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Reducing subspaces of Cj, contractions

Chafiq Benhida, Emmanuel Fricain
and Dan Timotin

ABSTRACT. Using the Sz.-Nagy—Foias theory of contractions, we obtain
general results about reducibility for a class of completely nonunitary
contractions. These are applied to certain truncated Toeplitz operators,
previously considered by Li—Yang—Lu and Gu. In particular, a negative
answer is given to a conjecture stated by the latter.
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1. Introduction

We will denote by L? the Lebesgue space L?(T, dm), where dm is normal-
ized Lebesgue measure. The subspace of functions whose negative Fourier
coefficients are zero is denoted by H?; it is identified with the space of an-
alytic functions in the unit disc with square summable Taylor coefficients.
An inner function is an element of H? whose values have modulus 1 almost

everywhere on T.
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If 6 is an inner function, then the space Ky = H? © H? is usually called
a model space; it has been the focus of much research, in function theory
in the unit disc as well as in operator theory (see, for instance,[8, 6]; or [2]
for a more recent account). In particular, in the last two decades several
papers discuss the so-called truncated Toeplitz operators, introduced in [9],
which are compressions to Ky of multiplication operators on L?.

Originating with work in [1], the question of reducibility of a certain class
of truncated Toeplitz operators has been recently investigated in papers by
Yi, Yang, and Lu [4, 5] and Gu [3]. Besides certain remarkable results, they
also contain intriguing questions that have not yet found their solution.

The current paper has several purposes. First, we put the problem of re-
ducibility of the truncated Toeplitz operators in a larger context, that of the
Sz.-Nagy—Foias theory of completely nonunitary contractions [7], and show
that some results in the above quoted papers may be generalized or given
more transparent proofs. Secondly, we answer in the negative a conjecture
stated in [3] and prove a statement that replaces it.

The plan of the paper is the following. After presenting in the next section
the elements of Sz.-Nagy theory that interest us, we obtain in Section 3 some
general results about reducibility for completely nonunitary contractions.
These results are applied in Section 4 to a certain class of truncated Toeplitz
operators. The connection to [5] is achieved in Section 5, while the relation
to [3] is the content of the last section.

2. Sz.-Nagy—Foias dilation theory

The general reference for this section is the monograph [7], in particular
chapters I, II, and VI.

2.1. Minimal isometric dilation. If H is a Hilbert space and H; is a
closed subspace, we will denote by Py, the orthogonal projection onto H;.

A closed subspace M of H is said to be reducing for an operator T if
both M and M~ are invariant with respect to 7. A completely nonunitary
contraction T € L(H) is a linear operator that satisfies ||T'|| < 1, and there
is no reducing subspace of T' on which it is unitary. The defect of T is the
operator Dp = (I — T*T)1/2, and the defect space is Dy = DrH.

We write T' € C.g if T*™ tends strongly to 0, and T € Cyg if T and T™*
are in C.g, that is 7™ and T*" both tend strongly to 0. If T' € Cyg, then it
can be shown that dim Dy = dim Dp+. The subclass of Cyy for which this
dimension is finite and equal to N is denoted by Cy(IN). We will mostly be
interested by contractions in the class Cyg.
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An isometric dilation of 7" is an isometric operator V € L£(K), with K D
H, such that Py V"|H = T" for any n € N. Note that if T = PyV|H
and VH- C H*, then V is a dilation. An isometric dilation V € L(K)
is called minimal if K = \/72, V"H. This is uniquely defined, modulo a
unitary isomorphism commuting with the dilations; in [7] there is a precise
description of its geometric structure. This becomes simpler for contractions
in Clp; since this is the only case we are interested in, we will describe the
minimal isometric dilation in this case.

We will say that a subspace X C K is wandering for V if V"X 1 V™X
for any n # m, and in this case we will denote My (X) := @,-, V" X. Note
that My (X) is invariant with respect to V.

Lemma 2.1. If T is a completely nonunitary contraction and V is its min-
imal isometric dilation, then T € C. if and only if there exist wandering
subspaces L, L, C K for V, with dim L = dim Dy and dim L, = dim Drp~,
such that

(2.1) K=My(L)=H®ML(L).

In this case, the operators
(2.2) ¢:Drx— (V-T)x, ¢u:Dpx—ax—VItx
extend to unitary operators Dp — L and Dpx — L.

2.2. Analytic vector valued functions. If £ is a Hilbert space, then
H?(&) is the Hilbert space of £-valued analytic functions in D with the
norms of the Taylor coefficients square summable. As in the scalar case,
these functions have strong radial limits almost everywhere on T, and so
may be identified with their boundary values, defined on T.

Denote by T¢ multiplication by z acting on H2(E); it is an isometric
operator. If w : & — &’ is unitary, then the notation @ will indicate the
unique unitary extension @ : H2(§) — H?(&') such that @T¢ = T &.

Suppose X C K is wandering for the isometry V € £(K). Then the map
§x, defined by

(2.3) FxO_Vian) =Y ANy,
n=0 n=0

is unitary from M (X) to H?(X).

Another class of functions that we have to consider take as values opera-
tors between two Hilbert spaces £, .. More precisely, we will be interested
in contractive analytic functions; that is, functions © : D — L£(&,E*), which
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satisfy [|©(z)|| < 1 for all z € D. As in the scalar case, © has boundary
values O(e') almost everywhere on T.

A contractive analytic function is called pure if ||©(0)z| < ||z|| for any
x € &, ¢ # 0. Any contractive analytic function admits a decomposition
in a direct sum © = ©, ® ©,, where ©, is pure and O, is a constant
unitary operator; then ©, is called the pure part of ©. A contractive analytic
function will be called bi-inner if ©(e') is almost everywhere unitary. (We
prefer this shorter word rather than call them inner and *-inner).

The appropriate equivalence relation for contractive analytic functions is
that of coincidence: two analytic functions © : D — L£(£,&,), © : D —
L(E'EL) are said to coincide if there exist unitary operators w : &€ — &',
ws 2 EL — &L, such that ©'(\)w = w,.O(N) for all A € D.

2.3. Functional model and characteristic function. The model theory
of Sz.-Nagy and Foias associates to any completely nonunitary contraction
T a pure contractive analytic function O7(z), with values in L(Dr, Dr+),
defined by the formula

(2.4) Or(2) = =T + 2D+ (I — 2T*) ' D7|Dr.

A functional model space and an associated model operator are constructed
by means of Op, and one can prove that T is unitarily equivalent to this
model operator.

As we will be interested only in Cyy contractions, we will describe the
model only in this case, in which it takes a significantly simpler form. The
reason is that T' € Cyg is equivalent to O bi-inner. The functional model
associated to a bi-inner contractive analytic function © : D — L£(&,£¥) is
defined as follows: the model space is

(2.5) Ho = H*(E,) © OH?(E),

while the model operator Sg is the compression to Hg of ng*. If © is pure,
then T ZS* is precisely a minimal unitary dilation of Sg.

Note that (2.5) shows that Sg satisfies the assumptions of Lemma 2.1
with L = ©€&, L, = &,. In particular,

(2.6) dimDg, = dim&, dim Dgs = dim &,

Suppose © : D — L(€,&,) and ©' : D — L(E',EL) coincide, by means of
the operators w : & — &', wy : . — &.. Then the unitary @, : H2(&,) —
H?(&!) satisfies &(He) = Her and

.86 = S/,



REDUCING SUBSPACES OF Cpo CONTRACTIONS 5

Returning now to the contraction T' and its characteristic function, the
next lemma is a particular case of one of the basic results in [7, Chapter VI].

Lemma 2.2. If T € Cy, then the formula (2.4) defines a bi-inner pure
analytic function with values in L(Dr,Dr+), and T is unitarily equivalent
to Se,. Se, is called the functional model of T'.

There is a relation between the functional model and the geometrical
structure of a minimal unitary dilation given by (2.1), as shown by the next
result.

Lemma 2.3. Suppose T' € Coo, V € L(K) is a minimal isometric dilation
of T, and L, L, are wandering subspaces for V satisfying (2.1). FExtend
b, by in (2.2) to unitary operators ¢ : H*(Dr) — H?*(L), ¢y : H*(Dr+) —
H?(L,), and define Q = 51, P

(i) The map §7 P.O7®*Fy, is the inclusion of My (L) into My (Ls).

(ii) We have
OHe, =H, QDr+)= L., QOp(Dr)=0L,
QTP =VvQ, QSe, =TN.

(iii) If © = ¢Or¢* is written O(X) = > > A\"O,, (with O, : L — L),

then

(2.8) ©, = Pr (V"J,
where J denotes the embedding of L into M (Ly).

(2.7)

3. Reducibility

In the sequel of the paper we will be interested by reducibility of certain
contractions. Fortunately, this can be easily characterized through charac-
teristic functions.

Lemma 3.1. Suppose T € Cyy has characteristic function Op : Dp — Drp«.
Then the following are equivalent.
(1) T=T,¢T,.
(i) There exist nontrivial orthogonal decompositions Dy = E' @ E?,
Dr« = E! ® E? which diagonalize ©7()\) for all A € D; that is,

In this case diim Dy, = dim E* = dim Dr» = dim E:, and O, coincides with
0;.
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Proof. If T'="T) ® Ty, then Dr = Dr, ® Dr,, Dy~ = Dr; @ Dry, and for-
mula (2.4) splits according to these decompositions into O7(\) = O, (A) &
O1,(A). So (3.1) is valid, taking E' = Dr,, E. = Dr».

Conversely, if ©(X) := O7(A) = ©1(A\) ® ©2()), then, according to (2.5),
Ho = Ho, ® Ho,, and He,, Heo, are invariant with respect to Sg. Since
this last operator is unitarily equivalent to 7', T" is also reducible. Moreover,
Se|He, is unitarily equivalent to Seg,, and the equality of the dimensions
follows from (2.6). O

Corollary 3.2. Suppose T' € Cog. Then T is reducible if and only if there
exist nontrivial subspaces E C Dy, E, C Dp«, such that O(e)E = E, for
almost all t.

Proof. If nontrivial subspaces as assumed exist, then, since O (e®) is uni-
tary almost everywhere, we also have O7(e)E+ = Ej- for almost all t. The
decompositions Dy = E @ E+, Dy« = E, @ E- satisfy then (3.1). O

The following is a geometrical reformulation of Corollary 3.2 in terms of
the spaces L, L, appearing in an arbitrary minimal isometric dilation of T'.

Corollary 3.3. Suppose T' € Coo and V € L(K) is a minimal dilation of
T, such that (2.1) is valid for L, L. wandering subspaces for V. Let d be a
finite positive integer or oo. Then:

(i) If T has a nontrivial reducing subspace such that the restriction has

d-dimensional defects, then there exist nontrivial subspaces L' C L,
Ll c L., both of dimension d, such that

(3.2) L' ¢ My (LY.
(ii) The converse also holds if d < cc.

Proof. (i). Suppose T has a reducing subspace with defect of dimension d.
We apply Lemma 3.1, which gives decomposition (3.1), where ©;(\) : B —
E!, and dim E' = dim E! = d. So ©;H?(E') C H?(E!); in particular, if we
look at E' as the constant functions in H?(E'), we have

(3.3) ©.FE' ¢ H*(E}).

Denote then L' = ¢E! and L. = ¢,.E} (¢, ¢, in (2.2)). We consider the
unitary operator Q from Lemma 2.3. Formulas (2.7) yield also QE! = L},
Q01 (EY) = LY, and Q(H?(EL)) = M, (L}). Therefore (3.3) implies (3.2).

(ii) Conversely, suppose we have the required spaces satisfying (3.2);
therefore M, (L') C M, (L.). Define ©'()\) = ¢.07(\)¢* : L — L,. By us-
ing §1,, we obtain ©H2(L') ¢ H?(LL), which means that ©'(e®*)L! C L!



REDUCING SUBSPACES OF Cpo CONTRACTIONS 7

almost everywhere. Since dim L' = dim Ll = d < oo, we have in fact
O'(ef*)L! = L! almost everywhere. As in the proof of Corollary 3.2, it fol-
lows that ©'(e®)L'+ C L1+ almost everywhere, whence we may obtain a
decomposition similar to (3.1). This implies the reducibility of ©', and thus
the reducibility of ©7 and of T'. O

In particular, we obtain a nice result if we consider reducing subspaces
with defects of dimension 1.

Corollary 3.4. An operator T € Cyo has a reducing subspace with defects
of dimension 1 if and only if there exists y € L, y. € Ly, y,y' # 0, and a
scalar inner function u, such thaty = w(V)ys.. In this case the characteristic
function of the reduced operator is precisely u.

Proof. By Corollary 3.3 applied to d = 1, the existence of a reducing sub-
space with defects of dimension 1 is equivalent to the existence of elements
of norm 1y € L,y € Ly, such that y € M, (y«). The Fourier representa-
tion §,, maps M, (y.) onto H?; more precisely, from (2.3) it follows that
Sy. (f(V)y«) = f. In particular, y is a wandering vector for V', which implies
that u := §y,y is an inner function.

If we denote by H; the reducing subspace of dimension 1 obtained, then
have H1 = M (y.) © M*(y). Through the Fourier representation g,,,
this becomes H? © uH?. By comparing with the general formula for the
functional model, we see that the characteristic function of the reduced
operator is u. O

Remark 3.5. Part of the results in this section may be extended to more
general contractions. Thus Lemma 3.1 is true for a general completely
nonunitary contraction; we have then to use in the proof the more compli-
cated general form of the functional model associated to 1. Appropriately
modified versions of Corollaries 3.2 and 3.3 can also be stated. However,
since the statements are less neat, we have preferred to restrict ourselves to
the case T' € Cyp, which will be used in the applications in the sequel of the

paper.
4. A class of contractions

In the rest of the paper we will work in the Hardy space H?, applying
the above results to a particular class of contractions. By T}, we will denote
the usual Toeplitz operator on H?, that is, the compression of the operator
of multiplication by ¢ on H?. Recall here that, for a scalar inner function
Ky = H? S 0H? = Hy (see (2.5) with £ = &, = C).
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Let then 6, B be two scalar inner functions that satisfy the basic assump-
tion
(4.1) ker T,z = {0}.
Note that f € kerTjz if and only if f € kerTz; = Kp, whence (4.1) is
equivalent to 0H? N K = {0}.

We will consider the operator A% € L(Kj), defined by
(4.2) AY = Py, Tp|Ky.

The operator A% is usually called the truncated Toeplitz operator on Ky
with symbol B. It is known [9] that truncated Toeplitz operators are complex
symmetric; that is, there exist a complex conjugation Cy on Ky such that

(4.3) (A%)* = CoALCy.

The next theorem identifies concretely a minimal isometric dilation of
A% it is a generalization of [5, Lemma 3.1].

Theorem 4.1. Let B and 0 two inner functions satisfying (4.1). The op-
erator T € L(H?) is a minimal isometric dilation of A%. For this minimal
isometric dilation we have

(4.4) L=0Kp, L.=Kg.

Proof. Tj is an isometry on H?, and Tp(K;) = Tp(0H?) C 0H? = K.
Thus it follows from (4.2) that T is a dilation of A%.
We show now by induction according to n that

(4.5) Ko+ BKg+ -+ B"Kp = Kpng.

Equality (4.5) is obviously true for n = 0. Suppose that it is true up to
n — 1. We are left then to prove that

(46) KBn—l@ + Ban == KBnQ

It is immediate from the definitions that the left hand side is contained
in the right hand side. On the other hand, we have

Kpgng = Kgn-19® B" '0Kp = B"Ky ® Kpn.
If f € Kpng is orthogonal to Kgn-14 as well as to B"Kjy, it follows that
fe @B 'Kg)N Kpn.

So f = 0B g with g € Kp; and also f | B"H?, which means g | BH?,
or g € Kp. It follows that 0 = T5(0g) = T,zg. By (4.1), this implies
g =0, whence f = 0.
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Since
(\/ Kpno)" = (") B"60H? = {0},
it follows that
(4.7) H? = \/ TEK,.
n=0

Therefore Ty is a minimal isometric dilation of AGB.

Then
o0 (o]
(4.8) H* =@ B"Kp =@ TEKp = M, (Kp),
n=0 n=0

whence L, = Kp.
On the other hand, we have

(4.9) Kpy=Ky®0Kp = Kg® BKjy,

Therefore
(o] (o]

(4.10) H* =@ B"Kp = Ky@0H? = Ky @ Tp0Kp = Kg© M, (0Kp),
n=0 n=0

whence L = 0K p. O

Corollary 4.2. With the above assumptions, A% is in Cog-

Proof. In view of equation (4.10), it follows from Lemma 2.1 that A% is in
C.p. On the other hand, it follows from (4.3) that

((AB)*)" = Cy(A%)"Cy,
whence A% is also in Cy.. O

Using the identification of a minimal unitary dilation in Theorem 4.1 we
may compute the characteristic function of A%. The next theorem general-
izes [3, Theorem 2.4] (see Section 6 below).

Theorem 4.3. Let B and 6 two inner functions satisfying (4.1). The char-
acteristic function of A% is ® : D — L(Kp) defined by

(4.11) d(\) = A8,

1-\B

Proof. We have identified in Theorem 4.1 L, L, with 0 K, Kp respectively.
We intend to apply Lemma 2.3 (iii). Since we want to consider the character-
istic function of A as an analytic function with values in £(Kp), the embed-
ding J is precisely multiplication by 6. Then, if ®(X) = > "> A", (2.8)
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yields
®,f = Px,B 0f
for f € Kg. Thus ¢, = Aé%n. Therefore

—AB

AB, . O
1

_ n A B _ 4B _
DN =D N'AZ . = A] s g =
n=0

We may also obtain a more precise form of Corollary 3.4.

Corollary 4.4. Let B and 0 two inner functions satisfying (4.1). Then the
following assertions are equivalent:

(i) The operator A% has a reducing subspace such that the restriction
has one-dimensional defects.
(ii) There exist u inner and hy,hy € Kp, hi, ha # 0, such that

h
(4.12) 6= —"2(uo B),
hi
(iii) There exist u,vq,ve inner, with

kerT, g NkerT,, 5 # {0},

such that
(4.13) 0= "2(uoB).
vy

Proof. The equivalence of (i) and (ii) follows by applying in this case Corol-
lary 3.4. We have L, = Kp, L = 0K g, and so the existence of the required
reducing subspace is equivalent to the existence of hy,ho € Kpg, h1,hy # 0
and an inner function u, such that 6h; = u(V)ha. Since V = T, u(V) is
multiplication by u o B, and we have

(4.14) Ohy = ha(u o B).

If (ii) is true, then we must have h; = v;g for some inner functions vy, vo
and g outer, so (4.13) is true. Note that, if v is an analytic and bounded
function in D, then

(4.15) vh € Kp < h €kerT,p.

So v1g,v2g € Kp is equivalent to g € ker T, g Nker T, p.

(%

The implication (iii) = (ii) follows easily by reversing the steps. O

Note that the function « in (ii) and (iii) of the previous corollary is non
constant because otherwise 6h; € Kp, and thus hy € ker T, which contra-
dicts hypothesis (4.1).
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5. A particular case

Let us consider now the particular case when B is a finite Blaschke prod-
uct. Denote ¢o(2) = (2 — a)/(1 — az). If B has roots (counting with
multiplicities) wi, ..., wy, it is known that

p(2)
[T, (1 — wiz)

In this case condition (4.1) has a simple equivalent form.

(5.1) Kp = { : p polynomial of degree < k — 1}.

Lemma 5.1. If B is a finite Blaschke product, then (4.1) is satisfied if and
only if
(5.2) dim Kp < dim Kjy.

Proof. Indeed, first assume that (5.2) is satisfied, and let f € ker Ty5.
Then 0f € kerT5 = Kp, whence f = T5(0f) € T;Kp C Kp. If f # 0, then
0= % is a quotient of two polynomials of degree at most degB — 1, which
contradicts assumption (5.2).

Suppose now that dim Kp > dim Ky. Then § H? has finite codimension in
H? strictly smaller than dim K g, whence 0H? N Kp # {0}. Applying (4.15)
in case v = 0, it follows that ker T,z # {0}, contradicting (4.1). O

Condition (5.2) is precisely the one considered in [3] and [5]. To discuss
this case, we need one more elementary lemma.

Lemma 5.2. Suppose hi, hs are two polynomials of degree at most k — 1

and
(5.3) |hi| = |h2| a.e. on T.
Then,

B

hi By’

where B; are Blaschke products with deg By +deg Bo < k — 1.

Proof. First, a general remark. Suppose that h is a polynomial and write
h(z) = 2Pg(z), with p € NU {0} and ¢(0) # 0. Denote the roots (counting
with multiplicities) of g by aq,...,ay,. Then, h°, the outer part of h, is a
polynomial of degree deg g, which has roots Z,(h) U Z;(h), where Z,(h) :=
{a; : |a;| > 1} and Z;(h) :=={1/a; : 0 < |ay] < 1}.

We may assume that hq, hy have no common roots (otherwise we cancel
them). It also follows then that h; and hy have no roots on T (since this
would be a common root by (5.3) ). Also, only one of them may have the
root 0; suppose it is hy, and write, as above, hy(z) = 2Pg1(z), with g1(0) # 0.
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Assumption (5.3) implies that the outer parts of g; and hy coincide. Since
g1 and hg have no common roots, but ¢1° = hJ, we must have Z,(g1) =
Zi(h2) and Z;(g1) = Zo(h2). Then we can write hy/h; = By/Bj, with

Bi=2" [] da Bo= [[ ¢as

oaz'EZf(hl) aiEZf(hg)

where Zf(p) ={a; : pley) = 0,0 < || < 1} ={1/&; : o € Z;(p)}. Since
we have

deg By + deg By = p+ | Zi(g1)| + | Zi(he)| = p + | Zi(g1)| + | Zo(g1)| < k — 1,
the lemma is proved. [l
The next theorem generalizes [5, Theorem 1.4].

Theorem 5.3. Suppose B is a finite Blaschke product, while 0 is an inner
function with deg @ > deg B. Then the operator A% has a reducing subspace
such that the restriction has one-dimensional defects if and only if

(5.4) 0 = —(uo B),

where u is a non constant inner function, while B1, By are finite Blaschke
products with deg By + deg By < deg B — 1.

Proof. We apply to this case Corollary 4.4 (ii). The existence of the re-
quired reducing subspace is then equivalent to the existence of h1,hy € Kp
and an inner function wu, such that

(5.5) Ohi = ha(uo B).

By (5.1), it is equivalent to assume in this equality that h; are polynomials
of degree < k—1, where k = deg B. Taking absolute values, we obtain, since
0 and uo B are inner, that |h1| = |he| on T. We may then apply Lemma 5.2
to obtain the desired formula (5.4).

The converse is immediate, since (5.4) implies (5.5), with the degrees of
hi(z)
[T, (- i2)

hi and hg at most k — 1. If we further write g;(z) = , we obtain

091 = gg(u o B)

Since g; € Kp, this is equivalent, by Corollary 4.4, to the existence of the
required reducing subspace. [l

The condition becomes simpler if 6 is singular.



REDUCING SUBSPACES OF Cpo CONTRACTIONS 13

Theorem 5.4. Let 0 be a singular inner function and let B be a finite
Blaschke product. Then the operator A% has a reducing subspace such that
the restriction has one-dimensional defects if and only if

(5.6) f=SoB,
for some singular inner function S.

Proof. According to Theorem 5.3, it is sufficient to prove that (5.6) and
(5.4) are equivalent. The implication (5.6) = (5.4) is clear. Assume now
that (5.4) is satisfied, that is we can write

319 = Bg(u o) B),

where By and Bs are finite Blaschke products with deg B; +deg Bo < N —1
and N = degB.

Since 6 is singular, Bs must be a factor of By and may be canceled. So
we may assume By = 1, or B160 = uo B, where deg By < N — 1.

Write then v = B3.S, where Bj is a Blaschke product and S'is the singular
part of u. Thus we have

B16 = (B3 o B)(S o B).
We have deg(B3 o B) = deg Bs deg B; so, if Bj is not constant, then
deg(Bso B) > deg B= N > deg B;.
The contradiction obtained implies that Bj is constant, and so
B16 =S o B.

Since the right hand side is singular, it follows that B; is constant, which
proves the theorem. O

6. The case B(z) = 2N

The case B(z) = 2" is investigated at length in [3]. In particular, the
characteristic function of AZN is computed; let us show how Gu’s result
follows from Theorem 4.3 above.

We use the canonical basis of K formed by 1, z,...2V~1. To obtain the

matrix of AB, | consider first AP,. . We have
1-AB 1-\B

[e.9] o0
L Z A o —iN — Z N N (/=) +m
)

=0 =0
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where n = Nn' +m, with 0 < m < N — 1. Since Ajzgp is nonzero only for
—(N —1) < p < N —1, we have to consider in the above sum only two
terms, corresponding to j =n’ and j =n/ + 1. Thus

Aan — AB

128 AR zm g An/+1m—N -
Its matrix with respect to the canonical basis is
A+
A

(6.1) AB =\ PRI [

)\n’zm+)\n’+1zm—N

/

)\n

with two nonzero constant diagonals (one in case m = 0), corresponding to
entries a;; withi —j=mori—j=m— N.
Therefore, if we decompose

0(z) = HO(ZN) + zﬂl(zN) 4ot ZN_IHN,l(zN),

then
Oo(A)  An—1(A) AOn—2(A) ... Ai(N)
0N Bo(N)  AN_1(d) ... ABs(N)
(6.2) AB, =1 620 01(A) Oo(A) ... AB3(A)
Oy 1(0) Oy a(\) Oy s(\) .. Op(N)

This is precisely the form given by [3, Theorem 2.4].
In the sequel we will solve a conjecture about AgN left open in [3]. This
appears as Conjecture 3.5 therein, and has the following statement.

Conjecture 6.1. Suppose B(z) = zV. Then the following are equivalent:

(i) A% has a reducing subspace such that the restriction has one-dimensional
defects.
(ii) 0(z) = b(2)u(zN) for some inner function u, while either b =1 or

1
(6.3) b(z) = Hd}ai,hv
i=1
where | < N —1, J; C{0,...,N —1}, and 1 ; is defined by
(64) wa,J(z) = HQSwia(Z)'

icJ



REDUCING SUBSPACES OF Cpo CONTRACTIONS 15

[3, Theorem 3.4] shows that (i) = (ii), while (ii) = (i) is proved only
for N =3 in [3, Section 5].

Theorem 6.2. Conjecture 6.1 is false for N = 4.

Proof. Take two different nonzero values «, 8 € D, and define

(2 - )2 - )
(1 —a222)(1 — 3222)°

0(z) =

We have then
0(2) = Va,708,7

with J = {0,2} € {0, 1,2,3}, so 0 satisfies condition (ii) of Conjecture 6.1.
On the other hand, if 6 would satisfy condition (i), it would follow by
Theorem 5.3 that one should have

(6.5) Bs(2)0(z) = Bl(z)u(zA‘),

with u inner and B, Bs finite Blaschke products with deg B 4+ deg By < 3.
Obviously u has also to be a finite Blaschke product. Equating the degrees
in both sides yields

deg B1 + 4 = deg By + 4deg u.

First, deg B = 3 would imply deg Bs = 0, so 7 = 4degu: a contradiction.
So the degree of the left hand side of (6.5) is between 4 and 6, which implies
degu = 1. Again equating the degrees yields deg By = deg Bo =0 or 1.
Now u(z%) has either the root 0 of multiplicity 4, or four distinct roots.
Both possibilities are incompatible with the fact that the left hand side
of (6.5) has either 2 or three roots. We have obtained the desired contra-
diction, so 6 does not satisfy (i) of Conjecture 6.1. O

In fact, we may replace Conjecture 6.1 with a precise result. We will need
the next lemma, also proved in [3, Theorem 3.4].

Lemma 6.3. If a € D, then

N-1

¢aN (ZN) = H ¢wia(z)'

1=0

Theorem 6.4. Suppose B(z) = 2N, Then the following are equivalent:

(1) A% has a reducing subspace such that the restriction has one-dimensional

defects.
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(ii) 8(z) = b(2)u(z") for some inner function u, while b is either 1 or
a finite Blaschke product given by (6.3), where | < N — 1, J; C
{0,...,N =1}, ¥q, s are defined by (6.4), and, moreover,

!
(6.6) > min{|Ji|,N - [Ji]} < N - 1.
i=1
Proof. (i) = (ii). From Theorem 5.3 we know that 6 is given by (5.4),
where By and By have no common roots. We may denote the roots of By
(counting multiplicities) by

1 1. 2 2. AP
{ozl,...,ozsl,ozl,...,asg,...,al,...,a’;p ,
where, for each i = 1,...,p, the values af, ..., ag, are all distinct, and
i\N _ [ i\N
(ap)™ =+ =(ag)".

Similarly, we denote the roots of By by
{/8%7"'7571'1;6%?"'7 72'2;"';51]7"'? gq}7

where, for each i =1, ..., q, the values B{, . ,B};i are all distinct, and
BN == (8"

Note that the condition deg By + deg By < N — 1 is transcribed as

(6.7) s+ +sp+ri+-+rg<N-1

In particular, p+q < N — 1.
Now, it is easy to see that, for each i = 1,...,q, the Blaschke product

Ppi - Pi,
is equal to 1g; ;. for some J; C {0,..., N —1}. So
q
69 By =T vs
i=1

The matter is more subtle as concerns Bj: it appears at the denominator,
which we do not want. We have, similarly,

p
(6.9) By = Hw%%
i=1

for some J; € {0,...,N —1}.
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The factor ¢q1 (z) must be canceled by a factor in u(z"), so o} must

be a root of u(z"). But then u(z") must also have the roots w/aj for

7=1,...,N —1, and so

N—
H wJa N)'
Since
¢wja% (Z)
_— = g
wo&,J{ 0617 !
with J{ = {0,...,N — 1} \ Jj, we have

u(z)

Vo1 gy :¢a%”}{/u1(z
ag,J]

N)'

We may continue the argument (or use an appropriate induction) to obtain

HwahJﬁu

for an inner function «’, where J" = {0,...,N — 1} \ J/. From (5.4), (6.8),
and (6.10) it follows that

q p
!
2) =110 1] Yot ar /(=
=1 =1

This is exactly the form given by (6.3). Moreover min{|J;|, N — |J;|} < r;
and min{|J|, N — [J/'|} < s;, so (6.7) implies (6.6).
(ii) = (i). Suppose b(z) is given by (6.3), with (6.6) satisfied. Define

B2 = H wai,Ji

min{|J;|,N—|J;|}=|J;]|

(6.10)

and
BIZ H wai,N\Ji'
min{|J;|,N—|J;|}=N—|J;|
Then
Bs(z) N
9 —
()= pigmGY),
where

min{|J;|,N—|J;|}=N—|J;|

note that we have used Lemma 6.3. O
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