℓ,yℓ), where xi = ⟨xi, j⟩ j∈[1..N] and yi = ⟨yi,τ⟩τ∈δ. For each i ∈ [1..ℓ],
we define the automaton Ai = (A,Qi, ι,δi), where Qi

def

=
⋃
{S j | xi, j > 0, j ∈ [1..N]} and

δi
def

= {τ ∈ δ | yi,τ > 0}. We are left with proving the following facts:

Fact 4 Each automaton Ai is choice-free, for i ∈ [1..N].

Proof. We prove below the points of Def. 14:
(1) Let S j0 be an SCC of A , such that xi, j0 > 0 i.e., S j0 is a vertex in the SCC graph
GAi . Since the variable x j0 received its value xi, j0 at (i), either j0 = 1 (in which case
xi, j0 = 1) or there exists an incoming transition τ ∈ •S j0 such that yi,τ > 0. Let S j1 , for
some j1 < j0 be the SCC such that •τ∈ S j1 . Then xi, j1 > 0. Repeating the same argument
for j1, we discover a maximal finite sequence j0, . . . , jk such that (S ji+1 ,S ji)∈E , for all
i ∈ [0..k−1]. Moreover, it must be the case that jk = 1, or else the sequence could be
extended, contradicting its maximality. Since GA is a tree, the path from S1 to S j0 must
be unique and, since the choice of S j0 was arbitrary, GAi = (Ni,Ei,S1) is a tree as well.
The second point from condition (1) holds already for GA , hence it must hold for GAi .
(2) The mapping Λi : Ni∪δi→ {1,∞} is defined as Λi(S j) = xi, j for each S j ∈Ni and
Λi(τ) = yi,τ for each τ ∈ δi. We check that Λi verifies the conditions (2) from Def. 14:
(2a) if S j ∈Ni is linear and xi, j = 1 then the choice at step (iv) was yi,τ = 1, for exactly

one transition τ ∈ S j
•.

(2b) yi,τ = 1 iff the value of yτ was set at step (iv) and τ ∈ S j
• is the unique outgoing

transition for which a nonzero value was assigned to yτ, for a linear SCC S j with
xi, j = 1.

(2c) xi, j = 1 iff the value of x j was set at step (i) and either j = 1 or for all but one
transitions τ ∈ •S j we have yi,τ = 1. ⊓⊔

Fact 5 L(A) =
⋃ℓ

i=1 L(Ai).

Proof. “⊇” Since δi ⊆ δ, we have L(Ai)⊆ L(A), for all i ∈ [1..ℓ].
“⊆” Let t ∈ L(A) and θ be an accepting run of A over t. We show that there exists

an iteration (i)–(iv) leading to the values (xi,yi) such that, for each transition τ occurring
on θ at some position p ∈ dom(θ) i.e., θ(p) = •τ, we have:

– xi, j > 0, where S j is the unique SCC of A such that •τ ∈ S j, and
– yi,τ > 0.

By the second point above we obtain that θ is an accepting run of Ai. The proof is by
reverse induction on the size of the subtree of θ rooted at p.
Base case If p = ε, the variable x1 is always assigned the value 1 at step (i). We chose
the values for all {yτ′}τ′∈S1

• , such that yτ is assigned 1 and yτ′ is assigned 0, for all
τ′ ∈ S1

• \{τ} at step (iv).
Inductive step If p ∈ dom(θ) \ {ε}, since j ̸= 1, by the inductive hypothesis, the vari-
able yτ′ is assigned non-zero values, for at least one τ′ ∈ •S j, thus we assign x j the value
∑τ′∈•S j yτ′ · card(τ•∩S j) > 0 at step (i). If τ ∈ •S j

•, then yτ is assigned ∞ at step (ii).
Otherwise, it must be the case that τ ∈ S j

• and we distinguish two cases. If S j is non-
linear, then yτ is assigned ∞ at (iii). Else, S j is linear and we can chose the value 1 for
yτ at step (iv), because x j has been already assigned to 1. ⊓⊔
This concludes the proof of the Lemma.

Lemma 11. Let q0
α−→ (q1, . . . ,qℓ) ∈ δ∆ be a transition of A∆,A. Then, for each i ∈ [1..ℓ]

and each j ∈ [1..#qi], there exists an ε-variable z, such that x[i]j ≈α z.

Proof (Proof of Lemma 11). Directly from the definition (1) of the labels on the transi-
tions of A∆,A.

Lemma 12. (1) Given a SID ∆ and a nullary predicate A, one can build an automaton
A∆,A such that [[A]]

∆
= [[A∆,A]]. (2) Given an automaton A = (Σ,Q , ι,δ), one can build

a SID ∆A , such that [[A]] = [[Aι]]∆A
and [[A]]r = [[Aι]]

r
∆A

, for a nullary predicate A.

Proof (Proof of Lemma 12). (1) For the first part, we prove the two directions of the
following equivalence: for all structures S and predicates B of arity n, there exists a
store s such that S |=s

∆
B(x1, . . . ,xn) iff there exists a tree t ∈ LqB(A∆,A) and a store s̄

such that S |=s̄ Θ(t) and s̄(x[ε]j) = s(x j) for all j ∈ [1..n].

“⇒” We proceed by induction on the definition of S |=s
∆
B(x1, . . . ,xn). Then ∆ contains

a rule ρ of the form B(x1, . . . ,xn)←∃y1 . . .∃ym . ψ∗∗ ℓ
i=1Bi(zi,1, . . . ,zi,ni) and we can

decompose the structure S= S0 • . . .•Sℓ, such that S0 |=s′ ψ and Si |=s′
∆
Bi(zi,1, . . . ,zi,ni)

for all i ∈ [1..ℓ], for a store s′ that agrees with s over {x1, . . . ,xn}. For all i ∈ [1..ℓ],
we consider a store si such that si(x j) = s′(zi, j), for all j ∈ [1..ni]. We have σi |=si

∆

Bi(x1, . . . ,xni) and, by induction hypothesis, there exists a tree ti ∈ LqBi
(A∆,A) and a

store s̄i such that σi |=s̄i Θ(ti) and s̄i(x
[ε]

j) = si(x j) for all j ∈ [1..ni]. Let s̄ be a store
such that:

– s̄(x[ε]j) = s(x j), for all j ∈ [1..n],
– s̄(y[ε]j) = s′(y j) for all j ∈ [1..m],
– s̄(z[ip]) def

= s̄i(z[p]), for all i ∈ [1..ℓ] and z[p] ∈ fv(Θ(ti)).
Note that s̄ is well defined because s̄i(z[p]) = s̄ j(z[p]) = s′(z[p]), for all z[p] ∈ fv(Θ(ti))∩
fv(Θ(t j)). We have Si |=s̄ Θ(ti)

[i] for all i ∈ [1..ℓ] and S0 |=s̄ αρ, thus S |=s̄ Θ(t) where
t is the tree consisting of a root labelled by αρ and ℓ children ti for i ∈ [1..ℓ]. Since
t ∈ LqB(A∆,A) and s̄(x[ε]j) = s(x j), for all j ∈ [1..n0], by definition, we obtain the result.

“⇐” The reverse implication is proven by induction on the structure of the tree t ∈
LqB(A∆,A) such that S |=s̄ Θ(t). Since t ∈ LqB(A∆,A), there is a transition qB

t(ε)−→
(qB1 , . . . ,qBℓ

) ∈ δ∆ such that t(ε) = αρ for some rule ρ of the form above and t|i ∈
LqBi

(A∆,B) for all i ∈ [1..ℓ]. Meanwhile S |=s̄ t(ε)∗∗ ℓ
i=1 Θ(t|i)[i], thus we can decom-

pose the structure as S= S0• . . .•Sℓ, such that S0 |=s̄ αρ and Si |=s̄ Θ(t|i)[i]∗∗ni
j=1 z[ε]i, j =

x[i]j for all i ∈ [1..ℓ]. Note that the additional equalities from αρ are necessary to remem-
ber the links between the variables from ρ. Let s̄i be a store, such that s̄i(z[p]) = s̄(z[ip]),
for all z[p] ∈ fv(Θ(t|i)) and all i ∈ [1..ℓ]. By the inductive hypothesis on t|i, there ex-
ists a store si such that Si |=si

∆
Bi(x1, . . . ,xni) and si(x j) = s̄i(x

[ε]

j), for all j ∈ [1..ni].
We consider a store s′ such that s′(x j) = s̄(x[ε]j), for all j ∈ [1..n], and s′(y j)

def

= s̄(y[ε]j),
for all j ∈ [1..m]. For all i ∈ [1..ℓ] and j ∈ [1..ni] we have si(x j) = s̄i(x

[ε]

j) = s̄(x[i]j) =

s̄(z[ε]i, j) = s′(zi, j), because z[ε]i, j = x[i]j holds for s̄ in the empty structure. Therefore Si |=s′
∆

Bi(zi,1, . . . ,zi,ni), for all i ∈ [1..ℓ]. Moreover S0 |=s′ ψ, and by composing the structures
and using ρ, we obtain S |=s′

∆
B(x1, . . . ,xn).

(2) To show [[A]] = [[Aι]]∆A
we prove the following equivalence: for all structures S and

states q0 ∈ Q, there exists a tree t ∈ Lq0(A) and a store s̄ such that S |=s̄ Θ(t) iff there
exists a store s such that S |=s

∆A
Aq0(x1, . . . ,x#q0) and s(x j) = s̄(x[ε]j), for all j ∈ [1..#q0].

“⇒” We reason by induction on the structure of the tree t ∈ Lq0(A), such that S |=s̄

Θ(t). Since t ∈ Lq0(A), there is a transition q0
t(ε)−→ (q1, . . . ,qℓ) ∈ δ such that t|i ∈

Lqi(A), for all i ∈ [1..ℓ]. Meanwhile S |=s̄ t(ε) ∗∗ ℓ
i=1 Θ(t|i)[i] thus, we can decom-

pose the structure S = S0 • . . . • Sℓ, such that S0 |=s̄ t(ε) and Si |=s̄ Θ(t|i)[i]. Let s̄i
be a store, such that s̄i(z[p]) = s̄(z[ip]), for all z[p] ∈ fv(Θ(t|i)) and all i ∈ [1..ℓ]. By the
inductive hypothesis on t|i, there exists a store si such that Si |=si

∆A
Aqi(x1, . . . ,x#qi)

and si(x j) = s̄i(x
[ε]

j) for all j ∈ [1..#qi]. We consider a store s′, such that s′(x j) =

s̄(x[ε]j), for all j ∈ [1..#q0], s′(x
[i]
j) = si(x j), for all i ∈ [1..ℓ] and all j ∈ [1..#qi], and

s′(z) = s̄(z), for all other variables z ∈ fv(t(ε)). Then Si |=s′
∆A

Aqi(x
[i]
1 , . . . ,x

[i]
#qi

) and

S0 |=s′ t(ε)[x[ε]1 /x1, . . . ,x
[ε]

#q0
/x#q0] thus, by composing the structures, we obtain S |=s′

∆A
Aq0(x1, . . . ,x#q0).

“⇐” The reverse is shown by induction on the definition of S |=s
∆A

Aq0(x1, . . . ,x#q0).
Then there exists a rule in ∆A of the form (3) and we can decompose the structure
S = S0 • . . . •Sℓ such that S0 |=s′ α[x[ε]1 /x1, . . . ,x

[ε]

#q0
/x#q0] and Si |=s′

∆A
Aqi(x

[i]
1 , . . . ,x

[i]
#qi

),
for all i∈ [1..ℓ], where s′ is a store that agrees with s over {x1, . . . ,x#qi}. For all i∈ [1..ℓ],
we consider a store si such that si(x j) = s′(x[i]j). We have Si |=si

∆A
Aqi(x1, . . . ,x#q0) and,

by the inductive hypothesis, there exists a tree ti ∈ Lqi(A) and a store s̄i such that
σi |=s̄i Θ(ti) and s̄i(x

[ε]

j) = si(x j), for all j ∈ [1..#qi]. Let s̄ be a store such that:

– s̄(x[ε]j)
def

= s(x j), for all j ∈ [1..#q0],
– s̄(y[ε]j)

def

= s′(y[ε]j), for all j ∈ [1..m],
– s̄(z[ip]) def

= s̄i(z[p]), for all i ∈ [1..ℓ] and all z[p] ∈ fv(Θ(ti)).
Note that s̄ is well defined because s̄i(z[p]) = s̄ j(z[p]) = s′(z[p]), for all z[p] ∈ fv(Θ(ti))∩
fv(Θ(t j)). We have Si |=s̄ Θ(ti)

[i], for all i ∈ [1..ℓ] and S0 |=s̄ α, thus S |=s̄ Θ(t), where
t is the tree consisting of a root labelled by α and children ti, for i ∈ [1..ℓ]. Since t ∈
Lq0(A) and s̄(x[ε]j) = s(x j) for all j ∈ [1..#q0] by definition, we obtain the result.

(2) To show [[A]]r ⊆ [[Aι]]
r
∆A

, let (S,d) ∈ [[A]]c, where S = (U,σ) is a structure and d ⊆
U×U is a symmetric relation. Then there exists a tree t ∈ L(A) and a store s canonical
for Θ(t), such that S |=s Θ(t) and, for each (u,v) ∈ d, there exist variables x ∈ s−1(u)
and y ∈ s−1(v) such that the disequality x ̸= y occurs in Θ(t). Let θ be the accepting run
of A over t. By a depth-first traversal of θ, we build a complete unfolding Aι⇒∗∆A

Θ(t)∃.
Since S |=s Θ(t), we obtain (S,d) ∈ [[Aι]]

r
∆A

, by Def. 8. Conversely, to show [[A]]r ⊇
[[Aι]]

r
∆A

, let (S,d)∈ [[Aι]]
r
∆A

, where S=(U,σ) is a structure and d⊆U×U is a symmetric
relation. Then, there exists a complete unfolding Aι ⇒∗∆A

∃x1 . . .∃xn . ψ, where ψ is a
qpf formula, and a store s canonical for ψ, such that S |=s ψ and, for all (u,v) ∈ d there

exist variables x ∈ s−1(u) and y ∈ s−1(v), such that the disequality x ̸= y occurs in ψ.
By induction on the length of the unfolding, one can build an accepting run θ of A ,
that recognizes a tree t ∈ L(A), such that Θ(t) differs from ψ by an α-renaming and
permutation of atoms via commutativity and associativity of the separating conjunction.
Hence (S,d) ∈ [[Θ(t)∃]]

r
, thus (S,d) ∈ [[A]]r.

Lemma 13. Let A = (Σ,Q , ι,δ) be a trim automaton. Then, there exists a q-reset for
(1) each pivot state q ∈ (δ1)

•∩ •(δ∞) of A and (2) each state q ∈ •(δ1)∩ •(δ∞), i.e., that
is the origin of both a 1-transition and a ∞-transition.

Proof (Proof of Lemma 13). By Def. 17, PA is the greatest fixpoint of the monotone
function F on the domain of positional functions P : Q → pow(N) , defined below:

F (P)
def

= λq .
⋂

q0
α−→(q1,...,qℓ)∈δ∞

q=qk∈{q1,...,qℓ}

{r ∈ [1..#qk] | ∃s ∈P(q0) . xs
[ε] ≈α xr

[k]}

Namely, we have PA = F i(⊤) for a sufficiently large i ≥ 1 and PA = F j(⊤) for any
j ≥ i, where ⊤ is the positional function λq . [1..#q]. Now consider the following “big-
step” function G on the domain of positional functions:

G(P)
def

= λq .
⋂

θ∈R ∞
q (A) partial run over t

p∈fr(θ), such that θ(p)=q

{r ∈ [1..#q] | ∃s ∈P(q) . xs
[ε] ≈Θ(t) xr

[p]}

We prove the following:

Fact 6 gfp(F)(q) = gfp(G)(q), for any pivot state q of A .

Proof. “⊆” Each partial run θ ∈ R ∞
q (A) such that θ(p) = q, for some p ∈ fr(θ) cor-

responds to a finite sequence of transitions from δ∞. “⊇” Since q is a pivot state we
have q ∈ •(δ∞), thus necessarily q = q0, where q0 ∈ (δ1)

• is the state whose existence
is stated by Lemma 10. Then every ∞-transition incoming to q belongs to a partial run
θ ∈ R ∞

q (A), such that q occurs on the frontier of θ. ⊓⊔

Back to the proof, we prove the two points of the statement below:

(1) Let q be a pivot state of A . By Fact 6, we have PA(q) = G i(⊤)(q) for a suffi-
ciently large finite integer i ≥ 0. We show that the latter condition is equivalent to
the existence of a q-reset θp←q ∈ R ∞

q (A). “⇐” Assume that there exists a q-reset
θ∈R ∞

q (A) over some tree t. Then { j ∈ [1..#q] | ∃k ∈ [1..#q]\PA(q) . x j
[ε] ≈Θ(t) xk

[p]}=
PA(q), thus G(⊤)(q) =PA(q). “⇒” Assume there exists i≥ 0, such that G i(⊤)(q) =
PA(q) and let i be the smallest such integer. Then ⊤,G(⊤),G2(⊤), . . . ,G i(⊤) is a
strictly decreasing sequence hence, for each j ∈ [1..i], there exists a partial run θ j ∈
R ∞

q (A) over some tree t j and a position p j ∈ fr(t j), such that θ j(p j) = q and:

{r ∈ [1..#q] | ∃s ∈ G j−1(⊤)(q) . xs
[ε] ≈Θ(t j) xr

[p j]}⊊ G j−1(⊤)(q)

We compose these partial runs θ1, . . . ,θi by appending each θ j to θ j−1 at position
p j−1 ∈ fr(θ j−1), for all j ∈ [2..i] into a partial θ′′ ∈ R ∞

q (A). We define a context θpi←q

by appending to each position r ∈ fr(θ) \ {pi} a complete run starting in θ(r). By the
fact that A is trim, such a run exists. The context θpi←q satisfies condition (2) of Def.
18, but not necessarily (1). Let π : PA(q)→PA(q) be a permutation defined as π(i) = j
iff xi ≈Θ(t) x j, there t is the tree recognized by the partial run θpi←q of A . Note that the
choice of j is not unique, but one exists, by Def. 17. Then we define the q-reset θpi←q

by appending θpi←q to itself at position pi a number of times equal to the order of π.
Then, one can check that θpi←q satisfies both conditions of Def. 18.

(2) Let S be the SCC of q in A . Since q = •τ, for some transition τ ∈ δ1, it must be the
case that S is a linear SCC, by Def. 14. Also q ∈ •(δ∞) thus, by Lemma 9, there exists
a pivot state q0 in S and let θ0 ∈ R ∞

q (A) be a partial run from q to q0 with transitions
from •S• ⊆ δ∞. From point (1) above we obtain a q0-reset θ1

p1←q0
∈ R ∞

q0
(A) such that

x[ε]j ≈Θ(t) y[p1]
k , for all j,k ∈PA(q0) and x[ε]j ̸≈Θ(t) y[p1]

k , for all j,k ∈ [1..#q0], k ̸∈PA(q0).
Moreover, there exists another context θ2

p2←q ∈ R ∞
q0
(A). Let p def

= p0p1p2 and θp←q be
the context consisting of θ0 to which we append, in this order:

– θ1 on some position p0 ∈ fr(θ0) such that θ0(p0) = q0; such a position exists by the
choice of θ0,

– θ2 on the position p0 p2, and
– to any other position r ∈ (fr(θ0)\{p0})∪(p0 · fr(θ1)\{p1})∪(p0 p1 · fr(θ2)\{p2})

a complete run starting in:
• θ0(r) if r ∈ fr(θ0)\{p0},
• θ1(r′) if r = p0r′ and r′ ∈ fr(θ1)\{p1}, and
• θ2(r′′) if r = p0 p1r′′ and r′′ ∈ fr(θ2)\{p2}.

Such runs exist by the assumption that A is trim. Moreover, these runs use only
∞-transitions, because their states are from ∞-SCCs (Def. 14).

It is easy to check that θ satisfies condition (2) of Def. 18. In order to satisfy condition
(1), in addition to (2), we append θ to itself at position p, using the same idea as in the
construction at point (1).

Lemma 14. Let A be a trim automaton. Given partial runs θ1 ∈ R ∞
q1
(A), . . . ,θn ∈

R ∞
qn(A) and an integer k ≥ 1, there exists an accepting run θ of A such that:

1. θi is embedded in θ at some position pi ∈ dom(θ), for each i ∈ [1..n],
2. pi ·dom(θi)∩ p j ·dom(θ j) = /0, for all 1≤ i < j ≤ n,
3. the path between pi and p j in θ traverses k times some reset path disjoint from⋃n

ℓ=1 pℓ ·dom(θℓ), for all 1≤ i < j ≤ n.

Proof (Proof of Lemma 14). Let θ be an arbitrary accepting run of A . By Lemma 8,
each 1-transition occurs exactly once on θ, hence θ visits each pivot state at least once.
The partial runs θ1, . . . ,θn will be inserted into θ one by one, as described next. First,
for each θi ∈R ∞

qi
(A), we have a pivot state q0

i and a partial run θ0
i ∈R ∞

q0
i
(A), satisfying

condition 1 or 2 of Lemma 9. Since q0
i occurs on θ, we can insert in θ a new partial

run θ′i ∈ R ∞

qi
0
(A) defined next. By Lemma 13 (1), there exists a qi

0-reset sequence θi
r ∈

R ∞

qi
0
(A). The partial run θ′i is obtained by composing θi

r with itself k times, followed by

θi
0. These compositions are possible, because qi

0 occurs at the root of θi
r and θi

0, as well
as the frontier of θi

r. Depending on which condition of Lemma 9 is satisfied by qi
0 and

θi
0, we distinguish the following cases (see Fig. 6 for an illustration):

Condition (1) In this case qi and qi
0 occur on different positions on the frontier of θi

0,
thus we place θi on the position of qi and the rest of θ on the position of qi

0.
Condition (2) In this case only qi

0 occurs on the frontier of θi
0, thus we continue with θi,

which can be extended to reach qi
0 again, by Lemma 9. From this second occurrence

of qi
0, we continue with θ.

ι

Abo
ve

qi
0-resetθi

r

ι

qi

θi

θi
0

Abo
ve

qi
0-resetθi

r

θi
0

qi
Block θ′i θi

Block θ′i

pipi

Below

Below

Initial run θ

extend

Case 1 Case 2

ι

Abo
ve

Below

qi
0

qi
0

qi
0

qi
0

qi
0

qi
0

qi
0

Fig. 6. Embedding of a partial run θi in θ.

We prove the points from the statement of the Lemma below:
(1) All runs θ1, . . . ,θn are inserted into θ at positions p1, . . . , pn, respectively, by con-

struction.
(2) Since θ1, . . . ,θn are inserted one after the other (the order is not important), we have

pi ·dom(θi)∩ p j ·dom(θ j) = /0, for all 1≤ i < j ≤ n.
(3) By the definition of θ′1, . . . ,θ

′
n, the path between pi and p j traverses k times the

θi
r or θ

j
r reset sequences that are, moreover, disjoint from each pk · dom(θk), for

k ∈ [1..n].

D Material from Section 5

Lemma 15. If A simulates (resp. refines) B then L(A)⊆ L(B) (resp. L(A) = L(B)).

Proof (Proof of Lemma 15). Let A = (A,QA , ιA ,δA), B = (A,QB , ιB ,δB) and h : QA→
QB be a mapping.

“⊆” Assume that h is a simulation. Let t ∈ L(A) be a tree and θ be an accepting run
of A over t. Then one shows that h◦θ is an accepting run of B over t, by induction on
t, using points (1) and (2) of Def. 19.

“⊇” Assume that h is a refinement. Let t ∈ L(B) be a tree and θ be an accepting run
of B over t. We build an accepting run of A over t by structural induction on t, using
points (1) and (3) of Def. 19. ⊓⊔
Lemma 16. Let φ be a qpf formula, x1,x2, . . . ,xk variables and r a relation symbol of
arity k, such that φ∗ x1 ̸= x2 and φ∗ r(x1, . . . ,xk) are satisfiable. Then, we have:
1. tw([[(φ∗ x1 = x2)

∃]])≤ tw([[φ∃]]),
2. tw([[φ∃]])−1≤ tw([[φ∗ x1 ̸= x2

∃]])≤ tw([[φ∃]]),
3. tw([[φ∃]])−1≤ tw([[φ∗ r(x1, . . . ,xk)

∃]])≤ tw([[φ∃]])+ k

Proof (Proof of Lemma 16). The proof follows a generic guideline. First, recall that
for any set of structures S we have tw(S) = maxS∈S tw(S) = maxS∈S min{wd(T) |
T is a tree decomposition of S}. Therefore, in order to prove an inequality of the form
tw([[φ∃]])≤ tw([[ψ∃]])+k for φ,ψ two qpf formulæ, we make use of the alternating max
and min by proving the following:

for every structure S and store s with S |=s φ

there exists a structure S′ and a store s′ such that S′ |=s′ ψ and
tw(S)≤ tw(S′)+ k or
for all tree decomposition T ′ of S′

there exists a tree decomposition T of S such that wd(T)≤ wd(T ′)+ k.

(1) The first point is immediate since [[φ∗ x1 = x2
∃]]⊆ [[φ∃]].

(2) Since [[φ∗ x1 ̸= x2
∃]]⊆ [[φ∃]], we immediately obtain tw([[φ∗ x1 ̸= x2

∃]])≤ tw([[φ∃]]).
For the other inequality, recall that φ∗ x1 ̸= x2 is satisfiable. Let S= (U,σ) be a model
and s a store such that S |=s φ. We distinguish two cases:

– if s(x1) ̸= s(x2) then let S′ = S, s′ = s hence S′ |=s′ φ∗x1 ̸= x2 and tw(S) = tw(S′).
– if s(x1) = s(x2) then let consider a new fresh element e ∈ U and define a new store
s′ by s′(y) def

= e if φ implies y = x2, and s′(y) def

= s(y) otherwise. Let moreover define
the new structure S′ = (U∪{e},σ′) as follows. For every r ∈ R, for every tuple
⟨u1, . . . ,u#r⟩ ∈ σ(r), there exists a unique relation atom r(y1, . . . ,y#r) occuring in
φ such that s(y j) = u j for all j ∈ [1..#r]. Then, add the tuple (s′(y1), . . . ,s

′(y#r))

to σ′(r). By construction S′ |=s′ φ ∗ x1 ̸= x2. Let T ′ be a tree decomposition of
S′. We define T by removing the element e from T ′ and adding s(x1) in every
node of T ′. T is a tree decomposition of S of width at most wd(T ′)+1. Therefore
wd(T)≤ wd(T ′)+1, hence the result.

(3) Recall φ∗ r(x1, . . . ,xk) is satisfiable from the hypothesis. We first prove that
tw([[φ∗ r(x1, . . . ,xk)

∃]])≤ tw([[φ∃]])+k. Let S=(U,σ) and s such that S |=s φ∗r(x1, . . . ,xk).
We define S′ = (U,σ′) from S by removing the tuple ⟨s(x1), . . . ,s(xk)⟩ from σ(r). Let
T ′ be a tree decomposition of S′. We define T by adding the elements s(x1), . . . ,s(xk)
to every node in T ′. This construction does not break connectedness of the subtree of
T containing any element, T still contains a node with all components of any relation
in σ′, and moreover (since T ′ is not empty) T contains a node (in fact all nodes) with
elements s(x1), . . . ,s(xk) simultaneously. Therefore T is a tree decomposition of S of
width at most wd(T ′)+ k. T ′ and S were chosen arbitrary, hence the result.

We now prove that tw([[φ∃]]) ≤ tw([[φ∗ r(x1, . . . ,xk)
∃]])+ 1. Let S = (U,σ) |=s φ, and

we distinguish two cases:

– If ⟨s(x1), . . . ,s(xk)⟩ /∈σ(r), then consider s′= s and S′ obtained by adding the above
tuple to σ(r). Then S′ |=s′ φ∗ r(x1, . . . ,xk) and for any tree decomposition T ′ of S′
we have T = T ′ is also a tree decomposition for S hence ensuring wd(T) = wd(T ′).

– If ⟨s(x1), . . . ,s(xk)⟩ ∈ σ(r) then thanks to the satisfiability hypothesis, this tuple
is not “forced” by the formula φ, that is, there must exists variables x′1, . . . ,x

′
k and

j ∈ [1..k] such that r(x′1, . . . ,x
′
k) occurs in φ, s(xi) = s(x′i) for every i ∈ [1..k], and

moreover the equality x j = x′j is not implied by φ.
We define a new store s′ by s′(y) = e if φ implies y= x′j, and s′(y) = s(y) otherwise,
with e ∈ U a fresh new element. Let S′ = (U∪ {e},σ′) with σ′(r′)

def

= σ(r′) for
any r′ ̸= r, and σ′(r) defined as follows. For every tuple ⟨u1, . . . ,uk⟩ ∈ σ(r), there
exists a unique relation atom r(y1, . . . ,yk) occuring in φ such that s(yi) = ui for all
i ∈ [1..k]. Then σ′(r) contains the tuple ⟨s′(y1), . . . ,s

′(yk)⟩. Finally, add the tuple
⟨s′(x1), . . . ,s

′(xk)⟩ to σ′(r). By construction S′ |=s′ φ∗ r(x1, . . . ,xk).
Let T ′ a tree decomposition of S′. We define T by removing the element e from T ′

and adding s(x j) in every node of T ′. T is a tree decomposition of S of width at
most wd(T ′)+1, that is, wd(T)≤ wd(T ′)+1.

With both cases we obtain the expected result tw([[φ∃]])≤ tw([[φ∗ r(x1, . . . ,xk)
∃]])+1.

Lemma 17. (1) A I
∆,A is all-satisfiable. (2) [[A∆,A]] = [[A I

∆,A]].

Proof (Proof of Lemma 17). (1) To show that A I
∆,A is all-satisfiable, we prove the fol-

lowing fact:

For all states q0 ∈ Q , base tuples (σ♯,π) ∈ SatBase(x[ε]1 , . . . ,x
[ε]

#q0
), trees t ∈

L(q0,(σ♯,π))(A I
∆,A), stores s injective over x[ε]1 , . . . ,x

[ε]

#q0
, there exists a store s, that

agrees with s over x[ε]1 , . . . ,x
[ε]

#q0
, and a structure S= (U,σ), such that S |=s Θ(t)

and ⟨x[ε]j1 , . . . ,x
[ε]

j#r⟩ ∈ σ♯(r) ⇐⇒ ⟨s(x[ε]j1), . . . ,s(x
[ε]

j#r)⟩ ∈ σ(r), for all r ∈ R and
j1, . . . , j#r ∈ [1..#q0].

The proof goes by induction on the structure of t. Since t ∈ L(q0,(σ♯,π))(A I
∆,A), there

exists a transition:

(q0,(σ
♯,π))

t(ε)−→ ⟨(q1,(σ
♯
1,π1)), . . . ,(qℓ,(σ

♯
ℓ,πℓ))⟩ ∈ δ

I

such that t|i ∈ L
(qi,(σ

♯
i ,πi))

(A I
∆,A), for all i ∈ [1..ℓ]. By the definition of A I

∆,A, the formula

t(ε) is satisfiable, hence there exists a store s′ and a structure S0 = (U0,σ0) such that
S0 |=s′ t(ε). Because the symbols in Σ contain no equalities between the variables z[ε] ∈
fv(Θ(t)), we can assume w.l.o.g. the following:

– s′ agrees with s over x[ε]1 , . . . ,x
[ε]

#q0
, and

– s′(z1
[p1]) ̸= s′(z2

[p2]), for all zi
[pi] ∈ fv(Θ(t)), i = 1,2, such that z1

[p1] ̸≈Θ(t) z2
[p2] (†).

For each i ∈ [1..ℓ], we consider a store si such that si(x
[ε]

j) = s′(x[i]j), for all j ∈ [1..#qi].
Then si is injective over x[ε]1 , . . . ,x

[ε]

#qi
, by the (†) assumption on s′. Since t|i ∈L

(qi,(σ
♯
i ,πi))

(A I
∆,A),

by the inductive hypothesis, there exists a store si, that agrees with si over x[ε]1 , . . . ,x
[ε]

#qi
,

and a structure Si = (Ui,σi), such that Si |=si Θ(t|i) and ⟨x[ε]j1 , . . . ,x
[ε]

j#r⟩ ∈ σ♯(r) ⇐⇒
⟨si(x

[ε]

j1), . . . ,si(x
[ε]

j#r)⟩ ∈ σ(r), for all r ∈ R and j1, . . . , j#r ∈ [1..#qi]. Because U1, . . . ,Uℓ

are infinite, we can chose s1, . . . ,sℓ such that img(si)∩ img(s j) ⊆ img(s′), for all 1 ≤
i < j ≤ ℓ. We prove the following:

Fact 7 The structures S0, . . . ,Sℓ are locally disjoint.

Proof. Suppose, for a contradiction, that there exists a tuple ⟨u1, . . . ,u#r⟩ ∈σi(r)∩σ j(r),
for some r ∈ R and 1 ≤ i < j ≤ ℓ. Then u1, . . . ,u#r ∈ img(s′), hence there exist in-
dices k1,1, . . . ,k1,#r ∈ [1..#qi] and k2,1, . . . ,k2,#r ∈ [1..#q j], such that uh = s′(x[i]k1,h

) =

s′(x[j]k2,h
), for all h ∈ [1..#r]. By the assumption (†) on s′, we obtain x[i]k1,h

≈Θ(t) x[j]k2,h
, for

all h ∈ [1..#r]. Since ⟨u1, . . . ,u#r⟩ ∈ σi(r)∩σ j(r), we obtain ⟨x[i]k1,1
, . . . ,x[i]k1,#r

⟩ ∈ σ
♯
i (r) and

⟨x[j]k2,1
, . . . ,x[j]k2,#r

⟩ ∈ σ
♯
j(r). Then (σ♯,π) is not satisfiable, by the definition of A I

∆,A, con-
tradiction. A similar contradiction is obtained by considering i = 0. ⊓⊔

Back to the proof, the structure S= S0 • . . .•Sℓ is well defined. Let s be the store:
– s(z[ε]) def

= s′(z[ε]), for all z[ε] ∈ fv(Θ(t)), and
– s(z[ip]) def

= si(z[p]), for all i ∈ [1..ℓ] and z[p] ∈Θ(t|i).
Hence we obtain S |=s Θ(t). Moreover, for all r ∈ R and indices j1, . . . , j#r, we have:

⟨x j1 , . . . ,x j#r⟩ ∈ σ
♯(r) ⇐⇒ ⟨x j1 , . . . ,x jk⟩ ∈ σ

♯
0(r) ⊎

ℓ⊎
i=1

σ
♯
i [x1/zi,1, . . . ,x#qi/zi,#qi](r)

⇐⇒ ⟨s′(x j1), . . . ,s
′(x j#r)⟩ ∈ σ0(r) ⊎

ℓ⊎
i=1

σi(r)

⇐⇒ ⟨s(x j1), . . . ,s(x j#r)⟩ ∈ σ(r)

(2) We prove that [[A∆,A]] = [[A I
∆,A]]. The mapping h : Q I

∆
→Q∆ defined as h((q,(σ♯,π)))=

q is a simulation, by the definition of A I
∆,A. Hence L(A I

∆,A)⊆ L(A∆,A), by Lemma 15,
leading to [[A I

∆,A]]⊆ [[A∆,A]]. For the [[A I
∆,A]]⊇ [[A∆,A]] direction, we show the following:

For all states q0 ∈ Q , trees t ∈ Lq0(A∆,A), structures S= (U,σ) and stores s,
such that S |=s Θ(t), there exists a base tuple (σ♯,π) such that t ∈L(q0,(σ♯,π))(A I

∆,A)

and, for all relations r ∈ R and indices j1, . . . , jk ∈ [1..#q0], if ⟨x[ε]j1 , . . . ,x
[ε]

j#r⟩ ∈
σ♯(r) then ⟨s(x[ε]j1), . . . ,s(x

[ε]

j#r)⟩ ∈ σ(r).

The proof is by induction on the structure of t. Since t ∈ Lq0(A∆,A), there exists a

transition q0
t(ε)−→ (q1, . . . ,qℓ) ∈ δ such that t|i ∈ Lqi(A∆,A) for all i ∈ [1..ℓ]. Because

S |=s Θ(t), we can decompose the structure as S = S0 ••ℓi=1Si, such that S0 |=s t(ε)
and Si |=s Θ(t|i)[i] for all i ∈ [1..ℓ]. We can assume w.l.o.g. that Si = (U,σi), for all
i ∈ [0..ℓ]. Let us consider the stores si, such that si(z[p])

def

= s(z[ip]), for all z[p] ∈ fv(Θ(t|i))
and i ∈ [1..ℓ]. Then Si |=si Θ(t|i) and, by the inductive hypothesis on t|i, there exists a
satisfiable base tuple (σ♯

i ,πi), such that t|i ∈ L
(qi,(σ

♯
i ,πi))

(A I
∆,A) and ⟨x[ε]j1 , . . . ,x

[ε]

jk
⟩ ∈ σ

♯
i (r)

implies ⟨si(x
[ε]

j1), . . . ,si(x
[ε]

jk
)⟩ ∈ σi(r), for all r ∈R and j1, . . . , jk ∈ [1..#qi]. Let us denote

(σ♯
0,π0)

def

= Base(t(ε)) and define the base tuple:

(σ♯,π)
def

=
(
(σ♯

0,π0)⊗
ℓ⊗

i=1

(σ♯
i ,πi)[x

[ε]

1 /x[i]1 , . . . ,x
[ε]

#qi
/x[i]#qi

]
)
⇃
{x[ε]1 ,...,x

[ε]
#q0
}

First we prove that (σ♯,π) is satisfiable. The substitutions do not change the satisfiability
of the base tuples because they are injective. The projection preserves satisfiability as
well. Hence the only possibilities for (σ♯,π) being unsatisfiable are the following:

– there are two tuples ⟨z1,1, . . . ,z1,#r⟩,⟨z1,1, . . . ,z1,#r⟩ ∈ σ♯(r), such that z1, j ≈π0 z2, j,
for all j ∈ [1..#r]. Suppose, for a contradiction, that ⟨z1,1, . . . ,z1,#r⟩,⟨z1,1, . . . ,z1,#r⟩ ∈
σ
♯
i (r), for some i∈ [0..ℓ]. Then (σ♯

i ,πi) is not satisfiable. If i∈ [1..ℓ], this contradicts
the inductive hypothesis. Else i = 0, which contradicts the satisfiability of t(ε),
i.e., S0 |=s t(ε). Then it must be the case that ⟨zk,1, . . . ,zk,#r⟩ ∈ σ

♯
ik
(r), for k = 1,2,

for some i1 ̸= i2 ∈ [0..ℓ]. Consider the case i1 ∈ [1..ℓ] and i2 ∈ [0..ℓ], the other
case being symmetric. By the inductive hypothesis, we have ⟨s(z1,1), . . . ,s(z1,#r)⟩ ∈
σi1(r). If i2 = 0, we have ⟨s(z2,1), . . . ,s(z2,#r)⟩ ∈ σ0(r), by the definition of (σ♯

0,π0),
otherwise i2 ∈ [1..ℓ] and ⟨s(z2,1), . . . ,s(z2,#r)⟩ ∈ σi2(r), by the inductive hypothesis.
In both cases, we obtain a contradiction with the satisfiability of Θ(t), i.e., S |=s

Θ(t).
– π is unsatisfiable, because there are variables z1,z2 ∈

⋃ℓ
i=0 fv(πi), such that z1 ≈πi1

z2 and z1 ̸= z2 is asserted in πi2 , for some i1, i2 ∈ [0..ℓ]. A similar reasoning as above
leads to a contradiction with the satisfiability of Θ(t), i.e., S |=s Θ(t).

Since (σ♯,π) is satisfiable, by the definition of A I
∆,A, there exists a transition:

(q0,(σ
♯,π))

t(ε)−→ ((q1,(σ
♯
1,π1)), . . . ,(qℓ,(σ

♯
ℓ,πℓ))) ∈ δ

sat

which proves t ∈L(q0,(σ♯,π))(A I
∆,A). To establish the second point of the inductive invari-

ant, let ⟨x[ε]j1 , . . . ,x
[ε]

jk
⟩ ∈σ♯(r) be a tuple. If ⟨x[ε]j1 , . . . ,x

[ε]

j#r⟩ ∈σ
♯
0(r) then ⟨s(x[ε]j1), . . . ,s(x

[ε]

j#r)⟩ ∈
σ0(r) ⊆ σ(r). Else, there exists k ∈ [1..ℓ] and a tuple ⟨x[ε]h1

, . . . ,x[ε]h#r
⟩ ∈ σ

♯
k(r), such that

x[ε]ji ≈π x[k]hi
, for all i ∈ [1..#r]. By the inductive hypothesis, we have ⟨s(x[k]h1

), . . . ,s(x[k]h#r
)⟩ ∈

σk(r)⊆ σ(r), thus we obtain ⟨s(x[ε]j1), . . . ,s(x
[ε]

j#r)⟩ ∈ σ(r).

Lemma 18. (1) A II
∆,A is all-satisfiable. (2) [[A II

∆,A]] is treewidth-bounded iff [[A I
∆,A]] is

treewidth-bounded.

Proof (Proof of Lemma 18). (1) Let t ∈ L(A II
∆,A) be a tree. Since A II

∆,A was obtained
from A I

∆,A by removing relation atoms from the labels of its 1-transitions, there exists a
tree t ′ ∈ L(A I

∆,A), such that dom(t) = dom(t ′) and Θ(t ′) = Θ(t)∗∗ n
i=1ri(zi,1, . . . ,zi,ki)

modulo reordering of atoms, for some relation symbols ri and variables zi,1, . . . ,zi,ki . By
Lemma 17, Θ(t ′) is satisfiable, hence there exists a structure (U,σ′) and a store s, such
that (U,σ′) |=s Θ(t ′). We define the interpretation σ′(r) = σ(r)\{⟨s(zi,1), . . . ,s(zi,ki)⟩ |
i ∈ [1..n], ri = r}, for all r ∈ R. It is easy to check that (U,σ′) |=s Θ(t), hence Θ(t) is
satisfiable. Since the choice of t was arbitrary, we obtain that A II

∆,A is all-satisfiable.

(2) “⇐” Let W ≥ 1 be an integer such that tw(S) ≤ W for all structures S and all
trees t ∈ L(A II

∆,A), such that S |= Θ(t)∃. Since [[A II
∆,A]] is treewidth-bounded, such an

integer exists. Let t ∈ L(A I
∆,A) be an arbitrary tree. By the construction of A II

∆,A from
A I

∆,A, there exists a tree t ′ ∈ L(A II
∆,A), such that dom(t ′) = dom(t) and Θ(t) = Θ(t ′) ∗

∗ n
i=1ri(zi,1, . . . ,zi,ki) modulo reordering of atoms, for some relation symbols ri and vari-

ables zi,1, . . . ,zi,ki . By Lemma 8, each 1-transition of A I
∆,A occurs exactly once in each

accepting run, hence n≤ card(δ1
∆
)·M, where M def

=max{size(α) | q0
α−→ (q1, . . . ,qℓ) ∈ δ1

∆
}.

Moreover, ki ≤ M, for all i ∈ [1..n]. By Lemma 16 (3), tw(Θ(t)∃) ≤ tw(Θ(t ′)∃) +
∑

n
i=1 ki ≤ card(δ1

∆
) ·M2·. Since the choice of t was arbitrary, we obtain that [[A I

∆,A]]
is treewidth-bounded. “⇒” This direction uses a symmetric argument.

Lemma 19. Let q0
α−→ (q1, . . . ,qℓ) be a 1-transition of A III

∆,A. Then, for each i ∈ [1..ℓ]
and each j ∈PAIII

∆,A
(qi), there exists a ε-variable z, such that x[i]j ≈α z.

Proof (Proof of Lemma 19). By Lemma 11 and the fact that equalities involving per-
sistent i-variables x[i]j , for i ∈ [1..ℓ] and j ∈ [1..#qi] are either the same in the labels of

the 1-transitions q0
α−→ (q1, . . . ,qℓ) of A III

∆,A and A I
∆,A, or replaced by x[i]j = y[ε]k for some

k ≤ 1.

Lemma 20. Let φ and ψ be qpf formulæ, such that φ ∗ψ is satisfiable and x ̸≈φ y,
for all x,y ∈ fv(φ)∩ fv(ψ). Let ψeq = ∗{x = y | x,y ∈ fv(φ)∩ fv(ψ), x≈ψ y}. Then,
tw([[(φ∗ψeq)

∃]])≤ tw([[(φ∗ψ)∃]])+ card(fv(φ)∩ fv(ψ)).

Proof (Proof of Lemma 20). Let denote by Vf
def

= fv(φ)∩ fv(ψ), that is, the set of ”fron-
tier” variables between φ and ψ. Let observe that fv(ψeq)⊆Vf ⊆ fv(φ) and henceforth,
fv(φ∗ψeq) = fv(φ). We follow a similar idea as in the proof of lemma 16. Consider a
structure S = (U,σ) and a store s on fv(φ) such that S |=s φ ∗ψeq. We build a store s′

and a structure S′ such that S′ |=s′ φ∗ψ. First, consider a store sψ canonical for ψ and
the structure Sψ = (Uψ,σψ) such that Sψ |=sψ ψ. Assume without loss of generality that
Sψ and S are disjoint structures, that is, sψ(fv(ψ))∩ s(fv(φ)) = /0. Second, define the
store s′ on fv(φ)∪ fv(ψ) by taking:

s′(y) def

=

 sψ(y) if y ∈ fv(ψ)
sψ(y′) if y ∈ fv(φ)\ fv(ψ), y′ ∈Vf , y≈φ y′

s(y) otherwise

Note that the definition of s′ is consistent. In particular, for any y ∈ fv(φ)\ fv(ψ) there
exists at most one y′ ∈ Vf such that y ≈φ y′ (otherwise, the hypothesis x ̸≈φ y for all
x,y ∈ Vf does not hold). We build now the structure S′ = (U′,σ′) where U′

def

= U∪Uψ

and σ′(r) is defined for every relation r ∈ R as follows:
– for every tuple ⟨u1, . . . ,u#r⟩ ∈ σψ(r) add it to σ′(r),
– for every tuple ⟨u1, . . . ,u#r⟩ ∈ σ(r), there exists a unique relation atom r(y1, . . . ,y#r)

occurring in φ∗ψeq such that s(yi) = ui for all i ∈ [1..#r]; in this case, add the tuple
⟨s′(y1), . . . ,s

′(y#r)⟩ to σ′(r).
This construction guarantees that S′ |=s′ φ ∗ψ. With regard to equality and disequal-
ity atoms in φ ∗ψ are satisfied by the definition of s′. With regard to relation atoms,
notice that no tuple is added twice to σ′(r) in the definition above. That is, if some
⟨s′(y1), . . . ,s

′(y#r)⟩ obtained from σ(r) exists also in σψ(r) then φ∗ψ cannot be satisfi-
able. Let T ′ be an optimal tree decomposition of S′, i.e., tw(S′) = wd(T ′). We define a
tree decomposition T by:

– removing {s′(y) | y ∈ fv(ψ)} for every bag of T ′,
– adding {s(y) | y ∈Vf } to every bag of T ′.

The result is a tree decomposition T of S of width wd(T) ≤ wd(T ′) + card(Vf) =
tw(S′)+card(Vf), thus tw(S)≤ tw(S′)+card(Vf). Since the choice of S was arbitrary,
we obtain tw([[(φ∗ψeq)

∃]])≤ tw([[(φ∗ψ)∃]])+ card(Vf) as required.

Lemma 21. (1) A III
∆,A is all-satisfiable. (2) [[A III

∆,A]] is treewidth-bounded iff [[A II
∆,A]] is

treewidth-bounded.

Proof (Proof of Lemma 21). We assume the necessary changes in step 1 of the trans-
formation have already been done, as they do not change the semantic of A II

∆,A.
(1) Let t ′ ∈ L(A III

∆,A) be a tree. Since A III
∆,A was obtained from A II

∆,A by removing
equality atoms from the labels of its 1-transitions (step 2 of the transformation), there
exists a tree t ∈ L(A II

∆,A), such that dom(t) = dom(t ′) and Θ(t) = Θ(t ′)∗ψ where ψ is
a conjuction of equality atoms. By Lemma 18 (1), Θ(t) is satisfiable, hence there exists
a structure S and a store s such that S |=s Θ(t). We immediately obtain S |=s Θ(t ′),
hence Θ(t ′) is satisfiable. Since the choice of t ′ was arbitrary, we obtain that A III

∆,A is
all-satisfiable.

(2) We compare maxt∈L(A II
∆,A)

tw([[Θ(t)∃]]) with maxt∈L(A III
∆,A)

tw([[Θ(t)∃]]).

“⇐” Assume that [[A III
∆,A]] is treewidth-bounded. Let t ∈ L(A II

∆,A). By the construction
of A III

∆,A from A II
∆,A, there exists a tree t ′ ∈ L(A III

∆,A) such that dom(t) = dom(t ′) and
Θ(t) = Θ(t ′)∗ψ where ψ is a conjunction of equalities. Θ(t ′) is a qpf formula thus by
lemma 16 (1), we get tw([[Θ(t)∃]]) = tw([[(Θ(t ′)∗ψ)∃]]) ≤ tw([[Θ(t ′)∃]]). Since t has
been chosen arbitrary, we obtain that [[A II

∆,A]] is treewidth-bounded.

“⇒” Suppose [[A II
∆,A]] is treewidth-bounded by some constant W ≥ 1. Let t ′ ∈ L(A III

∆,A)

and θ′ be an accepting run over t ′. We will show that tw(Θ(t ′))≤W +K, where K does
not depend on the choice of t ′.

We build a tree t ∈ L(A II
∆,A) related to t ′ as follows. The idea is to add resets be-

fore and after each 1-transition in the run θ′, so that the equalities removed by the
transformation from δII

∆
to δIII

∆
are not impactful and can be added back. To avoid un-

necessary complications, we consider one 1-transition at a time (recall that there are

finitely many 1-transitions in A III
∆,A). For one position p ∈ dom(t ′) such that θ′(p)

t′(p)−−→
(θ′(p1), . . . ,θ′(pℓ)) ∈ (δIII

∆
)

1, we separate the run θ′ into a context θinit
p←θ(p) (before the

1-transition) and ℓ
def

= ρ(t ′(p)) runs θ1, . . . ,θℓ (after the 1-transition), such that θinit
p←θ(p)(r)

def

=

θ′(r) for every r∈ dom(t ′) that is not a suffix of p, and θi(r)
def

= θ′(pir) for every i∈ [1..ℓ]
and position r with pir ∈ dom(t ′). We build t and the associated run θ by combining
successive partial runs:

– Start θ with θinit
p←θ(p) (no change from θ′ above position p),

– Add a θ′(p)-reset θu←θ′(p) ∈ R ∞

θ′(p)(A
II
∆,A) at position p,

– Pursue at position pu with the 1-transition θ′(p)
αp−→ (θ′(p1), . . . ,θ′(pℓ)) ∈ (δII

∆
)

1

corresponding to the old 1-transition in A III
∆,A after adding back the equalities re-

moved by the transformation,

ε

pℓ

ε

p

puℓ

puℓvℓ

pu

p

p1

pu1v1

pu1

· · ·

· · ·

1-trans in δIII
∆

1

αp 1-trans in δII
∆

1
ψ

t ′ :

θinit
p←θ′(p)

t ′(p)

t :

θinit
p←θ′(p)

θ′(p)-reset

θ′(p1)-reset

θ1
θℓ

θ1 θℓ

ψeq

θ′(pℓ)-reset

Fig. 7. Construction of t from t ′ (Lemma 21)

– For every i∈ [1..ℓ], introduce at position pui a θ′(pi)-reset θvi←θ′(pi) ∈R ∞

θ′(pi)(A
II
∆,A),

– Continue with θi at position puivi for every i ∈ [1..ℓ].

Figure 7 illustrates this construction. We now prove that the transformation from t ′ to t
only increases the treewidth of t ′ by a constant :

Fact 8 tw([[Θ(t ′)∃]])≤ tw([[Θ(t)∃]])+ k where k is the maximal number of i-variables,
i ∈ N∪{ε}, in any 1-transition of A III

∆,A.

Proof. Let φ
def

=∗p not a prefix of r t ′(r)[r] ∗∗pir∈dom(t ′) t ′(pir)[puivir] which corresponds to
the characteristic formula Θ(t ′) without the 1-transition at position p, and with the new
position labels in t. Now Θ(t) = φ ∗ψ where ψ is the separating conjunction of all
t(pr)[pr] with pr ∈ dom(t) and uivi not the prefix of r for any i ∈ [1..ℓ] (position pr is
either the start of the 1-transition or part of one of the reset contexts).

Let Vf
def

= fv(φ)∩ fv(ψ) and ψeq
def

=∗{x = y | x,y ∈Vf ,x≈ψ y}. Vf contains parame-
ter variables at the extremity of the added part from t ′ to t : Vf = {x[p]k | k ∈ [1..#t(p)]}∪
{x[puivi]

j | i ∈ [1..ℓ], j ∈ [1..#t(puivi)]}. These variables exactly correspond to the parame-
ters {x[p]k | k ∈ [1..#t ′(p)]}∪{x[pi]

j | i ∈ [1..ℓ], j ∈ [1..#t ′(pi)]} appearing in the 1-transition
at position p of t ′, hence card(Vf)≤ k. By Def. 15 (2), φ does not induce equalities be-
tween variables of Vf . On the other hand, ψ only induce equalities between persistent
variables of Vf , thanks to the reset paths. These equalities ψeq exactly correspond to
those occurring in t ′(p), thus φ ∗ψeq is equal to Θ(t ′) after renaming the variables.
Now φ ∗ψ is satisfiable (since A II

∆,A is all-satisfiable), thus by Lemma 20, we obtain

tw([[Θ(t ′)∃]]) = tw([[(φ∗ψeq)
∃]])≤ tw([[(φ∗ψ)∃]])+ k = tw([[Θ(t)∃]])+ k. ⊓⊔

After doing this transformation (t ′ to t) for all 1-transitions, the final tree t satisfies
t ∈L(A II

∆,A) since all the added transitions (1-transition or reset) appear in δIII
∆

. With the
inequality at each step (Fact 8) and since each 1-transition of δII

∆
occurs exactly once

in the initial tree t ′ (Def. 8), we get tw([[Θ(t ′)∃]]) ≤ tw([[Θ(t)∃]])+K ≤W +K, where
K = k× card((δIII

∆
)

1
). We conclude that [[A III

∆,A]] is treewidth-bounded, as t ′ has been
chosen arbitrary.

Lemma 22. (1) A IV
∆,A is all-satisfiable. (2) [[A IV

∆,A]] is treewidth-bounded iff [[A III
∆,A]] is

treewidth-bounded.

Proof (Proof of Lemma 22). Let A◦ be the automaton obtained from A III
∆,A by decorating

the states q∈Q III
A with mappings a : PAIII

∆,A
→ [1..M] and keeping the original labels on

the transitions and the original arities of the states, i.e. #(q,a) = #q in A◦. It is easy to
check that A◦ is a refinement of A III

∆,A hence, by Lemma 15, we have L(A◦) = L(A III
∆,A).

Consequently, A◦ is all-satisfiable, because A III
∆,A is all-satisfiable. Moreover, [[A◦]] is

treewidth-bounded iff [[A III
∆,A]] is treewidth-bounded.

Fact 9 Let t ∈ L(A◦), θ be an accepting run of A◦ over t and p ∈ dom(t) be a position
such that θ(p) = (q,a). Then, x[p]i ≈Θ(t) y[ri]

a(i), for each i ∈ PA◦(q), such that ri is the

unique position where a variable y[ε]a(i) ∈ Y occurs in Θ(t).

Proof. By induction on the structure of t, using Lemma 19. ⊓⊔

(1) Let t ∈ L(A IV
∆,A) be a tree. By the construction of A IV

∆,A, the accepting run θ of A IV
∆,A

over t can be transformed into an accepting run θ of A◦ over a tree t, such that dom(t) =
dom(t), by changing the labels α back to the original labels α, as in the construction of
A IV

∆,A. Since A◦ is all-satisfiable, the formula Θ(t) is satisfiable, and let (U,σ) be a struc-
ture and s be a store such that (U,σ) |=s Θ(t). However, Θ(t) is obtained from Θ(t) by
removing (dis-)equalities from the labels of 1-transitions and by changing each relation
atom r(z[p]1 , . . . ,z

[p]
#r) into a relation atom rg(η(z

[p]
i1), . . . ,η(z

[p]
ik
)), according to the construc-

tion of A IV
∆,A. Suppose, for a contradiction, that there exist two distinct positions p1, p2 ∈

dom(t) such that the relation atoms rg(η(z
[p1]
i1), . . . ,η(z[p1]

ik
)) and rg(η(z

[p2]
i1), . . . ,η(z[p2]

ik
))

occur in Θ(t) and z[p1]
i j
≈Θ(t) z[p2]

i j
, for all j ∈ [1..k]. Let θ(pi) = (qi,ai), for i = 1,2. Then,

there exist relation atoms r(z[p1]
1 , . . . ,z[p1]

#r) and r(z[p2]
1 , . . . ,z[p2]

#r) that occur in Θ(t), such
that i1, . . . , ik ∈ [1..#r] and, by Fact 9, we obtain that z[p1]

j ≈Θ(t) z[p2]
j , for all j ∈ [1..#r].

This however contradicts the satisfiability of Θ(t), hence such relation atoms cannot
exist in Θ(t). Then, Θ(t) is satisfiable and, since the choice of t was arbitrary, A IV

∆,A is
all-satisfiable.

(2) We prove that [[A IV
∆,A]] is treewidth-bounded iff [[A◦]] is treewidth-bounded.

“⇒” Assume that [[A IV
∆,A]] is treewidth-bounded and let S= (U,σ)∈ [[A◦]] be a structure.

Then, there exists a tree t ∈ L(A◦) and a store s, such that S |=s Θ(t). Let t ∈ L(A IV
∆,A)

be the tree obtained by changing each label α of t into α, according to the construction
of A IV

∆,A. We consider the structure S
def

= (U,σ), where σ interprets each relation sym-

bol rg by the set of tuples ⟨s(η(z[p]i1)), . . . ,s(η(z
[p]
ik
))⟩, such that rg(η(z

[p]
i1), . . . ,η(z

[p]
ik
)) oc-

curs in Θ(t). Let T be an optimal tree decomposition of S, hence tw(T) ≤ tw([[A IV
∆,A]])

(by the assumption, tw([[A IV
∆,A]]) is a finite integer). We consider the tree decomposi-

tion T obtained by adding the values s(y[ri]
i), where ri is the unique position where a

ε-variable y[ε]i ∈ Y occurs in Θ(t), to the label of each node in T . Then, T is a tree
decomposition of S of width wd(T)≤ wd(T)+M ≤ tw([[A IV

∆,A]])+M . Consequently,
tw(S)≤ tw([[A IV

∆,A]])+M and, since the choice of S was arbitrary, we obtain that [[A◦]]
is treewidth-bounded.

“⇐” Let S = (U,σ) ∈ [[A IV
∆,A]] be a structure. Then, there exists a tree t ∈ L(A IV

∆,A),
hence also an accepting run θ of A IV

∆,A over t, and a store s such that S |=s Θ(t). Let t ′

be the tree obtained from t by replacing each relation atom rg(η(z
[p]
i1), . . . ,η(z

[p]
ik
)) with

the original atom r(z[p]1 , . . . ,z
[p]
#r) and adding the original equalities between persistent

variables on the labels corresponding to the occurrences of the transitions of A III
∆,A in the

construction of A IV
∆,A. Note that dom(t ′) = dom(t). We consider the store s′ that agrees

with s over fv(Θ(t)) and maps each variable from the set {y[p]i | y
[ε]

i ∈ Y , p ∈ dom(t ′)} to
a distinct value, not in s(fv(Θ(t))). This is possible because no equality between these
variables occurs as logical consequence of Θ(t ′) (Def. 15). We consider the structure
S′ = (U,σ′), where σ′ is the interpretation that assigns each relation symbol r the set of
tuples ⟨s′(ξ1), . . . ,s

′(ξ#r)⟩, where ξi is either:
– y[r]a(i), if i ∈PA(q) and r is the unique position where y[r]a(i) occurs in Θ(t ′), or

– z[p]i , otherwise (i.e., i ̸∈PA(q)),
where the relation symbol rg(z

[p]
i1 , . . . ,z

[p]
ik
) occurs in Θ(t) and θ(p) = (q,a) is the state

assigned to the position p by the accepting run θ of A IV
∆,A over t. By Fact 9, we obtain

S′ |=s′ Θ(t ′), hence S′ ∈ [[Θ(t ′)∃]] and tw(S′)≤ tw([[Θ(t ′)∃]]). Since any tree decompo-
sition of S′ is also a tree decomposition of S, we have tw(S)≤ tw([[Θ(t ′)∃]]).

Consider the tree t obtained by replacing the labels of t ′ corresponding to the posi-
tions where the 1-transitions of A III

∆,A occur (in the construction of A IV
∆,A) with the origi-

nal labels from these transitions. Note that there are no relation atoms and no equalities
involving non-persistent variables in these labels, only equalities between persistent
variables and disequalities, possibly involving non-persistent variables.

Then, we have t ∈ L(A◦), hence tw([[Θ(t)]]∃) ≤ tw([[A◦]]). By Lemma 16 (2), we
obtain tw([[Θ(t ′)∃]]) ≤ tw([[Θ(t)∃]])+K, where K is a constant depending exclusively
on A III

∆,A (i.e., the number of disequalities added to Θ(t ′) to obtain Θ(t) is bounded by
the product between the number of 1-transitions in A III

A,∆ and the maximum size among
the labels of these transitions). Thus, tw(S)≤ tw([[A◦]])+K. Since the choice of S was
arbitrary, we conclude that [[A IV

A,∆]] is treewidth-bounded.

Lemma 23. If A strongly refines B and B is choice-free, then A is choice-free.

Proof (Proof of Lemma 23). Let A = (A,QA , ιA ,δA) and B = (A,QB , ιB ,δB), with
SCC graphs GA = (NA ,EA) and GB = (NB ,EB), respectively. Because A strongly
refines B , there exists a strong refinement h : QA → QB .

Fact 10 For any set S⊆ QA , S is a (linear) SCC iff h(S) is a (linear) SCC.

Proof. “⇒” If S is an SCC, then q ⇝∗ q′, for any q,q′ ∈ S. By point (2) of Def.
19, also h(q)⇝∗ h(q′), thus h(S) is an SCC. Assume, moreover, that S is linear and
suppose, for a contradiction, that h(S) is non-linear. Then, there exists a transition
q0

a−→ (q1, . . . ,qℓ)∈ δB such that q0 ∈ h(S) and qi,q j ∈ h(S) for 1≤ i < j≤ ℓ. Because h
is a strong refinement, we obtain h−1(q0)∪h−1(qi)∪h−1(q j)⊆ S and, moreover, there
exists a transition q′0

a−→ (q′1, . . . ,q
′
ℓ) ∈ δA , such that q′i ∈ h−1(qi), for all i ∈ [0..ℓ]. Then

q′0,q
′
i,q
′
j ∈ S, thus S is non-linear, contradiction.

”⇐” If h(S) is an SCC then S = h−1(h(S)) is an SCC, because h is a strong refinement.
Assume, moreover, that h(S) is linear and suppose, for a contradiction, that S is non-
linear. Then there exists a transition q0

a−→ (q1, . . . ,qℓ) ∈ δA such that q0,qi,q j ∈ S, for
some 1 ≤ i < j ≤ ℓ. Because h is a refinement, h(q0)

a−→ (h(q1), . . . ,h(qℓ)) ∈ δB and
h(q0),h(qi),h(q j) ∈ h(S), thus h(S) is non-linear, contradiction. ⊓⊔

We prove the points of Def. 14 for A :

(1) Since B is choice-free, GB is a tree with root node, say SB
0 . Since h is an iso-

morphism between GB and GA , by Fact 10, GA is a tree with root node SA
0

def

=

h−1(SB
0). Let S ∈ NA \ {SA

0 } and suppose, for a contradiction, that card(•S) ̸= 1.
Since S ̸= SA

0 , we must have card(•S)> 1 and let S′ be the parent of S in GA . Since
GA is a tree, there exist at least two transitions qi,0

αi−→ (qi,1, . . . ,qi,ℓi) ∈ (S′)• ∩ •S,
for i = 1,2. Since h is a simulation, we obtain h(qi,0)

αi−→ (h(qi,1), . . . ,h(qi,ℓi)) ∈
(h(S′))•∩ •(h(S)), for i = 1,2, contradicting the fact that B is choice-free. Then let
•S def

= {q0
α−→ (q1, . . . ,qℓ)} and suppose, for a contradiction, that qi,q j ∈ S, for some

1≤ i < j≤ ℓ. In this case, •h(S) = {h(q0)
α−→ (h(q1), . . . ,h(qℓ))} and h(qi),h(q j) ∈

h(S), contradicting the fact that B is choice-free.
(2) Let Λ : NB ∪ δB → {1,∞} be the labeling from point (2) of Def. 14. We prove

the following points, for the labeling Λ ◦ h of NA ∪ δA , where h(τ) def

= h(q0)
a−→

(h(q1), . . . ,h(qℓ)) for any transition τ : q0
a−→ (q1, . . . ,qℓ) ∈ δA :

(2a) Let S ∈NA be a linear SCC, such that Λ(h(S)) = 1. By Fact 10, h(S) is linear,
hence card(h(S)•) = 1. By point (2) of Def. 21, we obtain card(S•) = 1.

(2b) Let τ ∈ δA be a transition. Since B is choice-free, we have Λ(h(τ)) = 1 iff
h(τ) ∈ S• for some linear SCC S ∈NB , such that Λ(S) = 1. By Fact 10, S is a
linear SCC of B iff h−1(S) is a linear SCC of A . We obtain that Λ(h(τ)) = 1
iff τ ∈ (h−1(S))• for some linear SCC h−1(S) such that (Λ◦h)(h−1(S)) = 1.

(2c) Let S ∈ NA be a SCC. Then h(S) is an SCC of B , by Fact 10. Since B is
choice-free, we have Λ(h(S)) = 1 iff h(S) = S0 or •(h(S)) = {τ}, for a transition
τ ∈ δB such that Λ(τ) = 1. By Fact 10, h(S) = S0 iff S = h−1(S0) and we
established already that h−1(S0) is the root node of the tree-like SCC graph
GA . By point (2b) of Def. 14, Λ(τ) = 1 iff there exists a linear SCC S′ of B
such that τ ∈ (S′)• and Λ(S′) = 1. Then, there exists exactly one transition
τ′ ∈ δA , such that h(τ′) = τ, by point 2 of Def. 21. It follows that •(h(S)) = {τ}
iff •S = {τ′}, for a transition τ′ ∈ δA such that Λ(h(τ′)) = Λ(τ) = 1.

Lemma 24. Each B1, . . . ,Bm is all-satisfiable, choice-free and L(A IV
∆,A) =

⋃m
i=1 L(B i).

emp emp

q0 q0

q0

q1 qℓ

θ0

ωℓ

ω0

ω1
q1 qℓqℓ

q0

q1 qℓ

(b)(a) (c)

ω0

θ1
ωℓ

θℓ

q1

ω1

τ θτ τexp

Fig. 8. Expansion of 1-transitions

Proof (Proof of Lemma 24). Each B i is a strong refinement of A IV
∆,A, hence L(B i) =

L(A IV
∆,A), by Lemma 15. Since A IV

∆,A is all-satisfiable, we obtain that B i is all-satisfiable.
Moreover, B i is choice-free because A IV

∆,A is choice-free, by Lemma 23.

Lemma 25. (1) B is all-satisfiable. (2) [[B]] is treewidth-bounded iff [[B]] is treewidth-
bounded.

Proof (Proof of Lemma 25). By hypothesis, B has no persistent variables and since the
relabeling of 1-transitions introduces no existential quantifiers, then B has no persistent
variables either.

1) Let t ∈ L(B) be a tree and let θ be an accepting run of B over t. Let consider the
run θ′ of B obtained by replacing with emp the labels of the 1-transitions τexp : q0

α−→
(q1, . . . ,qℓ) ∈ δ1. We then define the run θ′′ of B by replacing each occurrence of a
1-transition τ : q0

emp−−→ (q1, . . . ,qℓ) in θ′ by the partial run θτ constructed by extending τ

with the resets used in the definition of the transformation, namely:
– a pre- q0-reset θ0

p0←q0
∈ R ∞

q0
(B) if q0 ∈ •(δ∞) and,

– a post- qi-reset θi
pi←qi

∈ R ∞
qi
(B) for each i ∈ [1..ℓ] such that qi ∈ •(δ∞).

The relation between τ from θτ is illustrated in Fig. 8(a,b). Note that the resets exist
according to Lemma 13. Then, it is easy to check that θ′′ is indeed a run of B . Let
t ′′ ∈ L(B) be the tree accepted by θ′′. Since B is all-satisfiable, there exists a store s
and a structure S′′ such that S′′ |=s Θ(t ′′). Now, by the definition of B , the label α of
each transition τexp : q0

α−→ (q1, . . . ,qℓ) ∈ δ1 is actually ω0 ∗∗ℓj=1ω j where

ω0 =∗{Ωε/ε

t0 (xi1 , . . . ,xik) | i1, . . . , ik ∈ [1..#q0]}

ω j =∗{Ωp j/ j
t j (xi1 , . . . ,xik) | i1, . . . , ik ∈ [1..#q j]} for j ∈ [1..ℓ]

and t0, t1, . . ., tℓ are the Σ-labelled trees of the corresponding resets, respectively θ0, θ1,
. . . , θℓ. This construction is illustrated in Fig. 8(c). Hence, there exists a substructure
S⊑ S′′ such that S |=s Θ(t). Actually, S is simply obtained from S′′ by removing all but
the relation atoms part of ω0, . . ., ωℓ defined along the partial runs θτ part of θ′′.

2) “⇒” Let t ∈ L(B) be a tree. Let t ′ ∈ L(B) be the tree obtained from t by replac-
ing the emp-labels of 1-transitions by their corresponding α formula according to the

τℓ

.

ri

ri

τk

. . .

. . . ri

qi

qi

ri-reset

qi-reset

θiθ0iθ0

qi

(a) (b)

Fig. 9. Principle of run decomposition

transformation. As both B and B are all-satisfiable, the two characteristic formula Θ(t)
and Θ(t ′) are satisfiable. These formula differ only by a finite number of relation atoms,
that is, the ones inserted in the α labels of modified 1-transitions. Henceforth, using
Lemma 16, point 3, the difference between the treewidth of their models is bounded
by some constant. As the choice of t was arbitrary, the result extends to the set of all
models of B . “⇐” This direction uses a symmetric argument.

Lemma 26. For each structure S = (U,σ) ∈ [[B]]c, there exist pairwise disjoint struc-
tures S1, . . . ,Sn and views ⟨θ1, t1,s1,S

′
1⟩, . . . ,⟨θn, tn,sn,S

′
n⟩ for B such that S′1, . . . ,S

′
n

are pairwise disjoint, S = S1 • . . .•Sn and, for all i ∈ [1..n]: (1) Si ⊑ S′i, (2) supp(σ)∩
si({x[ε]1 , . . . ,x

[ε]

#θi(ε)
}) = /0, and supp(σ)∩ si({x

[pi]
1 , . . . ,x[pi]

#qi
}) = /0 if θi is a context θpi←qi .

Proof (Proof of Lemma 26). Let B def

= (Σ,Q , ι,δ). Since S= (U,σ)∈ [[B]]c there exists a
tree t0 ∈ L(B) such that S |=s0 Θ(t0) for a store s0 canonical for Θ(t0). Let θ0 be an ac-
cepting run of B over t0. Consider the unique finite decomposition of θ0 into (i) maximal
partial runs θ01 ∈ R ∞

r1
(B), . . . ,θ0n ∈ R ∞

rn(B) consisting of (arbitrarily many) connected
∞-transitions and (ii) partial runs τ1, . . . ,τm consisting of a single 1-transition each (see
Fig. 9(a)).

For every i∈ [1..n] we define Si as the substructure of S constructed along the maxi-
mal partial run θ0i. That is, Si contains all the relation atoms defined on ∞-transitions in
θ0i and the relation atoms defined on the entering (and possibly exiting) 1-transition(s)
involving common variables for entering (resp. exiting) state(s). Intuitively, all these
relation atoms occur in the gray part in Fig. 9(a). Note that, according to the definition
of 1-transitions in our transformation the structures Si as defined above are pairwise
disjoint and therefore we have S= S1 • . . .•Sn.

Now we build the views as follows. For every i ∈ [1..n], we define the partial run
θi by extending the partial run θ0i by the chosen resets used for the definition of trans-
formation (note that the post-reset is needed only if θ0i reaches a 1-transition). This
construction is illustrated in Fig 9(b). Let ti be the Σ-labelled tree corresponding to
the run θi. Let si be a canonical store for Θ(ti) constructed by extending s0 such that

s0(x[p]) = si(x[p
′]) whenever p and p′ correspond to the same relative position within θ0i.

In other words, si preserves the elements occurring in Si and allocates new distinct ele-
ments for all other non-equal variables newly introduced along the resets. The store si
defines the structure S′i, such that S′i |=si Θ(ti). We prove the points from the statement:
(1) By the choice of si, that extends s0 as explained above, we have Si ⊑ S′i. Actually,

no extra relation atoms are added into Si as part of the newly inserted resets be-
cause of the labeling of 1-transitions in B is constructed precisely from the resets
to guarantee this property. That is, our transformation guarantees that the exactly
same set of relation atoms occurring in the reset was used to label the 1-transitions.

(2) By the construction of the partial run θi the set of variables occurring at the en-
try position (i.e., {x1

[ε], . . . ,x#ri
[ε]}) are not related by equalities to any variables at

the entry of θ0i. This is ensured by any reset of an automaton without persistent
variables, and we note that B is such an automaton. ri-reset for automata with-
out persistent variables). Since, morever, si is canonical for Θ(ti), we obtain that
supp(σ) and si({x[ε]1 , . . . ,x

[ε]

#ri
}) are disjoint. The same reasoning applies to the set of

variables occurring at the exit position of θi, that is, when θ0i reaches a 1-transition.

Lemma 27. Given pairwise disjoint structures S1, . . . ,Sn and views ⟨θ1, t1,s1,S
′
1⟩, . . .,

⟨θn, tn,sn,S
′
n⟩ for B , satisfying the conditions (1) and (2) of Lemma 26, there exists a

rich canonical model (S,d) ∈ [[B]]r, such that the conditions (1), (2) and (3) from Def.
12 hold for S1, . . . ,Sn and (S,d).

Proof (Proof of Lemma 27). By Lemma 14, there exists an accepting run θ of B over a
tree t, such that the following hold:
1. each partial run θi is embedded in θ at some position ri ∈ dom(θ), for all i ∈ [1..n],
2. ri ·dom(θi)∩ r j ·dom(θ j) = /0, for all 1≤ i < j ≤ n,
3. each path between the positions ri and r j traverses at least once some reset path,

disjoint from
⋃n

k=1 rk ·dom(θk), for all 1≤ i < j ≤ n.
For each i∈ [1..n], since ⟨θi, ti,si,S

′
i⟩ is a view, we have S′i |=si Θ(ti), hence si(fv(Θ(ti)))⊆

supp(σ′i), where we assume w.l.o.g. that S′i
def

= (U,σ′i). By point (2) above, the sub-
formulæ corresponding to the subtrees of t with domains ri · dom(θi), for i ∈ [1..n],
have disjoint sets of free variables. We define a store s as follows, for each variable
x[p] ∈ fv(Θ(t)):

– if p = ri p′ and p′ ∈ dom(ti), for some i ∈ [1..n], then we set s(x[p]) def

= si(x[p
′]),

– otherwise, we chose a fresh value value s(x[p]), such that s(x[p]) ̸∈
⋃n

i=1 supp(σ′i) and
s(x[p]) ̸= s(z[r]), for each variable z[r], such that x[p] ̸≈Θ(t) z[r].

By the fact that supp(σ′i)∩ supp(σ′j) = /0, i.e., si(fv(Θ(ti)))∩ s j(fv(Θ(t j))) = /0, for all
1≤ i < j≤ n, and the construction of s, we obtain that s is canonical for Θ(t). The store
s defines the structure S= (U,σ), as follows:

σ(r)
def

= {⟨s(z1), . . . ,s(z#r)⟩ | r(z1, . . . ,z#r) occurs in Θ(t)}, for all r ∈ R

By the definition of S, we have S |=s Θ(t). Moreover, we define the relation d
def

=
{(s(x),s(y)) | x ̸= y or y ̸= x occurs in Θ(t)}. We obtain a rich canonical model (S,d)
of Θ(t)∃ and, since t ∈ L(B), we have (S,d) ∈ [[B]]r. We prove below the three condi-
tions from Def. 12:
(1) By the construction of S, we have S′i ⊆ S, for all i ∈ [1..n]. Since S1, . . . ,Sn are

pairwise disjoint, their composition is defined, hence S1 • . . .•Sn ⊆ S. W.l.o.g., let

Si = (U,σi), for all i ∈ [1..n]. To prove S1 • . . .•Sn ⊑ S, let ⟨u1, . . . ,u#r⟩ ∈ σ(r) be
a tuple, such that u1, . . . ,u#r ∈

⊎n
i=1 supp(σi). By the definition of σ, there exists

a relation atom r(z[p]1 , . . . ,z
[p]
#r) in Θ(t), such that s(zi) = ui, for all i ∈ [1..#r]. To

simplify matters, we assume that the position of each variable in the relation atom
is the same, the case where these positions are either p and pi, or pi and p j, for
some p ∈ N∗ and i ̸= j ∈ N is treated in a similar way and left to the reader. More-
over, for each i ∈ [1..#r], there exists a unique ki ∈ [1..n], such that ui ∈ supp(σki).
Suppose, for a contradition, that ki ̸= k j, for some 1 ≤ i < j ≤ n. Then, there
exist paths between p and some positions si ∈ ri · dom(ti) and s j ∈ r j · dom(t j),

such that z[p]i ≈Θ(t) ξ
[si]
i and z[p]j ≈Θ(t) ξ

[s j]

j . Consider the case where θi and θ j are
runs (the case where one of them is a context uses a similar argument and is left
to the reader). Since ti and t j are embedded in t at positions ri and r j, respec-
tively, at least one of these paths, say the one from p to si, contains the posi-
tion ri. Then, there exists a variable x[ri]

ℓi
, for ℓi ∈ [1..#θi(ε)], such that s(x[ri]

ℓi
) =

ui. Hence, supp(σi)∩ s({x
[ri]
1 , . . . ,x[ri]

#θi(ε)
}) = supp(σi)∩ si({x[ε]1 , . . . ,x

[ε]

#θi(ε)
}) ̸= /0, in

contradiction with condition (2) of Lemma 26. We obtained that k1 = . . . = k#r,
hence u1, . . . ,u#r ∈ supp(σk), leading to ⟨u1, . . . ,u#r⟩ ∈ σk(r), for some index k ∈
[1..n], i.e., σ1(r)⊎ . . .⊎σn(r) = {⟨u1, . . . ,u#r⟩ | u1, . . . ,u#r ∈

⊎n
i=1 supp(σi)}. Since

the choice of r was arbitrary, we obtain that S1 • . . .•Sn ⊑ S.
(2) Suppose, for a contradiction, that there exists a pair (u,v)∈ d, such that u∈ supp(σi)

and v ∈ supp(σ j), for some indices 1 ≤ i < j ≤ n. Then, there exists a disequality
x[p] ̸= y[p] (or y ̸= x, this case being symmetric) in Θ(t), such that s(x[p]) = u and
s(y[p]) = v. Since u ∈ supp(σi), there exists a variable ξ

[pi]
i such that pi ∈ ri ·dom(ti)

and s(ξ
[pi]
i) = u. Since s is canonical for Θ(t), we have x ≈Θ(t) ξ

[pi]
i . Suppose, for

a contradiction, that p ̸∈ ri · dom(ti). Then, by a similar argument as the one used
in the proof of point (1), we obtain a contradiction with Lemma 26 (2), hence
p ∈ ri · dom(ti). Symmetrically, we obtain p ∈ r j · dom(t j), hence ri · dom(ti)∩ r j ·
dom(t j) ̸= /0, which contradicts condition (2) above.

(3) Suppose, for a contradiction, that there exists a relation symbol r ∈ R and tuples
⟨u1, . . . ,u#r⟩,⟨v1, . . . ,v#r⟩ ∈σ(r), such that {u1, . . . ,u#r}∩supp(σi) ̸= /0, {v1, . . . ,v#r}∩
supp(σ j) ̸= /0 and {u1, . . . ,u#r}∩{v1, . . . ,v#r} ̸= /0, for some indices 1≤ i < j ≤ n.
Then, there exists two distinct relation atoms r(z[p1]

1 , . . . ,z[p1]
#r) and r(z[p2]

1 , . . . ,z[p2]
#r)

in Θ(t) and variables ξ
[si]
i , si ∈ ri · dom(ti) and ξ

[s j]

j , s j ∈ r j · dom(t j), such that

z[p1]
k ≈Θ(t) ξ

[si]
i , z[p2]

ℓ ≈Θ(t) ξ
[s j]

j , for some indices k, ℓ ∈ [1..#r]. For simplicity, we con-
sider that the position of the variables is the same in the above relation sym-
bols, i.e., p1 and p2, respectively. By an argument similar to the one used in the
proof of point (2), we obtain that p1 ∈ ri · dom(ti) and p2 ∈ r j · dom(t j). How-
ever, since {u1, . . . ,u#r}∩ {v1, . . . ,v#r} ̸= /0, there exist indices g,h ∈ [1..#r] such
that z[p1]

g ≈Θ(t) z[p2]
h . For simplicity, we consider the case where θi and θ j are runs,

the case where at least one of them is a context uses a similar argument being
left to the reader. Then the path between ri and r j is contained with the path be-
tween p1 and p2. By point (3) above, this path contains a reset path disjoint from⋃n

k=1 rk ·dom(θk), hence z[p1]
g ̸≈Θ(t) z[p2]

h , contradiction.

E Material from Section 6

Lemma 28. Given a set S of structures, we have (1) split(EF∗(S))= EF∗(split(S)),
and (2) split(IEF∗(S)) = IEF∗(split(S)).

Proof (Proof of Lemma 28). (1) “split(EF∗(S)) ⊇ EF∗(split(S))” By induction on
the derivation of S ∈ EF∗(split(S)) from split(S). Base case: Let S ∈ split(S).
We have:

∃S′ ∈ S . S ∈ split(S′)⇒∃S′ ∈ EF∗(S). S ∈ split(S′)⇒ S ∈ split(EF∗(S))

Induction step: Assume S= (S1 •S2)/≈ for some S1,S2 ∈ EF∗(split(S)) and ≈ satis-
fying the conditions of Def. 4 for external fusion of S1 and S2. Moreover, assume the
induction hypothesis S1,S2 ∈ split(EF∗(S)). Then

S1,S2 ∈ split(EF∗(S)), S= (S1 •S2)/≈⇒
(∃S′1,S′2 ∈ EF∗(S). S1 ⊑mc S′1, S2 ⊑mc S′2), S= (S1 •S2)/≈⇒

∃S′1,S′2 ∈ EF∗(S). (∃ ≈′ . S⊑mc (S′1 •S′2)/≈′)⇒
∃S′ ∈ EF∗(S). S⊑mc S′⇒ S ∈ split(EF∗(S))

In the above, the equivalence ≈′ is taken as the extension by equality of ≈ and hence-
forth it satisfies the conditions of Def. 4 for external fusion of S′1, S′2.

“split(EF∗(S))⊆ EF∗(split(S))” By induction on the derivation of S′ ∈ EF∗(S) from
S . Base case: Let S ∈ split(S′) for some S′ ∈ S . We have:

S ∈ split(S′)⇒ S ∈ EF∗(split(S′))⇒ S ∈ EF∗(split(S))

Induction step: Assume S ∈ split(S′) for some S′ = (S′1 • S′2)/≈′ for some S′1,S
′
2 ∈

EF∗(S) and equivalence ≈′ satisfying the conditions of Def. 4 for external fusion of
S′1, S′2. Moreover, assume the induction hypothesis, that is, split(S′1),split(S

′
2) ⊆

EF∗(split(S)). Then:

split(S′1),split(S
′
2)⊆ EF∗(split(S)), S′ = (S′1 •S′2)/≈′ , S ∈ split(S′)⇒

split(S′1),split(S
′
2)⊆ EF∗(split(S)), S′ = (S′1 •S′2)/≈′ , S⊑mc S′

We distinguish two sub-cases:

– S is a maximally connected substructure of S′1 (the case of S′2 is symmetric) not
affected by the external fusion defined by ≈′:

split(S′1)⊆ EF∗(split(S)), (∃S1. S1 ⊑mc S′1, S= S1)⇒
split(S′1)⊆ EF∗(split(S)), S ∈ split(S′1)⇒ S ∈ EF∗(split(S))

– S is a connected structure including several maximally connected substructures, at
least one from each S′i, for i = 1,2:

split(S′1),split(S
′
2)⊆ EF∗(split(S)),

∃k1 ≥ 1. ∃S1,1...∃S1,k1 . S1,i ⊑mc S′1 for all i ∈ [1..k1],

∃k2 ≥ 1. ∃S2,1...∃S2,k2 . S2, j ⊑mc S′2 for all j ∈ [1..k2],

(∃ ≈ . S= (S1,1 • ...•S1,k1 •S2,1 • ...•S2,k2)/≈), S connected⇒
split(S′1),split(S

′
2)⊆ EF∗(split(S)),

∃k1 ≥ 1. ∃S1,1...∃S1,k1 . S1,i ∈ split(S′1) for all i ∈ [1..k1],

∃k2 ≥ 1. ∃S2,1...∃S2,k2 . S2, j ∈ split(S′2) for all j ∈ [1..k2],

(∃ ≈ . S= (S1,1 • ...•S1,k1 •S2,1 • ...•S2,k2)/≈), S connected⇒
∃k1 ≥ 1. ∃S1,1...∃S1,k1 . S1,i ∈ EF∗(split(S)) for all i ∈ [1..k1],

∃k2 ≥ 1. ∃S2,1...∃S2,k2 . S2, j ∈ EF∗(split(S)) for all j ∈ [1..k2],

(∃ ≈ . S= (S1,1 • ...•S1,k1 •S2,1 • ...•S2,k2)/≈), S connected⇒ S ∈ EF∗(split(S))

In the above, the equivalence ≈ is the restriction of ≈′ to the substructures included
in the composition. As ≈′ is conforming for external fusion of S′1, S′2 and since the
resulting structure S is connected, it is always possible to obtain S as a sequence of
external fusions conforming to Def. 4 from the respective substructures.

(2) “IEF∗(split(S))⊆ split(IEF∗(S))” By induction on the derivation of S∈ IEF∗(split(S))
from split(S). The induction proceeds as for (1), with one additional case in the in-
duction step.

Induction step: Let S= (S1)/≈ for some S1 ∈ IEF∗(split(S)) and equivalence relation
≈ conforming to internal fusion of S1. Moreover, assume the induction hypothesis S1 ∈
split(IEF∗(S)). Then

S1 ∈ split(IEF∗(S)), S= (S1)/≈⇒
(∃S′1 ∈ IEF∗(S). S1 ⊑mc S′1), S= (S1)/≈⇒
∃S′1 ∈ IEF∗(S). (∃ ≈′ . S⊑mc (S′1)/≈′)⇒

∃S′ ∈ IEF∗(S), S⊑mc S′⇒ S ∈ split(IEF∗(S))

In the above, the equivalence ≈′ is taken as the extension by equality of ≈ and hence
conforming for internal fusion of structure S′1.

”split(IEF∗(S))⊆ IEF∗(split(S))” By induction on the derivation of S′ ∈ IEF∗(S)
from S . The induction proceeds as for (1), with one additional case in the induction
step.

Induction step: Let S ∈ split(S′) for some S′ = (S′1)/≈′ for some S′1 ∈ IEF∗(S) and
equivalence ≈′ conforming for internal fusion of S′1. Moreover, assume the induction

hypothesis split(S′1)⊆ IEF∗(split(S)). Then

split(S′1)⊆ IEF∗(split(S)), S′ = (S′1)/≈′ , S ∈ split(S′)⇒
split(S′1)⊆ IEF∗(split(S)), S′ = (S′1)/≈′ , S⊑mc S′⇒

split(S′1)⊆ IEF∗(split(S)),
∃k ≥ 1. ∃S1,1...∃S1,k. S1,i ⊑mc S′1 for all i ∈ [1..k],

(∃ ≈ . S= (S1,1 • ...•S1,k)/≈, S connected)⇒
split(S′1)⊆ IEF∗(split(S)),

∃k ≥ 1. ∃S1,1...∃S1,k. S1,i ∈ split(S′1) for all i ∈ [1..k],
(∃ ≈ . S= (S1,1 • ...•S1,k)/≈, S connected)⇒

∃k ≥ 1. ∃S1,1...∃S1,k. S1,i ∈ IEF∗(split(S)) for all i ∈ [1..k],
(∃ ≈ . S= (S1,1 • ...•S1,k)/≈, S connected)⇒ S ∈ IEF∗(split(S))

In the above, the equivalence ≈ is taken as the restriction of ≈′ to the maximal con-
nected substructures included in the construction of connected S. Henceforth,≈ is con-
forming for internal fusion as well. As the resulting structure S is connected, it is always
possible to construct it in IEF∗(split(S)) i.e., first by using external fusion conform-
ing to Def. 4 to connect all the included substructures and second, by using internal
fusion to further restrict the result if needed. ⊓⊔

Lemma 29. Let S1 =(U1,σ1) and S2 =(U2,σ2) be disjoint structures. Let u1 ∈ supp(σ1),
u2 ∈ supp(σ2) be elements such that CS1(u1)∩CS2(u2) = /0. Then, the equivalence re-
lation {(u1,u2)}= ⊆ (U1∪U2)× (U1∪U2) is compatible with S1 •S2.

Proof (Proof of Lemma 29). We denote by ≈ the relation {(u1,u2)}= in the following.
Let r ∈R be a relation and let ⟨u1,1,u1,2, . . . ,u1,#r⟩ ∈ σ1(r), ⟨u2,2,u2,2, . . . ,u2,#r⟩ ∈ σ2(r)
be distinct tuples. If for some index i∈ [1..#r] either u1,i ̸= u1 or u2,i ̸= u2 then u1,i ̸≈ u2,i,
by the definition of≈. Otherwise, if for all indexes i∈ [1..#r] both u1,i = u1 and u2,i = u2
then r∈ CS1(u1) and r∈ CS2(u2). This implies CS1(u1)∩CS2(u2) ̸= /0 and contradicts the
hypothesis about the choice of u1, u2. Therefore, no tuples from S1 and S2 respectively
are merged by the fusion. Finally, it is also an easy check that no tuples from S1 (resp.
S2) are merged, because when restricted to S1 (resp. S2) the equivalence≈ becomes the
identity. ⊓⊔

Lemma 30. Let S be a treewidth-bounded set of connected structures conforming to
an RGB color scheme. Then, for any structure S ∈ EF∗(S), the following hold:
1. S is connected and of type either R, G or B,

2. tw(S)≤

 tw(S) , if S of type R
max(tw(S)+2 · card(Cgreen),3 · card(Cgreen)) , if S of type G
max(tw(S)+2 · card(Cgreen),3 · card(Cgreen), tw(S)+1) , if S is of type B

Proof (Proof of Lemma 30). (1) By induction on the derivation of S ∈ EF∗(S) from S .
Table 1 summarizes the possible types of EF(S1,S2) on connected structures S1 and S2
of types R, G or B, respectively.
(2) Given a tree decomposition T for a structure S= (U,σ) and an equivalence relation
≈ ⊆ U×U, we denote by T/≈ the tree decomposition of the quotient structure S/≈,

Table 1. Possible resulting type of EF(S1,S2) for S1, S2 of R, G, B types.

EF(S1,S2) S2 of R type S2 of G type S2 of B type
S1 of R type R,G,B G,B B
S1 of G type G,B G,B -
S1 of B type B - -

obtained by the relabeling of elements u in the bags of T by their representatives [u]≈.
Let S ∈ EF∗(S) be a structure. We consider the following three cases:
S is of type R: We consider the stronger property, that is, S admits a tree decomposition
T where (i) the unique element with color in Cred is present in the bag of the root r of T
and (ii) the treewidth is bounded by tw(S). Obviously, this stronger property implies the
expected result, namely tw(S)≤ tw(S). The proof goes by induction on the derivation
of S ∈ EF∗(S) from S .
Base case: Assume that S ∈ S . Then, obviously a tree decomposition T exists, such that
wd(T)≤ tw(S). Moreover, T can be progressively transformed by reversing tree edges
(hence preserving its width) until one of the nodes containing the element with color in
Cred becomes the root.
Induction step: according to Table 1 the only way to construct a structure S of R type is
by fusion of two structures S1, S2 both of R type. The external fusion between S1 and S2
is possible only by using the elements u1, u2 with colors in Cred , from respectively S1,
S2. Wlog, consider that u2 is glued to an element u′1 ∈ S1 and let ≈ be the equivalence
relation {(u2,u′1)}=. Then, from the tree decompositions T1, T2 of respectively S1 and
S2 satisfying the induction hypothesis, we build the tree decomposition T12 of S1 •S2 by
linking the root r2 of T2 as a child of some node n1 of T1 which contains u′1. This ensures
that T12/≈ is a valid tree decomposition of S. By construction, the unique element with
color in Cred after fusion is eventually [u1]≈ and remains present in the bag of the tree
root r1. Also, tw(T12/≈) ≤ max(tw(T1), tw(T2)), hence we obtain tw(T12/≈) ≤ tw(S),
by applying the induction hypothesis.

u1

u′1

u2

u′1 u11 u21u′2

u′1 u′2

u11

Fig. 10. Tree decompositions for structures of R type (left) and G type (right)

S is of type G: We consider the stronger property, that is, S admits a tree decomposition
T where (i) all elements with colors in Cgreen are present in the bag of the root r of

T and (ii) the treewidth is bounded by max(tw(S)+ 2 · card(Cgreen),3 · card(Cgreen)).
Obviously, this stronger property implies the expected result, namely the upper bound
on tw(S). We prove it by induction on the derivation of S ∈ EF∗(S) from S .
Base case: Assume that S ∈ S . Then, obviously a tree decomposition T exists, such
that wd(T) ≤ tw(S). Furthermore, T can be transformed by replicating all elements
with colors in Cgreen in all nodes (and hence to the root as well). As there are at most
2 · card(Cgreen) elements in S (point (2) of Def. 27) it follows that the obtained tree
decomposition has width bounded by tw(S)+2 · card(Cgreen).
Induction step: according to Table 1 the only way to construct a structure S of G is by
fusion of two structures S1, S2 of type either R or G. In any case, we build a tree decom-
position T12/≈ for S from the tree decompositions T1, T2 of respectively S1, S2 satisfying
their respective inductive hypothesis, and the (fusion) equivalence relation ≈. If at least
one of the structures is of type R, the external fusion eventually uses the unique element
with color in Cred . Then, we can use the same construction as in previous case for the
fusion of structures of type R. The tree decomposition T12/≈ will satisfy by construction
the condition related to the placement of elements with colors in Cgreen. Moreover, as
previously, it holds tw(T12/≈)≤max(tw(T1), tw(T2)) which implies the expected bound
on the treewidth. If both structures S1, S2 are of type G, the construction of T12 is a bit
different. In this case, the external fusion is necessarily due to the gluing of a non-empty
set of pairs {(u1i,u2i) | i ∈ I} from respectively S1, S2 conforming to conditions stated
in Def. 4. Let ≈ be the equivalence relation ({(u1i,(u2i) | i ∈ I})=. We build the tree
decomposition T12 of S1 •S2 by adding a fresh root node r12 with two children, respec-
tively the roots r1, r2 of T1, T2. Moreover, in the bag of r12 we copy (i) all elements u′1,
u′2 from the bags of r1, r2 with colors in Cgreen that were not glued, (ii) all elements that
are glued from one of the sides i.e., u1i for all i ∈ I. Then, it is an easy check that T12/≈
is a valid tree decomposition of (S1 •S2)/≈. By construction, all elements with colors in
Cgreen are located at the root r12. Also tw(T12/≈)≤max(tw(T1), tw(T2),card(λ12(r12)))
where λ12(r12) denotes the bag of elements at the root r12 of T12. We will show that
card(λ12(r12))≤ 3 ·card(Cgreen), that is, a sufficient condition to establish the bound of
tw(T12/≈) knowing moreover the bounds of the widths of T1, T2 given by the induction
hypothesis. Consider that N1, N2 elements from respectively r1, r2 were copied to r12
without being glued. Consider that N12, N′12 pairs of elements were glued and become
elements with colors from Cgreen, Cblue, respectively. Then, as each one of S1, S2, S has
at most 2 · card(Cgreen) elements in Cgreen (point (2) of Def. 27), we obtain:

N1 +N12 +N′12 ≤ 2 · card(Cgreen)

N2 +N12 +N′12 ≤ 2 · card(Cgreen)

N1 +N2 +N12 ≤ 2 · card(Cgreen)

By summing up, we obtain the approximation of card(λ12(r12)) as follows:

2 · card(λ12(r12)) = 2 · (N1 +N2 +N12 +N′12)

≤ 2 ·N1 +2 ·N2 +3 ·N12 +2 ·N′12

≤ 6 · card(Cgreen)

S is of B type: The expected property is established by induction on the derivation of
S ∈ EF∗(S) from S . Base case: Let S ∈ S be a structure. Then, a tree decomposition T
exists, such that wd(T)≤ tw(S).

Induction step: according to Table 1 there are several ways to construct a structure S of
G is by fusion of two structures S1, S2 of either R, G or B type. In any case, we shall build
a tree decomposition T12/≈ for S from the tree decompositions T1, T2 of respectively S1,
S2 satisfying their respective inductive hypothesis and the (fusion) equivalence relation
≈. For the fusion of G-G type structures, the construction of T12/≈ as given in the
previous case guarantees the bound on tw(T12/≈). For the fusion of G-R or B-R type
structures, the same construction of T12/≈ as given in the first case guarantees the bound
on tw(T12/≈). For the fusion of R-R structures producing B type structures one can reuse
the construction given in the first case, with a slightly adaptation. Consider that elements
u1, u2 (from S1, S2, respectively) with colors in Cred are glued to respectively u′2, u′1
(from S2, S1, respectively). First, we modify the tree decomposition T1 by replicating
u1 in all nodes and the tree decomposition T2 by replicating u′2 is all nodes. Given
the induction hypothesis, after modification T1, T2 have the width at most tw(S)+ 1.
Second, we proceed as previously, i.e., construct the tree decomposition T12 of S1 •S2
by making the root r2 of T2 the child to some node n1 of T1 containing the element u′1.
It is an easy check that T12/≈ is a valid tree decomposition of S and its width is at most
tw(S)+1. ⊓⊔

Lemma 31. Let S be a treewidth-bounded set of connected structures, conforming to
an RGB color scheme. Then, tw(EF∗(S)) and tw(IF(EF∗(S))) are both bounded by
max(tw(S)+2 · card(Cgreen),3 · card(Cgreen), tw(S)+1).

Proof (Proof of Lemma 31). EF∗(S) is treewidth bounded as a direct consequence of
Lemma 30, that establishes the bounds for every type of structure from EF∗(S). More-
over, IF(EF∗(S)) is treewidth-bounded because, using the tree decompositions T con-
structed for structures S in EF∗(S) one obtains tree decomposition T ′ and treewidth
bounds for any structures S′ = S/≈ obtained by internal fusion, as follows:

– if S is of type R then by internal fusion one eventually glues the unique element
u1 with color in Cred to some other element in the structure. Therefore, one can
construct T ′ from T by replicating u1 in all nodes and then T ′/≈ is a valid tree
decomposition for S′. Obviously wd(T ′)≤ wd(T)+1≤ tw(S)+1.

– if S is of type G then by internal fusion ones eventually glue elements with color in
Cgreen. As all such elements are already present in the root node, T/≈ is a valid tree
decomposition for S′. Obviously, the treewidth bound remains unchanged.

– if S is of type B then no non-trivial internal fusion exists, and obviously, the treewidth
bound remains unchanged. ⊓⊔

Lemma 32. The following are equivalent, for any treewidth-bounded set S of con-
nected structures:
1. EF∗(S) is treewidth bounded,
2. [[C1,C1,C1]], [[C2,C2,C2]] ∈ (EF∗(split(S)))♯3 implies C1∩C2 ̸= /0 for all C1,C2,
3. split(S) conforms to some RGB color scheme.

Proof (Proof of Lemma 32). “(1)⇒ (2)” If EF∗(S) is treewidth-bounded then split(EF∗(S))
is treewidth-bounded. Using Lemma 28 the later set is equal to EF∗(split(S)) and
henceforth treewidth bounded as well. By contradiction, assume that (2) does not hold.
Then, there exist colors C1,C2 ∈C, connected structures S1,S2 ∈ EF∗(split(S))) such
that [[C1,C1,C1]] ∈ S♯1, [[C2,C2,C2]] ∈ S♯2 and moreover C1 ∩C2 = /0. We shall use S1 and

S2 to build infinitely many connected structures containing arbitrarily large square grid
minors. First, construct the connected structure S12 ∈ EF∗(split(S)) by fusing one
pair (u1,u2) with colors C1, C2. Let v1, w1 resp. v2, w2 be the remaining distinct el-
ements of S12 with color C1, C2 from respectively S1, S2. For arbitrarily positive n,
consider n× n disjoint copies (Si, j

12)i, j=1,n of S12. Let ≈1, j be {(v1, j
1 ,v1, j−1

2)}=, ≈i,1 be
{(wi,1

2 ,wi−1,1
1)}=, ≈i, j be {(vi, j

1 ,vi, j−1
2),(wi, j

2 ,wi−1, j
1)}= for all i, j = 2,n. Second, con-

struct the grid-like connected structure Xn,n ∈ EF∗(split(S)):

Xn,n = (...(...((S1,1
12 •S

1,2
12)/≈1,2 •S2,1

12)/≈2,1 • ...•Si, j
12)/≈i, j • ...•Sn,n

12)/≈n,n

where structures Si, j
12 are added to the fusion in increasing order of i+ j. The construc-

tion is illustrated in Fig. 3. We can show that MIN(Xn,n) contains an n×n square grid.
Finally, as n can be taken arbitrarily large, we conclude that MIN(EF∗(split(S))) con-
tains arbitrarily large square grids, it is not treewidth-bounded, contradicting (1).
“(2)⇒ (3)” We define a RGB color scheme by selecting:

Cblue = {C ∈ C | [[C ,C ,C]] ∈ (EF∗(split(S)))♯3}

Since (2) holds, this is a valid definition for Cblue, and henceforth one defined the par-
titioning of the remaining colors between Cgreen and Cred . We show that split(S) is
conforming to this RGB partitioning:

– checking point (1) of Def. 27: Let S ∈ split(S) and prove that for any two col-
ors C1, C2, [[C1,C2]] ⊆ S♯ and C1 ∈ Cred only if C2 ∈ Cblue. Since C1 ∈ Cred , there
must exists a color C ′1 ∈ Cblue, such that C1 ∩ C ′1 = /0, by Def. 26. Now, given
the definition of Cblue in our RGB-color scheme, this further implies [[C ′1,C ′1,C ′1]] ∈
(EF∗(split(S)))♯3. Henceforth, there exists a structure S′ ∈ EF∗(split(S)) such
that [[C ′1,C ′1,C ′1]] ⊆ S′♯. We can now use S′ and three disjoint copies of S to build
a new structure S′′ by gluing progressively, each one of the three elements of
color C ′1 in S′ to the element of color C1 of S. Then, by construction, the struc-
ture S′′ will also contains three elements of color C2, one from each disjoint copy
of S. Therefore, [[C2,C2,C2]] ∈ S′′♯ and because S′′ ∈ EF∗(split(S)) this implies
[[C2,C2,C2]] ∈ (EF∗(split(S)))♯3 and therefore C2 ∈ Cblue.

– checking point (2) of Def. 27: By contradiction, let S ∈ EF∗(split(S)) be such
that S♯⊓Cgreen ̸⊆ [[C ,C | C ∈ Cgreen]]. Then there exists a color C ′ ∈ (S♯⊓Cgreen)\
[[C ,C | C ∈ Cgreen]]. We have C ′ ∈Cgreen and also [[C ′,C ′,C ′]]⊆ S♯. The later implies
[[C ′,C ′,C ′]] ∈ S♯3 ⊆ (EF∗(split(S)))♯3. But this implies C ′ ∈Cblue according to the
definition of the RGB color scheme, contradicting C ′ ∈ Cgreen.

”(3)⇒ (1)“ By Lemma 31, EF∗(split(S)) is treewidth-bounded. Then, by Lemma 28,
split(EF∗(S)) is treewidth-bounded, thus EF∗(S) is treewidth bounded. ⊓⊔

Lemma 33. (EF∗(S))♯k = (EF∗1(S))
♯k for any set S of structures and integer k ≥ 1.

Proof (Proof of Lemma 33). “(EF∗1(S))
♯k ⊆ (EF∗(S))♯k” This direction follows directly

from EF∗1(S)⊆ EF∗(S). ”(EF∗(S))♯k ⊆ (EF∗1(S))
♯k” We prove the stronger property:

∀S ∈ EF∗(S). ∃S′ ∈ EF∗1(S). S♯ ⊆ S′
♯

By induction on the derivation of S ∈ EF∗(S) from S . Base case: Assume S ∈ S . Then
S′ = S satisfies the property.

Induction step: Assume S= (S1•S2)/≈ for some S1,S2 ∈ EF∗(S) and some equivalence
relation ≈, defined as {(u1i,u2i) | i ∈ [1..n]}=, that conforms to the requirements of ex-
ternal fusion for S1,S2. Let C1i = CS1(u1i), C2i = CS2(u2i), for all i ∈ [1..n]. According
to the definition of external fusion, S= (S1 •S2)/≈ implies C1i∩C2i = /0 and moreover:

S♯ = [[(C1i∪C2i) | i ∈ [1..n]]]∪ (S1
♯ \ [[(C1i) | i ∈ [1..n]]])∪ (S2

♯ \ [[(C2i) | i ∈ [1..n]]])

By induction hypothesis, for S1,S2 there exists S′1,S
′
2 ∈ EF∗1(S) such that S1

♯ ⊆ S′1
♯,

S2
♯ ⊆ S′2

♯. We use S′1 and n disjoint copies S′2,1, ...,S
′
2,n of S′2 to construct S′ with the

required property. The idea is that, for every pair u1i ≈ u2i, we fuse some element u′1i
with color C1i from S′1 with some element u′2i with color C2i from S′2,i. Such elements

always exist, because S1
♯⊆ S′1

♯, S2
♯⊆ S′2

♯. Therefore, consider the equivalence relations
≈′i= (u′1i,u

′
2i)

= for some pair of elements as above, for all i ∈ [1..n] and define:

S′ = (. . .((S′1 •S′2,1)/≈′1 •S
′
2,2)/≈′2 • . . .•S

′
2,n)≈′n

Then S′ ∈ EF∗1(S) and, moreover, we have S♯ ⊆ S′♯, because:

S′
♯
= [[(C1i∪C2i) | i ∈ [1..n]]]∪ (S′1

♯ \ [[(C1i) | i ∈ [1..n]]])∪
⋃

i∈[1..n]
(S′2

♯ \ [[C2i]])

⊓⊔

Lemma 34. (EF∗1(S))
♯k = ef

♯k∗
1 (S ♯k) for any set S of structures, for any integer k ≥ 1.

Proof (Proof of Lemma 34). Abusing notation, we write M♯k def

= {M′ |M′ ⊆M, card(M′)≤ k}.
Then, we have (EF∗1(S))

♯k = ((EF∗1(S))
♯)

♯k
, by Def. 25. Using Def. 28 of single pair ex-

ternal fusion and Def. 29 of single pair fusion of multisets, we can prove that for all
structures S1,S2 it holds (EF1(S1,S2))

♯ = ef
♯(S1

♯,S2
♯)

1 . This immediately extends to their
respective closure, henceforth, (EF∗1(S))

♯ = ef
♯∗
1 (S ♯). Henceforth, we are left with prov-

ing that (ef♯∗
1 (S ♯))

♯k
= ef

♯k∗
1 (S ♯k).

”(ef♯∗
1 (S ♯))

♯k⊆ ef
♯k∗
1 (S ♯k)” We prove that, for all M ∈ ef♯∗

1 (S ♯), we have M♯k⊆ ef
♯k∗
1 (S ♯k).

The proof goes by induction on the derivation of M ∈ ef♯∗
1 (S ♯) from S ♯. Base case: As-

sume M ∈ S ♯. Then M♯k ⊆ (S ♯)
♯k
= S ♯k ⊆ ef

♯k∗
1 (S ♯k).

Induction step: Assume M ∈ ef
♯(M1 ,M2)
1 for some multisets of colors M1, M2 such that

M1
♯k,M2

♯k ⊆ ef
♯k∗
1 (S ♯k). Then, there exists C1 ∈M1, C2 ∈M2 such that C1∩C2 = /0 and

M = (M1 \ [[C1]])∪ (M2 \ [[C2]])∪ [[C1∪C2]], by Def. 29. Let M′ ∈ M♯k, that is, M′ ⊆ M,
card(M′)≤ k. We distinguish several cases:

– M′ ⊆M1 (the case M′ ⊆M2 is symmetric): M′ ∈M1
♯k, thus M′ ∈ ef♯k∗

1 (S ♯k).
– M′ ̸⊆Mi, for i = 1,2 and C1∪C2 ̸∈M: M′ can be partitioned in two nonempty parts

M′1 ⊆M1, M′2 ⊆M2 such that M = M′1⊎M′2. As both parts are not empty, we have
M′1 ∈M1

♯k−1, M′2 ∈M2
♯k−1, thus (M′1∪ [[C1]]) ∈M1

♯k, (M′2∪ [[C2]]) ∈M2
♯k. It is an easy

check that M′ ∈ ef♯k
1 ((M

′
1∪ [[C1]]),(M′2∪ [[C2]])). This implies M′ ∈ ef♯k∗

1 (S ♯k) as both
subterms belong to ef

♯k∗
1 (S ♯k).

– M′ ̸⊆ Mi, for i = 1,2 and C1 ∪ C2 ∈ M: we proceed as in the previous case but
considering a partitioning of M′ \ [[C1∪C2]]. We obtain M′ ∈ ef♯k∗

1 (S ♯k), as well.

“ef♯k∗
1 (S ♯k) ⊆ (ef♯∗

1 (S ♯))
♯k” We prove that, for all k-multiset M′ ∈ ef

♯k∗
1 (S ♯k), there ex-

ists M ∈ ef
♯∗
1 (S ♯), such that M′ ⊆ M, by induction on the derivation of M′ from S ♯k.

Base case: Assume M′ ∈ S ♯k = (S ♯)
♯k. Then, there exists M ∈ S♯ such that M′ ⊆ M.

Obviously, M ∈ ef♯∗
1 (S ♯).

Induction step: Assume M′ ∈ ef
♯k
1 (M

′
1,M

′
2) for some k-multisets of colors M′1,M

′
2 ∈

ef
♯k∗
1 (S ♯k). By the inductive hypothesis, there exists multisets M1,M2 ∈ ef

♯∗
1 (S ♯) such

that M′1 ⊆M1, M′2 ⊆M2. Since M′1,M
′
2 can be composed such that to obtain (a superset

of) the multiset M′, one can use precisely the same pairs of colors to compose M1,M2
and henceforth to obtain the multiset M ∈ ef♯∗

1 (S ♯), which is the superset of M′. ⊓⊔

Lemma 35. ([[A]]c
∆
)♯k = π3(⟨⟨A⟩⟩♯k∆), for any k ≥ 1, any equality-free SID ∆ and nullary

predicate A, such that each complete ∆-unfolding of A yields a satisfiable formula.

Proof (Proof of Lemma 35). ”⊆” We prove the following, more general, property:

Let B0(x1, . . . ,x#B0)⇒∗∆ ∃y1 . . .∃yn . φ be a complete ∆-unfolding such that φ

is a qpf formula, s be a store injective over {x1, . . . ,x#B0}∪{y1, . . . ,yn}, S =
(U,σ) be a structure such that S |=s φ and D⊆ supp(σ)\{s(x1), . . . ,s(x#B0)}
be a set such that card(D)≤ k. Then there exists ⟨{x1, . . . ,x#B0},c,M⟩ ∈ ⟨⟨B0⟩⟩♯k∆
such that CS(s(xi)) = c(xi), for all i ∈ [1..#B0] and M = [[CS(u) | u ∈ D]].

The proof is by induction on the length of the complete ∆-unfolding. Assume w.l.o.g.
that the first rule applied in the unfolding is of the form (5), with a qpf formula ψ0.
Then, there exist structures S0 = (U0,σ0), . . . ,Sℓ = (Uℓ,σℓ), such that:

– S= S0 • . . .•Sℓ,
– S0 |=s ψ0, and
– there exists a complete unfolding Bi(zi,1, . . . ,zi,#Bi)⇒∗∆ ∃y ji,1 . . .∃y ji,ki

. φi, where
ji,1, . . . , ji,ki ∈ [1..n] and φi is a subformula of φ, such that Si |=s φi, and the indices
ji,m are pairwise distinct, for all i ∈ [1..ℓ] and m ∈ [1..ki].

Let si be the store such that si(x j) = s(zi, j) for all j ∈ [1..#Bi] and si agrees with s
everywhere else, for all i ∈ [1..ℓ]. Then, there exists a complete unfolding:

Bi(x1, . . . ,x#Bi)⇒
∗
∆
(∃y j1 . . .∃y jki

. φi)[zi,1/x1, . . . ,zi,#Bi/x#Bi] = ∃y j1 . . .∃y jki
. ψi

such that Si |=si ψi, where ψi is a qpf formula, for all i ∈ [1..ℓ]. We define the sets:

D0
def

=D∩
(
supp(σ0)∪

ℓ⋃
i=1

{s(zi,1), . . . ,s(zi,#Bi)}
)

Di
def

=(supp(σi)∩D)\{s(zi,1), . . . ,s(zi,#Bi)}, for each i ∈ [1..ℓ]

and prove the following fact:

Fact 11 D = D0⊎D1⊎ . . .⊎Dℓ

Proof. The sets D0, . . . ,Dℓ are pairwise disjoint, since:

D0 ⊆ supp(σ0)∪
ℓ⋃

i=1

{s(zi,1), . . . ,s(zi,#Bi)}

Di ⊆ supp(σi)\{s(zi,1), . . . ,s(zi,#Bi)}, for alli ∈ [1..ℓ]

and, moreover:

(
supp(σ0)∪

ℓ⋃
i=1

{s(zi,1), . . . ,s(zi,#Bi)}
)
∩ supp(σi)⊆ {s(zi,1), . . . ,s(zi,#Bi)}, for all i ∈ [1..ℓ]

supp(σi)∩ supp(σ j)⊆ {s(zi,1), . . . ,s(zi,#Bi)}∩{s(z j,1), . . . ,s(z j,#Bi)}, for all 1≤ i < j ≤ ℓ

because s is injective over y1, . . . ,yn. “⊇” We have D0 ⊎D1 ⊎ . . .⊎Dℓ ⊆ D because
Di ⊆D, for all i ∈ [0..ℓ]. “⊆” Let u ∈D be an element. By the choice of D, we have u ∈
supp(σ)\{s(x1), . . . ,s(x#B)}. Since S= S0 • . . .•Sℓ, we have supp(σ) =

⋃ℓ
i=0 supp(σi),

hence u∈ supp(σi), for some i∈ [0..ℓ]. If u∈D0 we are done. Otherwise, u ̸∈D0, hence
u ̸∈ supp(σ0) and u∈ supp(σi), for some i∈ [1..ℓ]. Moreover, u ̸∈ {s(zi,1), . . . ,s(zi,#Bi)},
for all j ∈ [1..ℓ], hence u ∈ Di. ⊓⊔

Back to the proof, since card(Di) ≤ card(D) ≤ k, for all i ∈ [1..ℓ], by the inductive
hypothesis, there exist ⟨{x1, . . . ,x#Bi},ci,Mi⟩ ∈ ⟨⟨Bi⟩⟩♯k∆ , for i ∈ [1..ℓ], such that:

– CS(si(x j)) = c(x j), for all j ∈ [1..#Bi],
– Mi = [[CSi(u) | u ∈ Di]].

Let ⟨fv(ψ0),c0, /0⟩ def

= γ(ψ0) be a color triple. Since S0 |=s ψ0, we have CS0(s(x j)) =
c(x j), for all j ∈ [1..#B0]. By definition, there exists a constraint of the form (4) for
the above rule (5). We prove that the •♯k-composition from the right-hand side of the
constraint is defined. Suppose, for a contradiction, that ci(x)∩ c j(x) ̸= /0, for some
x ∈ {zi,1, . . . ,zi,#Bi}∩{z j,1, . . . ,z j,#B j} and 1≤ i < j≤ ℓ. Then CSi(x)∩CS j(x) ̸= /0, con-
tradicting the fact that Si •S j is defined. The same reasoning applies if c0(x)∩ci(x) ̸= /0,
for some x ∈ fv(ψ)∩{zi,1, . . . ,zi,#Bi} and i ∈ [1..ℓ]. Then, there exists a triple:

⟨X ′,c′,M′⟩ ∈ ⟨fv(ψ0),c0, /0⟩ •♯k
♯k•

i∈[1..ℓ]
⟨{x1, . . . ,x#Bi},ci,Mi⟩[x1/zi,1, . . . ,x#Bi/zi,#Bi]

W.l.o.g. we can chose the tuple such that M′ = M1 ∪ . . .∪Mℓ. This choice is possi-
ble since card(M′) = ∑

ℓ
i=1 card(Mi) = ∑

ℓ
i=1 card(Di) ≤ card(D) ≤ k. Let ⟨X ,c,M⟩ ∈

⟨X ′,c′,M′⟩⇃♯k{x1 ,...,x#B0
} be such that M = M′ ∪ [[CS0(u) | u ∈ D0]]. This choice is possible,

since card(M)≤ ∑
ℓ
i=0 card(Di)≤ k. We prove the points of the statement:

– Let i ∈ [1..#B0] be an index. By the definition of the •♯k-composition, we have:

CS(s(xi)) = CS0•...•Sℓ(s(xi)) =
ℓ⋃

j=0

CS j(s(xi)) =
ℓ⊎

j=0

c j(xi) = c′(xi) = c(xi)

– M =
⋃ℓ

i=0[[CSi(u) | u ∈ Di]] = [[CS0•...•Sℓ(u) | u ∈
⊎ℓ

i=0 Di]] = [[CS(u) | u ∈ D]]

”⊇” We prove the following, more general, property:

Let ⟨{x1, . . . ,x#B0},c,M⟩ ∈ ⟨⟨B0⟩⟩♯k∆ be a color triple. Then there exists a com-
plete ∆-unfolding B0(x1, . . . ,x#B0)⇒∗∆ ∃y1 . . .∃yn . φ, whose steps belong to a
complete ∆-unfolding of A, such that φ is a qpf formula, a store s injective
over {x1, . . . ,x#B0}∪{y1, . . . ,yn}, a structure S= (U,σ) such that S |=s φ and
D ⊆ supp(σ) \ {s(x1), . . . ,s(x#B0)}, card(D) ≤ k, such that CS(s(xi)) = c(xi),
for all i ∈ [1..#B0] and M = [[CS(u) | u ∈ D]].

The proof is by induction on the length of the finite fixpoint iteration that produced
⟨{x1, . . . ,x#B0},c,M⟩. Assume that the last step of the iteration corresponds to a con-
straint of the form (4), with a qpf formula ψ0. By definition, there exists a rule of the
form (5) in ∆, with the same qpf formula ψ0. Then ψ0 is satisfiable, because each ∆-
unfolding of A yields a satisfiable formula. Then there exists a color triple:

⟨X ′,c′,M′⟩ ∈ γ(ψ0)•♯k
♯k•

i∈[1..ℓ]
⟨⟨Bi⟩⟩♯k∆ [x1/zi,1, . . . ,x#Bi/zi,#Bi]

such that ⟨{x1, . . . ,x#B0},c,M⟩ ∈ ⟨X ′,c′,M′⟩⇃
♯k
{x1 ,...,x#B0

}, i.e., c = c′⇃{x1 ,...,x#B0
} and M ⊆

M′∪{c′(x) | x ∈ X ′ \{x1, . . . ,x#B0}}. Then, there exist ⟨fv(ψ0),c0, /0⟩ def

= γ(ψ0) and ⟨{zi,1, . . . ,zi,#Bi},c′i,Mi⟩ ∈
⟨⟨Bi⟩⟩♯k∆ [x1/zi,1, . . . ,x#Bi/zi,#Bi], for all i ∈ [1..ℓ], such that ⟨X ′,c′,M′⟩ ∈ ⟨fv(ψ0),c0, /0⟩•♯k

•♯kℓ
i=1⟨{zi,1, . . . ,zi,#Bi},c′i,Mi⟩, hence there exist ⟨{x1, . . . ,x#Bi},ci,Mi⟩ ∈ ⟨⟨Bi⟩⟩♯k∆ such

that c′i = ci ◦ [x1/zi,1, . . . ,x#Bi/zi,#Bi], for all i ∈ [1..ℓ]. By the inductive hypothesis, for
all i ∈ [1..ℓ], there exist:

– a complete unfolding Bi(x1, . . . ,x#Bi)⇒∗∆ ∃y ji,1 . . .∃y ji,ki
. ψi such that ψi is a qpf

formula. By applying an α-renaming, if necessary, we assume w.l.o.g. that the vari-
ables y j1,1 . . .y jℓ,kℓ

are pairwise distinct and, moreover, distinct from x1, . . . ,x#B0 .
– a store si that is injective over {x1, . . . ,x#Bi}∪{y ji,1 , . . . ,y ji,ki

}. We assume w.l.o.g.
that si(x j) = sk(xm) iff zi, j and zk,m are the same variable in the rule (5), for all
1 ≤ i < k ≤ ℓ, j ∈ [1..#Bi] and m ∈ [1..#Bk]. Note that this assumption does not
contradict the fact that si is injective over {x1, . . . ,x#Bi}∪{y ji,1 , . . . ,y ji,ki

}.
– a structure Si = (Ui,σi) such that Si |=si ψi. We assume w.l.o.g. that supp(σi)∩

supp(σ j)⊆ {si(x1), . . . ,si(x#Bi)}∩{s j(x1), . . . ,s j(x#B j)}. Note that this is possible
by the assumption that ∆ is equality-free.

– a set Di ⊆ supp(σi) \ {si(x1), . . . ,si(x#Bi)}, such that card(Di) ≤ k, CSi(si(x j)) =
ci(x j), for all j ∈ [1..#Bi] and Mi = [[CSi(u) | u ∈ Di]].

We prove the points of the statement. Let θi be the substitution [x1/zi,1, . . . ,x#Bi/zi,#Bi],
for each i ∈ [1..ℓ], where Bi(zi,1, . . . ,zi,#Bi) is a predicate atom that occurs on the right-
hand side of the rule (5). A complete ∆-unfolding B0(x1, . . . ,x#B0)⇒∗∆ ∃y1 . . .∃yn . ψ is
built from the rule (5) above, with qpf formula ψ0, followed by Bi(x1, . . . ,x#Bi)θi ⇒∗∆
∃y ji,1 . . .∃y ji,ki

. ψiθi, for all i ∈ [1..ℓ]. Hence ψ = ψ0 ∗∗ ℓ
i=1 ψiθi modulo a reordering

of atoms. Let s′i
def

= si ◦θi and define the store s as follows:

– s(z) def

= s′i(z), for each each z ∈ fv(ψiθi),
– s(z) ̸∈

⋃ℓ
i=1 s

′
i(fv(ψiθi)), for each variable z ∈ fv(ψ0) \

⋃ℓ
i=1 fv(ψiθi) such that,

moreover, s is injective over fv(ψ0). Note that this is possible because we assumed
∆ to be equality-free.

Then, we consider a structure S0 = (U0,σ0) such that:
– S0 |=s ψ0, and
– supp(σ0)∩ supp(σi)⊆ s(fv(ψ0))∩ s(fv(ψiθi)), for all i ∈ [1..ℓ].

Since ψ0 is satisfiable, such a structure exists and we can consider w.l.o.g. that it satisfies
the above conditions, because ∆ is equality-free. It is easy to check that the structures
S0, . . . ,Sℓ are pairwise locally disjoint, hence S= (U,σ)

def

= S0 • . . .•Sℓ is defined. More-
over, we have S |=s ψ, because ψ = ψ0 ∗∗ ℓ

i=1 ψiθi, S0 |=s ψ0 and Si |=s ψiθi, for all

i ∈ [1..ℓ]. Further, for all j ∈ [1..#B0], we have:

CS(s(x j)) = CS0•...•Sℓ(s(xi)) =
ℓ⊎

i=0

ci(x j) = c′(x j) = c(x j)

We consider the set D def

= {u ∈ supp(σ) | CS(u) ∈M}. Suppose, for a contradiction, that
s(xi) ∈ D, for some i ∈ [1..#B0]. Then CS(s(xi)) ∈ M, hence c(xi) ∈ M. Since M ⊆
M′ ∪{c′(x) | x ∈ X ′ \{x1, . . . ,x#B0}}, we must have c(xi) ∈ M′ ⊆

⋃ℓ
j=1 M j and let j ∈

[1..ℓ] be such that c(xi) ∈M j = [[CS j | u ∈ D j]], by the inductive hypothesis. Then there
exists k ∈ [1..#B j] such that c(xi) = c j(xk) = CSi(s j(xk)), thus s j(xk)∈D j ⊆ supp(σ j)\
{s j(x1), . . . ,s j(x#B j)}, contradiction. We obtained D ⊆ supp(σ) \ {s(x1), . . . ,s(x#B0)}
and are left with proving that M = [[CS(u) | u ∈ D]]. “⊇” Immediate, by the definition of
D. “⊆” Let C ∈M be a color. Then either one of the following holds:

– C = {r ∈ R | r(z, . . . ,z) occurs in ψ0}∪
⋃ℓ

i=1 ci(z), for some z∈ fv(ψ0): in this case,
C = CS(s(z)) and s(z) ∈ supp(σ), hence s(z) ∈ D.

– C ∈Mi, for some i ∈ [1..ℓ]: in this case, C = CS(u) = CSi(u), for some u ∈ Di, by
the inductive hypothesis. Then u ∈ supp(σi)⊆ supp(σ), hence u ∈ D. ⊓⊔

Lemma 36. For any equality-free SID ∆ and a nullary predicate symbol A, such that
each complete ∆-unfolding of A yields a satisfiable formula, one can effectively build a
SID Γ and a nullary predicate P such that split([[A]]c

∆
) = [[P]]c

Γ
.

Proof (Proof of Lemma 36). “⊆” We prove first the following fact:

Fact 12 Let B0(x1, . . . ,x#B0)⇒∗∆ ∃y1 . . .∃yn . φ be a complete ∆-unfolding, where φ is
a qpf formula, s a store injective over {x1, . . . ,x#B0}∪{y1, . . . ,yn}, S = (U,σ) a struc-
ture such that S |=s φ and S′ = (U′,σ′) a structure, such that S′ ⊑mc S and supp(σ′)∩
{s(x1), . . . ,s(x#B0)} ≠ /0. Then, there exist a nonempty set J0 ⊆ [1..#B0], equivalence
relation ξ0 ⊆ J0× J0 and complete Γ-unfolding B0(x1, . . . ,x#B0)/ξ0 ⇒

∗
Γ
∃y1 . . .∃yn . φ′,

where φ′ is a qpf formula, such that S′ |=s φ′.

Proof. By induction on the length of the ∆-unfolding. Assume the first rule in this
unfolding to be of the form (5), for a qpf formula ψ0. Then, there exist:

– unfoldings Bi(x1, . . . ,x#Bi)⇒∗∆ ∃y ji,1 . . .∃y ji,ki
. φi, where y ji,1 , . . . ,y ji,ki

∈{y1, . . . ,yn}
and φi are qpf formulæ, for all i ∈ [1..ℓ], and

– structures S0 = (U0,σ0), . . . ,Sℓ = (Uℓ,σℓ), such that S0 • . . .•Sℓ = S, S0 |=s ψ0 and
Si |=s φiθi, where θi

def

= [x1/zi,1, . . . ,x#Bi/zi,#Bi], for all i ∈ [1..ℓ].
Since S′ ⊑mc S0 • . . .•Sℓ is a maximally connected structure, there must exist structures
S′0 = (U0,σ

′
0), S

′
i1 = (Ui1 ,σ

′
i1), . . . ,S

′
ik = (Uik ,σ

′
ik), for i1, . . . , ik ∈ [1..ℓ], such that:

– S′ = S′0 •S′i1 • . . .•S
′
ik ,

– supp(σ′ih)∩{s(zih,1), . . . ,s(zim,#Bih
)} ̸= /0 and S′ih ⊑

mc Sih , for all h ∈ [1..k],
– supp(σ′)∩{s(zi,1), . . . ,s(zi,#Bi)}= /0, for all i ∈ [1..ℓ]\{i1, . . . , ik}.

Since Sih |=s φihθih , we have Sih |=
s◦θ−1

ih φih , for all h ∈ [1..k]. By the inductive hypoth-
esis, there exist nonempty sets Ji1 ⊆ [1..#Bi1], . . . ,Jik ⊆ [1..#Bik], equivalence relations
ξi1 ⊆ Ji1 × Ji1 , . . . ,ξik ⊆ Jik × Jik and complete Γ-unfoldings:

Bih(x1, . . . ,x#Bih
)/ξih
⇒∗

Γ
∃y jih ,1

. . .∃y jih ,kih
. φ
′
ih

such that S′ih |=
s◦θ−1

ih φ′ih , for all h ∈ [1..k]. Then, we define:

– sets Jih
def

= [1..#Bi]\ Jih , for all h ∈ [1..k],
– qpf formulæ ψ′0 and ψ′′0 satisfying points (i) and (ii) from the construction of Γ,
– an equivalence relation Ξ

def

=
(
ζ(ψ′0)∪

⋃k
h=1 ξih(Bih(zih,1, . . . ,zih,#Bih

))
)=.

We argue that the construction of the formulæ ψ′0 and ψ′′0 is effective. There are no
(dis-)equalities in ∆, i.e., ψ0 consists of relation atoms only. Each atom α of ψ0, such
that fv(α)∩ fvJih

(Bih(zih,1, . . . ,zih,#Bih
)) ̸= /0, for some h ∈ [1..k], is added to ψ′0. More-

over, each atom α of ψ0, such that fv(α) ∩ fvJih
(Bih(zih,1, . . . ,zih,#Bih

)) = /0, for all
h ∈ [1..k] is added to ψ′′0 . Note that, each atom can only be added either to ψ′0 or ψ′′0
but not to both, because S′ih ⊑

mc Sih and S′ih |=
s φ′ih imply that no further element can

be added to S′ih , for all h ∈ [1..k]. The rest of the atoms α from ψ0, i.e., such that
fv(α)∩ fvJih

(Bih(zih,1, . . . ,zih,#Bih
)) = /0 and fv(α)∩ fvJih

(Bih(zih,1, . . . ,zih,#Bih
)) = /0, for

all h ∈ [1..k], are split between ψ′0 and ψ′′0 , by repeating the following steps until a
fixpoint is reached:

– if fv(α)∩ fv(ψ′0) ̸= /0, then update ψ′0 as ψ′0 ∗α,
– else, update ψ′′0 as ψ′′0 ∗α.

By construction, we obtain that fv(ψ′0)∩ fv(ψ′′0) = /0, as required at point (i).
Let J0

def

= { j ∈ [1..#B0] | s(x j) ∈ supp(σ′)}. Note that J0 ̸= /0 because supp(σ′)∩
{s(x1), . . . ,s(x#B0)} ̸= /0. We define the equivalence relation ξ0 ⊆ J0× J0 as follows:

(i, j) ∈ ξ0
def⇐⇒ (xi,x j) ∈ Ξ

Moreover, one can show that S′0 |=s ψ′0, by the construction of ψ′0 and ψ′′0 , hence ξ0
satisfies the conditions (iv-vii) from the definition of Γ, hence Γ contains a rule of the
form (6), with qpf formula ψ′0. Since S′ |=s ψ′0 ∗∗ k

h=1 φ′ihθh and φ′ = ψ′0 ∗∗ k
h=1 φ′ihθh

modulo a reordering of atoms, we obtain that S′ |=s φ′. ⊓⊔

The proof is completed as follows. Let S′ ∈ split([[A]]c
∆
) be a maximally connected

substructure of a canonical model S ∈ [[A]]c
∆

. Then, there exists a complete ∆-unfolding
A⇒∗

∆
∃y1 . . .∃ym . φ and a store s, injective over y1, . . . ,ym, such that S |=s φ. Because

S′ is connected, there exists a unique (i) predicate atom B0(z1, . . . ,z#B0), (ii) subformula
φ of φ and (iii) structure S′′ ⊑ S, such that B0(z1, . . . ,z#B0)⇒∗∆ ∃yi1 . . .∃yin . φ is a com-
plete unfolding, supp(S′′)∩{s(z1), . . . ,s(z#B0)} = /0, S′′ |=s φ and S′ ⊑mc S′′. Without
losing generality, we assume that the above is the smallest ∆-unfolding with these prop-
erties and assume that the first rule of the ∆-unfolding is of the form (5), with a qpf
formula ψ. Then, because S′ is connected, the right-hand side of this rule contains zero
or more predicate atoms Bih(zih,1, . . . ,zih,#Bih

), for ih ∈ {i1, . . . , ik} ⊆ [1..ℓ], such that
supp(σ′)∩{s(zih,1), . . . ,s(zih,#Bih

)} ≠ /0. Accordingly, we decompose S′′ = S′′0 • . . .•S′′k
such that S′′0 |=s ψ0 and S′′h |=s φh, where Bih(zih,1, . . . ,zih,#Bih

)⇒∗
∆
∃y jh,1 . . .∃y jh,mh

. φh

are complete unfoldings, for all h ∈ [1..k]. This decomposition of S′′ induces a de-
composition of S′ ⊑mc S′′ as S′0 • . . . • S′k = S′ such that S′h ⊑mc S′′h and supp(σ′h)∩
{s(zih,1), . . . ,s(zih,#Bih

)} ̸= /0, for all h ∈ [1..k]. Applying Fact 12, we find nonempty
subsets Jh ⊆ [1..#Bih], equivalence relations ξh ⊆ Jh× Jh and complete Γ-unfoldings
Bih(zih,1, . . . ,zih,#Bih

)/ξh
⇒∗

Γ
∃yph,1 . . .∃yph,nh

. φ′h, such that S′h |=s φ′h, for all h ∈ [1..k].
We define the sets Jh = [1..#Bih] \ Jh and the formulæ ψ′0 and ψ′′0 such that conditions

(i) and (ii) are met. Let Ξ
def

=
(
ζ(ψ′0)∪

⋃k
h=1 ξih(Bih(zih,1, . . . ,zih,#Bih

))
)= be an equiv-

alence relation. Since S′ is connected, we argue that Ξ has a single equivalence class.
Moreover, (z,z) ̸∈Ξ, for all z∈ {z1, . . . ,z#B0}, since supp(S′′)∩{s(z1), . . . ,s(z#B0)}= /0

and s is injective. Then, by definition, Γ contains a rule of the form (7). This rule and
the complete unfoldings Bih(zih,1, . . . ,zih,#Bih

)⇒∗
Γ
∃y jh,1 . . .∃y jh,mh

. φ′h, for all h ∈ [1..k],
are composed to make up a complete Γ-unfolding P⇒Γ ∃yq1 . . .∃yqr . ψ′0 ∗∗ k

h=1 φ′h,
such that S′ |=s ψ′0 ∗∗ k

h=1 φ′h. Since yq1 , . . . ,yqr ∈ {y1, . . . ,ym} and s is injective over
y1, . . . ,ym, we obtain that S′ ∈ [[P]]c

Γ
.

“⊇” We prove first two related facts. First, let B0(x1, . . . ,x#B0)/ξ0 ⇒
∗
Γ
∃y1 . . .∃yn . φ be a

complete Γ-unfolding, where φ is a qpf formula, J0 ⊆ [1..#B0] a nonempty set and ξ0 ⊆
J0× J0 an equivalence relation, s be a store injective over {x1, . . . ,x#B0}∪{y1, . . . ,yn}
and S= (U,σ) be a structure such that S |=s φ. Given an equivalence class I ⊆ J0 of ξ0,
we define the structure:

reachsS(I)
def

= (U,λr . {⟨u1, . . . ,u#r⟩ ∈ σ(r) | ∀ j ∈ [1..#r] ∃i ∈ I . s(xi) connected to u j in S})

Fact 13 reachsS(I)⊑mc S.

Proof. By induction on the length of the Γ-unfolding. Assume that the first rule of
the unfolding is of the form (6), with a qpf formula ψ0. Then, there exist nonempty
sets Jih ⊆ [1..#Bih] and equivalence relations ξih ⊆ Jih × Jih , for some i1, . . . , ik ∈ [1..ℓ]
and all h ∈ [1..k] and an equivalence relation Ξ ⊆

(
{x1, . . . ,x#B0} ∪ {y1, . . . ,ym}

)
×(

{x1, . . . ,x#B0}∪ {y1, . . . ,ym}
)
, that satisfy points (i-vii) from the definition of Γ. By

point (vii), {xi | i ∈ I} is an equivalence class of Ξ⇃x1 ,...,x#B0
and let X ⊆ fv(ψ′0)∪

⋃k
h=1{zih,1, . . . ,zih,#Bih

}
be the unique equivalence class of Ξ that contains it. For each h∈ [1..k], let Ih⊆ [1..#Bih]
be the equivalence class of ξih used to define X (iii).

Let Bih(x1, . . . ,x#Bih
)⇒∗

Γ
∃y jh,1 . . .∃y jh,mh

. φh be complete Γ-unfoldings, such that

φ = ψ′0 ∗∗ k
h=1 φhθh, where θh

def

= [x1/zih,1, . . . ,x#Bih
/zih,#Bih

], for each h ∈ [1..k]. Since
S |=s φ, there exist structures S0 = (U0,σ0), . . . ,Sk = (Uk,σk) such that S0 |=s ψ′0 and
Sh |=s φhθh, or equivalently, Sh |=s◦θ−1

h φh for all h∈ [1..k]. By the inductive hypothesis,

we have reach
s◦θ−1

h
Sh

(Ih) ⊑mc Sh, for all h ∈ [1..k]. Since X is an equivalence class of Ξ,
by point (iii) of the definition of Γ, we obtain that reachsS(I)⊑mc S. ⊓⊔

Second, let B0(x1, . . . ,x#B0)⇒∗∆ ∃y1 . . .∃ym . φ′ be the complete ∆-unfolding obtained
by replacing each rule of the form (6) with its corresponding rule (5) in the above Γ-
unfolding, such that φ′ is a qpf formula and y1, . . . ,yn ∈ {y1, . . . ,ym}. Note that the latter
can be assumed w.l.o.g., if necessary, by a renaming of the quantified variables.

Fact 14 There exists a store s′, that is injective over y1, . . . ,ym and agrees with s over
y1, . . . ,yn, and a structure S′ = (U,σ′), such that S′ |=s′ φ′ and reachsS(I) ⊑mc S′, for
each equivalence class I ⊆ J0 of ξ0.

Proof. The store s′ is defined as:
– s′(yi) = s(yi), for each i ∈ [1..n],
– s′(yi) is chosen from U\{s(y1), . . . ,s(yn)} such that, moreover, s′(yi) ̸= s′(y j), for

all n+1≤ i < j ≤ m.

Note that s′ can be build, because U is infinite. Because of the assumption that each
predicate defined by a rule from ∆ occurs on some complete ∆-unfolding of A, there
exists a complete ∆-unfolding:

A⇒∆ . . .⇒∆ B0(z1, . . . ,z#B0)∗φ
′′⇒∆ (∃y1 . . .∃ym . φ

′)[x1/z1, . . . ,x#B0/z#B0]∗φ
′′

where φ′′ is a predicate-free formula, possibly containing existential quantifiers. Since
every complete ∆-unfolding of A yields a satisfiable formula, there exists a store s′′ that
agrees with s′ ◦ [z1/x1, . . . ,z#B0/x#B0] over y1, . . . ,ym and a structure S′′, such that:

S′′ |=s′′ (∃y1 . . .∃ym . φ
′)[x1/z1, . . . ,x#B0/z#B0]∗φ

′′

Note that, in the above construction, we have taken s′′ to agree with s′ over y1, . . . ,ym.
This is possible because there are no (dis-)equalities in ∆ and the set of models of a qpf
formula is closed under isomorphism-preserving renaming of elements.

Let S′ and S′′′ be structures such that S′′= S′•S′′′, S′ |=s′′ φ′[x1/z1, . . . ,x#B0/z#B0], or
equivalently S′ |=s′ φ′, and S′′′ |=s′′ φ′′. By induction on the length of the ∆-unfolding,
relying on by point (i) of the definition of Γ, one can prove that φ′ = φ ∗ φ, where φ

is a qpf formula, such that fv(φ)∩ fv(φ) = /0. Since S′ |=s′ φ′, there exists a structure
S= (U,σ), such that S′ = S•S. Moreover, since s′ is injective over y1, . . . ,ym, by con-
struction, we obtain supp(σ)∩ supp(σ) = /0. Let I ⊆ J0 be an equivalence class of ξ0.
By Fact 13, we have reachsS(I)⊑mc S. Since S′ = S•S and supp(σ)∩ supp(σ) = /0, we
obtain reachsS(I)⊑mc S′. ⊓⊔

The proof is completed as follows. Let S ∈ [[P]]c
Γ

be a canonical Γ-model of P, i.e.,
there exists a complete Γ-unfolding P⇒∗

Γ
∃y1 . . .∃yn . φ, where φ is a qpf formula, and

a store s injective over y1, . . . ,yn such that S |=s φ. By the definition of Γ, the first rule of
this unfolding is of the form (7), with a qpf formula ψ0. Then there exist Γ-unfoldings
Bi(x1, . . . ,x#Bi)/ξi ⇒

∗
Γ
∃y ji,1 . . .∃y ji,mi

. φi, for some sets Ji ⊆ [1..#Bi] and equivalence
relations ξi ⊆ Ji× Ji, for i ∈ [1..ℓ], such that:

φ = ψ0 ∗ ∗
i∈[1..ℓ], Ji ̸= /0

φiθi (8)

where θi
def

= [x1/zi,1, . . . ,x#Bi/zi,#Bi], i∈ [1..ℓ]. Let {i1, . . . , ik}
def

= {i ∈ [1..ℓ] | Ji ̸= /0}. Then,
there exist structures S0 • . . .•Sk = S, such that S0 |=s ψ0 and S j |=s φi j θi j , for i∈ [1..ℓ].
By the definition of Γ, there exists a complete ∆-unfolding:

B0(x1, . . . ,x#B0)⇒∆ ∃y1 . . .∃ym . ψ
′
0 ∗

ℓ∗
i=1

Bi(zi,1, . . . ,zi,#Bi)⇒∆ . . . (9)

⇒∗
∆
∃y1 . . .∃yp . ψ

′
0 ∗

k∗
j=1

φ
′
i j

θi j ∗ η

for qpf formulæ ψ′0,φ
′
i1 , . . . ,φ

′
ik and predicate-free formula η. Consider the equivalence

relation:

Ξ
def

=
(
ζ(ψ0)∪

k⋃
j=1

ξi j(Bi j(zi j ,1, . . . ,zi j ,#Bi j
))
)=

over {x1, . . . ,x#B0}∪ {y1, . . . ,ym}. By point (viii), Ξ has a single equivalence class X
such that:

– X ∩{x1, . . . ,x#B0}= /0, and
– the sets I j

def

= {h ∈ [1..#Bi j] | zi j ,h ∈ X} are unions of equivalence classes of ξi j ,
namely I j = I j,1⊎ . . .⊎I j,q j , where I j,h are equivalence classes of ξi, for all j∈ [1..k].

By Fact 14, there exist a store s′, that is injective over y1, . . . ,yp and agrees with s over
y1, . . . ,yn, and structures S′1, . . . ,S

′
k, such that S′j |=s′ φ j and reachs

′
S j
(I j,h) ⊑mc S′j, for

all j ∈ [1..k] and h ∈ [1..q j]. We argue that S j =•q j
h=1 reachs

′
S j
(I j,h) ⊑mc S′j. Moreover,

since s′ is injective over y1, . . . ,yn, one can build a structure S′0, such that S′0 |=s′ ψ′0.
We define S′ def

= S′0 ••k
j=1S

′
j. Thus, we have S⊑mc S′ and we are left with showing that

S′ can be embedded in a canonical ∆-model of A.
By the assumption that each predicate defined by ∆ occurs on some complete ∆-

unfolding of A, there exists another complete ∆-unfolding:

A⇒∆ . . .⇒∆ B0(z0,1, . . . ,z0,#B0)∗ζ

⇒∆ (∃y1 . . .∃ym . ψ0 ∗
ℓ∗

i=1
Bi(zi,1, . . . ,zi,#Bi))[x1/z0,1, . . . ,x#B0/z0,#B0]∗ζ

⇒∆ . . .⇒∆ (∃y1 . . .∃yn . ψ
′
0 ∗

k∗
i=1

φ
′
iθi ∗ η)[x1/z0,1, . . . ,x#B0/z0,#B0]∗ζ

for some predicate-free formula ζ
def

= ∃yn+1 . . .∃yp . η, for some variables yn+1, . . . ,yp,
such that {yn+1, . . . ,yp} ∩ {y1, . . . ,yn} = /0 and a qpf formula η. Since this latter ∆-
unfolding yields a satisfiable formula, there exists a structure S′′ and a store s′′, injective
over y1, . . . ,yp, that agrees with s′ over y1, . . . ,yn, such that S′′ |=s′′ η. Then, S′ •S′′ ∈
[[A]]c

∆
and, since S⊑mc S′, we obtain S⊑mc S′ •S′′, leading to S ∈ split([[A]]c

∆
). ⊓⊔

	The Treewidth Boundedness Problem for an Inductive Separation Logic of Relations

