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REPRESENTING SYSTEMS GENERATED BY REPRODUCING
KERNELS

EMMANUEL FRICAIN, HAI KHOI LE, AND PASCAL LEFÈVRE

Abstract. In that paper, we study the representing and absolutely representing systems

in the context of reproducing kernel Hilbert spaces. We prove in particular that, in many

classical spaces including weighted Hardy and Dirichlet spaces and de Branges–Rovnyak

spaces, there cannot exist absolutely representing systems of reproducing kernels.

1. Introduction

The theory of representing systems in topological vector spaces has been developed inten-

sively during the last three decades. It has many important applications in different areas of

mathematics, in particular to solve certain functional equations by representing the solutions

in series of simpler functions, like exponential functions or rational functions.

It should be noted that in a study of representing systems and absolutely representing

systems, several important criteria for a countable system to be representing (respectively,

absolutely representing) in Fréchet–Schwartz or dual Fréchet–Schwartz spaces have been

obtained. In particular, the notion of sufficient sets has been developed and proved to be a

powerful tool. Roughly speaking, a subset S of a set X is a sufficient set for a locally convex

inductive limit of weighted spaces of functions on X if a (a-priori) weaker topology given

by a system of semi–norms induced by S coincide with the original topology. Sufficient sets

for some spaces of entire functions and infinitely differentiable functions were considered by

Ehrenpreis [4], Taylor [14, 15], Schneider [13], Baernstein [1], Napalkov [10] and others. A

functional analytic treatment of inductive limits of weighted function spaces has also been

given by K.D. Bierstedt, R.G. Meise and W.H. Summers [3]. We refer the reader to the work

by Yu.F. Korobeiknik, especially the survey article [8] as well as [9] and references therein

for more details.

In that paper, we study the representing and absolutely representing systems in the con-

text of reproducing kernel Hilbert spaces. In particular, we are interested in the following

question.

2010 Mathematics Subject Classification. 30J05, 30H10, 46E22.
Key words and phrases. Representing systems, reproducing kernels, spaces of analytic functions.
The authors were supported in part by Merlion Project. The first-named and third-name authors were
also supported in part by Labex CEMPI (ANR-11-LABX-0007-01), and the second-named author was also
supported in part by MOE’s AcRF Tier 1 grant M4011724.110 (RG128/16).

1



Question 1.1. Let H be a reproducing kernel Hilbert space on a set X and let kHx be the

reproducing kernel of H at point x ∈ X. Can we characterize the sequence of points (xn)n≥1

in X such that (kHxn)n≥1 is a representing system (respectively an absolutely representing

system) for its closed linear span?

In Section 2, we give some general preliminaries on representing systems in Banach spaces

setting. In Section 3, we prove that there cannot exist absolutely representing systems

of reproducing kernels in the Hardy space H2 and we also give a necessary condition for

representing systems. In the last section, we generalize the non-existence of absolutely

representing systems of reproducing kernels in various Hilbert spaces, including weighted

Hardy spaces, weighted Dirichlet spaces and de Branges–Rovnyak spaces.

2. Representing system and absolutely representing systems in Banach

spaces

Definition 2.1. Let X be a complex and separable Banach space of infinite dimension. A

sequence of non-zero elements (xn)n≥1 is said to be a representing system for X if, for every

element x ∈ X, there exists a sequence of complex numbers (an)n≥1 such that

(2.2) x =
∞∑
n=1

anxn,

where the series converges in norm of X.

It should be noted that in the definition, we do not ask that the sequence (an)n≥1 is unique.

If we impose the uniqueness, then it coincides with the notion of Schauder basis. In other

words, the sequence (xn)n≥1 is a (Schauder) basis if and only it is a representing system

which is minimal.

Definition 2.3. We say that a sequence X = (xn)n≥1 is an absolutely representing system

for X if we have (2.2) and moreover∑
n≥1

|an|‖xn‖ <∞.

It should be noted that every separable Banach space admits an absolutely representing

system. That follows directly from Banach–Mazur theorem (see for instance [2]). Neverthe-

less we give the proof for completeness.

Proposition 2.4. Let X be a separable Banach space. Then there exists a sequence (xn)n≥1

which forms an absolutely representing system for X.

Proof. Since X is separable, we can find a sequence of vectors (xn)n≥1 dense in the unit ball

of X. We shall prove that (xn)n≥1 is an absolutely representing system for X, which means
2



that, for every x ∈ X, there is a sequence (an)n≥1 ∈ `1 such that

x =
∞∑
n=1

anxn.

Let x ∈ X. Without loss of generality, we can of course assume that ‖x‖ = 1. Then we can

choose n1 ≥ 1 such that

‖x− xn1‖ ≤
1

2
.

Assume that we have chosen n1 < n2 < · · · < nj satisfying

(2.5)

∥∥∥∥x− xn1 −
1

2
xn2 − · · · −

1

2j−1
xnj

∥∥∥∥ ≤ 1

2j
.

Since 2j(x− xn1 − · · · − 1
2j−1xnj

) lies in the unit ball of X, we can choose nj+1 > nj such that∥∥∥∥2j(x− xn1 − · · · −
1

2j−1xnj
)− xnj+1

∥∥∥∥ < 1

2
.

Hence ∥∥∥∥x− xn1 −
1

2
xn2 − · · · −

1

2j
xnj+1

∥∥∥∥ ≤ 1

2j+1
,

and by induction we obtain (2.5) for all j ≥ 1. Take now

an =

 1
2j−1 if n = nj, j ≥ 1

0 otherwise.

Then, of course (an)n≥1 ∈ `1 and letting j →∞ in (2.5) gives

x =
∞∑
n=1

anxn.

�

The following characterization of absolutely representing systems will be useful for us. As

usual, given a Banach space X, we denote by X∗ the dual space of X.

Lemma 2.6. Let X be a Banach space, (xn)n≥1 be a sequence of vectors in X, ‖xn‖ = 1,

n ≥ 1. The following are equivalent:

(i) the sequence (xn)n≥1 is an absolutely representing system for X;

(ii) there exists C > 0 such that for every x∗ ∈ X∗, ‖x∗‖ = 1, there is an integer n ≥ 1

such that |x∗(xn)| ≥ C.

Proof. First note that the map T defined, for a = (an)n≥1 ∈ `1, by

(2.7) T (a) =
∞∑
n=1

anxn
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is linear and bounded from `1 into X. Moreover, an easy computation shows that its adjoint

T ∗ : X∗ −→ `∞ is given by

T ∗(x∗) = (x∗(xn))n≥1, x∗ ∈ X∗.

It remains to note that (i)⇐⇒ T onto ⇐⇒ T ∗ bounded below ⇐⇒ (ii).

�

As already mentioned, a Schauder basis is a representing system which is minimal. For

a class of Banach spaces, including Hilbert spaces, the situation for absolutely representing

systems changes dramatically.

Proposition 2.8. Let X be a Banach space which is not isomorphic to `1 and let (xn)n≥1 be

a sequence of unit vectors in X which is a basis for X. Then (xn)n≥1 cannot be an absolutely

representing system for X.

Proof. Let T : `1 −→ X be the map defined by (2.7). It is clear that T is a linear and

bounded map from `1 into X. Since (xn)n≥1 is a basis, T is also one-to-one. Assume that

(xn)n≥1 is an absolutely representing system for X. Then the operator T is also onto and

thus an isomorphism, which contradicts the fact that X is not isomorphic to `1.

�

Note that Proposition 2.8 applies in particular to Hilbert spaces.

3. Representing systems in Hardy spaces

Let H2 be the Hardy space on the open unit disc D. It is a reproducing kernel Hilbert

space with reproducing kernel given by kλ(z) = (1−λz)−1 where λ, z ∈ D. That means that

f(λ) = 〈f, kλ〉2, where f ∈ H2.

We denote by k̂λ the normalized reproducing kernel, k̂λ = kλ/‖kλ‖2. Let us recall that if

(λn)n≥1 is a sequence of distinct points in the unit disc, then we have the following dichotomy:

if (λn)n≥1 satisfies the Blaschke condition, that is if∑
n≥1

(1− |λn|) <∞,

then the sequence (k̂λn)n≥1 is minimal and

span(k̂λn : n ≥ 1) = KB,

where span(. . . ) denotes the closed linear span generated by (. . . ) and B is the associated

Blaschke product B =
∏

n≥1 bλn and bλn is the single Blaschke factor defined by bλn(z) =
4



|λn|
λn

(λn− z)(1− λnz)−1. On the contrary, if (λn)n≥1 does not satisfy the Blaschke condition,

then the sequence (k̂λn)n≥1 is not minimal and

span(k̂λn : n ≥ 1) = H2.

See for instance [6, Lemma 14.16].

In the case when the sequence (λn)n≥1 is a Blaschke sequence, we can easily characterize

the representing systems formed by reproducing kernels.

Proposition 3.1. Let (λn)n≥1 be a Blaschke sequence of distinct points in D and B the

associated Blaschke product. The following are equivalent:

(i) the sequence (k̂λn)n≥1 is a representing system for KB;

(ii) the sequence (k̂λn)n≥1 is a Riesz basis for KB;

(iii) the sequence (k̂λn)n≥1 is uniformly minimal;

(iv) the sequence (λn)n≥1 satisfies the Carleson condition, that is

inf
n≥1
|Bn(λn)| > 0,

where Bn = B/bλn.

Proof. The equivalence between (ii), (iii) and (iv) is well–known (see [6, 11]). The implica-

tion (ii) =⇒ (i) is obvious. It remains to prove (i) =⇒ (iii). Since (λn)n≥1 is a Blaschke

sequence, we know that the sequence (k̂λn)n≥1 is minimal. If it is furthermore assumed to be

a representing system, then it should be a (Schauder) basis. Hence, in particular, it should

be uniformly minimal.

�

It is quite easy to prove that there does not exist absolutely representing systems formed

by reproducing kernels of H2.

Theorem 3.2. Let (λn)n≥1 be a sequence of distinct points in D. Then the sequence (k̂λn)n≥1

cannot be an absolutely representing system for its closed linear span in H2.

Proof. Assume that the sequence (k̂λn)n≥1 is an absolutely representing system for its closed

linear span. We shall distinguish two cases.

First case: (λn)n≥1 is a Blaschke sequence. Let B be the associated Blaschke prod-

uct. Then we know that the sequence (k̂λn)n≥1 generates the space KB and according to

Proposition 3.1, it should be a Riesz basis for KB. Then apply Proposition 2.8 to get a

contradiction.

Second case: (λn)n≥1 is not a Blaschke sequence. In that case, we know that

span(k̂λn : n ≥ 1) = H2.
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According to Lemma 2.6, there is a constant C > 0 such that for any h ∈ H2, ‖h‖2 = 1,

we can find n ≥ 1 such that |h(λn)|(1 − |λn|2)1/2 ≥ C. Choose N sufficiently large so that

2 ≤ (N + 1)C2. Consider ϕ(t) = (1− t)tN and point out that

sup
t∈[0,1]

ϕ(t) ≤ 1

N + 1
.

For h(z) = zN , there is an integer n such that

C2 ≤ |h(λn)|2(1− |λn|2) = |λn|2N(1− |λn|2) = ϕ(|λn|2) ≤
1

N + 1
≤ C2

2
,

which gives the desired contradiction in that second case.

�

We give now a necessary condition so that a sequence of reproducing kernels forms a

representing system for H2.

Theorem 3.3. Let (λn)n≥1 be a sequence in D which is not a Blaschke sequence. Assume

that

(3.4)
∑
n

|λn − λn+1| <∞.

Then the sequence (kλn)n≥1 is not a representing system for H2.

Proof. Condition (3.4) obviously implies that (λn)n≥1 is convergent to some point in D. In

particular, there exists ζ0 ∈ T = ∂D such that

(3.5) inf
n≥1
|λn − ζ0| > 0.

Assume now that the sequence (kλn)n≥1 is a representing system for H2. Then there exists

a sequence of complex numbers (an)n≥1 such that

1

(1− ζ0z)1/4
=
∞∑
n=1

an
1

1− λnz
,

where the series converges in the H2-norm. In particular, the series is also pointwise con-

vergent and taking z = 0, we get that the series
∑

n an is convergent. Moreover, using (3.5),

we have ∣∣∣∣ 1

1− λnζ0
− 1

1− λn+1ζ0

∣∣∣∣ =
|λn − λn+1|

|1− λnζ0||1− λn+1ζ0|
. |λn − λn+1|.

Using now (3.4), we can apply Abel’s theorem to get that the series∑
n

an
1

1− λnζ0
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is convergent and

lim
z−→ζ0
^

∞∑
n=1

an
1

1− λnz
=
∞∑
n=1

an
1

1− λnζ0
,

where lim z−→ζ0
^

denotes the non–tangential limit at ζ0. Hence (1 − ζ0z)−1/4 has a non

tangential limit at ζ0 which gives a contradiction. �

It would be interesting to answer the following open question.

Question 3.6. can we construct a sequence of points (λn)n in D which is not a Blaschke

sequence and such that (kλn)n forms a representing system for H2?

4. Absolutely representing systems in various reproducing kernel Hilbert

spaces

We can generalize Theorem 3.2 for a large class of reproducing kernel Hilbert spaces. Let

H be a reproducing kernel Hilbert space of analytic functions on the unit disc D. We say

that H is invariant with respect to the difference quotients if, for every λ ∈ D, we have

f ∈ H =⇒ Qλf ∈ H, where

(Qλf)(z) =
f(z)− f(λ)

z − λ
=
∞∑
k=0

f (k+1)(λ)

(k + 1)!
(z − λ)k, z ∈ D.

Many classical spaces are invariant with respect to the difference quotients, e.g. the Hardy

space H2, the Dirichlet space D, the Bergman space B,...

Lemma 4.1. Let H be a reproducing kernel Hilbert space which is invariant with respect to

the difference quotients. Let (kHλn)n≥1 be a sequence of reproducing kernels of H. Then we

have the following dichotomy:

(a) either (kHλn)n≥1 is minimal;

(b) or (kHλn)n≥1 is complete in H.

Proof. Assume that (kHλn)n≥1 is not complete in H and let us prove that the sequence is

minimal. There exists f ∈ H, f 6≡ 0, such that f(λn) = 0, n ≥ 1. Fix an integer N ≥ 1

and denote by ` the smallest integer such that f (`)(λN) 6= 0. Then define g = Q`
λN
f where

Q`
λN

= QλN ◦QλN ◦· · ·◦QλN (`-times). By hypothesis, the function g belongs toH. Moreover,

since

(Qs
λf)(z) =

∞∑
k=0

fk+s(λ)

(k + s)!
(z − λ)k,

we have g(λN) 6= 0 and, by induction, it is easy to check that g(λn) = 0, n ≥ 1, n 6= N .

Hence

kHλN 6∈ span (kHλn : n 6= N),
7



which proves the minimality of (kHλn)n≥1.

�

4.1. Weighted Hilbert spaces of analytic functions and absolutely representing

systems. Given a positive integrable function ω on [0, 1] which is not zero almost everywhere

on a neighborhood of 1, we extend it by ω(z) = ω(|z|), z ∈ D, and call such ω a weight

function. We denote by Dω the space consisting of analytic functions f on D such that

‖f ′‖2ω =

∫
D
|f ′(z)|2ω(z)dA(z) <∞,

where dA(z) = dxdy/π is normalized area measure in D. The Hilbert space Dω is endowed

with the norm

‖f‖2Dω = |f(0)|2 + ‖f ′‖2ω.

A simple computation shows that an analytic function f(z) =
∑∞

n=0 anz
n belongs to Dω if

and only if

‖f‖2Dω =
∞∑
n=0

|an|2ωn <∞,

where ω0 = 1 and

ωn = 2n2

∫ 1

0

r2n−1ω(r) dr, n ≥ 1.

The following result is probably known but we couldn’t find reference so we include the

proof.

Lemma 4.2. Let ω be a weight function. Then Dω is invariant with respect to the difference

quotients and is a reproducing kernel Hilbert space whose kernel is given by

kωλ (z) =
∞∑
k=0

λ
k

ωk
zk.

Proof. To prove that Dω is invariant with respect to the difference quotients, let f ∈ Dω and

λ ∈ D. Fix ε > 0 such that the closed disc K = D(λ, ε) is contained in D. If g = Qλf , then

write ∫
D
|g′(z)|2ω(z) dA(z) =

∫
K

|g′(z)|2ω(z) dA(z) +

∫
D\K
|g′(z)|2ω(z) dA(z).

On one hand, note that∫
K

|g′(z)|2ω(z) dA(z) ≤ sup
z∈K
|g′(z)|2

∫
D
ω(z) dA(z) = 2‖ω‖L1[0,1] sup

z∈K
|g′(z)|2 <∞.

8



On the other hand, we have∫
D\K
|g′(z)|2ω(z) dA(z) =

∫
D\K

|f(z)− f(λ)− (z − λ)f ′(z)|2

|z − λ|4
ω(z) dA(z)

.
∫
D
|f(z)|2 + |f(λ)|2 + |f ′(z)|2)ω(z) dA(z).

Since f ∈ Dω, we have∫
D
(|f(λ)|2 + |f ′(z)|2)ω(z) dA(z) . ‖ω‖L1[0,1] + ‖f ′‖2ω <∞.

Writing f(z) =
∑

n≥0 anz
n, it remains to note that∫

D
|f(λ)|2ω(z) dA(z) =2

∞∑
n=0

|an|2
∫ 1

0

r2n+1ω(r) dr

≤2
∞∑
n=0

|an|2n2

∫ 1

0

r2n−1ω(r) dr

=
∞∑
n=0

|an|2ω(n) = ‖f‖2Dω <∞.

Hence ∫
D
|g′(z)|2ω(z) dA(z) <∞,

and g = Qλf ∈ Dω.

Using a duality argument and Hadamard’s formula, we see that Dω is a reproducing kernel

Hilbert space (that is it has bounded evaluation at point λ ∈ D) if and only if

(4.3) lim inf
n→∞

ω1/n
n ≥ 1.

By hypothesis, there exists ε0 > 0 such that for any ε ≤ ε0, we have

Cε :=

∫ 1

1−ε
ω(r) dr > 0,

which gives

ωn ≥ 2n2

∫ 1

1−ε
r2n−1ω(r) dr ≥ 2n2Cε(1− ε)2n−1

Hence we get

lim inf
n→∞

ω1/n
n ≥ (1− ε)2.

Letting ε go to zero, we obtain (4.3) and Dω is a reproducing kernel Hilbert space.

Finally, let λ ∈ D and f(z) =
∑

n≥0 anz
n ∈ Dω. By (4.3), the function

kωλ (z) =
∞∑
k=0

λ
k

ωk
zk.

9



is an analytic function on D which belongs to Dω. Moreover, we have

〈f, kωλ 〉Dω =
∞∑
n=0

an
λn

ωn
ωn =

∞∑
n=0

anλ
n = f(λ),

which proves that kωλ is the reproducing kernel for Dω. �

Note that

‖kωλ‖2Dω =
∞∑
k=0

|λ|2k

ωk
.

We denote by k̂ωλ the normalized reproducing kernel and

SN =
N∑
k=0

1

ωk
.

Lemma 4.4. Let ω be a weight function. Then

lim sup
n→∞

ωnSn =∞.

Proof. Assume that lim supn→∞ ωnSn < ∞. Then there exists a constant C such that for

every n ≥ 1, we have 1 ≤ ωnSn ≤ C. Writing

Sn ≤
C

ωn
= C(Sn − Sn−1),

we get qSn−1 ≤ Sn, where q = C/(C − 1) > 1. Hence Sn ≥ qnS0, which gives

ω1/n
n ≤

(
C

S0

)1/n

q−1,

and that contradicts (4.3).

�

Theorem 4.5. Let ω be a weight function, (λn)n≥1 a sequence of distinct points in the unit

disc. Then the sequence (k̂ωλn)n≥1 cannot be an absolutely representing system of its closed

linear span.

Proof. Assume that the sequence (k̂ωλn)n≥1 is an absolutely representing system of its closed

linear span. We shall distinguish two cases.

First case: the sequence (k̂ωλn)n≥1 is minimal. Thus, it should be a (Schauder) basis for

its closed linear span. Then apply Proposition 2.8 to get a contradiction.

Second case: the sequence (k̂ωλn)n≥1 is not minimal. Then, according to Lemma 4.2 and

Lemma 4.1, we have

span(k̂ωλn : n ≥ 1) = Dω.
10



It follows from Lemma 2.6 that there is a constant C > 0 such that for every h ∈ Dω, we

can find n ≥ 1 such that

|h(λn)| ≥ C‖kωλn‖Dω‖h‖Dω .

Applying this to h(z) = zN+1 for some N ∈ N, there is n ≥ 1 such that

|λn|2(N+1) ≥ C2‖kωλn‖
2
Dω‖z

N+1‖2Dω .

Note that

‖zN+1‖2Dω = ωN+1,

and

‖kωλn‖
2
Dω ≥

N+1∑
k=0

|λn|2k

ωk
≥ |λn|2(N+1)SN+1.

Hence we obtain |λn|2(N+1) ≥ C2|λn|2(N+1)SN+1ωN+1, that is

1 ≥ C2SN+1ωN+1.

According to Lemma 4.4, we get the desired contradiction in that second case.

�

Example 4.6. Let ω(r) = (1− r2)α with α > −1. Then ω is a weight function and we can

apply Theorem 4.5 to Dω.

For α = 0, we get that ωn = n and Dω is the classical Dirichlet space D. Therefore we

can apply Theorem 4.5 to the Dirichlet space.

For α = 1, we get that ωn = 1, n ≥ 0, and Dω = H2. Thus Theorem 4.5 is a generalization

of Theorem 3.2.

For α = 2, we get that ωn = 1/n, n ≥ 1, and Dω is the classical Bergman space B and

we can apply Theorem 4.5 to the Bergman space.

4.2. Dirichlet type spaces and absolutely representing systems. We now study an

example when the weight ω is not (necessarily) radial but corresponds to the Poisson trans-

form of a positive finite Borel measure µ on T. Let

ω(z) = P [µ](z) =

∫
T

1− |z|2

|z − ζ|2
dµ(ζ)

and let Dµ = Dω be the space consisting of analytic functions f on D satisfying

Dµ(f) :=

∫
D
|f ′(z)|2P [µ](z) dA(z) <∞.

It is known (see [5, Theorem 7.1.2]) that Dµ ⊂ H2 and Dµ is a reproducing kernel Hilbert

space whose norm is given by

‖f‖2µ = ‖f‖22 +Dµ(f), f ∈ Dµ.
11



It is also known that Dµ is invariant with respect to the difference quotients. Denote by k̂µλ
the normalized reproducing kernel for Dµ at point λ ∈ D.

Theorem 4.7. Let µ be a positive finite Borel measure on T, let (λn)n≥1 a sequence of distinct

points in the unit disc. Then the sequence (k̂µλn)n≥1 cannot be an absolutely representing

system of its closed linear span.

Proof. The proof is along the same lines as the proof of Theorem 4.5. First note that a

simple computation shows that for every integer N ≥ 0, we have

(4.8) ‖zN‖2µ = 1 +N‖µ‖.

Assume that the sequence (k̂µλn)n≥1 is an absolutely representing system of its closed linear

span. We shall distinguish two cases.

First case: the sequence (k̂µλn)n≥1 is minimal. Thus, it should be a (Schauder) basis for

its closed linear span. Then apply Proposition 2.8 to get a contradiction.

Second case: the sequence (k̂µλn)n≥1 is not minimal. Then, since Dµ is invariant with

respect to the difference quotients, we can apply Lemma 4.1, and we get

span(k̂µλn : n ≥ 1) = Dµ.

It follows from Lemma 2.6 that there is a constant C > 0 such that for every h ∈ Dµ, we

can find n ≥ 1 such that

|h(λn)| ≥ C‖kµλn‖Dµ‖h‖Dµ .

Applying this to h(z) = zN for N ∈ N, there is n ≥ 1 such that

|λn|2N ≥ C2‖kµλn‖
2
Dµ‖z

N‖2Dω .

Since 1 ∈ Dµ, note that

1 = 〈1, kµλn〉µ ≤ ‖1‖µ‖k
µ
λn
‖µ,

and we deduce

1 ≥ |λn|2N ≥ C2‖1‖−2µ ‖zN‖2µ.

If we let N tend to ∞ we obtain a contradiction with (4.8) in that second case. �

4.3. De Branges–Rovnyak spaces and absolutely representing systems. In this sec-

tion we study the case of de Branges-Rovnyak spaces. We denote by BH∞ the unit ball of

H∞. Recall that, given a function b ∈ BH∞ , the de Branges–Rovnyak space H(b) is the

reproducing kernel Hilbert space of analytic functions on D whose kernel is

kbλ(z) :=
1− b(λ)b(z)

1− λz
, z, λ ∈ D.
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Note that

‖kbλ‖2b =
1− |b(λ)|2

1− |λ|2
.

We also denote by k̂bλ the normalized reproducing kernel of H(b) at point λ.

The space H(b) can also be defined as the range space (I − TbTb)1/2H2 equipped with the

norm which makes (I − TbTb)1/2 a partial isometry. Here Tϕ is the Toeplitz operator on H2

with symbol ϕ ∈ L∞(T) defined by

Tϕf = P+(ϕf), f ∈ H2,

where P+ is the orthogonal projection of L2(T) onto H2. The book [12] is the classic reference

for H(b) spaces (see also [7]).

For our result, we focus on the case when b is a non-extreme point of b(H∞), equivalently,

log(1 − |b|) ∈ L1(T,m) (where T := {ζ ∈ C : |ζ| = 1} and m is Lebesgue measure on T
normalized so that m(T) = 1). Then there exists a unique outer function a ∈ b(H∞), called

the Pythagorean mate for b, such that a(0) > 0 and |a|2 + |b|2 = 1 almost everywhere on T.

The pair (a, b) is said to be a Pythagorean pair.

When b is non-extreme and a is its Pythagorean mate, an important vector space of

functions is

M(a) := TaH
2 = aH2.

We also equip this space with the range norm which makes Ta an isometry from H2 onto

M(a). ThenM(a) is an Hilbert space which is included into H(b). Moreover, the inclusion

M(a) ⊂ H(b) is contractive (see [12, p. 24]). Finally, we recall that H(b) is invariant with

respect to the difference quotients.

Theorem 4.9. Let b be a non extreme point of BH∞ and let (λn)n≥1 be a sequence of distinct

points in the unit disc. Then the sequence (k̂bλn)n≥1 cannot be an absolutely representing

system of its closed linear span.

Proof. Assume that the sequence (k̂bλn)n≥1 is an absolutely representing system of its closed

linear span. We shall distinguish two cases.

First case: the sequence (k̂bλn)n≥1 is minimal. Thus, it should be a basis for its closed

linear span. Then apply Proposition 2.8 to get a contradiction.

Second case: the sequence (k̂bλn)n≥1 is not minimal. Then, according to Lemma 4.1, we

have

span(k̂bλn : n ≥ 1) = H(b).

It follows from Lemma 2.6 that there is a constant C > 0 such that for every h ∈ H(b), we

can find n ≥ 1 such that

|h(λn)| ≥ C‖kbλn‖b‖h‖b.
13



As in the proof in the H2 case, choose N sufficiently large so that 2 ≤ (N + 1)C2. Consider

h(z) = zNa(z). Since h ∈M(a) ⊂ H(b) and

1 = ‖zN‖2 = ‖h‖M(a) ≤ ‖h‖b ,

there is an integer n such that

C2(1− |b(λn)|2) ≤ |a(λn)|2|λn|2N(1− |λn|2).

Remind now that |a|2 + |b|2 = 1 a.e. on T. Hence a standard argument based on Poisson

integral gives that |a(z)|2 + |b(z)|2 ≤ 1 for every z ∈ D, which gives

C2 ≤ |λn|2N(1− |λn|2) ≤
1

N + 1
≤ C2

2
.

Thus we get the desired contradiction in that second case.

�
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[8] Yu. F. Korobĕı nik. Representative systems. Uspekhi Mat. Nauk, 36(1(217)):73–126, 248, 1981.
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