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An asymptotically orthonormal sequence is a sequence which is "nearly" orthonormal in the sense that it satisfies the Parseval equality up to two constants close to one. In this paper, we explore such sequences formed by normalized reproducing kernels for model spaces and de Branges-Rovnyak spaces.

Introduction

When working in Hilbert spaces, it is very natural and useful to deal with orthonormal bases. However, in many situations, the system we are interested in does not form an orthonormal basis but is close to one. The investigation of such bases has a long history. It started with the works of Paley-Wiener [START_REF] Paley | Fourier transforms in the complex domain[END_REF] and Levinson [START_REF] Levinson | Gap and Density Theorems[END_REF], mainly for exponential systems. In this context, functional models have been used in [START_REF] Hruschev | Unconditional bases of exponentials and of reproducing kernels[END_REF] together with some other tools from operator theory. The model spaces K Θ of the unit disc are subspaces of the Hardy space H 2 (D) invariant under the adjoints of multiplications. Their theory is connected to dilation theory for contractions on Hilbert spaces. The paper [START_REF] Hruschev | Unconditional bases of exponentials and of reproducing kernels[END_REF] has inspired a fruitful line of research on geometric properties of systems formed by reproducing kernels for K Θ . Not only did it enable the recapture of all classical results on exponential systems, but it also provided many new results in a more general context.

In [START_REF] Chalendar | Functional models and asymptotically orthonormal sequences[END_REF], along the line of research of [START_REF] Hruschev | Unconditional bases of exponentials and of reproducing kernels[END_REF], the authors studied the case when the system of normalized reproducing kernels (κ Θ λn ) n for K Θ is asymptotically close to an orthonormal basis (see definition below). This is a particular case of unconditional basis where more rigidity is required. It should be noted that in [START_REF] Hruschev | Unconditional bases of exponentials and of reproducing kernels[END_REF] and [START_REF] Chalendar | Functional models and asymptotically orthonormal sequences[END_REF], the additional assumption (1.1) sup

n≥1 |Θ(λ n )| < 1
is required. Under that assumption, the projection method developed in [START_REF] Hruschev | Unconditional bases of exponentials and of reproducing kernels[END_REF] and used in [START_REF] Chalendar | Functional models and asymptotically orthonormal sequences[END_REF] linked the properties of (κ Θ λn ) n with those of normalized reproducing kernels (κ λn ) n for H 2 (D). Volberg proved in [START_REF] Volberg | Two remarks concerning the theorem of S. Axler[END_REF] that (κ λn ) n is an asymptotically orthonormal basis for its closed span if and only if (λ n ) n is a thin sequence (a stronger condition than Carleson's condition). This beautiful result was recently reproved by Gorkin-McCarthy-Pott-Wick [START_REF] Gorkin | Thin sequences and the gram matrix[END_REF] by a direct and easier method using ideas from interpolation theory.

Following the work of Baranov [START_REF] Baranov | Stability of bases and frames of reproducing kernels in model spaces[END_REF] for Riesz bases, we are interested in this paper in investigating asymptotically orthonormal bases of reproducing kernels for K Θ without requiring assumption (1.1). In this situation, the projection method no longer applies and the main tool here will be Bernstein's type inequalities. We also work in the more general context where model spaces K Θ are replaced by de Branges-Rovnyak spaces H(b). We should mention that we work, in this paper, in the upper-half plane but most results transfer easily to the unit disc.

The plan of the paper is the following. The next section contains preliminary material ; in particular, an analogue of Bari's theorem is given, which completes a result given in [START_REF] Chalendar | Functional models and asymptotically orthonormal sequences[END_REF]. In Section 3, we study the stability of asymptotically orthonormal sequences with respect to perturbation of frequencies. The main results of the paper are Theorem 3.6, Corollary 3.13, Theorem 3.24 and Corollary 3.27. In Section 4, we study the case of exponential systems. Finally, in the last section, we examine what happens when one projects an AOB (κ b 1 λn ) n≥1 on a subspace H(b 2 ) of H(b 1 ).
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Preliminaries

2.1. Asymptotically orthonormal sequences. Let H be a Hilbert space, X = (x n ) n≥1 be a sequence of vectors in H. We recall that X is said to be: (a) minimal if for every n ≥ 1,

x n ∈ span(x : = n), where span(. . . ) denotes the closure of the finite linear combination of (. . . ); (b) A Riesz sequence (abbreviated RS) if there exists two constants c, C > 0 such that

c n≥1 |a n | 2 ≤ n≥1 a n x n 2 H ≤ C n≥1 |a n | 2 ,
for every finitely supported sequence of complex numbers (a n ) n ; (c) An asymptotically orthonormal sequence (abbreviated AOS) if there exists N 0 ∈ N such that for all N ≥ N 0 there are constants c N , C N > 0 verifying

(2.1) c N n≥N |a n | 2 ≤ n≥N a n x n 2 H ≤ C N n≥N |a n | 2 ,
for every finitely supported sequence of complex numbers (a n ) n and lim N →∞ c N = 1 = lim N →∞ C N ; (d) An asymptotically orthonormal basic sequence (abbreviated AOB) if it is an AOS with N 0 = 1; (e) A Riesz basis for H (abbreviated RB) if it is a complete Riesz sequence, that is a Riesz sequence satisfying span(x n : n ≥ 1) = H.

It is easy to see that (x n ) n≥1 is an AOB if and only if it is an AOS as well as a RS. Also, (x n ) n≥1 is an AOB if and only if it is minimal and an AOS. The well-known result of Köthe-Toeplitz ([14, page 136]) says that if X = (x n ) n≥1 is a complete and minimal sequence of normalized vectors in H, then X is a Riesz basis for H if and only if X is an unconditional basis for H. The reader should pay attention to the fact that AOB does not imply completeness; an AOB is a basis for its span but not necessarily for the whole space. We recall also that for a sequence X = (x n ) n≥1 , the Gram matrix

Γ X = (Γ n,p ) n,p≥1 is defined by Γ n,p = x n , x p H , (n, p ≥ 1).
If X = (x n ) n≥1 is a complete and minimal sequence and

X * = (x * n ) n≥1 is its biorthogonal sequence, that is the unique sequence (x * n ) n≥1 in H satisfying x , x * n H = δ n, =    1 if n = 0 if n = ,
the interpolation operator J X is defined as

J X x = ( f, x * n H ) n≥1 , (x ∈ H).
We finally recall that X = (x n ) n≥1 is a Riesz basis for H if and only if there exists a (unique) invertible operator

U X : H -→ 2 such that U X (x n ) = e n , n ≥ 1,
where (e n ) n≥1 is the canonical orthonormal basis for 2 . The operator U X is called the orthonormalizer of X . We refer the reader to [START_REF] Nikolski | Treatise on the Shift Operator-Spectral Function Theory[END_REF], [START_REF] Fricain | The theory of H(b) spaces, volume 20 & 21 of New Mathematical Monographs[END_REF] or [START_REF] Young | An Introduction to Nonharmonic Fourier series[END_REF] for details on general geometric properties of sequences in an Hilbert space. Bari's theorem (see [14, page 132]) gives several caracterizations for a sequence to be a RB in terms of its Gram matrix and the interpolation operator. An analogue of Bari's result for complete AOB is also available. A part of this can be found in [START_REF] Chalendar | Functional models and asymptotically orthonormal sequences[END_REF]. To complete the picture, we need two preliminaries results. First we introduce a notation. Let T ∈ L(H 1 , H 2 ). We say that T ∈ UK(H 1 , H 2 ) if T is invertible from H 1 onto H 2 and can be written as T = U + K where U, K ∈ L(H 1 , H 2 ) and U is unitary and K is compact. Lemma 2.2. Let H 1 , H 2 , H 3 be Hilbert spaces. The following hold:

(a) If T 1 ∈ UK(H 1 , H 2 ) and T 2 ∈ UK(H 2 , H 3 ), then T 2 T 1 ∈ UK(H 1 , H 3 ); (b) If T ∈ UK(H 1 , H 2 ), then T -1 ∈ UK(H 2 , H 1 ); (c) If T ∈ UK(H 1 , H 2 ), then T * ∈ UK(H 2 , H 1 ).
Proof. The proofs of (a) and (c) are straightforward and are left to the reader. Let us prove (b). Assume that T = U + K is invertible with U unitary and K compact. Then, write

T = U (I + U * K) = U V with V = I + U * K. It is clear that V is invertible and I = V -1 + V -1 U * K. Hence V -1 = I -V -1 U * K,

and we get

T -1 = V -1 U * = U * -V -1 U * KU * , which implies that T -1 ∈ UK(H 2 , H 1 ).
Lemma 2.3. Let X = (x n ) n≥1 be a complete AOB for H and let C N be the constant appearing in the right inequality of (2.1). Then for every N ≥ 1 and f ∈ H, we have

n≥N | f, x n H | 2 ≤ C N f 2 H .
Proof. Let us denote by P N : 2 → 2 the orthogonal projection defined by

P N n≥1 a n e n = n≥N a n e n ,
where (e n ) n≥1 is the canonical orthonormal basis of 2 . For every a = (a n ) n≥1 ∈ 2 , define

V X a = n≥1 a n x n .
Since X is a Riesz basis, this map V X defines a continuous and invertible operator from 2 onto H. Moreover, for a ∈ 2 , we have

V X P N a 2 H = n≥N a n x n 2 H ≤ C N n≥N |a n | 2 ≤ C N a 2 2 ,
which gives

P N V * X = V X P N ≤ √ C N . But is is easy to see that V * X = J X * , whence P N J X * ≤ √
C N , and we get the desired inequality.

Theorem 2.4. Let X = (x n ) n≥1 be a complete and minimal sequence of vectors in H, X * = (x * n ) n≥1 its biorthogonal sequence. The following assertions are equivalent: (i) The sequence X is a complete AOB for H; (ii) There exists an operator U X ∈ UK(H, 2 ) such that U X (x n ) = e n , n ≥ 1; (iii) The Gram matrix defines a bounded and invertible operator on 2 of the form I + K with K compact;

(iv) J X * ∈ UK(H, 2 ); (v) The sequence X * is a complete AOB for H; (vi) There exists an invertible operator

U X : H -→ 2 such that U X (x n ) = e n , n ≥ 1, and if U X ,N : span(x n : n ≥ N ) -→ span(e n : n ≥ N ) is the restriction of U X to span(x n : n ≥ N ), then lim N →∞ U X ,N = 1 = lim N →∞ U -1 X ,N ;
(vii) For every N ≥ 1, there are two constants C N , C * N > 0 such that

(2.5) C * N -1 f 2 H ≤ n≥N | f, x n H | 2 ≤ C N f 2 H ,
for every f ∈ H span(x 1 , x 2 , . . . , x N -1 ) and lim

N →∞ C N = 1 = lim N →∞ C * N ; (viii)
The sequence X * is complete in H and for every N ≥ 1, there are two constants

C N , C * N > 0 such that (2.6) n≥N | f, x n H | 2 ≤ C N f 2 H and n≥N | f, x * n H | 2 ≤ C * N f 2 H , for every f ∈ H and lim N →∞ C N = 1 = lim N →∞ C * N .
Proof. The equivalences between (i), (ii) and (iii) are contained in [4, Proposition 3.2]. The equivalence with (iv) follows from Bari's theorem, the fact that J X * = V * X = (U -1 X ) * and Lemma 2.2. Let us now prove the others implications.

(ii) =⇒ (v): Since

δ n, = U X x n , U X x 2 = x n , U * X U X x H , we have x * = U * X U X x = U * X e , ≥ 1. Thus, U X * = (U * X ) -1
and X * is a complete and minimal sequence. Now (v) follows from Lemma 2.2 and the implication (ii) =⇒ (i) applied to X * . (v) =⇒ (i): Use the implication (i) =⇒ (v) applied to X * . (i) =⇒ (vi): By Bari's theorem, U X is a bounded and invertible operator from H onto 2 . Moreover, for every x = n≥N a n x n , we have

U X ,N x 2 2 = n≥N a n e n 2 2 = n≥N |a n | 2 ,
and using (2.1), we get

c N U X ,N x 2 2 ≤ x 2 H ≤ C N U X ,N x 2 2 .
Thus,

C -1/2 N ≤ U X ,N ≤ c -1/2 N
and U X ,N → 1 as N goes to ∞. Similarly we prove that U -1 X ,N → 1 as N goes to ∞.

(vi) =⇒ (i): By Bari's theorem, X is a Riesz basis. Moreover, we have

n≥N a n x n 2 H = U -1 X ,N n≥N a n e n 2 H ≤ U -1 X ,N 2 n≥N |a n | 2 ,
and

n≥N |a n | 2 = U X ,N n≥N a n x n 2 2 ≤ U X ,N 2 n≥N a n x n 2 H .
Then we obtain

U X ,N -2 n≥N |a n | 2 ≤ n≥N a n x n 2 H ≤ U -1 X ,N 2 n≥N |a n | 2 .
Since U X ,N and U - 

≤ C * N n≥N | f, x n H | 2 .
This proves the second inequality of (2.5).

(vii) =⇒ (v): Since

c * 1 -1 f 2 H ≤ n≥1 | f, x n H | 2 ≤ C 1 f 2 H ,
for every f ∈ H, the operator J X * is invertible from H onto 2 . Hence, according to Bari's theorem, the sequences X and X * are Riesz basis for H. Moreover, every f = n≥N a n x * n with (a n ) n≥N ∈ 2 satisfies f ∈ H span(x 1 , . . . , x N -1 ) and f, x k H = a k , k ≥ N . Hence by (2.5), we have

C * N -1 n≥N a n x * n 2 H ≤ n≥N |a n | 2 ≤ C N n≥N a n x * n 2 H
, and (x * n ) n≥1 is an AOB. (i) =⇒ (viii): Follows immediately from Lemma 2.3 and the fact that (i) =⇒ (v).

(viii) =⇒ (i): Let f = n≥N a n x n , where (a n ) n≥N is a finitely supported sequence of complex numbers. Then, applying the second inequality of (2.6) gives us

n≥N |a n | 2 ≤ C * N n≥N a n x n 2 H .
On the other hand, by duality and Cauchy-Schwarz inequality, we have

n≥N a n x n 2 H = sup g∈H g H ≤1 n≥N a n x n , g H 2 = sup g∈H g H ≤1 n≥N a n x n , g H 2 ≤ n≥N |a n | 2 sup g∈H g H ≤1 n≥N | x n , g H | 2 ≤ C N n≥N |a n | 2 .
We now give two simple conditions on the Gram matrix, one necessary and the other one sufficient for a sequence to be an AOB.

Proposition 2.8. Let X = (x n ) n≥1 be a sequence of normalized vectors in H and let Γ X = (Γ n,p ) n,p≥1 be its Gram matrix. The following hold:

(a) If lim N →∞     sup n≥N p≥N p =n |Γ n,p |     = 0, then (x n ) n≥1 is an AOS. (b) If (x n ) n≥1 is an AOB then lim n→∞     p≥1 p =n |Γ n,p | 2     = 0.
Proof. (a) Let (a n ) n≥1 be a finitely supported sequence of complex numbers and denote by

ε N = sup n≥N p≥N p =n |Γ n,p |. Write n≥N a n x n 2 H = n,p≥N a n a p x n , x p H = n≥N |a n | 2 + n,p≥N n =p a n a p Γ n,p .
We will prove the inequality (2.9)

n,p≥N n =p a n a p Γ n,p ≤ ε N n≥N |a n | 2 .
Using that ab ≤ (a 2 + b 2 )/2, for every real numbers a and b, and

|Γ n,p | = |Γ p,n |, we have n,p≥N n =p a n a p Γ n,p ≤ 1 2 n,p≥N n =p (|a n | 2 + |a p | 2 )|Γ n,p | = n,p≥N n =p |a n | 2 |Γ n,p | = n≥N |a n | 2 p≥N p =n |Γ n,p |,
which gives (2.9). Therefore,

(1 -ε N ) n≥N |a n | 2 ≤ n≥N a n x n 2 H ≤ (1 + ε N ) n≥N |a n | 2 . Since ε N → 0 as N → ∞, the sequence (x n ) n≥1 is an AOS. (b) Since X = (x n ) n≥1
is an AOB, we know from Theorem 2.4 that Γ X = I + K, with K compact. In particular, we have

(Γ X -I)e n 2 2 = Ke n 2 2 → 0, as n → ∞. It remains to note that (Γ X -I)e n 2 2 = p≥1 p =n |Γ n,p | 2 .
We end this subsection by two stability results. The first one is inspired by an analogue result of Baranov for the Riesz basis property [START_REF] Baranov | Stability of bases and frames of reproducing kernels in model spaces[END_REF]. The second one is a generalization of a result appearing in [START_REF] Chalendar | Functional models and asymptotically orthonormal sequences[END_REF]Proposition 3.3].

Proposition 2.10. Let (x n ) n≥1 and (x n ) n≥1 be two sequences in H. Assume that there exists

N 0 ∈ N such that for all N ≥ N 0 there is ε N > 0 verifying (2.11) n≥N | x, x n -x n | 2 ≤ ε N x 2 H , for every x ∈ H and lim N →∞ ε N = 0. Then (x n ) n≥1 is an AOS if and only if (x n ) n≥1 is an AOS. Furthermore, if N 0 = 1 and ε 1 is sufficiently small, then (x n ) n≥1 is a complete AOB for H if and only if (x n ) n≥1 is a complete AOB for H.
Proof. Let (a n ) n be a finitely supported sequence of complex numbers. For the first part, since (2.11) is symmetric with respect to x n and x n , it is sufficient to show that if (x n ) n≥1 is an AOS and if c N and C N are the constants appearing in (2.1), then we have

(2.12) (c N + ε N -2 √ c N ε N ) n≥N |a n | 2 ≤ n≥N a n x n 2 H ≤ (C n + ε N + 2 C N ε N ) n≥N |a n | 2 .
For simplicity, define g N := n≥N a n x n and g N = n≥N a n x n and write

g N -g N 2 H = g N -g N , n≥N a n (x n -x n ) H = n≥N a n g N -g N , x n -x n .
Then, using Cauchy-Schwarz inequality and (2.11), we get

g N -g N 2 H ≤ n≥N |a n | 2 1/2 n≥N | g N -g N , x n -x n | 2 1/2 ≤ √ ε N n≥N |a n | 2 1/2 g N -g N H .
We thus have g

N -g N H ≤ √ ε N (a n ) n≥N 2 .
We now obtain the desired inequalities as follows:

n≥N a n x n H ≥ n≥N a n x n H - n≥N a n (x n -x n ) H ≥ √ c N n≥N |a n | 2 1/2 - √ ε N n≥N |a n | 2 1/2 = ( √ c N - √ ε N ) n≥N |a n | 2 1/2 .
And similarly,

n≥N a n x n H ≤ ( C N + √ ε n ) n≥N |a n | 2 1/2
.

Assume now that (x n ) n≥1 is a complete AOB for H. Then, we know that the operator J X * , defined by J X * x = ( x, x n ) n≥1 , is an isomorphism from H onto 2 . The inequality (2.11) for N = 1 implies that J X * -J X * ≤ √ ε 1 . Therefore for ε 1 sufficiently small, the operator J X * is also an isomorphism from H onto 2 . It follows from Bari's theorem that (x n ) n≥1 is a Riesz basis for H and thus a complete AOB for H.

Proposition 2.13. Let X = (x n ) n≥1 be a complete AOB for H and

(x n ) n≥1 a sequence in H satisfying n≥1 x n -x n 2 H < U X -2 .
Then (x n ) n≥1 is a complete AOB for H.

Proof. Let x ∈ H. Then we have n≥N | x, x n -x n | 2 ≤ x 2 H n≥N x n -x n 2 H = ε N f 2 H , where ε N = n≥N x n -x n 2 
H . It follows from hypothesis that ε N → 0 as N goes to ∞. Hence, by Proposition 2.10, the sequence (x n ) n≥1 is an AOS. It remains to prove that (x n ) n≥1 is minimal and complete. For that purpose, define T :

H -→ H by T (x n ) = x n , n ≥ 1, and let δ > 0 such that n≥1 x n -x n 2 H ≤ δ < U X -2 .
Then, for every finitely supported sequence of complex numbers (a n ) n≥1 , we have

(I -T ) n≥1 a n x n = n≥1 a n (x n -x n ) ≤ n≥1 |a n | 2 1/2 n≥1 x n -x n 2 1/2 ≤ √ δ n≥1 |a n | 2 1/2 ≤ √ δ U X n≥1 a n x n .
Since (x n ) n≥1 is a Riesz basis for H, the operator I-T is bounded and I-T ≤ √ δ U X < 1. Thus T = I -(I -T ) is bounded and invertible. In particular, we deduce that (x n ) n≥1 is complete and minimal.

2.2. De Branges-Rovnyak spaces. Let H ∞ denote the space of bounded analytic functions on the upper half-plane

C + = {z ∈ C : (z) > 0} normed by f ∞ = sup z∈C + |f (z)| and H ∞ 1 = {g ∈ H ∞ : g ∞ ≤ 1} is the closed unit ball of H ∞ . For b ∈ H ∞ 1
, the de Branges-Rovnyak space H(b) is the reproducing kernel Hilbert space of analytic functions on C + whose kernel is given by 

k b λ (z) = i 2π 1 -b(λ)b(z) z -λ , λ, z ∈ C + . By definition, f (λ) = f,
f 2 2 = sup y>0 ∞ -∞ |f (x + iy)| 2 dx < ∞,
and T ϕ is the Toeplitz operator on H 2 with symbol ϕ ∈ L ∞ (R) defined by T ϕ (f ) = P + (ϕf ), f ∈ H 2 , where P + denotes the orthogonal projection of L 2 (R) onto H 2 . These spaces (and, more precisely, their general vector-valued version) were introduced by de Branges and Rovnyak [START_REF] De | Canonical models in quantum scattering theory[END_REF][START_REF] De | Square Summable Power Series[END_REF] as universal model spaces for Hilbert space contractions. Thanks to the pioneer works of Sarason, we know that de Branges-Rovnyak spaces play an important role in numerous questions of complex analysis and operator theory. The book [START_REF] Sarason | Sub-Hardy Hilbert spaces in the Unit Disk[END_REF] is the classical reference for H(b) spaces. See also the recent monography [START_REF] Fricain | The theory of H(b) spaces, volume 20 & 21 of New Mathematical Monographs[END_REF].

In the special case where b = Θ is an inner function (that is, |Θ| = 1 a.e. on R), the operator (Id -T Θ T * Θ ) 1/2 is an orthogonal projection and H(Θ) becomes a closed (ordinary) subspace of H 2 which coincides with the so-called model subspace

K Θ = H 2 ΘH 2 = H 2 ∩ Θ H 2 .
For the model space theory see [START_REF] Nikolski | Operators, Functions, and Systems-An Easy Reading: Hardy, Hankel, and Toeplitz[END_REF][START_REF] Garcia | Introduction to model spaces and their operators[END_REF].

It turns out that the boundary behavior of functions in H(b) is controlled by the boundary behavior of the function b itself. More precisely, let b = BI µ O b be the canonical factorization of b, where

B(z) = n e iαn z -z n z -z n
is a Blaschke product, the singular inner function I µ is given by

I µ (z) = exp iaz - i π R 1 z -t + t t 2 + 1 dµ(t)
with a positive measure µ on R singular with respect to Lebesgue measure dt such that R (1 + t 2 ) -1 dµ(t) < ∞ and a ≥ 0, and O b is the outer function

O b (z) = exp i π R 1 z -t + t t 2 + 1 log |b(t)| dt . For x 0 ∈ R and ≥ 1, let S (x 0 ) := ∞ n=1 (z n ) |x 0 -z n | + R dµ(t) |x 0 -t| + R | log |b(t)|| |x 0 -t| dt,
and

E (b) = {x 0 ∈ R : S (x 0 ) < ∞}.
The set E (b) is related to nontangential boundary limits of functions (and their derivatives) in H(b). More precisely, if S 2 (x 0 ) < ∞, then it is proved in [START_REF] Fricain | Boundary behavior of functions in the de Branges-Rovnyak spaces[END_REF] that for each f ∈ H(b), the nontangential limit

f (x 0 ) = lim z-→x 0 f (z)
exists, the function

k b x 0 (z) = i 2π 1 -b(x 0 )b(z) z -x 0 , z ∈ C + , belongs to H(b) and f, k b x 0 b = f (x 0 ), f ∈ H(b).
In that case, we also have

k b x 0 2 b = S 2 (x 0 ) = |b (x 0 )|. Moreover if S 4 (x 0 ) < ∞, for every function f ∈ H(b), f ( 
z) and f (z) have finite limits as z tends nontangentially to x 0 . In [START_REF] Baranov | Weighted norm inequalities for de Branges-Rovnyak spaces and their applications[END_REF], a Bernstein's type inequality is proved in the context of H(b) spaces. To state this inequality, we need to introduce the following kernel. For

z 0 ∈ C + ∪ E 4 (b), we define K b z 0 (t) = b(z 0 ) 2 -b(z 0 )b(t) (t -z 0 ) 2 . It is not difficult to see that ρ 1/q K b z 0 ∈ L q (R) if and only if R | log |b(t)|| |t -z 0 | 2q dt < ∞,
where ρ(t) = 1 -|b(t)| 2 , t ∈ R. Now, for 1 < p ≤ 2 and q its conjugate exponent, we define

w p (z) := min (k b z ) 2 -p/(p+1) q , ρ 1/q K b z -p/(p+1) q , z ∈ C + ,
where • q denotes the L q (R)-norm with respect to Lebesgue measure dt on R. We assume w p (x) = 0, whenever x ∈ R and at least one of the functions (

k b x ) 2 or ρ 1/q K b x is not in L q (R). Note that if f ∈ H(b) and 1 < p ≤ 2, then f w p is well defined on R. Indeed, if S 4 (x) < ∞, then f (x) and w p (x) are finite. If S 4 (x) = ∞, then as shown, in [3, 8], (k b x ) 2 q = ∞
, which, by definition, implies that w p (x) = 0, and thus we may assume that (f w p )(x) = 0. Moreover, note that in the inner case, we have ρ(t) = 0 for a.e. t ∈ R, and the second term in the definition of the weight w p disappears. We will need two useful estimates for the weight w p . The first one, proved in [3, Lemma 3.5], is valid for every

function b ∈ H ∞ 1 : there is a constant C = C(p) > 0 such that (2.14) w p (z) ≥ C z (1 -|b(z)|) p q(p+1) , (z ∈ C + ).
The second one, proved in [START_REF] Baranov | Bernstein-type inequalities for shift-coinvariant subspaces and their applications to Carleson embeddings[END_REF] and valid when b = Θ is an inner function, says that there is two constants We also remind that a Borel measure µ on the closed upper half-plane C + is said to be a Carleson measure if there is a constant C > 0 such that 

C 1 , C 2 > 0 such that (2.15) C 1 v 0 (x) ≤ w p (x) ≤ C 2 |Θ (x)| -1 , (x ∈ R),
(2.16) µ( S(x, h) ) ≤ C h, for all squares S(x, h) = [x, x + h] × [0, h], x ∈ R, h > 0,
H p ⊂ L p (µ)
for some (all) p > 0. In [START_REF] Baranov | Weighted norm inequalities for de Branges-Rovnyak spaces and their applications[END_REF], it is proved that if µ ∈ C, 1 < p < 2, then there exists a constant K = K(µ, p) > 0 such that (2.17)

f w p L 2 (µ) ≤ K f b , f ∈ H(b).
In other words, the map f -→ f w p is a bounded operator from H(b) into L 2 (µ). In the case p = 2, then this map is of weak type (2, 2) as an operator from H(b) to L 2 (µ).

Some stability results

This section contains results about the stability of AOBs under certain perturbations. We will often use technics developed by Baranov [2] concerning the stability problem for the Riesz bases for K Θ .

For λ ∈ C + ∪ E 2 (b), we denote by κ b λ the normalized reproducing kernel at the point λ, that is,

κ b λ = k b λ / k b λ b . Let (λ n ) n≥1 ⊂ C + ∪ E 2 (b) and G = n G n ⊂ C + ∪ E 2 (b).
We say that G is an admissible set for (λ n ) n≥1 if it satisfies the following properties: (iii) For every z n ∈ G n , the measure ν = n δ [λn,zn] is a Carleson measure and, moreover, the Carleson constants C ν of such measures (see (2.16)) are uniformly bounded with respect to z n . Here [λ n , z n ] is the straight line interval with the endpoints λ n and z n , and δ [λn,zn] is the Lebesgue measure on the interval.

(i) λ n ∈ G n ; (ii) For every z n ∈ G n ,
For (λ n ) n≥1 ⊂ C + be such that the sequence (κ b λn ) n≥1 is an AOS in H(b), we show there always exist non-trivial admissible sets G = n G n . More precisely, we can take

G n := {z ∈ C + : |z -λ n | < ε n λ n },
where (ε n ) n is any sequence of positive numbers tending to 0. We first begin with a technical lemma.

Lemma 3.1. Let b ∈ H ∞ 1 , (ε n
) n a sequence of positive numbers tending to 0, and (λ n ) n and (µ n ) n two sequences in C + satisfying

(3.2) |λ n -µ n | ≤ ε n λ n , n ≥ 1.
Then

lim n→∞ k b µn b k b λn b = 1.
Proof. We easily check from (3.2) that

(3.3) 1 -ε n ≤ µ n λ n ≤ 1 + ε n , n ≥ 1.
Since

k b z 2 b = 1 -|b(z)| 2 4π z , it is sufficient to prove that (3.4) 1 -ε n 1 + ε ≤ 1 -|b(λ n )| 1 -|b(µ n )| ≤ 1 + ε n 1 -ε n .
Using the Schwarz-Pick inequality, we have

b(λ n ) -b(µ n ) 1 -b(λ n )b(µ n ) ≤ λ n -µ n λ n -µ n ≤ |λ n -µ n | λ n ≤ ε n ,
and (3.4) follows from [18, Lemma 7] which says that if λ, µ ∈ D and satisfies

λ -µ 1 -λµ ≤ ε, then 1 -ε 1 + ε ≤ 1 -|λ| 1 -|µ| ≤ 1 + ε 1 -ε . Corollary 3.5. Let b ∈ H ∞ 1 , (λ n ) n≥1 ⊂ C + such that (κ b λn ) n is an AOS in H(b)
, and let (ε n ) n≥1 be a sequence of positive numbers tending to 0. Define

G n := {z ∈ C + : |z -λ n | < ε n λ n }, n ≥ 1.
Then the set G = n G n is an admissible set for (λ n ) n≥1 .

Proof. It is obvious that the sets G n satisfy (i) and condition (ii) follows from Lemma 3.1.

According to Proposition 2.8, there exists a constant C > 0 such that for every n ≥ 1, we have

p≥1 |Γ n,p | 2 ≤ C, where Γ n,p = κ b λn , κ b λp b . Since |Γ n,p | 2 = 16π 2 λ n λ p |λ p -λ n | 2 |1 -b(λ n )b(λ p | 2 (1 -|b(λ n | 2 )(1 -|b(λ p )| 2 ≥ λ n λ p |λ p -λ n | 2 , we obtain p≥1 λ n λ p |λ p -λ n | 2 ≤ C.
It is known (see for instance [START_REF] Nikolski | Treatise on the Shift Operator-Spectral Function Theory[END_REF]Lecture VII]) that this condition implies that the measure ν = n λ n δ λn is a Carleson measure. Therefore, the sets G n also satisfy (iii).

Note that in [START_REF] Baranov | Stability of bases and frames of reproducing kernels in model spaces[END_REF][START_REF] Baranov | Weighted norm inequalities for de Branges-Rovnyak spaces and their applications[END_REF], similar sets were considered in connection with the stability of the Riesz basis property. In that situation, condition (ii) can be replaced by the weaker condition that there exists two positive constants c, C > 0 such that

c ≤ k b zn b k b λn b ≤ C, z n ∈ G n , n ≥ 1,
and the set G n can be taken as

G n := {z ∈ C + : |z -λ n | < r λ n },
for sufficiently small r > 0.

Theorem 3.6. Let b ∈ H ∞ 1 , 1 < p < 2 and (λ n ) n ⊂ C + ∪ E 2 (b) such that (κ b λn ) n≥1 is an AOS in H(b). Assume that G = ∪ n≥1 G n is an admissible set for (λ n ) n≥1 , and let µ n ∈ G n , n ≥ 1. If there exists N 0 ∈ N such that for all N ≥ N 0 there is ε N > 0 verifying (3.7) sup n≥N 1 k b λn 2 b [λn,µn] w -2 p (z)|dz| ≤ ε N ,
and lim N →∞ ε N = 0, then the sequence (κ b µn ) n≥1 is an AOS in H(b). Moreover, if (κ b λn ) n≥1 is a complete AOB for H(b) and if we can take N 0 = 1 and ε 1 sufficiently small, then (κ b µn ) n≥1 is also a complete AOB for H(b). → 1 as n → ∞, we easily see that (κ b µn ) n≥1 is an AOS if and only if (h b n ) n≥1 is an AOS. In view of Proposition 2.10, it is then sufficient to check the estimate

(3.8) n≥N | f, κ b λn -h b n | 2 ε N f 2 b , f ∈ H(b).
It 

]. Then | f, κ b λn -h b n | 2 = |f (λ n ) -f (µ n )| 2 k b λn 2 b = 1 k b λn 2 b [λn,µn] f (z) dz 2 .
By the Cauchy-Schwartz inequality and (3.7), we get for n ≥ N ,

| f, κ b λn -h b n | 2 ≤ ε N [λn,µn] |f (z)w p (z)| 2 |dz|.
It follows from condition (iii) that ν = n δ [λn,µn] is a Carleson measure with a constant C ν which does not exceed some absolute constant depending only on G. Hence, according to (2.17), we have

n≥N | f, κ b λn -h b n | 2 ≤ ε N n≥N [λn,µn] |f (z)w p (z)| 2 |dz| ≤ ε N f w p 2 L 2 (ν) ≤ Kε N f 2 b .
Since ε N → 0 as N → ∞, Proposition 2.10 implies that (h b n ) n≥1 is an AOS, and so is (κ b µn ) n≥1 . The second part for complete AOB follows also from Proposition 2.10.

Remark 3.9. If (λ n ) n≥1 ⊂ C + and (κ b λn ) n≥1 is a complete AOB for H(b), then it is sufficient to have (3.7) for N large enough to get that (κ b µn ) n≥1 is a complete AOB for H(b). Indeed, apply Theorem 3.6 with the sequence

γ n =    λ n if n ≤ N µ n if n > N ,
and part (a) of the following lemma which shows that we can replace a finite number of terms keeping the minimality and completeness. This result is proved in [START_REF] Hruschev | Unconditional bases of exponentials and of reproducing kernels[END_REF] for the inner case. The general version is proved similarly; see [START_REF] Fricain | The theory of H(b) spaces, volume 20 & 21 of New Mathematical Monographs[END_REF]Lemma 31.2]. We also need a version of this result for real frequencies. We do not know if it true in general but we prove it when b = Θ is an inner function. The proof is based on the following key lemma. Lemma 3.11. Let Θ be an inner function, x 0 ∈ R \ σ(Θ), and f ∈ K Θ such that f (x 0 ) = 0. Then there exists a Blaschke factor J such that {J = -1} = {x 0 } and f /(1 + J) ∈ K Θ .

Proof. Fix any a > 0, define γ = x 0 + ia ∈ C + and

J(z) = b γ (z) = z -γ z -γ . Then 1 + J(z) = 2(z -x 0 ) z -γ ,
and

{J = -1} = {x 0 }. To check that f /(1 + J) ∈ K Θ , first note that f (z) 1 + J(z) = 1 2 f (z) + ia f (z) z -x 0 .
Since x 0 ∈ R \ σ(Θ), the function f extends analytically through a neighbourhood V x 0 of x 0 and we have

|f (z)| ≤ C|z -x 0 |, z ∈ V x 0 . Hence f /(z -x 0 ) ∈ L 2 (R) ∩ N + = H 2
, where N + is the Smirnov class. We deduce that f /(1 + J) ∈ H 2 . It remains to note that

Θ f 1 + J = JΘ f 1 + J , and since f ∈ K Θ , we have Θ f ∈ H 2 . Thus Θ f /(1 + J) ∈ L 2 (R) ∩ N + = H 2 . Finally, f /(1 + J) ∈ H 2 ∩ ΘH 2 = K Θ .
Lemma 3.12. Let Θ be an inner function and

(t n ) n≥1 ⊂ E 2 (Θ).
(a) Assume that t 1 ∈ σ(Θ) and (k Θ tn ) n≥1 is a minimal and complete sequence in K Θ . Then, for every t ∈ R \ σ(Θ) and

t = t n , n ≥ 1, the system {k Θ tn } n≥2 ∪ {k Θ t } is still minimal and complete in K Θ . (b) Assume that t n ∈ σ(Θ), n ≥ 1, and (k Θ tn ) n≥1 is not complete in K Θ . Then, for every t ∈ R \ σ(Θ) and t = t n , n ≥ 1, the system {k Θ tn } n≥1 ∪ {k Θ t } is minimal.
Proof. (a) First, let us prove that the system {k Θ tn } n≥2 ∪ {k Θ t } is complete. Let f ∈ K Θ such that f (t n ) = 0, n ≥ 2 and f (t) = 0. According to Lemma 3.11, there is an inner function J such that {J = -1} = {t} and f /(1 + J) ∈ K Θ . Define

g = J -J(t 1 ) 1 + J f = f -(J(t 1 ) + 1) f 1 + J .
The function g belongs to K Θ and it vanishes at every point t n , n ≥ 1. Hence, the completeness of (k Θ tn ) n≥1 implies that g ≡ 0 and thus f ≡ 0. This proves the completeness of {k Θ tn } n≥2 ∪ {k Θ t }. As far as concerned the minimality, note that for every n ≥ 1, there exists a function f n ∈ K Θ such that f n (t ) = δ n, , ≥ 1. By the completeness of {k Θ tn } n≥2 ∪ {k Θ t }, we necessarily have f 1 (t) = 0 and thus k Θ t ∈ span(k Θ tn : n ≥ 2). Fix now n ≥ 2. Using one more time Lemma 3.11, there is an inner function

J 1 such that {J 1 = -1} = {t 1 } and f n /(1 + J 1 ) ∈ K Θ . Now consider the function g n = ((J 1 -J 1 (t))f )/(1 + J 1 ). It is clear that g n ∈ K Θ . Moreover, we have g n (t) = 0, g n (t ) = 0, = n and g n (t n ) = (J 1 (t n )-J 1 (t))/(1+J 1 (t n )) = 0 (since J 1 is a Blaschke factor and thus is one-to-one). Hence, we get that k Θ tn ∈ span({k Θ t } ≥2, =n ∪ {k Θ t }). This proves the minimality of {k Θ tn } n≥2 ∪ {k Θ t }. (b) Since (k Θ tn ) n≥1 is not complete in K Θ , there exists a function f ∈ K Θ , f ≡ 0, such that f (t n ) = 0, n ≥ 1. Fix n ≥ 1. By Lemma 3.11, there is a Blaschke factor J n such that {J n = -1} = {t n } and f /(1 + J n ) ∈ K Θ . Consider now the function f n = ((J n - J n (t))f )/(1 + J n ). Then f n ∈ K Θ and we have f n (t) = 0, f n (t ) = 0, = n. Dividing one more time by 1 + J n if necessary, we can assume that f n (t n ) = 0. Hence, we deduce that k Θ tn ∈ span({k Θ t } ≥1, =n ∪ {k Θ t }).
On the other hand, if f (t) = 0, we immediately get that k Θ t ∈ span(k Θ tn : n ≥ 1). If f (t) = 0, then we can use one more time Lemma 3.11 to drop of that extra zero. This proves the minimality of {k Θ tn } n≥1 ∪ {k Θ t }.

Let Θ be an inner function, (λ n

) n ⊂ C + satisfying sup n≥1 |Θ(λ n )| < 1. It is proved in [4] that if (κ Θ
λn ) n≥1 is an AOS, there exists ε > 0 such that (κ b µn ) n≥1 is an AOS for all sequences

(µ n ) n≥1 ∈ C + satisfying λ n -µ n λ n -µ n ≤ ε.
It is easy to see that this can be generalized to the general case when the inner function Θ is replaced by a function b ∈ H ∞ 1 ; see [START_REF] Fricain | The theory of H(b) spaces, volume 20 & 21 of New Mathematical Monographs[END_REF]. Without the additional hypothesis that sup n≥1 |b(λ n )| < 1, we obtain the following stability result concerning pseudo-hyperbolic perturbations.

Corollary 3.13. Let b ∈ H ∞ 1 and (λ n ) n≥1 ⊂ C + such that (κ b λn ) n≥1 is an AOS in H(b). Let γ > 1/3 and (ε n ) n≥1 a
sequence of positive numbers tending to 0. For every sequence (µ n ) n≥1 satisfying

(3.14) λ n -µ n λ n -µ n ≤ ε n (1 -|b(λ n )|) γ , n ≥ 1, the sequence (κ b µn ) n≥1 is an AOS. Moreover, if (κ b λn ) n≥1 is a complete AOB for H(b), then (κ b µn ) n≥1 is also a complete AOB for H(b).
Proof. According to Corollary 3.5, if we define the sets (3.14). Then, we have

G n = {z ∈ C + : |z -λ n | ≤ ε n λ n }, then G = n G n is an admissible set for (λ n ) n≥1 . Let (µ n ) n≥1 satisfy
|λ n -µ n | ≤ ε n (1 -|b(λ n )|) γ λ n ≤ ε n λ n . (3.15)
Therefore, µ n ∈ G n . Without loss of generality, we can assume that γ < 1, and since γ > 1/3, there exists 1 < p < 2 such that 2 p-1 p+1 = 1 -γ. Let q be the conjugate exponent of p and note that 2p q(p+1) = 1 -γ. Using (2.14), (3.3) and (3.4) we have

w -2 p (z) ≤ C 1 (1 -|b(λ n )|) 1-γ ( λ n ) 2 , for z ∈ [λ n , µ n ]. Hence, 1 k b λn 2 b [λn,µn] w p (z) -2 |dz| ≤ C 2 λ n 1 -|b(λ n )| |λ n -µ n | (1 -|b(λ n )|) 1-γ ( λ n ) 2 .
Using (3.15), we obtain

1 k b λn 2 b [λn,µn] w p (z) -2 |dz| ≤ C 3 ε n .
The conclusion for AOS now follows from Theorem 3.6.

For complete AOB, we argue as follows. Let

γ n =    λ n if n < N 0 µ n if n ≥ N 0 ,
where N 0 will be choosen later. Since (γ n ) n≥1 satisfies (3.14), we get from the first part that

sup n≥1 1 k b λn 2 b [λn,γn] w p (z) -2 |dz| ≤ C 3 sup n≥N 0 ε n .
Using that lim n→∞ ε n = 0, we can choose N 0 such that C 3 sup n≥N 0 ε n is sufficiently small so that, according to Theorem 3.6, we will get that (κ b γn ) n≥1 is a complete AOB for H(b). Then, we can apply Lemma 3.10 to get that (κ b µn ) n≥1 is a complete and minimal sequence in H(b). Since it is also an AOS, it is finally a complete AOB for H(b). Remark 3.16. Note that in the case when lim n→∞ |b(λ n )| = 1, the condition (3.14) can be replaced by the existence of a constant C > 0 such that

λ n -µ n λ n -µ n ≤ C(1 -|b(λ n )|) γ , n ≥ 1.
Indeed, it is sufficient to take γ > γ 0 > 1/3 and note that

C(1 -|b(λ n )|) γ = ε n (1 -|b(λ n )|) γ 0 , with ε n = C(1 -|b(λ n )|) γ-γ 0 → 0 as n → ∞.
In the inner case, we can also give a stability result when the sequences (λ n ) n and (µ n ) n are on the real line. We first need a result on the construction of admissible sets. Lemma 3.17. Let Θ be an inner function, (t n ) n≥1 ⊂ E 2 (Θ) such that (κ Θ tn ) n≥1 is a Riesz sequence in K Θ and (ε n ) n≥1 a sequence of positive numbers tending to 0. Define

(3.18) G n = {t ∈ R : |t -t n | ≤ ε n v 0 (t n )}, n ≥ 1,
where v 0 (t) = min(d 0 (t), |Θ (t)| -1 ) and d 0 (t) = dist(t, σ(Θ)). Then the set G = n G n is an admissible set for (λ n ) n≥1 .

Proof. Consider the nontrivial case when v 0 (t n ) > 0. In particular, we have

|t -t n | ≤ ε n d 0 (t n ), t ∈ G n . Hence (3.19) (1 -ε n )d 0 (t n ) ≤ d 0 (t) ≤ (1 + ε n )d 0 (t n ), t ∈ G n . Now remember that when t ∈ R, k Θ t ∈ K Θ if and only if |Θ (t)| = a + ∞ =1 2 z |t -z | 2 + R dσ(x) |t -x| 2 < ∞,
and in that case

(3.20) k Θ t 2 2 = |Θ (t)|.
Here (z ) is the sequence of zeros of Θ and σ is its associated singular measure. Using (3.19), it is not difficult to check that for every ≥ 1 and t ∈ G n ,

1 -ε n ≤ |t -z | |t n -z | ≤ 1 + ε n ,
and for any x ∈ supp σ,

1 -ε n ≤ |t -x| |t n -x| ≤ 1 + ε n . Hence (3.21) 1 (1 + ε n ) 2 |Θ (t n )| ≤ |Θ (t)| ≤ 1 (1 -ε n ) 2 |Θ (t n )|. It then follows from (3.20) that 1 1 + ε n ≤ k Θ t 2 k Θ tn 2 ≤ 1 1 -ε n ,
and we get that G n satisfies condition (ii). Condition (i) is trivial and condition (iii) follows along the same line as in [2, Lemma 5.1]. More precisely, using an increasing continuous branch of the argument of Θ on G n (note that σ(Θ) ∩ G n = ∅), it can be proved that for t ∈ G n , we have

(3.22) k Θ t (t n ) ≥ |Θ (t n )| 8π 2 . Now using the fact that n≥1 |k Θ t (t n )| 2 |Θ (t n )| = n≥1 | k Θ t , κ Θ tn | 2 ≤ C k Θ t 2 2 = C|Θ (t)|
we see that the number of integers n such that t ∈ G n is uniformly bounded. Hence, condition (iii) is also satisfied.

Remark 3.23. It is natural to ask if Lemma 3.17 is satisfied when we replace the inner function Θ by a general function b in the unit ball of H ∞ . The difficulty is indeed to get the estimate (3.22).

Theorem 3.24. Let Θ be an inner function, let (t n ) n≥1 ⊂ E 2 (Θ) such that (κ Θ tn ) n≥1 is a complete AOB for K Θ , and (s n ) n≥1 be a sequence of real numbers. Suppose there exists N 0 such that for all n ≥ N 0 , there is ε n > 0 verifying

(3.25) [tn,sn] |Θ (t)| + |Θ (t)| -1 d -2 0 (t) dt ≤ ε n , or (3.26) |s n -t n | ≤ ε n |Θ (t n )| min(d 2 0 (t n ), |Θ (t n )| -2 ),
and lim n→∞ ε n = 0. Then (κ Θ sn ) n≥1 is a complete AOB for K Θ . Proof. We can of course assume that s n = t n and ε n < 1/2. Both (3.25) and (3.26) imply that there exists a point u n ∈ [s n , t n ] such that

|s n -t n | ≤ ε n v 0 (u n ).
Then v 0 (u n ) ≤ 4v 0 (t n ) and |s n -t n | ≤ 4ε n v 0 (t n ). In particular, s n ∈ G n where G n is defined as in (3.18) (replacing ε n by 4ε n ). Moreover, using (2.14) and (3.21), we can write

1 k Θ tn 2 2 [tn,sn] w -2 p (z) |dz| [tn,sn] |Θ (t)| -1 max(d -2 0 (t), |Θ (t)| 2 ) dt [tn,sn] (|Θ (t)| -1 d -2 0 (t) + |Θ (t)|) dt ε n .
Applying Lemma 3.17 and Theorem 3.6, we get that (κ Θ sn ) n≥1 is an AOS. It remains to prove the completeness and the minimality of (κ Θ sn ) n≥1 . We argue as in the proof of Corollary 3.13 replacing Lemma 3.10 by Lemma 3.12. More precisely, define

x n =    t n if n < N 0 s n if n ≥ N 0 ,
for some positive integer N 0 . Then, we have

sup n≥1 1 k Θ tn 2 2 [tn,xn] w -2 p (z) |dz| sup n≥N 0 ε n ,
and we can find N 0 such that, according to Theorem 3.6, the sequence (k Θ xn ) n≥1 is a complete AOB for K Θ . Note that if t n ∈ σ(Θ), then v 0 (t n ) = 0 and then s n = t n and if t n ∈ σ(Θ), then G n ⊂ R \ σ(Θ) and then s n ∈ σ(Θ). Hence, we can apply Lemma 3.12 to get that (κ Θ sn ) n≥1 is minimal and complete in K Θ .

We also give an analogue of a result of Cohn [START_REF] Cohn | Carleson measures and operators on star-invariant subspaces[END_REF] who studied small perturbations with respect to the change of the argument of the inner function Θ. First, we need to introduce some more definitions. An inner function Θ in C + is said to be a meromorphic inner function if it has a meromorphic extension to C. In that case, we know that the argument of Θ is a real analytic increasing function on R. Moreover, we say that an inner function Θ satisfies the connected level set condition (abbreviated Θ ∈ (CLS)) if there is δ ∈ (0, 1) such that the set Ω(Θ, δ) = {z ∈ C + : |Θ(z)| < δ} is connected.

Corollary 3.27. Let Θ be a meromorphic inner function such that Θ ∈ (CLS), let ϕ be its argument and (t n ) n≥1 ⊂ R such that (κ Θ tn ) n≥1 is a complete AOB for K Θ . Let (ε n ) n≥1 be a sequence of positive numbers tending to 0. If

|ϕ(s n ) -ϕ(t n )| ≤ ε n , then (κ Θ sn ) n≥1 is a complete AOB for K Θ .
Proof. As noted in [2, Remark 1, page 2419], since Θ is (CLS) and (κ Θ tn ) n is a Riesz sequence, there exits a constant C > 0 such that

|Θ (t)| -1 ≤ Cd 0 (t), t ∈ G n . Therefore [tn,sn] (|Θ (t)| + |Θ (t)| -1 d -2 0 (t)) dt [tn,sn] |Θ (t)| dt = |ϕ(t n ) -ϕ(s n )| ≤ ε n .
Then apply Theorem 3.24.

Example 3.28. Let Θ a (z) = e iaz , a > 0, and α ∈ [0, 2π 

Example of exponential systems

In the particular case where Θ a (z) = e iaz , the Fourier transform F maps unitarily K Θa onto L 2 (0, a) and F(κ Θa λ ) = χ a λ , where

χ a λ (t) = 2 λ 1 -e -2a λ 1/2 e iλt , λ ∈ C + .
Thus, the geometric properties (completeness, minimality, Riesz basis, AOS, AOB,...) of system of normalized reproducing kernels (κ Θa λn ) n in K Θa and of normalized exponentials system (χ a λn ) n in L 2 (0, a) are the same. In [START_REF] Chalendar | Functional models and asymptotically orthonormal sequences[END_REF], AOS (or AOB) formed by reproducing kernels k Θ λn are studied under the additional condition that

(4.1) sup n≥1 |Θ(λ n )| < 1.
In the particular case when Θ = Θ a , the condition (4.1) is equivalent to

(4.2) inf n≥1 ( λ n ) > 0.
Under that assumption, it is proved in [4, Proposition 7.2] that (χ a λn ) n is an AOB in L 2 (0, a) if and only if (λ n ) n is a thin sequence, which means that

lim n→∞ k =n λ k -λ n λ k -λ n = 1.
Using Proposition 2.8, we construct a class of example of AOS where (4.1) (or equivalently (4.2)) is not necessarily satisfied.

Proposition 4.3. Let (λ n ) n≥1 ⊂ C be a sequence such that (i) sup n | λ n | < ∞;
(ii) There exists a q > 1 such that λ n+1 λn > q for all n ≥ 1.

Then the sequence (χ a λn ) n≥1 is an AOS in L 2 (0, a) for all a > 0.

Proof. We apply Proposition 2.8. Observe that

Γ n,m = χ a λn , χ a λm = 4 λ n λ m (1 -e -2a λn )(1 -e -2a λm ) 1/2 e i(λn-λm)a -1 i(λ n -λ m ) and sup n,m≥1 4 λ n λ m (1 -e -2a λn )(1 -e -2a λm ) < ∞, provided sup n λ n < ∞. If λ n = 0 (that is λ n ∈ R)
, the normalized factor λ n /(1e -2a λn ) should be understood as a -1 and corresponds to χ a λn 2 L 2 (0,a) = a. It follows from (ii) that for m > n, we have |λ m | > q m-n |λ n |. Since q > 1 that implies that lim n→∞ |λ n | = ∞. In particular, we can pick an integer N such that for all n ≥ N , we have

|λ n | ≥ 1. For n ≥ N , write m≥N m =n |Γ n,m | m≥N m =n e i(λn-λm)a -1 i(λ n -λ m ) N ≤m<n 1 |λ m | λn λm -1 + n<m 1 |λ n | 1 -λm λn ≤ N ≤m<n 1 |λ m | λn λm -1 + n<m 1 |λ n | λm λn -1 ≤ 1 q -1 N ≤m<n 1 |λ m | + 1 |λ n | n<m 1 q m-n |λ n | -1 ≤ 1 q -1 1 |λ N | N ≤m 1 q m-N + 1 |λ N | n<m 1 q m-n -1 . Thus, sup n≥N m≥N m =n |Γ n,m | 1 |λ N | -→ 0, as N -→ ∞. Proposition 2.8 implies now that (χ a λn ) n≥1
is an AOS in L 2 (0, a).

Example 4.4. The sequence λ n = r n + i/n , (r > 1) satisfies the assumptions of Proposition 4.3 and λ n → 0 as n goes to ∞.

Projecting onto a closed subspace

Let b 1 , b 2 ∈ H ∞ 1 such that b 2 |b 1 , in the sense that b 1 = b 2 b where b ∈ H ∞ 1 .
In this case, we know that H(b 2 ) ⊂ H(b 1 ) and more precisely, we have It should be noted that in general the above decomposition is not orthogonal. However for reproducing kernels, we do have such an orthogonal decomposition. 

5.2. Let b 1 = b 2 b with b 2 , b ∈ H ∞ 1 .
Let Λ be a finite subset in C + . Then, for every a λ ∈ C, λ ∈ Λ, we have

(5.3) λ∈Λ a λ k b 1 λ 2 b 1 = λ∈Λ a λ k b 2 λ 2 b 2 + λ∈Λ a λ b 2 (λ)k b λ 2 b Proof. First note that (5.4) k b 1 λ = k b 2 λ + b 2 b 2 (λ)k b λ .
Now if LH and RH denotes the left hand-side and right hand-side of (5.3), we have

LH = λ,µ∈Λ a λ a µ k b 1 λ (µ), and RH = λ,µ∈Λ a λ a µ k b 2 λ (µ) + λ,µ∈Λ a λ a µ b 2 (λ)b 2 (µ)k b λ (µ).
It remains to use (5.4) to get (5.3).

Let (λ n ) n≥1 ⊂ C + and assume that (κ b 1 λn ) n≥1 is a complete AOB for H(b 1 ). It is very natural to ask if the sequence (κ b 2 λn ) n≥1 remains an AOB in H(b 2 ). The anwer depends on the following ratio:

R b 1 ,b 2 (n) := k b 1 λn 2 b 1 k b 2 λn 2 b 2 = 1 -|b 1 (λ n )| 2 1 -|b 2 (λ n )| 2 .
The following result says that if the behavior of b 1 (λ n ) and b 2 (λ n ) are comparable as n → ∞, then we can transfer AOBs between the respective de Branges-Rovnyak spaces. 

(λ n ) n≥1 ⊂ C + satisfying n |R b 1 ,b 2 (n) -1| < ∞. If the sequence (κ b 1 λn ) n≥1 is a complete AOB for H(b 1 ), then there is an integer p ≥ 1 such that (κ b 2 λn ) n≥p is a complete AOB for H(b 2 ). Conversely, if (κ b 2 λn ) n≥1 is an AOB in H(b 2 ), then (κ b 1 λn ) n≥1 is an AOB in H(b 1 ). Proof. First note that (k b 2 λn ) n≥1 is complete in H(b 2 ). Indeed, let f ∈ H(b 2 ), f ⊥ k b 2 λn , n ≥ 1. Since H(b 2 ) ⊂ H(b 1 ), we can write 0 = f, k b 2 λn b 2 = f (λ n ) = f, k b 1 λn b 1 .
Thus f is orthogonal to k b 1 λn , n ≥ 1 and the completeness of (k b 1 λn ) n≥1 in H(b 1 ) implies that f ≡ 0.

Since (κ b 1 λn ) n≥1 is an AOB in H(b 1 ), for every ε > 0, there exists N ∈ N such that

(5.6) (1 -ε) n≥N |a n | 2 ≤ n≥N a n κ b 1 λn b 1 ≤ (1 + ε) n≥N |a n | 2 .
Moreover, since the sequence (R b 1 ,b 2 (n) -1) n is in 1 , we can also assume that N satisfies (5.7)

n≥N k b 1 λn 2 b 1 k b 2 λn 2 b 2 -1 < ε.
In particular, this guarantees that

(5.8) 1 -ε < k b 1 λn 2 b 1 k b 2 λn 2 b 2 < 1 + ε.
We now prove that {κ b 2 λn } is an AOS in H(b 2 ). Using Lemma 5.2, we have The assumption that (R b 1 ,b 2 (n) -1) n ∈ 1 may appear very restrictive. However, as the following result shows, in some particular case, it is indeed also necessary. Then the following are equivalent:

n≥N a n k b 1 λn k b 2 λn b 2 2 b 1 = n≥N a n k b 2 λn k b 2 λn b 2 2 b 2 + n≥N a n b 2 (λ n )k b λn k b 2
(1) There is an integer p ≥ 1 such that (κ Θ 2 λn ) n≥p is a complete AOB for

K Θ 2 . (2) (R b 1 ,Θ 2 (n) -1) n ∈ 1 .
Proof. Thus,

n≥1 |Θ 2 (λ n )| 2 2 λ n 1 -|b 1 (λ n )| 2 < ∞. Since 1 -|b(λ n )| 2
λ n , we have Example 5.12. Note that (5.11) is, in particular, satisfied in the case when b = Θ is an inner function such that Θ ∈ L ∞ (R). Indeed, as was shown in [1, Corollary 4.7], we have

n≥1 |Θ 2 (λ n )| 2 1 -|b(λ n )| 2 1 -|b 1 (λ n )| 2 < ∞, i.e n≥1 |Θ 2 (λ n )| 2 k b λn 2 b k b 1 λn 2 b 1 < ∞.
k Θ λn 2 ≤ k Θ xn 2 = |Θ (x n )| 1/2 ,
where x n = λ n .

Remark 5.13. The results given in that section can also be proved when b 1 = Θ 1 is an inner function and the sequence (λ n ) n≥1 belongs to C + ∪ R \ σ(Θ).

  k b λ b for all f ∈ H(b) and λ ∈ C + , where •, • b represents the inner product in H(b). The space H(b) can also be defined as the range space (I -T b T * b ) 1/2 H 2 equipped with the norm which makes (I -T b T * b ) 1/2 a partial isometry. Here H 2 is the Hardy space of C + , that is the space of analytic functions f on C + verifying

where v 0

 0 (x) = min(d 0 (x), |Θ (x)| -1 ), d 0 (x) = dist(x, σ(Θ)) and σ(Θ) is the spectrum of the inner function Θ defined as the set of all ζ ∈ C + ∪ {∞} such that lim inf z→ζ z∈C + |Θ(z)| = 0. It is known that every function f ∈ K Θ has an analytic continuation through R \ σ(Θ). Moreover, the quantity v 0 has a simple geometrical meaning related to the sublevel sets Ω(Θ, δ) = {z ∈ C + : |Θ(z)| ≤ δ}. Namely, v 0 (x) dist(x, Ω(Θ, δ)) with the constants depending only on δ ∈ (0, 1).

, n ≥ 1 .

 1 Since by condition (ii),

Lemma 3 . 10 .

 310 Let b ∈ H ∞ 1 and Λ = (λ n ) n≥1 ⊂ C + . (a) Assume that (k b λn ) n≥1 is a minimal and complete sequence in H(b). Then, for every µ ∈ C + \ Λ, the system {k b λn } n≥2 ∪ {k b µ } is still minimal and complete in H(b). (b) Assume that (k b λn ) n≥1 is not complete in H(b). Then, for every µ ∈ C + \ Λ, the system {k b λn } n≥1 ∪ {k b µ } is minimal.

(5. 1 )

 1 H(b 1 ) = H(b 2 ) + b 2 H(b). See [17, I.10-I.11] or [9, Section 18.7] for details on this decomposition.

Lemma

  

Theorem 5 . 5 .

 55 Let b 1 = b 2 b, where b 2 , b ∈ H ∞ 1 , and

= I 1 -I 2 .For I 1 , 1 = I 1 ≤ ( 1 + ε) n≥N |a n | 2 k b 1 λn 2 b 1 k b 2 λn 2 b 2 ≤ ( 1 + ε) 2 n≥N |a n | 2 .For I 2 , 2 = n≥N a n b 2 (λ n )k b λn k b 2 |a n | 2 .Corollary 5 . 9 .

 121111121222222259 use estimates (5.6) and (5.8) to get (1 -ε) 2 n≥N |a n | 2 ≤ (1 -ε) n≥N |a n | 2 k b 1 we use (5.3), (5.7) and Cauchy-Schwarz inequality to obtain I It follows that (κ b 2λn ) n is an AOS. Now let p be the smallest integer such that (κ b 2 λn ) n≥p is an AOB in H(b 2 ). If p = 1, then since (κ b 2 λn ) n≥1 is complete in H(b 2 ), we have the result. Otherwise combining Lemma 3.10 (b) and the fact that a sequence is an AOB if and only if it is a minimal AOS, we conclude that(κ b 2 λn ) n≥p is a complete AOB for H(b 2 ).Conversely, assume that (κ b 2 λn ) n≥1 is an AOB in H(b 2 ). We note that (R b 2 ,b 1 (n) -1) n = (1/R b 1 ,b 2 (n) -1) n ∈ 1 .Then, using similar computations as before, we see that (κ b 1 λn ) n is an AOS in H(b 1 ). It remains to check the minimality of (k b 1 λn ) n≥1 . Since (k b 2 λn ) n≥1 is minimal in H(b 2 ), there exists a sequence of functionsψ n ∈ H(b 2 ), n ≥ 1, such that ψ n , k b 2 λ b 2 = δ n, .From the inclusion H(b 2 ) ⊂ H(b 1 ), we can writeψ n , k b 1 λ b 1 = ψ n (λ ) = ψ n , k b 2 λ b 2 = δ n, ,whichproves that (k b 1 λn ) n≥1 is a minimal sequence in H(b 1 ). Let b 1 and b 2 be two functions in H ∞ 1 such that they have a common factor b, i.e. both b 1 /b and b2 /b are in H ∞ 1 . Moreover, assume that (R b 1 ,b (n) -1) n ∈ 1 and (R b 2 ,b (n) -1) n ∈ 1 . If (κ b 1λn ) n≥1 is an AOB in H(b 1 ), then there is an integer p ≥ 1 such that (κ b 2 λn ) n≥p is an AOB in H(b 2 ).

Corollary 5 . 10 .

 510 Let b 1 = Θ 2 b where b ∈ H ∞ 1 and Θ 2 is an inner function such that ∞ / ∈ σ(Θ 2 ). Let (λ n ) n≥1 be a sequence of points in C + such that (κ b 1λn ) n≥1 is a complete AOB for H(b 1 ) and

( 2 )-γ 2 2 λ n 1 -

 221 =⇒ (1): Follows from Theorem 5.5.(1) =⇒ (2) : We recall a well known fact (see[START_REF] Baranov | Stability of bases and frames of reproducing kernels in model spaces[END_REF] Lemma 4.4]) that sup n |λ n | < ∞, provided ∞ ∈ σ(Θ 2 ) and (κ Θ 2 λn ) n≥p is an AOB in K Θ 2 (in fact, it is sufficient that (κ Θ 2 λn ) n is a frame). Let γ ∈ C + . Then, the function f (z) := Θ 2 (z) 1 -b(γ)b(z) z -γ ∈ Θ 2 H(b) ⊂ K Θ 2 + Θ 2 H(b) = H(b 1 ). Since (κ b 1 λn ) n is an AOB in H(b 1 ), we must have n≥1 | f, κ b 1 λn | 2 < ∞ i.e. n≥1 |Θ 2 (λ n )| 2 1 -b(γ)b(λ n ) λ n |b 1 (λ n )| 2 < ∞.We observe that, since sup n |λ n | < ∞, when |γ| is large enough, we have1 -b(γ)b(λ n ) λ n -γ 1 -|b(γ)| |γ| .

Finally, we get n≥1 ( 1 -R Θ 2 ,b 1 (

 n≥1121 In other words, (RΘ 2 ,b 1 (n) -1) n ∈ 1 . Since R b 1 ,Θ 2 (n) = 1/R Θ 2 ,b 1 (n), it follows that the sequence (R b 1 ,Θ 2 (n) -1) n is in 1 .

  follows from (3.7) and [3, Corollary 5.4] that every function f ∈ H(b) is differentiable on ]λ n , µ n [ and, the set of all functions in H(b) which are continuous on [λ n , µ n ] is dense in H(b). Therefore, it is sufficient to prove (3.8) for functions f ∈ H(b) continuous on [λ n , µ n

  Θa tn ) n∈Z is an orthonormal basis for K Θa , the so-called Clark basis. If (s n ) n∈Z ⊂ R is a sequence satisfying Θa sn ) n∈Z is a complete AOB for K Θa .

	and (κ lim n→±∞	s n -	α + 2nπ a	= 0,
	then Corollary 3.27 implies that (κ			
				). Then
	Θ -1 a ({e iα }) = {t n = (α + 2nπ)/a : n ∈ Z},
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