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BACKWARD SHIFT INVARIANT SUBSPACES IN
REPRODUCING KERNEL HILBERT SPACES

EMMANUEL FRICAIN, JAVAD MASHREGHI, AND RISHIKA RUPAM

Abstract. In this note, we describe the backward shift invari-
ant subspaces for an abstract class of reproducing kernel Hilbert
spaces. Our main result is inspired by a result of Sarason concern-
ing de Branges–Rovnyak spaces (the non-extreme case). Further-
more, we give new applications in the context of the range space
of co-analytic Toeplitz operators and sub-Bergman spaces.

1. Introduction

A celebrated theorem of Beurling describes all (non trivial) closed
invariant subspaces of the Hardy space H2 on the open unit disc D
which are invariant with respect to the backward shift operator S∗.
They are of the form KΘ = (ΘH2)⊥, where Θ is an inner function.
The result of Beurling was the cornerstone of a whole new direction of
research lying at the interaction between operator theory and complex
analysis. It was generalized in many ways. See for instance [1, 3, 5,
7, 17]. Sarason [22] classified the non trivial closed backward shift
invariant subspaces of the de Branges–Rovnyak spaces H (b), where b
is a non-extreme point of the closed unit ball of H∞: they are of the
form KΘ ∩H (b), where Θ is an inner function. In other words, the
closed invariant subspaces for S∗|H (b) are the trace on H (b) of the
closed invariant subspaces for S∗. This naturally leads to the following
question:

(Q): let H1 and H2 be two reproducing kernel Hilbert spaces on D
such that H1 ⊂ H2; assume that the shift operator S (multiplication
by the independent variable) is contractive on H2 and if T = S|H2, its
adjoint T ∗ maps H1 contractively into itself. Then, is it true that every
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closed invariant subspace E of T ∗|H1 has the form E ∩H1, where E
is a closed invariant subspace of T ∗ (as an operator on H2)? In other
words, are the closed invariant subspaces for T ∗|H1 the trace on H1 of
the closed invariant subspaces for T ∗?

It should be noted that, of course, the interesting situation is when
H1 is not a closed subspace of H2. Sarason’s result says that this is
the case in the situation where H2 = H2 and H1 = H (b), with b a
non-extreme point of the closed unit ball of H∞.

The aim of this note is to present a general framework where the
answer to the question (Q) is affirmative. Note that in [2], Aleman–
Malman present another general situation of reproducing kernel Hilbert
spaces where they extend Sarason’s result.

In Section 2, we first recall some basic facts on reproducing ker-
nel Hilbert spaces and on the Sz.-Nagy–Foias model for contractions.
Then, in Section 3, we study the properties of multiplication operators
in our general context and prove that the scalar spectral measures of the
minimal unitary dilation of T ∗|H1 are absolutely continuous. We also
show that when H2 = H2, then the reproducing kernel Hilbert space
H1 satisfies an interesting division property, the so-called F -property.
In Section 4, we give an analogue of Beurling’s theorem in our gen-
eral context and give an application to cyclic vectors for the backward
shift. In Section 5, we show that our main theorem can be applied to
H (b) spaces and range space of co-analytic Toeplitz operators. We
also provide a new application in the context of sub-Bergman Hilbert
space which was recently studied in [26, 27, 28].

2. Preliminaries

We first recall some standard facts on reproducing kernel Hilbert
spaces. See [21] for a detailed treatment of RKHS.

2.1. Reproducing kernel Hilbert spaces and multipliers. Let H
be a Hilbert space of complex valued functions on a set Ω. We say that
H is a reproducing kernel Hilbert space (RKHS) on Ω if the following
two conditions are satisfied:

(P1) for every λ ∈ Ω, the point evaluations f 7−→ f(λ) are bounded
on H ;

(P2) for every λ ∈ Ω, there exists a function f ∈ H such that
f(λ) 6= 0.

According to the Riesz representation theorem, for each λ ∈ Ω, there
is a function kH

λ in H , called the reproducing kernel at point λ, such
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that
f(λ) = 〈f, kH

λ 〉H , (f ∈H ).

Note that according to (P2), we must have kH
λ 6≡ 0. Moreover if (fn)n

is a sequence in H , then

(2.1) fn → f weakly in H =⇒ ∀λ ∈ Ω, lim
n→∞

fn(λ) = f(λ).

A multiplier of H is a complex valued function ϕ on Ω such that
ϕf ∈H for all f ∈H . The set of all multipliers of H is denoted by
Mult(H ). Using the closed graph theorem, we see that if ϕ belongs
to Mult(H ), then the map

(2.2) Mϕ,H :

∣∣∣∣ H −→ H
f 7−→ ϕf

is bounded on H . When there is no ambiguity, we simply write Mϕ

for Mϕ,H . It is well-known that if we set

‖ϕ‖
Mult(H )

= ‖Mϕ‖L(H ), ϕ ∈Mult(H ),

then Mult(H ) becomes a Banach algebra. Moreover, using a standard
argument, we have

(2.3) M∗
ϕk

H
λ = ϕ(λ)kH

λ , (λ ∈ Ω),

which gives

(2.4) |ϕ(λ)| ≤ ‖ϕ‖
Mult(H )

, (λ ∈ Ω).

See for instance [10, Chapter 9] or [21].
Let H1,H2 be two RKHS such that H1 ⊂H2. If (fn)n is a sequence

in H1 which is convergent in the weak topology of H2, we cannot
deduce that it also converges in the weak topology of H1. However,
the following result shows that on the bounded subsets of H1 the above
conclusion holds.

Lemma 2.5. Let H1,H2 be two RKHS on a set Ω such that H1 ⊂H2,
let (fn)n be a sequence in H1 bounded in H1-norm by a constant C,
and let f ∈H2. Assume that (fn)n converges to f in the weak topology
of H2. Then the following holds:

(i) f ∈H1,
(ii) fn → f in the weak topology of H1,

(iii) ‖f‖H1 ≤ C.

Proof. Since (fn)n is uniformly bounded in the norm of H1, it has a
weakly convergent subsequence. More explicitly, there is a subsequence
(fnk

)k that converges to some g ∈ H1 in the weak topology of H1.
Using (2.1), we easily see that the two functions f and g coincide on
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Ω. Therefore f ∈ H1. Second, since each H1−weakly convergent
subsequence of (fn)n has to converge weakly to f in H1, we conclude
that (fn)n itself also converges to f in the weak topology of H1. Third,
the weak convergence in H1 implies

‖f‖H1 ≤ lim inf
n→∞

‖fn‖H1 ≤ C.

�

2.2. H∞ functional calculus for contractions. Let T be a contrac-
tion on a Hilbert space H . We recall that T is said to be completely
non-unitary if there is no nonzero reducing subspaces H0 for T such
that T |H0 is a unitary operator. We recall that for a completely non-
unitary contraction T on H , we can define an H∞-functional calculus
with the following properties (see [4, Theorem 2.1, page 117]):

(P3) for every f ∈ H∞, we have

‖f(T )‖ ≤ ‖f‖∞.

(P4) If (fn)n is a sequence of H∞ functions which tends boundedly to
f on the open unit disc D (which means that supn ‖fn‖∞ <∞
and fn(z)→ f(z), n→ +∞ for every z ∈ D), then fn(T ) tends
to f(T ) WOT (for the weak operator topology).

(P5) If (fn)n is a sequence of H∞ functions which tends boundedly
to f almost everywhere on T = ∂D, then fn(T ) tends to f(T )
SOT (for the strong operator topology).

Finally, we recall that every contraction T on a Hilbert space H has
a unitary dilation U on K (which means that H ⊂ K and T n =
PH Un|H , n ≥ 1) which is minimal (in the sense thatK =

∨∞
−∞ U

nH ).

2.3. A general framework. In this note, we consider two analytic
reproducing kernel Hilbert spaces H1 and H2 on the open unit disc
D (which means that their elements are analytic on D) and such that
H1 ⊂ H2. A standard application of the closed graph theorem shows
that there is a constant C such that

(2.6) ‖f‖H2 ≤ C‖f‖H1 , (f ∈H1).

Denote by χ the function χ(z) = z, z ∈ D. Furthermore, we shall
assume the following two properties:

(2.7) χ ∈Mult(H2) and ‖χ‖
Mult(H2)

≤ 1,

and if X := M∗
χ,H2

(recall notation (2.2)), then

(2.8) XH1 ⊂H1 and ‖X‖L(H1) ≤ 1.
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The restriction of X to H1 is denoted by

XH1 := X|H1 .

2.4. Range Spaces. Let X ,Y be two Hilbert spaces and T ∈ L(X ,Y ).
We define M(T ) as the range space equipped with the range norm.
More explicitly, M(T ) = R(T ) = TX and

‖Tx‖M(T ) = ‖P(kerT )⊥x‖X , x ∈X ,

where P(kerT )⊥ denotes the orthogonal projection from X onto (kerT )⊥.
It is easy to see that M(T ) is a Hilbert space which is boundedly
contained in Y . A result of Douglas [6] says that if A ∈ L(X1,Y ) and
B ∈ L(X2,Y ), then

(2.9) M(A) PM(B)⇐⇒ AA∗ = BB∗.

Here the notationM(A) PM(B) means that the Hilbert spacesM(A)
andM(B) coincide as sets and, moreover, have the same Hilbert space
structure. We also recall that if A,B ∈ L(X1,Y ) and C ∈ L(Y ), then
(2.10)
C is a contraction from M(A) into M(B)⇐⇒ CAA∗C∗ ≤ BB∗.

See also [11, Corollaries 16.8 and 16.10].

3. Multiplication operators

Note that (2.7) implies ‖χ‖
Mult(H2)

= 1. Indeed, according to (2.4),

we have

1 = sup
z∈D
|χ(z)| ≤ ‖χ‖

Mult(H2)
≤ 1.

More generally, since
⋂
n≥0M

n
χ,H2
H2 = {0}, we see that Mχ,H2 is a

completely non-unitary contraction. Hence, we get the following con-
sequence.

Lemma 3.1. Let H2 be a reproducing kernel Hilbert space of analytic
functions on D satisfying (2.7). Then Mult(H2) = H∞ and for every
ϕ ∈ H∞, we have Mϕ,H2 = ϕ(Mχ,H2) with

(3.2) ‖ϕ‖
Mult(H2)

= ‖ϕ‖∞.

Proof. Let ϕ ∈ H∞ and consider the dilates ϕr(z) = ϕ(rz), 0 < r < 1,
z ∈ D. If ϕ(z) =

∑∞
n=0 anz

n and f ∈ H2, observe that

ϕr(Mχ,H2)f =
∞∑
n=0

anr
nMn

χ,H2
f =

∞∑
n=0

anr
nχnf = ϕrf.
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Moreover, by (P5), we have ϕr(Mχ,H2)f → ϕ(Mχ,H2)f in H2 as r → 1.
Then, using (2.1), we get on one hand

ϕr(λ)f(λ) = (ϕr(Mχ,H2)f)(λ)→ (ϕ(Mχ,H2)f)(λ), as r → 1, (λ ∈ D),

and on the other hand, ϕr(λ)f(λ) → ϕ(λ)f(λ), r → 1 (λ ∈ D). We
thus deduce that ϕf = ϕ(Mχ,H2)f ∈H2. In particular, ϕ ∈Mult(H2)
and Mϕ,H2 = ϕ(Mχ,H2). Moreover, by (P3), we have

‖ϕ‖
Mult(H2)

= ‖ϕ(Mχ,H2)‖ ≤ ‖ϕ‖∞.

If we combine with (2.4), we get (3.2). �

Lemma 3.3. Let H1 and H2 be two reproducing kernel Hilbert spaces
of analytic functions on D such that H1 ⊂ H2. Assume that H1 and
H2 satisfy (2.7) and (2.8). Then the minimal unitary dilation of XH1

has an absolutely continuous scalar spectral measure. In particular, for
every f, g ∈H1, there exists uf,g ∈ L1(T) such that

(3.4) 〈Xn
H1
f, g〉H1 =

∫
T
znuf,g(z) dm(z).

Proof. Let f, g ∈ H1 and let µf,g be the scalar spectral measure asso-
ciated to the minimal unitary dilation of the contraction XH1 . Then,
we have

(3.5) 〈Xn
H1
f, g〉H1 =

∫
T
zn dµf,g(z).

Let us prove that µf,g is absolutely continuous with respect to normal-
ized Lebesgue measure m on T. Let F be a closed Borel subset of T
such that m(F ) = 0. Then, we can construct a bounded sequence of
polynomials (qn)n such that qn(z) → χF (z), as n → +∞, for every
z ∈ D. Indeed, Let f be the Fatou function associated to F , that is
a function f in the disc algebra (that is the closure of polynomials for
the sup norm) such that f = 1 on F and |f | < 1 on D \ F (See [20,
page 116] or [18]). Now take fn, n ≥ 0. The functions fn are still in
the disc algebra. Then if we take ε > 0, we can find a polynomial qn
such that

sup
z∈D
|fn(z)− qn(z)| ≤ ε

2
.

In particular, we have for every z ∈ F , |1− qn(z)| ≤ ε/2. On the other
hand, for z ∈ D \F , we can find n0 such that for n ≥ n0, |fn(z)| ≤ ε/2
(because |fn(z)| < 1 and thus |fn(z)| → 0, as n→∞). Therefore, for
n ≥ n0, we have

|qn(z)| ≤ |qn(z)− fn(z)|+ |fn(z)| ≤ ε

2
+
ε

2
= ε.
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Hence qn(z) tends to 1 for z ∈ F and to 0 for z ∈ D \ F . In other
words, qn tends to χF pointwise. On the other hand, we have of course

sup
z∈D
|qn(z)| ≤ 1 +

ε

2
,

which proves that the sequence (qn)n is also bounded, and we are done.
Now, since (qn)n converges boundedly to 0 on D and since X is a

completely unitary contraction, we deduce from (P4) that (qn(X))n
converges WOT to 0 in L(H2). Hence it implies that (qn(XH1)f)n
converges weakly to 0 in H2. On the other hand, by von Neumann
inequality, we have

‖qn(XH1)f‖H1 ≤ ‖qn‖∞‖f‖H1 ≤ C‖f‖H1 ,

where C = supn ‖qn‖∞ < +∞. By Lemma 2.5, we deduce that
(qn(XH1)f)n converges weakly to 0 in H1. But, according to (3.5),
we have

〈qn(XH1)f, g〉H1 =

∫
T
qn(z) dµf,g(z),

which gives that

lim
n→+∞

∫
T
qn(z) dµf,g(z) = 0.

It remains to apply dominated Lebesgue convergence theorem to get∫
T
χF (z) dµf,g(z) = 0,

which implies that µf,g(F ) = 0. Hence µf,g is absolutely continuous
with respect to m. �

Theorem 3.6. Let H1 and H2 be two reproducing kernel Hilbert spaces
of analytic functions on D such that H1 ⊂ H2. Assume that H1 and
H2 satisfy (2.7) and (2.8). Let ϕ ∈ H∞. Then M∗

ϕ,H2
maps H1 into

itself, and if f, g ∈H1, we have

(3.7) 〈M∗
ϕ,H2

f, g〉H1 =

∫
T
ϕ∗(z)uf,g(z) dm(z),

where ϕ∗(z) = ϕ(z).

Proof. Let us first assume that ϕ is holomorphic on D and let us con-
sider the Taylor series of ϕ, ϕ(z) =

∑∞
n=0 anz

n. Then we have

(3.8) M∗
ϕ,H2

= ϕ(Mχ,H2)
∗ =

∞∑
n=0

anX
n.
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Since XH1 ⊂H1, the last equation implies that M∗
ϕ,H2

H1 ⊂H1. Now
using that

∑∞
n=0 |an| <∞ and (3.4), we get

〈M∗
ϕ,H2

f, g〉H1 =
∞∑
n=0

an〈Xn
H1
f, g〉H1

=
∞∑
n=0

an

∫
T
znuf,g(z) dm(z)

=

∫
T

∞∑
n=0

anz
nuf,g(z) dm(z)

=

∫
T
ϕ∗(z)uf,g(z) dm(z).

This proves (3.7) for ϕ which is holomorphic on D. We also observe
that ∣∣〈M∗

ϕ,H2
f, g〉H1

∣∣ ≤ ∫
T
|ϕ∗(z)||uf,g(z)| dm(z)

≤ ‖ϕ‖∞
∫
T
|uf,g(z)| dm(z).

But by spectral theorem, we know that
∫
T |uf,g(z)| dm(z) = ‖µf,g‖ ≤

‖f‖H1‖g‖H1 , which gives

(3.9) ‖M∗
ϕ,H2

f‖H1 ≤ ‖ϕ‖∞‖f‖H1 .

Now let ϕ ∈ H∞ and define the dilates ϕr(z) = ϕ(rz), 0 < r < 1,
z ∈ D. Observe that ϕr are holomorphic on D. By the previous
argument, we get that M∗

ϕr,H2
maps H1 into itself and

(3.10) 〈M∗
ϕr,H2

f, g〉H1 =

∫
T
ϕ∗ruf,g dm, f, g ∈H1.

Since ϕr converges boundedly to ϕ on D as r → 1, and since Mχ,H2

is a completely non unitary contraction on H2, we get that M∗
ϕr,H2

f
converges weakly to M∗

ϕ,H2
f in H2 as r → 1. On the other hand, using

(3.9), we have

‖M∗
ϕr,H2

f‖H1 ≤ ‖ϕr‖∞‖f‖H1 ≤ ‖ϕ‖∞‖f‖H1 .

Lemma 2.5 now implies that M∗
ϕ,H2

f belongs to H1 and M∗
ϕr,H2

f con-
verges weakly to M∗

ϕ,H2
f in H1 as r → 1. Letting r → 1 in (3.10) and

using dominated convergence, we deduce that formula (3.7) is satisfied
by ϕ. �
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Remark 3.11. It follows immediately from (3.7) that for ϕ ∈ H∞, we
have

‖M∗
ϕ,H2
‖L(H1) ≤ ‖ϕ‖∞.

Given a bounded operator T on a Hilbert space H , the family of all
closed T -invariant subspaces of H is denoted by Lat(T ).

Corollary 3.12. Let H1 and H2 be two reproducing kernel Hilbert
spaces of analytic functions on D such that H1 ⊂ H2. Assume that
H1 and H2 satisfy (2.7) and (2.8). Then, for every ϕ ∈ H∞, we have

Lat(XH1) ⊂ Lat(M∗
ϕ,H2
|H1).

Proof. Let ϕ ∈ H∞, ϕr(z) = ϕ(rz), 0 < r < 1, and let E ∈ Lat(XH1).
Note that (3.8) implies that M∗

ϕr,H2
E ⊂ E. On the other hand, as we

have seen in the proof of Theorem 3.6, M∗
ϕr,H2

→ M∗
ϕ,H2

, as r → 1, in
the weak operator topology of L(H1). Since a norm-closed subspace is
also weakly closed [19], we conclude that M∗

ϕ,H2
E ⊂ E. �

To conclude this section, we show that Theorem 3.6 has an inter-
esting application in relation with the F-property. Recall that a linear
manifold V of H1 is said to have the F-property if whenever f ∈ V and
θ is an inner function which is lurking in f , i.e., f/θ ∈ H1 or equiv-
alently θ divides the inner part of f , then we actually have f/θ ∈ V .
This concept was first introduced by V. P. Havin [16] and it plays a
vital role in the analytic function space theory. Several classical spaces
have the F-properties. the list includes Hardy spaces Hp, Dirichlet
space D, BMOA, VMOA, and the disc algebra A. See [13, 15, 24].
However, for the Bloch spaces B and B0, we know that B ∩ Hp and
B0 ∩Hp do not have the F-property [14]. Using the tools developed in
Section 2.3, we will see that in the situation when H1 ⊂ H2 satisfies
(2.8), then H1 has the F-property. First, let us note that H2 = H2

satisfies (2.7) and Mχ,H2 = S is the classical forward shift operator.
Thus, X = M∗

χ,H2
= S∗ is the backward shift operator

(S∗f)(z) =
f(z)− f(0)

z
, f ∈ H2, z ∈ D.

In this context, if H1 is a reproducing kernel Hilbert space such that
H1 ⊂ H2, the condition (2.8) can be rephrased as

(3.13) S∗H1 ⊂H1 and ‖S∗|H1‖ ≤ 1.

Recall that for ψ ∈ L∞(T), the Toeplitz operator Tψ is defined on H2

by Tψ(f) = P+(ψf) where P+ is the Riesz projection (the orthogo-
nal projection from L2(T) onto H2). If ϕ ∈ H∞ = Mult(H2), then
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Mϕ,H2 = Tϕ and M∗
ϕ,H2 = Tϕ. In this situation, we get the following

result.

Theorem 3.14. Let H1 be a reproducing kernel Hilbert space contained
in H2, and assume that it satisfies (3.13). Then the space H1 has the
F-property. Moreover, if f ∈ H1 and θ is an inner function which
divides f , then ∥∥∥∥fθ

∥∥∥∥
H1

≤ ‖f‖H1 .

Proof. Assume that f ∈ H1 and that θ is an inner function so that
f/θ ∈ H1. In fact, by Smirnov Theorem [20], we actually have ψ :=
f/θ ∈ H2. Therefore,

Tθ(f) = P+(θf) = P+(ψ) = ψ.

But according to Theorem 3.6 and Remark 3.11, Tθ acts contractively
on H1. Hence ψ = Tθ(f) ∈H1 and∥∥∥∥fθ

∥∥∥∥
H1

= ‖Tθf‖H1
≤ ‖f‖H1 .

�

4. Invariant subspaces and cyclicity

The following result says that under certain circumstances, the closed
invariant subspaces of XH1 = X|H1 are exactly the trace on H1 of the
closed invariant subspaces of X. Despite the following characterization,
the implication (i) =⇒ (ii) is the essential part of the result.

Theorem 4.1. Let H1 and H2 be two analytic reproducing kernel
Hilbert spaces on D such that H1 ⊂ H2 and satisfying (2.7) and
(2.8). Assume that there exists an outer function ϕ ∈ H∞ such that
R(M∗

ϕ,H2
) ⊂H1. Then, for every E ⊂H1, the following assertions are

equivalent.

(i) E is a closed subspace of H1 invariant under XH1;
(ii) there is a closed subspace E of H2 invariant under X = M∗

χ,H2

such that E = E ∩H1.

Moreover, E = H1 if and only if E = H2.

The proof will be based on the following lemma, which extends [11,
Lemmata 17.21 and 24.30] in our general context.

Lemma 4.2. Let H1 and H2 be two analytic reproducing kernel Hilbert
spaces on D such that H1 ⊂H2 and satisfying (2.7) and (2.8). Assume
that there exists an outer function ϕ ∈ H∞ such that R(M∗

ϕ,H2
) ⊂H1.
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Then, for every E ∈ Lat(XH1), the space M∗
ϕ,H2
E is dense in E with

respect to the norm topology of H1.

Proof. According to Corollary 3.12, we know that M∗
ϕ,H2
E ⊂ E . Now

let g ∈ E , g ⊥ M∗
ϕ,H2
E in the H1-topology. In particular, for every

n ≥ 0, we have

0 = 〈M∗
ϕ,H2

Xn
H1
g, g〉H1 .

Observe now that Mn
χ,H2

Mϕ,H2 = Mχnϕ,H2 , which gives M∗
ϕ,H2

Xn =
M∗

χnϕ,H2
. Hence, by Theorem 3.6, we get

0 = 〈M∗
χnϕ,H2

g, g〉H1 =

∫
T
ϕ∗(z)znug,g(z) dm(z),

for every n ≥ 0. We thus deduce that ϕ∗ug,g ∈ H1
0 . Since ϕ∗ is outer

and ug,g ∈ L1(T), Smirnov Theorem [8] implies that ug,g ∈ H1
0 . Since

ug,g ≥ 0, this gives ug,g = 0, that is g = 0. �

Proof of Theorem 4.1. (ii) =⇒ (i): Let E be a closed subspace of H2,
invariant under X = M∗

χ,H2
such that E = E ∩H1. First, let us check

that E is a closed subspace of H1. The verification essentially owes to
(2.6). To do so, let f ∈ H1 be in the H1-closure of E ∩H1. Then
there is a sequence (fn)n in E ∩H1 which converges to f in the norm
topology of H1. Since H1 is boundedly contained in H2, the sequence
(fn)n also converges to f in H2. Since E is closed in H2, the function
f must belong to E. Hence, f ∈ E = E ∩H1, which proves that E is
closed in H1. The fact that E is invariant under XH1 = M∗

χ,H2
|H1 is

immediate.

(i) =⇒ (ii): A standard argument using the closed graph theorem
implies that, according to R(M∗

ϕ,H2
) ⊂ H1, the mapping M∗

ϕ,H2
from

H2 into H1 is a bounded operator. Now let E be a closed subspace
of H1, and assume that E is invariant under XH1 . Denote by E the
closure of E in the H2-topology. It is clear that E is a closed subspace
of H2 which is invariant under X. Let us prove that E = E ∩H1. The
inclusion E ⊂ E ∩H1 is trivial. For the reverse inclusion, let us verify
that

(4.3) M∗
ϕ,H2

E ⊂ E .

Let f ∈ E. By definition, there is a sequence (fn)n in E which converges
to f in the H2-topology. Then, since M∗

ϕ,H2
is bounded from H2 into

H1, the sequence (M∗
ϕ,H2

fn)n tends to M∗
ϕ,H2

f in the H1-topology.
Since fn ∈ E , Corollary 3.12 implies that M∗

ϕ,H2
fn ∈ E and since E is
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closed in H1, then M∗
ϕ,H2

f ∈ E , which proves (4.3). In particular, we
have

M∗
ϕ,H2

(E ∩H1) ⊂ E ,
and since E ∩H1 is a closed subspace of H1 invariant with respect
to XH1 , it follows from Lemma 4.2 that M∗

ϕ,H2
(E ∩H1) is dense in

E ∩H1, which implies
E ∩H1 ⊂ E .

Thus we have E = E ∩H1.

It remains to prove that E = H1 if and only if E = H2. Assume first
that E = H1. Then R(M∗

ϕ,H2
) ⊂ E. But note that ker (Mϕ,H2) = {0},

whence R(M∗
ϕ,H2

) is dense in H2. Hence we get E = H2. Conversely,
assume that E = H2. Then

E = E ∩H1 = H2 ∩H1 = H1,

which concludes the proof. �

Remark 4.4. As already noted, R(M∗
ϕ,H2

) is always dense in H2 and
thus under the hypothesis of Theorem 4.1 (that is if there exists an
(outer) function ϕ ∈ H∞ such that R(M∗

ϕ,H2
) ⊂ H1), then automati-

cally H1 is dense in H2.

Theorem 4.1 has an immediate application in characterization of
cyclic vectors.

Corollary 4.5. Let H1 and H2 be two analytic reproducing kernel
Hilbert spaces on D such that H1 ⊂ H2 and satisfying (2.7) and
(2.8). Suppose that there exists an outer function ϕ ∈ H∞ such that
R(M∗

ϕ,H2
) ⊂ H1. Let f ∈ H1. Then the following assertions are

equivalent.

(i) f is cyclic for X = M∗
χ,H2

.
(ii) f is cyclic for XH1 = X|H1.

Proof. (i) =⇒ (ii): Assume that f is cyclic for X in H2 and denote by
E the subspace of H1 defined by

E = Span(Xn
H1
f : n ≥ 0)

H1
.

It is clear that E is a closed subspace of H1, invariant with respect to
XH1 . Assume that E 6= H1. Then, according to Theorem 4.1, there
exists a closed subspace E of H2, E 6= H2, invariant under X such
that E = E ∩H1. In particular, f ∈ E, and thus it is not cyclic for X,
which is contrary to the hypothesis. Thus E = H1 and f is cyclic for
XH1 .
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(ii) =⇒ (i): Let g ∈ R(M∗
ϕ,H2

). Then g ∈ H1 and if f is cyclic for
XH1 , there exists a sequence of polynomials (pn) such that

‖pn(XH1)f − g‖H1 → 0, as n→∞.

Since H1 is contained boundedly in H2, then we have

‖pn(XH2)f − g‖H2 → 0, as n→∞.

Thus, R(M∗
ϕ,H2

) ⊂ Span(X∗nf : n ≥ 0)
H2

. Since R(M∗
ϕ,H2

) is dense in
H2, we get

Span(X∗nf : n ≥ 0)
H2

= H2.

�

We can apply Theorem 4.1 and Corollary 4.5 to some specific re-
producing kernel Hilbert spaces contained in the Hardy space H2 on
D.

Theorem 4.6. Let H1 be a reproducing kernel Hilbert space contained
in H2 that satisfies (3.13) and assume that there exists an outer func-
tion ϕ ∈ H∞ such that TϕH

2 ⊂ H1. Then, for every E ( H1, the
following assertions are equivalent.

(i) E is a closed subspace of H1 invariant under XH1;
(ii) there is an inner function Θ such that E = KΘ ∩H1.

Moreover, if f ∈ H1, then f is cyclic for S∗|H1 if and only if f is
cyclic for S∗.

Proof. It is sufficient to combine Theorem 4.1 and Corollary 4.5 with
Beurling’s theorem. �

Remark 4.7. Note that the hypothesis TϕH
2 ⊂ H1 implies that poly-

nomials belong to H1.

Regarding the last part of Theorem 4.6, let us mention that a well-
known theorem of Douglas–Shapiro–Shields [7] says that a function f
in H2 is cyclic for S∗ if and only if f has no bounded type meromorphic
pseudo continuation across T to De = {z : 1 < |z| ≤ ∞}.

5. Applications

In this section, we give some examples of RKHS for which our main
Theorem 4.1 can be applied.
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5.1. A general RKHS. Let H2 be an analytic RKHS on D satisfying
(2.7). Let ϕ ∈ H∞ and H1 :=M(M∗

ϕ,H2
). Recall the definition of the

range space from Section 2.4. Then H1 is also an analytic RKHS on
D which is contained in H2. Observe that H1 satisfies (2.8). Indeed,
since Mϕ,H2Mχ,H2 = Mχ,H2Mϕ,H2 , we have XM∗

ϕ,H2
= M∗

ϕ,H2
X, which

implies that XH1 ⊂ H1. Moreover, if f = M∗
ϕ,H2

g ∈ H1 for some

g ∈ (kerM∗
ϕ,H2

)⊥, then

‖Xf‖H1 = ‖XM∗
ϕ,H2

g‖H1

= ‖M∗
ϕ,H2

Xg‖H1

= ‖Xg‖H2

≤ ‖g‖H2 = ‖f‖H1

Thus H1 satisfies (2.8). In this context, we get immediately from The-
orem 4.1 the following.

Corollary 5.1. Let H2 be an analytic RKHS satisfying (2.7). Let ϕ
be an outer function in H∞ and let H1 :=M(M∗

ϕ,H2
). Then, for every

E ⊂H1, the following assertions are equivalent.

(i) E is a closed subspace of H1, invariant under XH1;
(ii) There is a closed subspace E of H2, invariant under X = M∗

χ,H2

such that E = E ∩H1.

Moreover E = H1 if and only if E = H2.

5.2. The space M(ϕ). Let H2 = H2 be the Hardy space on D, ϕ an
outer function in H∞ and H1 =M(Tϕ) which we denote for simplicity
M(ϕ). The space H2 trivially satisfies (2.7) and according to the
discussion at the beginning of Subsection 5.1, the space M(ϕ) is an
analytic RKHS contained in H2 and satisfying (2.8) (or equivalently
(3.13)). Again, for simplicity, we write Xϕ = XM(ϕ) = S∗|M(ϕ).

In this context, we can apply Theorem 4.6 which immediately gives
the following.

Corollary 5.2. Let ϕ be an outer function. Then the following asser-
tions are equivalent.

(i) E is a closed subspace of M(ϕ), E 6= M(ϕ), and E is invariant
under Xϕ.

(ii) There is an inner function Θ such that E = KΘ ∩M(ϕ).

5.3. de Branges–Rovnyak space H (b). Let b ∈ b(H∞)–the closed
unit ball of H∞. The de Branges–Rovnyak space H (b) is defined as

H (b) =M((I − TbTb)1/2).
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For details on de Branges–Rovnyak spaces, we refer to [11, 23]. Here
we will just recall what will be useful for us.

It is well–known that H (b) is an analytic RKHS contractively con-
tained in H2 and invariant with respect to S∗. Moreover, the oper-
ator Xb = S∗|H (b) acts as a contraction on H (b). In particular,
the space H (b) satisfies the hypothesis (3.13). Assume now that b
is a non-extreme point of b(H∞), meaning that log(1 − |b|) ∈ L1(T).
Thus, there exists a unique outer function a such that a(0) > 0 and
|a|2 + |b|2 = 1 a.e. on T. This function a is called the pythagorean mate
of b. It is well-known that R(Ta) ⊂H (b).

We can then apply Theorem 4.6 to H1 = H (b) and H2 = H2 to
recover the following result due to Sarason ([22], Theorem 5).

Corollary 5.3 (Sarason). Let b be a non-extreme point of the closed
unit ball of H∞, and let E be a closed subspace of H (b), E 6= H (b).
Then the following are equivalent.

(i) E is invariant under Xb.
(ii) There exists an inner function Θ such that E = KΘ ∩H (b).

Remark 5.4. As already noted, hypothesis of Theorem 4.6 implies that
polynomials belongs to H1. In the case when H1 = H (b), we know
that it necessarily implies that b is non-extreme. In the extreme case,
the backward shift invariant subspaces have been described by Suarez
[25], also using some Sz.-Nagy-Foias model theory, but the situation is
rather more complicated.

5.4. Sub-Bergman Hilbert space. The Bergman space A2 on D is
defined as the space of analytic functions f on D satisfying

‖f‖2
A2 :=

∫
D
|f(z)|2dA(z) <∞,

where dA(z) is the normalized area measure on D. In [26, 27, 28], an
analogue of de Branges–Rovnyak spaces was considered in this context.
Recall that the Toeplitz operator on A2(D) with symbol ϕ ∈ L∞(D) is
defined as

Tϕ(f) = PA2(ϕf),

where PA2 is the Bergman projection (that is the orthogonal projection
from L2(D, dA) onto A2). It is clear that T ∗ϕ = Tϕ. Given ϕ ∈ L∞(D),
we define the sub–Bergman Hilbert space H (ϕ) as

H (ϕ) =M((I − TϕTϕ)1/2).
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In other words, H (ϕ) = (I − TϕT ∗ϕ)1/2A2 and it is equipped with the
inner product

〈(I − TϕT ∗ϕ)1/2f, (I − TϕT ∗ϕ)1/2g〉H(ϕ) := 〈f, g〉A2 ,

for every f, g ∈ A2	 ker(I − TϕT ∗ϕ). We keep the same notation as the
de Branges–Rovnyak spaces, but there will be no ambiguity because
in this subsection, the ambient space is A2 (in contrast with the de
Branges–Rovnyak spaces for which the ambient space is H2). We refer
the reader to [27] for details about this space.

The shift operator (also denoted S in this context), defined as S =
Tz, is clearly a contraction and S∗ = Tz. As we have seen, the de
Branges–Rovnyak spaces are invariant with respect to the backward
shift operator which acts as a contraction on them. In the context of
sub–Bergman Hilbert spaces, the analogue of this property is also true.
The proof is the same but we include it for completeness.

Lemma 5.5. Let b ∈ b(H∞). Then S∗ acts as a contraction on H (b).

Proof. We first prove that S∗ acts as a contraction on H (b). According
to (2.10), we should prove that

S∗(I − TbTb)S ≤ I − TbTb,

that is

(5.6) Tz(I − TbTb)Tz ≤ I − TbTb.

But, if ϕ, ψ ∈ L∞(D, dA) and at least one of them is in H∞, then

(5.7) TψTϕ = Tψϕ.

See [29, Proposition 7.1]. Then (5.6) is equivalent to T|z|2(1−|b|2) ≤
T1−|b|2 , that is

0 ≤ T(1−|z|2)(1−|b|2).

Since (1− |z|2)(1− |b|2) ≥ 0 on D, the latter inequality is satisfied (see
also [29, Proposition 7.1]) and thus S∗ acts as a contraction on H (b).

To pass to the H (b) case, we use a well–known relation between
H (b) and H (b): let f ∈ A2; then f ∈H (b) if and only if Tbf ∈H (b)
and

‖f‖2
H (b) = ‖f‖2

A2 + ‖Tbf‖2
H (b)

.
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So let f ∈ H (b). Since TbS
∗f = S∗Tbf and H (b) is invariant with

respect to S∗, we get that TbS
∗f ∈H (b), whence S∗f ∈H (b) and

‖S∗f‖2
H (b) = ‖S∗f‖2

A2 + ‖TbS∗f‖2
H (b)

= ‖S∗f‖2
A2 + ‖S∗Tbf‖2

H (b)

≤ ‖f‖2
A2 + ‖Tbf‖2

H (b)
= ‖f‖2

H (b).

Hence S∗ is a contraction on H (b). �

According to Lemma 5.5, we see that A2 satisfies (2.7) and H (b)
satisfies (2.8). We will show that under the additional hypothesis that
b is a non-extreme point of the closed unit ball of H∞, we can apply
our Corollary 5.1 to H1 = H (b) and H2 = A2.

Corollary 5.8. Let b be a non–extreme point of the unit ball of H∞

and a its pythagorean mate. Then the following are equivalent.

(i) E is a closed subspace of H (b), invariant under Xb = S∗|H (b).
(ii) There is a closed subspace E of A2, invariant under S∗, such that
E = E ∩H (b).

Proof. It is known that since b is analytic, then H (b) = H (b̄) with
equivalent norms, see [26, page 641]. Moreover, according to (5.7), we
have

I − Tb̄Tb = T1−|b|2 = T|a|2 = TāTa.

This identity implies by (2.9) that H (b̄) P M(Tā). Hence H (b) =
M(Tā) =M(T ∗a ) with equivalent norms. We then apply Corollary 5.1
to H2 = A2 and H1 = H (b) =M(T ∗a ), which gives the result. �
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