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Reducing subspaces of C00 contractions

Chafiq Benhida, Emmanuel Fricain

and Dan Timotin

Abstract. Using the Sz.-Nagy–Foias theory of contractions, we obtain

general results about reducibility for a class of completely nonunitary

contractions. These are applied to certain truncated Toeplitz operators,

previously considered by Li–Yang–Lu and Gu. In particular, a negative

answer is given to a conjecture stated by the latter.
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1. Introduction

We will denote by L2 the Lebesgue space L2(T, dm), where dm is normal-

ized Lebesgue measure. The subspace of functions whose negative Fourier

coefficients are zero is denoted by H2; it is identified with the space of an-

alytic functions in the unit disc with square summable Taylor coefficients.

An inner function is an element of H2 whose values have modulus 1 almost

everywhere on T.
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If θ is an inner function, then the space Kθ = H2 	 θH2 is usually called

a model space; it has been the focus of much research, in function theory

in the unit disc as well as in operator theory (see, for instance,[8, 6]; or [2]

for a more recent account). In particular, in the last two decades several

papers discuss the so-called truncated Toeplitz operators, introduced in [9],

which are compressions to Kθ of multiplication operators on L2.

Originating with work in [1], the question of reducibility of a certain class

of truncated Toeplitz operators has been recently investigated in papers by

Yi, Yang, and Lu [4, 5] and Gu [3]. Besides certain remarkable results, they

also contain intriguing questions that have not yet found their solution.

The current paper has several purposes. First, we put the problem of re-

ducibility of the truncated Toeplitz operators in a larger context, that of the

Sz.-Nagy–Foias theory of completely nonunitary contractions [7], and show

that some results in the above quoted papers may be generalized or given

more transparent proofs. Secondly, we answer in the negative a conjecture

stated in [3] and prove a statement that replaces it.

The plan of the paper is the following. After presenting in the next section

the elements of Sz.-Nagy theory that interest us, we obtain in Section 3 some

general results about reducibility for completely nonunitary contractions.

These results are applied in Section 4 to a certain class of truncated Toeplitz

operators. The connection to [5] is achieved in Section 5, while the relation

to [3] is the content of the last section.

2. Sz.-Nagy–Foias dilation theory

The general reference for this section is the monograph [7], in particular

chapters I, II, and VI.

2.1. Minimal isometric dilation. If H is a Hilbert space and H1 is a

closed subspace, we will denote by PH1 the orthogonal projection onto H1.

A closed subspace M of H is said to be reducing for an operator T if

both M and M⊥ are invariant with respect to T . A completely nonunitary

contraction T ∈ L(H) is a linear operator that satisfies ‖T‖ ≤ 1, and there

is no reducing subspace of T on which it is unitary. The defect of T is the

operator DT = (I − T ∗T )1/2, and the defect space is DT = DTH.

We write T ∈ C·0 if T ∗n tends strongly to 0, and T ∈ C00 if T and T ∗

are in C·0, that is Tn and T ∗n both tend strongly to 0. If T ∈ C00, then it

can be shown that dimDT = dimDT ∗ . The subclass of C00 for which this

dimension is finite and equal to N is denoted by C0(N). We will mostly be

interested by contractions in the class C00.
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An isometric dilation of T is an isometric operator V ∈ L(K), with K ⊃
H, such that PHV

n|H = Tn for any n ∈ N. Note that if T = PHV |H
and V H⊥ ⊂ H⊥, then V is a dilation. An isometric dilation V ∈ L(K)

is called minimal if K =
∨∞
n=0 V

nH. This is uniquely defined, modulo a

unitary isomorphism commuting with the dilations; in [7] there is a precise

description of its geometric structure. This becomes simpler for contractions

in C·0; since this is the only case we are interested in, we will describe the

minimal isometric dilation in this case.

We will say that a subspace X ⊂ K is wandering for V if V nX ⊥ V mX

for any n 6= m, and in this case we will denote M+(X) :=
⊕∞

n=0 V
nX. Note

that M+(X) is invariant with respect to V .

Lemma 2.1. If T is a completely nonunitary contraction and V is its min-

imal isometric dilation, then T ∈ C·0 if and only if there exist wandering

subspaces L,L∗ ⊂ K for V , with dimL = dimDT and dimL∗ = dimDT ∗,
such that

(2.1) K = M+(L∗) = H⊕M+(L).

In this case, the operators

(2.2) φ : DTx 7→ (V − T )x, φ∗ : DT ∗x 7→ x− V T ∗x

extend to unitary operators DT → L and DT ∗ → L∗.

2.2. Analytic vector valued functions. If E is a Hilbert space, then

H2(E) is the Hilbert space of E-valued analytic functions in D with the

norms of the Taylor coefficients square summable. As in the scalar case,

these functions have strong radial limits almost everywhere on T, and so

may be identified with their boundary values, defined on T.

Denote by T Ez multiplication by z acting on H2(E); it is an isometric

operator. If ω : E → E ′ is unitary, then the notation ω̃ will indicate the

unique unitary extension ω̃ : H2(E)→ H2(E ′) such that ω̃T Ez = T E
′

z ω̃.

Suppose X ⊂ K is wandering for the isometry V ∈ L(K). Then the map

FX , defined by

(2.3) FX(
∞∑
n=0

V nxn) =
∞∑
n=0

λnxn,

is unitary from M+(X) to H2(X).

Another class of functions that we have to consider take as values opera-

tors between two Hilbert spaces E , E∗. More precisely, we will be interested

in contractive analytic functions; that is, functions Θ : D→ L(E , E∗), which
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satisfy ‖Θ(z)‖ ≤ 1 for all z ∈ D. As in the scalar case, Θ has boundary

values Θ(eit) almost everywhere on T.

A contractive analytic function is called pure if ‖Θ(0)x‖ < ‖x‖ for any

x ∈ E , x 6= 0. Any contractive analytic function admits a decomposition

in a direct sum Θ = Θp ⊕ Θu, where Θp is pure and Θu is a constant

unitary operator; then Θp is called the pure part of Θ. A contractive analytic

function will be called bi-inner if Θ(eit) is almost everywhere unitary. (We

prefer this shorter word rather than call them inner and *-inner).

The appropriate equivalence relation for contractive analytic functions is

that of coincidence: two analytic functions Θ : D → L(E , E∗), Θ′ : D →
L(E ′, E ′∗) are said to coincide if there exist unitary operators ω : E → E ′,
ω∗ : E ′∗ → E ′∗, such that Θ′(λ)ω = ω∗Θ(λ) for all λ ∈ D.

2.3. Functional model and characteristic function. The model theory

of Sz.-Nagy and Foias associates to any completely nonunitary contraction

T a pure contractive analytic function ΘT (z), with values in L(DT ,DT ∗),
defined by the formula

(2.4) ΘT (z) = −T + zDT ∗(I − zT ∗)−1DT |DT .

A functional model space and an associated model operator are constructed

by means of ΘT , and one can prove that T is unitarily equivalent to this

model operator.

As we will be interested only in C00 contractions, we will describe the

model only in this case, in which it takes a significantly simpler form. The

reason is that T ∈ C00 is equivalent to ΘT bi-inner. The functional model

associated to a bi-inner contractive analytic function Θ : D → L(E , E∗) is

defined as follows: the model space is

(2.5) HΘ = H2(E∗)	ΘH2(E),

while the model operator SΘ is the compression to HΘ of T E∗z . If Θ is pure,

then T E∗z is precisely a minimal unitary dilation of SΘ.

Note that (2.5) shows that SΘ satisfies the assumptions of Lemma 2.1

with L = ΘE , L∗ = E∗. In particular,

(2.6) dimDSΘ
= dim E , dimDS∗Θ

= dim E∗.

Suppose Θ : D → L(E , E∗) and Θ′ : D → L(E ′, E ′∗) coincide, by means of

the operators ω : E → E ′, ω∗ : E ′∗ → E ′∗. Then the unitary ω̃∗ : H2(E∗) →
H2(E ′∗) satisfies ω̃(HΘ) = HΘ′ and

ω̃∗SΘ = SΘ′ω̃∗.
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Returning now to the contraction T and its characteristic function, the

next lemma is a particular case of one of the basic results in [7, Chapter VI].

Lemma 2.2. If T ∈ C00, then the formula (2.4) defines a bi-inner pure

analytic function with values in L(DT ,DT ∗), and T is unitarily equivalent

to SΘT . SΘT is called the functional model of T .

There is a relation between the functional model and the geometrical

structure of a minimal unitary dilation given by (2.1), as shown by the next

result.

Lemma 2.3. Suppose T ∈ C00, V ∈ L(K) is a minimal isometric dilation

of T , and L,L∗ are wandering subspaces for V satisfying (2.1). Extend

φ, φ∗ in (2.2) to unitary operators φ̃ : H2(DT ) → H2(L), φ̃∗ : H2(DT ∗) →
H2(L∗), and define Ω = F∗L∗Φ∗.

(i) The map F∗L∗Φ∗ΘTΦ∗FL is the inclusion of M+(L) into M+(L∗).

(ii) We have

ΩHΘT = H, Ω(DT ∗) = L∗, ΩΘT (DT ) = L,

ΩTDT∗z = V Ω, ΩSΘT = TΩ.
(2.7)

(iii) If Θ = φ∗ΘTφ
∗ is written Θ(λ) =

∑∞
n=0 λ

nΘn (with Θn : L → L∗),

then

(2.8) Θn = PL∗(V
∗)nJ,

where J denotes the embedding of L into M+(L∗).

3. Reducibility

In the sequel of the paper we will be interested by reducibility of certain

contractions. Fortunately, this can be easily characterized through charac-

teristic functions.

Lemma 3.1. Suppose T ∈ C00 has characteristic function ΘT : DT → DT ∗.
Then the following are equivalent.

(i) T = T1 ⊕ T2.

(ii) There exist nontrivial orthogonal decompositions DT = E1 ⊕ E2,

DT ∗ = E1
∗ ⊕ E2

∗ which diagonalize ΘT (λ) for all λ ∈ D; that is,

(3.1) ΘT (λ) =

(
Θ1(λ) 0

0 Θ2(λ)

)
.

In this case dimDTi = dimEi = dimDT ∗i = dimEi∗, and ΘTi coincides with

Θi.



6 BENHIDA, FRICAIN AND TIMOTIN

Proof. If T = T1 ⊕ T2, then DT = DT1 ⊕DT2 , DT ∗ = DT ∗1 ⊕DT ∗2 , and for-

mula (2.4) splits according to these decompositions into ΘT (λ) = ΘT1(λ)⊕
ΘT2(λ). So (3.1) is valid, taking Ei = DTi , Ei∗ = DT ∗i .

Conversely, if Θ(λ) := ΘT (λ) = Θ1(λ)⊕Θ2(λ), then, according to (2.5),

HΘ = HΘ1 ⊕ HΘ2 , and HΘ1 ,HΘ2 are invariant with respect to SΘ. Since

this last operator is unitarily equivalent to T , T is also reducible. Moreover,

SΘ|HΘi is unitarily equivalent to SΘi , and the equality of the dimensions

follows from (2.6). �

Corollary 3.2. Suppose T ∈ C00. Then T is reducible if and only if there

exist nontrivial subspaces E ⊂ DT , E∗ ⊂ DT ∗, such that ΘT (eit)E = E∗ for

almost all t.

Proof. If nontrivial subspaces as assumed exist, then, since ΘT (eit) is uni-

tary almost everywhere, we also have ΘT (eit)E⊥ = E⊥∗ for almost all t. The

decompositions DT = E ⊕ E⊥, DT ∗ = E∗ ⊕ E⊥∗ satisfy then (3.1). �

The following is a geometrical reformulation of Corollary 3.2 in terms of

the spaces L,L∗ appearing in an arbitrary minimal isometric dilation of T .

Corollary 3.3. Suppose T ∈ C00 and V ∈ L(K) is a minimal dilation of

T , such that (2.1) is valid for L,L∗ wandering subspaces for V . Let d be a

finite positive integer or ∞. Then:

(i) If T has a nontrivial reducing subspace such that the restriction has

d-dimensional defects, then there exist nontrivial subspaces L1 ⊂ L,

L1
∗ ⊂ L∗, both of dimension d, such that

(3.2) L1 ⊂M+(L1
∗).

(ii) The converse also holds if d <∞.

Proof. (i). Suppose T has a reducing subspace with defect of dimension d.

We apply Lemma 3.1, which gives decomposition (3.1), where Θi(λ) : Ei →
Ei∗, and dimE1 = dimE1

∗ = d. So Θ1H
2(E1) ⊂ H2(E1

∗); in particular, if we

look at E1 as the constant functions in H2(E1), we have

(3.3) Θ1E
1 ⊂ H2(E1

∗).

Denote then L1 = φE1 and L1
∗ = φ∗E

1
∗ (φ, φ∗ in (2.2)). We consider the

unitary operator Ω from Lemma 2.3. Formulas (2.7) yield also ΩE1
∗ = L1

∗,

ΩΘ1(E1) = L1, and Ω(H2(E1
∗)) = M+(L1

∗). Therefore (3.3) implies (3.2).

(ii) Conversely, suppose we have the required spaces satisfying (3.2);

therefore M+(L1) ⊂ M+(L1
∗). Define Θ′(λ) = φ∗ΘT (λ)φ∗ : L→ L∗. By us-

ing FL∗ , we obtain Θ′H2(L1) ⊂ H2(L1
∗), which means that Θ′(eit)L1 ⊂ L1

∗
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almost everywhere. Since dimL1 = dimL1
∗ = d < ∞, we have in fact

Θ′(eit)L1 = L1
∗ almost everywhere. As in the proof of Corollary 3.2, it fol-

lows that Θ′(eit)L1⊥ ⊂ L1
∗
⊥ almost everywhere, whence we may obtain a

decomposition similar to (3.1). This implies the reducibility of Θ′, and thus

the reducibility of ΘT and of T . �

In particular, we obtain a nice result if we consider reducing subspaces

with defects of dimension 1.

Corollary 3.4. An operator T ∈ C00 has a reducing subspace with defects

of dimension 1 if and only if there exists y ∈ L, y∗ ∈ L∗, y, y′ 6= 0, and a

scalar inner function u, such that y = u(V )y∗. In this case the characteristic

function of the reduced operator is precisely u.

Proof. By Corollary 3.3 applied to d = 1, the existence of a reducing sub-

space with defects of dimension 1 is equivalent to the existence of elements

of norm 1 y ∈ L, y∗ ∈ L∗, such that y ∈ M+(y∗). The Fourier representa-

tion Fy∗ maps M+(y∗) onto H2; more precisely, from (2.3) it follows that

Fy∗(f(V )y∗) = f . In particular, y is a wandering vector for V , which implies

that u := Fy∗y is an inner function.

If we denote by H1 the reducing subspace of dimension 1 obtained, then

have H1 = M+(y∗) 	 M+(y). Through the Fourier representation Fy∗ ,

this becomes H2 	 uH2. By comparing with the general formula for the

functional model, we see that the characteristic function of the reduced

operator is u. �

Remark 3.5. Part of the results in this section may be extended to more

general contractions. Thus Lemma 3.1 is true for a general completely

nonunitary contraction; we have then to use in the proof the more compli-

cated general form of the functional model associated to T . Appropriately

modified versions of Corollaries 3.2 and 3.3 can also be stated. However,

since the statements are less neat, we have preferred to restrict ourselves to

the case T ∈ C00, which will be used in the applications in the sequel of the

paper.

4. A class of contractions

In the rest of the paper we will work in the Hardy space H2, applying

the above results to a particular class of contractions. By Tϕ we will denote

the usual Toeplitz operator on H2, that is, the compression of the operator

of multiplication by ϕ on H2. Recall here that, for a scalar inner function

Kθ = H2 	 θH2 = Hθ (see (2.5) with E = E∗ = C).



8 BENHIDA, FRICAIN AND TIMOTIN

Let then θ,B be two scalar inner functions that satisfy the basic assump-

tion

(4.1) kerTθB = {0}.

Note that f ∈ kerTθB if and only if θf ∈ kerTB = KB, whence (4.1) is

equivalent to θH2 ∩KB = {0}.
We will consider the operator AθB ∈ L(Kθ), defined by

(4.2) AθB = PKθTB|Kθ.

The operator AθB is usually called the truncated Toeplitz operator on Kθ

with symbol B. It is known [9] that truncated Toeplitz operators are complex

symmetric; that is, there exist a complex conjugation Cθ on Kθ such that

(4.3) (AθB)∗ = CθA
θ
BCθ.

The next theorem identifies concretely a minimal isometric dilation of

AθB; it is a generalization of [5, Lemma 3.1].

Theorem 4.1. Let B and θ two inner functions satisfying (4.1). The op-

erator TB ∈ L(H2) is a minimal isometric dilation of AθB. For this minimal

isometric dilation we have

(4.4) L = θKB, L∗ = KB.

Proof. TB is an isometry on H2, and TB(K⊥θ ) = TB(θH2) ⊂ θH2 = K⊥θ .

Thus it follows from (4.2) that TB is a dilation of AθB.

We show now by induction according to n that

(4.5) Kθ +BKθ + · · ·+BnKθ = KBnθ.

Equality (4.5) is obviously true for n = 0. Suppose that it is true up to

n− 1. We are left then to prove that

(4.6) KBn−1θ +BnKθ = KBnθ.

It is immediate from the definitions that the left hand side is contained

in the right hand side. On the other hand, we have

KBnθ = KBn−1θ ⊕Bn−1θKB = BnKθ ⊕KBn .

If f ∈ KBnθ is orthogonal to KBn−1θ as well as to BnKθ, it follows that

f ∈ (θBn−1KB) ∩KBn .

So f = θBn−1g with g ∈ KB; and also f ⊥ BnH2, which means θg ⊥ BH2,

or θg ∈ KB. It follows that 0 = TB(θg) = TθBg. By (4.1), this implies

g = 0, whence f = 0.
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Since (∨
n

KBnθ

)⊥
=
⋂
n

BnθH2 = {0},

it follows that

(4.7) H2 =
∞∨
n=0

TnBKθ.

Therefore TB is a minimal isometric dilation of AθB.

Then

(4.8) H2 =

∞⊕
n=0

BnKB =

∞⊕
n=0

TnBKB = M+(KB),

whence L∗ = KB.

On the other hand, we have

(4.9) KBθ = Kθ ⊕ θKB = KB ⊕BKθ,

Therefore

(4.10) H2 =

∞⊕
n=0

BnKB = Kθ⊕θH2 = Kθ⊕
∞⊕
n=0

TnBθKB = Kθ⊕M+(θKB),

whence L = θKB. �

Corollary 4.2. With the above assumptions, AθB is in C00.

Proof. In view of equation (4.10), it follows from Lemma 2.1 that AθB is in

C·0. On the other hand, it follows from (4.3) that

((AθB)∗)n = Cθ(A
θ
B)nCθ,

whence AθB is also in C0·. �

Using the identification of a minimal unitary dilation in Theorem 4.1 we

may compute the characteristic function of AθB. The next theorem general-

izes [3, Theorem 2.4] (see Section 6 below).

Theorem 4.3. Let B and θ two inner functions satisfying (4.1). The char-

acteristic function of AθB is Φ : D→ L(KB) defined by

(4.11) Φ(λ) = AB θ
1−λB

.

Proof. We have identified in Theorem 4.1 L,L∗ with θKB,KB respectively.

We intend to apply Lemma 2.3 (iii). Since we want to consider the character-

istic function of A as an analytic function with values in L(KB), the embed-

ding J is precisely multiplication by θ. Then, if Φ(λ) =
∑∞

n=0 λ
nΦn, (2.8)
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yields

Φnf = PKBB
n
θf

for f ∈ KB. Thus Φn = AB
θB

n . Therefore

Φ(λ) =
∞∑
n=0

λnAB
θB

n = AB
θ
∑∞
n=0 λ

nB
n = AB θ

1−λB
. �

We may also obtain a more precise form of Corollary 3.4.

Corollary 4.4. Let B and θ two inner functions satisfying (4.1). Then the

following assertions are equivalent:

(i) The operator AθB has a reducing subspace such that the restriction

has one-dimensional defects.

(ii) There exist u inner and h1, h2 ∈ KB, h1, h2 6= 0, such that

(4.12) θ =
h2

h1
(u ◦B),

(iii) There exist u, v1, v2 inner, with

kerTv1B̄ ∩ kerTv2B̄ 6= {0},

such that

(4.13) θ =
v2

v1
(u ◦B).

Proof. The equivalence of (i) and (ii) follows by applying in this case Corol-

lary 3.4. We have L∗ = KB, L = θKB, and so the existence of the required

reducing subspace is equivalent to the existence of h1, h2 ∈ KB, h1, h2 6= 0

and an inner function u, such that θh1 = u(V )h2. Since V = TB, u(V ) is

multiplication by u ◦B, and we have

(4.14) θh1 = h2(u ◦B).

If (ii) is true, then we must have hi = vig for some inner functions v1, v2

and g outer, so (4.13) is true. Note that, if v is an analytic and bounded

function in D, then

(4.15) vh ∈ KB ⇔ h ∈ kerTvB̄.

So v1g, v2g ∈ KB is equivalent to g ∈ kerTv1B̄ ∩ kerTv2B̄.

The implication (iii) =⇒ (ii) follows easily by reversing the steps. �

Note that the function u in (ii) and (iii) of the previous corollary is non

constant because otherwise θh1 ∈ KB, and thus h1 ∈ kerTθB which contra-

dicts hypothesis (4.1).
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5. A particular case

Let us consider now the particular case when B is a finite Blaschke prod-

uct. Denote φα(z) = (z − α)/(1 − ᾱz). If B has roots (counting with

multiplicities) w1, . . . , wk, it is known that

(5.1) KB =
{ p(z)∏k

i=1(1− w̄iz)
: p polynomial of degree ≤ k − 1

}
.

In this case condition (4.1) has a simple equivalent form.

Lemma 5.1. If B is a finite Blaschke product, then (4.1) is satisfied if and

only if

(5.2) dimKB ≤ dimKθ.

Proof. Indeed, first assume that (5.2) is satisfied, and let f ∈ kerTθB.

Then θf ∈ kerTB = KB, whence f = Tθ(θf) ∈ TθKB ⊂ KB. If f 6≡ 0, then

θ = θf
f is a quotient of two polynomials of degree at most degB − 1, which

contradicts assumption (5.2).

Suppose now that dimKB > dimKθ. Then θH2 has finite codimension in

H2 strictly smaller than dimKB, whence θH2∩KB 6= {0}. Applying (4.15)

in case v = θ, it follows that kerTθB 6= {0}, contradicting (4.1). �

Condition (5.2) is precisely the one considered in [3] and [5]. To discuss

this case, we need one more elementary lemma.

Lemma 5.2. Suppose h1, h2 are two polynomials of degree at most k − 1

and

(5.3) |h1| = |h2| a.e. on T.

Then,
h2

h1
=
B2

B1
,

where Bi are Blaschke products with degB1 + degB2 ≤ k − 1.

Proof. First, a general remark. Suppose that h is a polynomial and write

h(z) = zpg(z), with p ∈ N ∪ {0} and g(0) 6= 0. Denote the roots (counting

with multiplicities) of g by α1, . . . , α`. Then, ho, the outer part of h, is a

polynomial of degree deg g, which has roots Zo(h) ∪ Zi(h), where Zo(h) :=

{αi : |αi| ≥ 1} and Zi(h) := {1/ᾱi : 0 < |αi| < 1}.
We may assume that h1, h2 have no common roots (otherwise we cancel

them). It also follows then that h1 and h2 have no roots on T (since this

would be a common root by (5.3) ). Also, only one of them may have the

root 0; suppose it is h1, and write, as above, h1(z) = zpg1(z), with g1(0) 6= 0.
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Assumption (5.3) implies that the outer parts of g1 and h2 coincide. Since

g1 and h2 have no common roots, but g1
o = ho2, we must have Zo(g1) =

Zi(h2) and Zi(g1) = Zo(h2). Then we can write h2/h1 = B2/B1, with

B1 = zp
∏

αi∈Z]i (h1)

φαi , B2 =
∏

αi∈Z]i (h2)

φαi ,

where Z]i (p) = {αi : p(αi) = 0, 0 < |αi| < 1} = {1/ᾱi : αi ∈ Zi(p)}. Since

we have

degB1 + degB2 = p+ |Zi(g1)|+ |Zi(h2)| = p+ |Zi(g1)|+ |Zo(g1)| ≤ k − 1,

the lemma is proved. �

The next theorem generalizes [5, Theorem 1.4].

Theorem 5.3. Suppose B is a finite Blaschke product, while θ is an inner

function with deg θ ≥ degB. Then the operator AθB has a reducing subspace

such that the restriction has one-dimensional defects if and only if

(5.4) θ =
B2

B1
(u ◦B),

where u is a non constant inner function, while B1, B2 are finite Blaschke

products with degB1 + degB2 ≤ degB − 1.

Proof. We apply to this case Corollary 4.4 (ii). The existence of the re-

quired reducing subspace is then equivalent to the existence of h1, h2 ∈ KB

and an inner function u, such that

(5.5) θh1 = h2(u ◦B).

By (5.1), it is equivalent to assume in this equality that hi are polynomials

of degree ≤ k−1, where k = degB. Taking absolute values, we obtain, since

θ and u ◦B are inner, that |h1| = |h2| on T. We may then apply Lemma 5.2

to obtain the desired formula (5.4).

The converse is immediate, since (5.4) implies (5.5), with the degrees of

h1 and h2 at most k − 1. If we further write gi(z) = hi(z)∏k
i=1(1−w̄iz)

, we obtain

θg1 = g2(u ◦B).

Since gi ∈ KB, this is equivalent, by Corollary 4.4, to the existence of the

required reducing subspace. �

The condition becomes simpler if θ is singular.
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Theorem 5.4. Let θ be a singular inner function and let B be a finite

Blaschke product. Then the operator AθB has a reducing subspace such that

the restriction has one-dimensional defects if and only if

(5.6) θ = S ◦B,

for some singular inner function S.

Proof. According to Theorem 5.3, it is sufficient to prove that (5.6) and

(5.4) are equivalent. The implication (5.6) =⇒ (5.4) is clear. Assume now

that (5.4) is satisfied, that is we can write

B1θ = B2(u ◦B),

where B1 and B2 are finite Blaschke products with degB1 +degB2 ≤ N −1

and N = degB.

Since θ is singular, B2 must be a factor of B1 and may be canceled. So

we may assume B2 = 1, or B1θ = u ◦B, where degB1 ≤ N − 1.

Write then u = B3S, where B3 is a Blaschke product and S is the singular

part of u. Thus we have

B1θ = (B3 ◦B)(S ◦B).

We have deg(B3 ◦B) = degB3 degB; so, if B3 is not constant, then

deg(B3 ◦B) ≥ degB = N > degB1.

The contradiction obtained implies that B3 is constant, and so

B1θ = S ◦B.

Since the right hand side is singular, it follows that B1 is constant, which

proves the theorem. �

6. The case B(z) = zN

The case B(z) = zN is investigated at length in [3]. In particular, the

characteristic function of Aθ
zN

is computed; let us show how Gu’s result

follows from Theorem 4.3 above.

We use the canonical basis of KB formed by 1, z, . . . zN−1. To obtain the

matrix of AB θ
1−λB

, consider first ABzn
1−λB

. We have

zn

1− λB
=
∞∑
j=0

λjzn−jN =
∞∑
j=0

λjzN(n′−j)+m,
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where n = Nn′ + m, with 0 ≤ m ≤ N − 1. Since ABzp is nonzero only for

−(N − 1) ≤ p ≤ N − 1, we have to consider in the above sum only two

terms, corresponding to j = n′ and j = n′ + 1. Thus

ABzn
1−λB

= AB
λn′zm+λn′+1zm−N

.

Its matrix with respect to the canonical basis is

(6.1) AB
λn′zm+λn′+1zm−N

=



. . .
. . . λn

′+1 . . .
. . .

. . .
. . .

. . . λn
′+1 . . .

λn
′ . . .

. . .
. . .

. . .
. . . λn

′ . . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .


,

with two nonzero constant diagonals (one in case m = 0), corresponding to

entries aij with i− j = m or i− j = m−N .

Therefore, if we decompose

θ(z) = θ0(zN ) + zθ1(zN ) + · · ·+ zN−1θN−1(zN ),

then

(6.2) AB θ
1−λB

=


θ0(λ) λθN−1(λ) λθN−2(λ) . . . λθ1(λ)

θ1(λ) θ0(λ) λθN−1(λ) . . . λθ2(λ)

θ2(λ) θ1(λ) θ0(λ) . . . λθ3(λ)
. . .

. . .
. . .

. . .
. . .

θN−1(λ) θN−2(λ) θN−3(λ) . . . θ0(λ)

 .

This is precisely the form given by [3, Theorem 2.4].

In the sequel we will solve a conjecture about Aθ
zN

left open in [3]. This

appears as Conjecture 3.5 therein, and has the following statement.

Conjecture 6.1. Suppose B(z) = zN . Then the following are equivalent:

(i) AθB has a reducing subspace such that the restriction has one-dimensional

defects.

(ii) θ(z) = b(z)u(zN ) for some inner function u, while either b ≡ 1 or

(6.3) b(z) =
l∏

i=1

ψαi,Ji ,

where l ≤ N − 1, Ji ⊂ {0, . . . , N − 1}, and ψα,J is defined by

(6.4) ψα,J(z) =
∏
i∈J

φωiα(z).
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[3, Theorem 3.4] shows that (i) =⇒ (ii), while (ii) =⇒ (i) is proved only

for N = 3 in [3, Section 5].

Theorem 6.2. Conjecture 6.1 is false for N = 4.

Proof. Take two different nonzero values α, β ∈ D, and define

θ(z) =
(z2 − α2)(z2 − β2)

(1− ᾱ2z2)(1− β̄2z2)
.

We have then

θ(z) = ψα,Jψβ,J

with J = {0, 2} ⊂ {0, 1, 2, 3}, so θ satisfies condition (ii) of Conjecture 6.1.

On the other hand, if θ would satisfy condition (i), it would follow by

Theorem 5.3 that one should have

(6.5) B2(z)θ(z) = B1(z)u(z4),

with u inner and B1, B2 finite Blaschke products with degB1 + degB2 ≤ 3.

Obviously u has also to be a finite Blaschke product. Equating the degrees

in both sides yields

degB1 + 4 = degB2 + 4 deg u.

First, degB1 = 3 would imply degB2 = 0, so 7 = 4 deg u: a contradiction.

So the degree of the left hand side of (6.5) is between 4 and 6, which implies

deg u = 1. Again equating the degrees yields degB1 = degB2 = 0 or 1.

Now u(z4) has either the root 0 of multiplicity 4, or four distinct roots.

Both possibilities are incompatible with the fact that the left hand side

of (6.5) has either 2 or three roots. We have obtained the desired contra-

diction, so θ does not satisfy (i) of Conjecture 6.1. �

In fact, we may replace Conjecture 6.1 with a precise result. We will need

the next lemma, also proved in [3, Theorem 3.4].

Lemma 6.3. If α ∈ D, then

φαN (zN ) =
N−1∏
i=0

φωiα(z).

Theorem 6.4. Suppose B(z) = zN . Then the following are equivalent:

(i) AθB has a reducing subspace such that the restriction has one-dimensional

defects.
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(ii) θ(z) = b(z)u(zN ) for some inner function u, while b is either 1 or

a finite Blaschke product given by (6.3), where l ≤ N − 1, Ji ⊂
{0, . . . , N − 1}, ψα,J are defined by (6.4), and, moreover,

(6.6)
l∑

i=1

min{|Ji|, N − |Ji|} ≤ N − 1.

Proof. (i) =⇒ (ii). From Theorem 5.3 we know that θ is given by (5.4),

where B1 and B2 have no common roots. We may denote the roots of B1

(counting multiplicities) by

{α1
1, . . . , α

1
s1 ;α2

1, . . . , α
2
s2 ; . . . ;αp1, . . . , α

p
sp},

where, for each i = 1, . . . , p, the values αi1, . . . , α
i
si are all distinct, and

(αi1)N = · · · = (αisi)
N .

Similarly, we denote the roots of B2 by

{β1
1 , . . . , β

1
r1 ;β2

1 , . . . , β
2
r2 ; . . . ;βq1, . . . , β

q
rq},

where, for each i = 1, . . . , q, the values βi1, . . . , β
i
ri are all distinct, and

(βi1)N = · · · = (βisi)
N .

Note that the condition degB1 + degB2 ≤ N − 1 is transcribed as

(6.7) s1 + · · ·+ sp + r1 + · · ·+ rq ≤ N − 1.

In particular, p+ q ≤ N − 1.

Now, it is easy to see that, for each i = 1, . . . , q, the Blaschke product

φβi1
. . . φβiri

is equal to ψβi1,Ji
for some Ji ⊂ {0, . . . , N − 1}. So

(6.8) B2 =

q∏
i=1

ψβi1,Ji
.

The matter is more subtle as concerns B1: it appears at the denominator,

which we do not want. We have, similarly,

(6.9) B1 =

p∏
i=1

ψαi1,J ′i

for some J ′i ⊂ {0, . . . , N − 1}.
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The factor φα1
1
(z) must be canceled by a factor in u(zN ), so α1

1 must

be a root of u(zN ). But then u(zN ) must also have the roots ωjα1
1 for

j = 1, . . . , N − 1, and so

u(zN ) =

N−1∏
j=0

φωjα1
1
(z)u1(zN ).

Since
φωjα1

1
(z)

ψα1
1,J
′
1

= ψα1
1,J
′′
1

with J ′′1 = {0, . . . , N − 1} \ J ′1, we have

u(zN )

ψα1
1,J
′
1

= ψα1
1,J
′′
1
u1(zN ).

We may continue the argument (or use an appropriate induction) to obtain

(6.10)
u(zN )

B1(z)
=

p∏
i=1

ψαi1,J ′′i
u′(zN )

for an inner function u′, where J ′′i = {0, . . . , N − 1} \ J ′i . From (5.4), (6.8),

and (6.10) it follows that

θ(z) =

q∏
i=1

ψβi1,Ji

p∏
i=1

ψαi1,J ′′i
u′(zN ).

This is exactly the form given by (6.3). Moreover min{|Ji|, N − |Ji|} ≤ ri
and min{|J ′′i |, N − |J ′′i |} ≤ si, so (6.7) implies (6.6).

(ii) =⇒ (i). Suppose b(z) is given by (6.3), with (6.6) satisfied. Define

B2 =
∏

min{|Ji|,N−|Ji|}=|Ji|

ψαi,Ji

and

B1 =
∏

min{|Ji|,N−|Ji|}=N−|Ji|

ψαi,N\Ji .

Then

θ(z) =
B2(z)

B1(z)
u1(zN ),

where

u1(z) = u(z)
∏

min{|Ji|,N−|Ji|}=N−|Ji|

φαNi
(z);

note that we have used Lemma 6.3. �
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