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ORTHONORMAL POLYNOMIAL BASIS IN LOCAL
DIRICHLET SPACES

EMMANUEL FRICAIN AND JAVAD MASHREGHI

Abstract. We provide an orthogonal basis of polynomials for the
local Dirichlet space Dζ . These polynomials have numerous inter-
esting features and a very unique algebraic pattern. We obtain the
recurrence relation, the generating function, a simple formula for
their norm, and explicit formulae for the distance and the orthog-
onal projection onto the subspace of polynomials of degree at most
n. The latter implies a new polynomial approximation scheme in
local Dirichlet spaces. Orthogonal polynomials in a harmonically
weighted Dirichlet space, created by a finitely supported singular
measure, are also studied.

1. Introduction

Let D be the open unit disc in the complex plane, and let T denote
its boundary. For f ∈ Hol(D), the family of holomorphic functions on
D, and ζ ∈ T, the local Dirichlet integral is defined by

(1.1) Dζ(f) =
1

π

∫
D
|f ′(z)|2 1− |z|2

|ζ − z|2
dA(z),

where dA(z) = dx dy is the planar Lebesgue measure. The local Dirich-
let space Dζ consists of all functions f ∈ Hol(D) with Dζ(f) <∞. Our
focus in this paper is mainly on local Dirichlet spaces. However, we
also need to consider a generalization given by

(1.2) Dµ(f) =
1

π

∫
D
|f ′(z)|2 Pµ(z) dA(z),

where Pµ is the Poisson integral of µ. A detailed description of these
spaces is available at [10, Ch. 7]. A short account is provided in Sec-
tion 3. Note that Dµ(f) is written Dζ(f) when µ = δζ , the Dirac
measure at point ζ. These spaces have been the focus of numerous

2020 Mathematics Subject Classification. 30H05, 33C45, 33C47, 42B35.
Key words and phrases. Harmonically weighted Dirichlet spaces, orthogonal

polynomials, polynomial approximation.
This work was supported by a research grant from NSERC (Canada), by the

Labex CEMPI (ANR-11-LABX-0007-01) and the project FRONT of the French
National Research Agency (ANR-17-CE40-0021).

1



2 FRICAIN AND MASHREGHI

studies, e.g., invariant subspaces for the shift operator [11, 14, 24, 22],
multipliers [18, 23], superharmonic weights [2, 3], and polynomial ap-
proximation and connections to de Branges–Rovnyak spaces [8, 9, 25],
cyclicity [1, 4, 13, 15, 27], Carleson measures [7, 6, 5].

S. Richter showed that polynomials are dense in Dµ [21]. The esti-
mation needed in this approach for the Dirichlet integral of dilations fr
were further improved by Richter and Sundberg [22], Aleman [2] and
Sarason [25]. Knowing that polynomials are dense in Dµ, we may apply
the classical Gram–Schmidt procedure to create an orthogonal basis of
polynomials for Dµ. Direct application of the Gram-Schmidt formula
is usually difficult and does not lead to satisfactory results. However, if
via other means, we come up with a sequence of orthogonal polynomials
pn, with deg(pn) = n, n ≥ 0, then up to a multiplicative constant this
is precisely the orthogonal sequence which is promised by the Gram-
Schmidt process. This is how we succeeded to present the new family
of orthogonal polynomials for Dµ and study further their properties.

The outline of this note is as follows. A brief description of the
main results is provided in the next section. In Section 3, the back-
ground needed on weighted Dirichlet spaces is presented. In Section 4,
the promissed orthogonal polynomials are obtained and their projec-
tion properties are discussed in Section 5. In Section 6, we consider
harmonically weighted Dirichlet spaces generated by a finite sum of
Dirac measures. No wonder the formulas are more complicated in this
setting. However, in Section 7, we show that if the distribution of mea-
sures has a symmetric pattern, then the life is easier and the orthogonal
polynomials have a simpler description.

2. A brief description of results

Our main observation is that the family of polynomials

pn(z) := 1 + (z − 1)(a0 + a1z + · · ·+ an−1z
n−1), n ≥ 0,

forms an orthogonal basis for D1, where the coefficients an are positive
integers which satisfy the recursive equation

an = 3an−1 − an−2, n ≥ 2,

with the initial conditions a0 = 1 and a1 = 2. More explicitly, they are
given by the formula

an =
1√
5

(
1 +
√

5

2

)2n+1

− 1√
5

(
1−
√

5

2

)2n+1

, n ≥ 0.
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The norm of polynomials are given by the simple formula

‖pn‖D1 =
√
anan−1, n ≥ 1.

Hence, asymptotically,

‖pn‖D1 ∼
1√
5

(
3 +
√

5

2

)n

, n→∞.

They satisfy the recurrence relation

pn = (1 + 3x)pn−1 − (x2 + 3x)pn−2 + x2pn−3, n ≥ 3,

and have

g(z, t) =
1− (1 + 2z)t+ zt2

(1− t)(1− 3zt+ z2t2)

as the generating function.
These polynomials provide the orthogonal decomposition

f = f̂(0)p0 +
∞∑
n=1

(
anf̂(n) +

∞∑
k=n+1

(ak − ak−1)f̂(k)

)
pn

anan−1
,

for each f ∈ D1. Therefore, we immediately obtain the projection

Pnf = f̂(0)p0 +
n∑
j=1

(
aj f̂(j) +

∞∑
k=j+1

(ak − ak−1)f̂(k)

)
pj

ajaj−1
.

onto Pn, the space of polynomials of degree at most n, and consequently

distD1(f,Pn) =


∞∑

j=n+1

∣∣∣aj f̂(j) +
∑∞

k=j+1(ak − ak−1)f̂(k)
∣∣∣2

ajaj−1


1/2

.

The sequence of polynomials (Pnf)n≥0 converges to f inD1. This result
complements polynomial approximation schemes obtained in [17, 18,
19].

We study the same phenomenon for harmonically weighted Dirichlet
spaces which are created by a finite discrete measure µ =

∑s
i=1 ciδζi ,

ci > 0, ζi ∈ T. In this case, the polynomials satisfy the property

pm = zm−sq + a
(m)
1 pm−1 + · · ·+ a(m)

s pm−s,

where q(z) =
∏s

i=1(z − ζi). When the Dirac measures are equally dis-
tributed, we show that the orthogonal polynomials are closely related
to the orthogonal polynomials of a single local Dirichlet space.
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3. Background on harmonically weighted Dirichlet
spaces

The local Dirichlet space is originally defined via the growth restric-
tion (1.1). However, one of the most important features of these spaces
is the following characterization [22]: a function f ∈ Hol(D) belongs to
Dζ if and only if

(3.1) f(z) = a+ (z − ζ)g(z),

where g ∈ H2 and a ∈ C. Moreover, we have

(3.2) Dζ(f) = ‖g‖2H2 .

See also [10, page 111]. We usually equip Dζ with the norm

(3.3) ‖f‖2Dζ := ‖f‖2H2 +Dζ(f).

Note that
√
Dζ(f) is a semi-norm and that is why the term ‖f‖2H2

is added in (3.3) to create a genuine norm. This characterization has
numerous essential applications and, in particular, enables us to present
an orthonormal basis for Dζ .

Using that |g(rζ)| = o((1 − r2)−1/2), the relation (3.1) immediately
implies

(3.4) f(ζ) := lim
r→1−

f(rζ) = a.

Moreover if f(z) =
∑∞

k=0 f̂(k)zk is in Dζ , then it is proved in [19, Corol-

lary 2] that the series
∑∞

k=0 f̂(k)ζk converges and by Abel’s theorem
on radial limits, we have

a = f(ζ) =
∞∑
k=0

f̂(k)ζk.

As a matter of fact, f approaches the boundary value f(ζ) in an ori-
cyclic region from within D and tangent to T at the point ζ. This
observation enables us to define the difference quotient operator Qζ :
Dζ → H2,

(Qζf)(z) :=
f(z)− f(ζ)

z − ζ
, z ∈ D.

By (3.1) and (3.2) we see that ‖Qζf‖2H2 = Dζ(f), and a further look at
(3.3) shows ‖Qζf‖2H2 ≤ ‖f‖2Dζ . Therefore, we can rewrite the definition
of norm as

(3.5) ‖f‖2Dζ = ‖f‖2H2 + ‖Qζf‖2H2 ,

which, using polarization identity, turns into

(3.6) 〈f1, f2〉Dζ = 〈f1, f2〉H2 + 〈Qζf1, Qζf2〉H2 .
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Let us compute the functionQζf explicitly. If we write f(z) =
∑∞

k=0 f̂(k)zk

and (Qζf)(z) =
∑∞

k=0 bkz
k, with (bk)k ∈ `2, and equate coefficients of

zk in the relation

f(z) = a+ (z − ζ)(Qζf)(z),

then we obtain{
f̂(0) = a− ζb0
f̂(k) = bk−1 − ζbk, (k ≥ 1).

Now, note that for N ≥ n ≥ 1,

N∑
k=n

f̂(k)ζk−n =
N∑
k=n

(
ζk−nbk−1 − ζk−n+1bk

)
=ζ1−n

N∑
k=n

(
bk−1ζ

k−1 − bkζk
)

=bn−1 − bNζN+1−n.

Since (bn)n is square summable, then bN → 0, as N →∞. Hence,

bn−1 =
∞∑
k=n

f̂(k)ζk−n.

Therefore,

(3.7) (Qζf)(z) =
∞∑
n=0

(
∞∑

k=n+1

f̂(k)ζk−n−1

)
zn.

Let µ be a positive and finite Borel measure on T, and extend it to the
open unit disc via the Poisson integral formula

Pµ(z) =

∫
T

1− |z|2

|z − ζ|2
dµ(ζ), z ∈ D.

Note that Pµ is a positive harmonic function on D. Moreover, by
Herglotz theorem [16], every positive harmonic function on D has such
a representation. Then the harmonically weighted Dirichlet integral is
defined by (1.2).

4. An orthonormal basis of polynomials in Dζ
A separable Hilbert space has a countable basis of orthonormal ele-

ments. Since polynomials are dense in Dζ , from the theoretical point
of view, the Gram-Schmidt orthogonalization process can be applied
to the sequence (zn)n≥0 to create an orthogonal basis for Dζ . In this
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section we provide an explicit formula for these polynomials. To sim-
plify the presentation, we do the calculation for D1. However, either
by modifying the proof below or by applying the rotation z 7−→ ζ̄z,
one can easily obtain the corresponding family for Dζ .

Theorem 4.1. Let p0(z) = 1, p1(z) = z and

pn(z) = 1 + (z − 1)(a0 + a1z + · · ·+ an−1z
n−1), n ≥ 2,

where

(4.2) an =
1√
5

(
1 +
√

5

2

)2n+1

− 1√
5

(
1−
√

5

2

)2n+1

, n ≥ 0.

Then an, n ≥ 0, are (unique) positive integers such that a0 = 1, a1 = 2,

(4.3) an = 3an−1 − an−2, n ≥ 2,

and that (pn)n≥0 forms an orthogonal basis for D1.

Proof. Assume that a0 = 1 and the other coefficients are not known
at the beginning. To achieve the orthogonality, we show by induction
that they are uniquely determined. By direct verification, p0 and p1 are
orthogonal. For a fixed n ≥ 2, assume that the unique positive inte-
gers a0, . . . , an−1 exist such that the polynomials p0, . . . , pn are pairwise
orthogonal, i.e.,

〈pk, pj〉D1 = 0, 0 ≤ k < j ≤ n.

We proceed to establish the existence of a positive integer an such that

pn+1(z) := 1 + (z − 1)(a0 + a1z + · · ·+ anz
n)

is orthogonal to all the previous polynomials p0, . . . , pn−1, i.e.,

〈pk, pn+1〉D1 = 0, 0 ≤ k ≤ n.

According to (3.6) and that Q1p0 = 0,

〈p0, f〉D1 = 〈p0, f〉H2 = f(0), f ∈ D1.

Since for any choice of the coefficients ak, k ≥ 1, we have pm(0) = 0,
m ≥ 1, we also automatically have

〈p0, pm〉D1 = 0, m ≥ 1.

In fact, this happens due to fixing a0 = 1 at the very beginning.
For any choice of an, the polynomial pn+1 can be written as

pn+1(z) = 1 + (z − 1)(a0 + a1z + · · ·+ an−1z
n−1 + anz

n)

= pn(z) + an(z − 1)zn.
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Hence, by (3.6), for 1 ≤ k ≤ n− 1 and for any an,

〈pk, pn+1〉D1 = 〈pk, pn + an(z − 1)zn〉D1

= 〈pk, pn〉D1 + an〈pk, (z − 1)zn〉D1

= 0 + an〈pk, (z − 1)zn〉H2

+ an〈a0 + · · ·+ ak−1z
k−1, zn〉H2

= 0.

Note that Q1pk = a0 + · · · + ak−1z
k−1 and Q1(z − 1)zn = zn. Again,

up to this point, an plays no role!
It remains to treat the case k = n. Thus, once more by (3.6),

〈pn, pn+1〉D1 = 〈pn, pn + an(z − 1)zn〉D1

= 〈pn, pn〉D1 + an〈pn, (z − 1)zn〉D1

= 〈pn, pn〉D1 + an〈pn, (z − 1)zn〉H2

+ an〈a0 + · · ·+ an−1z
n−1, zn〉H2

= 〈pn, pn〉D1 − an〈pn, zn〉H2 .

From here we see that in order to obtain 〈pn, pn+1〉D1 = 0, the only
possibility is to choose

(4.4) an =
〈pn, pn〉D1

〈zn, pn〉H2

, n ≥ 1.

Therefore, an is uniquely determined. Note that 〈zn, pn〉H2 = an−1 6= 0.
Moreover, since deg(pn) = n, n ≥ 0, and the polynomials are dense in
D1, the system {pn : n ≥ 0} is complete.

The identity (4.4), while establishes the uniqueness of an, does not
show that they are positive integers. We need to explore a bit more
and derive a recursive formula for an to achieve this goal. According
to (3.6), we have

(4.5) 〈pn, pn〉D1 =
n−2∑
k=0

(
a2k + (ak − ak+1)

2
)

+ 2a2n−1.

Therefore, by (4.4), the coefficients are inductively given by

(4.6) an =

∑n−2
k=0 (a2k + (ak − ak+1)

2) + 2a2n−1
an−1

, n ≥ 1.

Since a0 = 1, plugging n = 1 in the above formula gives a1 = 2. In the
formula (4.6), replace n by n− 1 to get

(4.7)
n−3∑
k=0

(
a2k + (ak − ak+1)

2
)

= an−1an−2 − 2a2n−2, n ≥ 2.
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Plugging this identity back to the formula (4.6) gives us the remarkably
simpler identity (4.3). This relation shows that all coefficients are pos-
itive integers. If we put an = rn in (4.3), we see that the characteristic
equation of the difference equation is r2 − 3r + 1 = 0, whose roots are
(3±

√
5)/2. Therefore, the explicit solution of the difference equation

(4.3), with initial conditions a0 = 1 and a1 = 2, is

(4.8) an =

√
5 + 1

2
√

5

(
3 +
√

5

2

)n

+

√
5− 1

2
√

5

(
3−
√

5

2

)n

, n ≥ 0.

This representation shows that the all coefficients are strictly positive
too. Finally, after some easy calculation, this identity can be rewritten
as (4.2). �

The first few polynomials which form an orthogonal basis for D1 are

p0(z) = 1,

p1(z) = 1 + (z − 1),

p2(z) = 1 + (z − 1)(1 + 2z),

p3(z) = 1 + (z − 1)(1 + 2z + 5z2),

p4(z) = 1 + (z − 1)(1 + 2z + 5z2 + 13z3).

Using the rotation z 7−→ ζ̄z, which is a unitary operator from D1 onto
Dζ , we see that the family

(
pn(ζ̄z)

)
n≥0 is an orthogonal (or correspond-

ingly, orthonormal if we normalize them) basis for Dζ .

Corollary 4.9. The norm of pn is

‖pn‖D1 =
√
anan−1, (n ≥ 1).

In particular,

‖pn‖D1 ∼
1√
5

(
3 +
√

5

2

)n

, n→∞.

Proof. By (4.4)
‖pn‖2D1

= 〈pn, pn〉D1 = anan−1.

The asymptotic value is a direct consequence of (4.8). �

The above formula for the norm of pn can be used to normalize the
polynomials and create an orthonormal basis for D1.

According to Theorem 4.1, the polynomials pn satisfy the relation

(4.10) pn(z) = an−1z
n−1(z − 1) + pn−1(z), n ≥ 1.

By the Shohat–Favard theorem [12, 26], a sequence of polynomials
satisfying a recurrence relation with 3 terms is a sequence of orthogonal
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polynomials. A similar result had also been used by Stieltjes in the
theory of continued fractions earlier than Favard and Shohat works
[20]. Due to the special inner product which is used in local Dirichlet
spaces, we show that the sequence (pn)n≥0 satisfies a recurrence relation
with four terms.

Corollary 4.11. The sequence of orthogonal polynomials (pn)n≥0 sat-
isfies the recurrence relation

pn = (1 + 3x)pn−1 − (x2 + 3x)pn−2 + x2pn−3, n ≥ 3.

Proof. By (4.10), applied three times,

pn(z)− pn−1(z) = an−1z
n−1(z − 1),

z
[
pn−1(z)− pn−2(z)

]
= an−2z

n−1(z − 1),

z2
[
pn−2(z)− pn−3(z)

]
= an−3z

n−1(z − 1).

Hence, by (4.3) (replace n by n− 1), we see[
pn(z)− pn−1(z)

]
− 3z

[
pn−1(z)− pn−2(z)

]
+ z2

[
pn−2(z)− pn−3(z)

]
= 0.

Now, simplify. �

A generating function g(z, t) is such that, at least, the formal devel-
opment

g(z, t) =
∞∑
n=0

pn(z)tn

is valid. The explicit formula for an enables us to find the generating
function for these polynomials.

Corollary 4.12. The generating function of (pn)n≥0 is

g(z, t) =
1− (1 + 2z)t+ zt2

(1− t)(1− 3zt+ z2t2)
.

Proof. The main definition says

g(z, t) =
∞∑
n=0

pn(z)tn =
∞∑
n=0

(
1 + (z − 1)

n−1∑
k=0

akz
k

)
tn.

By (4.8),

an =

√
5 + 1

2
√

5
wn +

√
5− 1

2
√

5
w−n, n ≥ 0,
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where w = (3 +
√

5)/2. Therefore,

g(z, t) =
∞∑
n=0

(
1 + (z − 1)

n−1∑
k=0

(√
5 + 1

2
√

5
wk +

√
5− 1

2
√

5
w−k

)
zk

)
tn

=
∞∑
n=0

(
1 + (z − 1)

(√
5 + 1

2
√

5

1− wnzn

1− wz
+

√
5− 1

2
√

5

1− w−nzn

1− w−1z

))
tn

=
1

1− t
+ (z − 1)

(√
5 + 1

2
√

5

1
1−t −

1
1−twz

1− wz
+

√
5− 1

2
√

5

1
1−t −

1
1−tw−1z

1− w−1z

)

=
1

1− t
+
t(z − 1)

1− t

(√
5 + 1

2
√

5

1

1− twz
+

√
5− 1

2
√

5

1

1− tw−1z

)

=
1

1− t
+

t(z − 1)(1− tz)

(1− t)(1− 3tz + t2z2)

=
1− (1 + 2z)t+ zt2

(1− t)(1− 3zt+ z2t2)
.

�

Note that how the normalizations pn(1) = 1 for all n ≥ 1, and p0 = 1
while pn(0) = 0 for all n ≥ 1, are reflected in the explicit formula for
g(z, t). Due to these facts, on one hand,

g(1, t) =
∞∑
n=0

pn(1)tn =
∞∑
n=0

tn =
1

1− t
=

1− (1 + 2z)t+ zt2

(1− t)(1− 3zt+ z2t2)

∣∣∣∣
z=1

,

and, on the other hand,

g(0, t) =
∞∑
n=0

pn(0)tn = p0(0) = 1 =
1− (1 + 2z)t+ zt2

(1− t)(1− 3zt+ z2t2)

∣∣∣∣
z=0

.

5. The projection onto Pn
We write

f(z) =
∞∑
n=0

f̂(n)zn

for the Taylor expansion of a function f ∈ Hol(D). Apart from indi-

cating the nth Taylor coefficient of f , the notation f̂(n) has no other
specific meaning here. However, in the Hardy space H2, it can also
be interpreted as the nth Fourier coefficient of the boundary function
which lives on T. We avoid using an for the coefficients of f , since they
are already exploited in the definition of polynomials pn.
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Let Pn denote the family of all polynomials of degree at most n.
Given f ∈ D1, what is the best polynomial approximation in Pn to
f , and at the same token what is the distance between f and Pn. To
answer these questions, we start with the following result. Recall that
for f ∈ D1, the series

∑∞
k=0 f̂(k) is convergent and is equal to f(1).

Lemma 5.1. Let f ∈ D1. Then the decomposition of f with respect to
the orthogonal basis (pn)n≥0 is

f = f̂(0)p0 +
∞∑
n=1

(
anf̂(n) +

∞∑
k=n+1

(ak − ak−1)f̂(k)

)
pn

anan−1
,

Proof. Recall that

pn(z) = 1 + (z − 1)
n−1∑
k=0

akz
k

=
n−1∑
k=1

(ak−1 − ak)zk + an−1z
n.

Given

f(z) =
∞∑
n=0

f̂(n)zn ∈ D1,

let us write

f =
∞∑
n=0

αnpn.

Then, by (3.6),

α0 = 〈f, p0〉D1/‖p0‖2D1

= 〈f, p0〉H2 + 〈Q1f,Q1p0〉H2

= 〈f, 1〉H2 = f̂(0).

Moreover, for n ≥ 1, using (3.6) and (3.7), we have

αn‖pn‖2D1
= 〈f, pn〉D1

= 〈f, pn〉H2 + 〈Q1f,Q1pn〉H2

=
n−1∑
k=1

(ak−1 − ak)f̂(k) + an−1f̂(n) +
n−1∑
k=0

ak

(
∞∑

j=k+1

f̂(j)

)

= anf̂(n) +
∞∑

k=n+1

(ak − ak−1)f̂(k).
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In the above simplification, we used the relation

a0 + a1 + · · ·+ ak = −2ak+1 + ak+2, k ≥ 0,

which can be easily proved by induction and (4.3). Therefore, with
Corollary 4.9, we conclude that for each f ∈ D1, we have the orthonor-
mal decomposition

f = f̂(0)p0 +
∞∑
n=1

(
anf̂(n) +

∞∑
k=n+1

(ak − ak−1)f̂(k)

)
pn

anan−1
,

where the above series converges in the norm (3.3). �

The representation formula in Lemma 5.1 is the key ingredient to find
the orthogonal projection onto Pn, as well as a formula for dist(f,Pn).

Theorem 5.2. Let f ∈ D1. Then the orthogonal projection of f onto
Pn is

Pnf = f̂(0)p0 +
n∑
j=1

(
aj f̂(j) +

∞∑
k=j+1

(ak − ak−1)f̂(k)

)
pj

ajaj−1
.

Moreover,

distD1(f,Pn) =


∞∑

j=n+1

∣∣∣aj f̂(j) +
∑∞

k=j+1(ak − ak−1)f̂(k)
∣∣∣2

ajaj−1


1/2

.

Proof. The formula for Pnf is an easy consequence of Lemma 5.1.
Moreover, by orthogonality and Corollary 4.9,

distD1(f,Pn) = ‖f −Pnf‖D1

=

∥∥∥∥∥
∞∑

j=n+1

(
aj f̂(j) +

∞∑
k=j+1

(ak − ak−1)f̂(k)

)
pj

ajaj−1

∥∥∥∥∥
D1

=


∞∑

j=n+1

∣∣∣aj f̂(j) +
∑∞

k=j+1(ak − ak−1)f̂(k)
∣∣∣2

ajaj−1


1/2

.

�

Theorem 5.2 reveals a surprising uniqueness property of the orthog-
onal projections Pn. It says that the orthogonal projection onto Pnf
is completely determined by the first n + 1 Taylor coefficients, as well
as an average of the remaining coefficients.
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Corollary 5.3. Let f, g ∈ D1. Suppose that

f̂(j) = ĝ(j), 0 ≤ j ≤ n,

and that
∞∑

k=n+1

(ak − ak−1)f̂(k) =
∞∑

k=n+1

(ak − ak−1)ĝ(k).

Then Pnf = Png.

As a special case, we see that for any m > n,

Pnz
m = (am − am−1)

n∑
j=1

pj
ajaj−1

.

Theorem 5.2 also provides a sequence of polynomials (Pnf)n≥0 which
converges to f in D1. In [19], it was shown that Taylor polynomials of f
might fail to converge. However, Fejér averages of Taylor polynomials
converge to f . More sophisticated summability methods are discussed
in [17, 18].

6. Measures with finite support

Let ζ1, . . . , ζs be s distinct points on T. Let cj > 0 and consider the
discrete measure

dµ = c1dδζ1 + · · ·+ csdδζs .

Our goal is to explore the orthogonal basis of polynomials in the har-
monically weighted Dirichlet space Dµ. As a straightforward general-
ization of (3.1), each f ∈ Dµ has the unique representation

(6.1) f(z) = a0 +a1z+ · · ·+as−1z
s−1 +(z−ζ1)(z−ζ2) · · · (z−ζs)g(z),

where g ∈ H2. It is easy to see that

g := Qζ1Qζ2 · · ·Qζsf, f ∈ Dµ.
Note that the operators Qζj do not commute. However, and surpris-
ingly enough, the action of Qζ1Qζ2 · · ·Qζs on Dµ does not depend on
the ordering of Qζj . Therefore, we may define the operator

Q := Qζ1Qζ2 · · ·Qζs

for which the ordering of Qζj is irrelevant for our purpose. For simplic-
ity of notations, put

q(z) := (z − ζ1)(z − ζ2) · · · (z − ζs),
Therefore, we can rewrite (6.1) as

(6.2) f(z) = a0 + a1z + · · ·+ as−1z
s−1 + q(z)(Qf)(z).
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As a generalization of (3.5), let

(6.3) ‖f‖2Dµ := ‖f‖2H2 + ‖Qf‖2H2 .

The inner product is

(6.4) 〈f, g〉Dµ := 〈f, g〉H2 + 〈Qf,Qg〉H2 .

In the first place, since

Qzj = 0, 0 ≤ j ≤ s− 1,

and 1, z, z2, . . . , zs−1 are orthonormal in H2, our first s orthonormal
polynomials are already given by

pj(z) := zj, 0 ≤ j ≤ s− 1.

We apply the Gram–Schmidt process and find the remaining terms of
the sequence. But, for the new terms we encounter an interesting phe-
nomenon. In the most general setting, since pm is a monic polynomial

of order m, there are unique coefficients a
(m)
k such that

pm = zm + a
(m)
1 pm−1 + +a

(m)
2 pm−2 + · · ·+ a(m)

m p0.

In an arbitrary orthogonalization process, all the m coefficients a
(m)
j

are present. However, in this case, we show that just s coefficients, a
fixed number, are needed. The rest are zero! The following result is a
generalization of (4.10).

Theorem 6.5. Let cj > 0 and consider the discrete measure

dµ = c1dδζ1 + · · ·+ csdδζs .

Let (pm)m≥0 be the unique sequence of monic orthogonal polynomials

in Dµ. Then, for each m ≥ s, there are constants a
(m)
1 , . . . , a

(m)
s such

that

pm = zm−sq + a
(m)
1 pm−1 + · · ·+ a(m)

s pm−s.

Proof. In this proof, for the simplicity of notations, we write aj for

a
(m)
j . The proof is by induction. Assume that pj, for n ≤ j ≤ m − 1,

satisfy the above mentioned functional equation. We define pm by the
required formula, where the coefficients ak are unknown. We show
that the coefficients can be found such that pm is orthogonal to pj,
0 ≤ j ≤ m− 1.

First, for 0 ≤ j ≤ m− s− 1, we have

〈pm, zj〉µ = 〈zm−sq, zj〉µ +
s∑

k=1

ak〈pm−k, zj〉µ.
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The monomials zj, 0 ≤ j ≤ m− s− 1, are in the linear combination of
p0, . . . , pm−s−1. Hence, by the induction hypothesis,

〈pm−k, zj〉µ = 0, 1 ≤ k ≤ s.

Moreover, by (6.4),

〈zm−sq, zj〉µ = 〈zm−sq, zj〉2 + 〈Q(zm−sq), Q(zj)〉2.
Since 0 ≤ j ≤ m−s−1, we certainly have 〈zm−sq, zj〉2 = 0. Also, since
q(ζk) = 0, we have Q(zm−sq) = zm−s, and Q(zj) ∈ Pm−2s−1. Thus,
〈Q(zm−sq), Q(zj)〉2 = 0 (this latter relation holds even for j ≤ m− 1).
Therefore, for any choice of the coefficients ak, we automatically have

〈pm, zj〉µ = 0, (0 ≤ j ≤ m− s− 1).

The remaining requirement consists of the s equations

〈pm, zj〉µ = 0, (m− s ≤ j ≤ m− 1).

More explicitly, these equations form the system Ax = b, where A is
the lower triangular matrix

A =


〈pm−s, zm−s〉µ 0 · · · 0
〈pm−s, zm−s+1〉µ 〈pm−s+1, z

m−s+1〉µ · · · 0
...

...
. . .

...
〈pm−s, zm−1〉µ 〈pm−s+1, z

m−1〉µ · · · 〈pm−1, zm−1〉µ

 ,

and

x =


as
as−1

...
a1

 , and b =


〈zm−sq, zm−s〉µ
〈zm−sq, zm−s+1〉µ

...
〈zm−sq, zm−1〉µ

 .

By induction, the elements on the diagonal of A are non-zero. Hence,
ak are uniquely determind. �

As another possibility, we may modify (6.3) and define the new norm

(6.6) ‖f‖2Dµ := ‖f‖2H2 +
s∑

k=1

ck‖Qζkf‖2H2 .

The calculations with respect to this norm are more delicate. Using
the polarization identity, the inner product becomes

(6.7) 〈f, g〉Dµ := 〈f, g〉H2 +
s∑

k=1

ck〈Qζkf,Qζkg〉H2 .

All these norms on Dµ are equivalent. However, under certain specific
cases, they might even coincide. One such case, which will be needed
in Section 7, is presented below.
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Let the points ζk be uniformly distributed on T, e.g.,

(6.8) ζk = ei2kπ/s, 1 ≤ k ≤ s,

and assume that the masses at each point are also equal and normalized
so that

c1 = c2 = · · · = cs = 1/s2.

The important effect of weight 1/s2 is seen below in (6.10). Then

q(z) = (z − ζ1)(z − ζ2) · · · (z − ζs) = zs − 1

and (6.2) becomes

(6.9) f(z) = a0 + a1z + · · ·+ as−1z
s−1 + (zs − 1)Qf(z).

Let

Dµ(0) = {f ∈ Dµ : f(ζ1) = f(ζ2) = · · · = f(ζs) = 0}
= {f ∈ Dµ : a0 = a1 = · · · = as−1 = 0}.

Hence, for each f ∈ Dµ(0), the norm (6.6) becomes

‖f‖2Dµ = ‖f‖2H2 +
1

s2

s∑
k=1

‖Qζk(f)‖22

= ‖f‖2H2 +
1

s2

s∑
k=1

∫
T

∣∣∣∣zs − 1

z − ζk

∣∣∣∣2 |Qf(z)|2dm(z)

= ‖f‖2H2 +

∫
T

(
1

s2

s∑
k=1

∣∣∣∣zs − 1

z − ζk

∣∣∣∣2
)
|Qf(z)|2dm(z)

= ‖f‖2H2 +

∫
T
|Qf(z)|2dm(z)

= ‖f‖2H2 + ‖Qf‖2H2 .(6.10)

This is precisely the norm (6.3).

7. The uniform distribution

Let the points ζk be uniformly distributed on T as in (6.8), and
equip Dµ with the norm (6.3). Note that under this norm the precise
value of cj are not important. The only restriction is cj > 0. Due to
its simplified form and resemblance to (3.5), we can now produce an
orthogonal basis for Dµ.

Let f(z) = a+ (z − 1)g(z) ∈ D1. Then

zrf(zs) = azr + (zs − 1)zrg(zs) ∈ Dµ, (r = 0, 1, . . . , s− 1).
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Moreover, for any two functions of this type,

〈zrf1(zs), zρf2(zs)〉Dµ
=

〈
azr + (zs − 1)zrg(zs), bzρ + (zs − 1)zρh(zs)

〉
Dµ

=
〈
azr + (zs − 1)zrg(zs), bzρ + (zs − 1)zρh(zs)

〉
H2

+
〈
zrg(zs), zρh(zs)

〉
H2 .

It is trivial that the last two inner products are zero if r 6= ρ, and if
r = ρ, we have

〈zrf1(zs), zrf2(zs)〉Dµ
=

〈
a+ (zs − 1)g(zs), b+ (zs − 1)h(zs)

〉
H2 +

〈
g(zs), h(zs)

〉
H2

=
〈
a+ (z − 1)g(z), b+ (z − 1)h(z)

〉
H2 +

〈
g(z), h(z)

〉
H2

= 〈f1, f2〉H2 + 〈g, h〉H2

= 〈f1, f2〉H2 + 〈Q1f1, Q1f2〉H2

= 〈f1, f2〉D1 .

In short, we may write

〈zrf1(zs), zρf2(zs)〉Dµ = δrρ〈f1, f2〉D1 .

We are now ready to present the orthogonal family of polynomials.

Theorem 7.1. Let ck > 0, ζk = ei2kπ/s, 1 ≤ k ≤ s, and consider the
discrete measure

dµ = c1dδζ1 + · · ·+ csdδζs .

Let

fm(z) := pm(zs), (m ≥ 0),

where pm are the polynomials obtained in Theorem 4.1. Then the family

{fm, zfm, . . . , zs−1fm : m ≥ 0}

is an orthogonal basis for Dµ.

Since for each k,

fm(ζk) = pm(ζsk) = pm(1) = 1, (m ≥ 0),

the above calculations also show that the family

{fm − f0, z(fm − f0), . . . , zs−1(fm − f0) : m ≥ 1}

is an orthogonal basis for Dµ(0). In this case, the orthogonality holds
even under the inner product (6.7).
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8. Concluding remarks

We end this note with some remarks and questions which are not
fully understood yet.

(i) The classical orthogonal polynomials satisfy a differential equa-
tion, which usually stems from physical applications. Is there a
differential equation for the orthogonal polynomials pn obtained
in Theorem 4.1?

(ii) We saw that

fN = f̂(0)p0 +
N∑
n=1

(
anf̂(n) +

∞∑
k=n+1

(ak − ak−1)f̂(k)

)
pn

anan−1

converges to f in D1-norm. Is it possible simplify the expression
of fN and write it more directly in terms of Taylor polynomials
of f?

(iii) The properties of orthogonal polynomials given in Theorem 6.5
are not fully explored yet. It remains to find the recursive equa-
tion, differential equation (if any), the generating function, pro-
jection onto Pn, etc.
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Québec, QC, Canada G1K 7P4.

Email address: Javad.Mashreghi@mat.ulaval.ca


