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We provide an orthogonal basis of polynomials for the local Dirichlet space D ζ . These polynomials have numerous interesting features and a very unique algebraic pattern. We obtain the recurrence relation, the generating function, a simple formula for their norm, and explicit formulae for the distance and the orthogonal projection onto the subspace of polynomials of degree at most n. The latter implies a new polynomial approximation scheme in local Dirichlet spaces. Orthogonal polynomials in a harmonically weighted Dirichlet space, created by a finitely supported singular measure, are also studied.

Introduction

Let D be the open unit disc in the complex plane, and let T denote its boundary. For f ∈ Hol(D), the family of holomorphic functions on D, and ζ ∈ T, the local Dirichlet integral is defined by

(1.1) D ζ (f ) = 1 π D |f (z)| 2 1 -|z| 2
|ζ -z| 2 dA(z), where dA(z) = dx dy is the planar Lebesgue measure. The local Dirichlet space D ζ consists of all functions f ∈ Hol(D) with D ζ (f ) < ∞. Our focus in this paper is mainly on local Dirichlet spaces. However, we also need to consider a generalization given by (1.2)

D µ (f ) = 1 π D |f (z)| 2 P µ(z) dA(z),
where P µ is the Poisson integral of µ. A detailed description of these spaces is available at [START_REF] El-Fallah | A primer on the Dirichlet space[END_REF]Ch. 7]. A short account is provided in Section 3. Note that D µ (f ) is written D ζ (f ) when µ = δ ζ , the Dirac measure at point ζ. These spaces have been the focus of numerous studies, e.g., invariant subspaces for the shift operator [START_REF] El-Fallah | Invariant subspaces of the Dirichlet space[END_REF][START_REF] Guillot | Fine boundary behavior and invariant subspaces of harmonically weighted Dirichlet spaces[END_REF][START_REF] Richter | Regularity for generators of invariant subspaces of the Dirichlet shift[END_REF][START_REF] Richter | A formula for the local Dirichlet integral[END_REF], multipliers [START_REF] Mashreghi | Hadamard multipliers on weighted Dirichlet spaces[END_REF][START_REF] Richter | Multipliers and invariant subspaces in the Dirichlet space[END_REF], superharmonic weights [START_REF] Aleman | Hilbert spaces of analytic functions between the Hardy and the Dirichlet space[END_REF][START_REF] Bao | On Dirichlet spaces with a class of superharmonic weights[END_REF], and polynomial approximation and connections to de Branges-Rovnyak spaces [START_REF] Chevrot | De Branges-Rovnyak spaces and Dirichlet spaces[END_REF][START_REF] Costara | Which de Branges-Rovnyak spaces are Dirichlet spaces (and vice versa)?[END_REF][START_REF] Sarason | Local Dirichlet spaces as de Branges-Rovnyak spaces[END_REF], cyclicity [START_REF] Abakumov | Cyclicity in the harmonic Dirichlet space[END_REF][START_REF] Brown | Cyclic vectors in the Dirichlet space[END_REF][START_REF] Eva | Cyclic vectors and invariant subspaces for Bergman and Dirichlet shifts[END_REF][START_REF] Knese | Cyclic polynomials in anisotropic Dirichlet spaces[END_REF][START_REF] Sola | A note on Dirichlet-type spaces and cyclic vectors in the unit ball of C 2[END_REF], Carleson measures [START_REF] Chartrand | Multipliers and Carleson measures for D(µ). Integral Equations Operator Theory[END_REF][START_REF] Chacón | Carleson measures on Dirichlet-type spaces[END_REF][START_REF] Chacón | Carleson measures and reproducing kernel thesis in Dirichlet-type spaces[END_REF]. S. Richter showed that polynomials are dense in D µ [START_REF] Richter | A representation theorem for cyclic analytic two-isometries[END_REF]. The estimation needed in this approach for the Dirichlet integral of dilations f r were further improved by Richter and Sundberg [START_REF] Richter | A formula for the local Dirichlet integral[END_REF], Aleman [START_REF] Aleman | Hilbert spaces of analytic functions between the Hardy and the Dirichlet space[END_REF] and Sarason [START_REF] Sarason | Local Dirichlet spaces as de Branges-Rovnyak spaces[END_REF]. Knowing that polynomials are dense in D µ , we may apply the classical Gram-Schmidt procedure to create an orthogonal basis of polynomials for D µ . Direct application of the Gram-Schmidt formula is usually difficult and does not lead to satisfactory results. However, if via other means, we come up with a sequence of orthogonal polynomials p n , with deg(p n ) = n, n ≥ 0, then up to a multiplicative constant this is precisely the orthogonal sequence which is promised by the Gram-Schmidt process. This is how we succeeded to present the new family of orthogonal polynomials for D µ and study further their properties.

The outline of this note is as follows. A brief description of the main results is provided in the next section. In Section 3, the background needed on weighted Dirichlet spaces is presented. In Section 4, the promissed orthogonal polynomials are obtained and their projection properties are discussed in Section 5. In Section 6, we consider harmonically weighted Dirichlet spaces generated by a finite sum of Dirac measures. No wonder the formulas are more complicated in this setting. However, in Section 7, we show that if the distribution of measures has a symmetric pattern, then the life is easier and the orthogonal polynomials have a simpler description.

A brief description of results

Our main observation is that the family of polynomials

p n (z) := 1 + (z -1)(a 0 + a 1 z + • • • + a n-1 z n-1 ), n ≥ 0,
forms an orthogonal basis for D 1 , where the coefficients a n are positive integers which satisfy the recursive equation

a n = 3a n-1 -a n-2 , n ≥ 2,
with the initial conditions a 0 = 1 and a 1 = 2. More explicitly, they are given by the formula

a n = 1 √ 5 1 + √ 5 2 2n+1 - 1 √ 5 1 - √ 5 2 2n+1 , n ≥ 0.
The norm of polynomials are given by the simple formula

p n D 1 = √ a n a n-1 , n ≥ 1.
Hence, asymptotically,

p n D 1 ∼ 1 √ 5 3 + √ 5 2 n , n → ∞.
They satisfy the recurrence relation

p n = (1 + 3x)p n-1 -(x 2 + 3x)p n-2 + x 2 p n-3 , n ≥ 3,
and have

g(z, t) = 1 -(1 + 2z)t + zt 2 (1 -t)(1 -3zt + z 2 t 2 )
as the generating function.

These polynomials provide the orthogonal decomposition

f = f (0)p 0 + ∞ n=1 a n f (n) + ∞ k=n+1 (a k -a k-1 ) f (k) p n a n a n-1 ,
for each f ∈ D 1 . Therefore, we immediately obtain the projection

P n f = f (0)p 0 + n j=1 a j f (j) + ∞ k=j+1 (a k -a k-1 ) f (k) p j a j a j-1
.

onto P n , the space of polynomials of degree at most n, and consequently

dist D 1 (f, P n ) =      ∞ j=n+1 a j f (j) + ∞ k=j+1 (a k -a k-1 ) f (k) 2 a j a j-1      1/2 .
The sequence of polynomials (P n f ) n≥0 converges to f in D 1 . This result complements polynomial approximation schemes obtained in [START_REF] Mashreghi | Cesàro summability of Taylor series in weighted Dirichlet spaces[END_REF][START_REF] Mashreghi | Hadamard multipliers on weighted Dirichlet spaces[END_REF][START_REF] Mashreghi | Polynomial approximation in weighted Dirichlet spaces[END_REF].

We study the same phenomenon for harmonically weighted Dirichlet spaces which are created by a finite discrete measure µ = s i=1 c i δ ζ i , c i > 0, ζ i ∈ T. In this case, the polynomials satisfy the property

p m = z m-s q + a (m) 1 p m-1 + • • • + a (m)
s p m-s , where q(z) = s i=1 (z -ζ i ). When the Dirac measures are equally distributed, we show that the orthogonal polynomials are closely related to the orthogonal polynomials of a single local Dirichlet space.

Background on harmonically weighted Dirichlet spaces

The local Dirichlet space is originally defined via the growth restriction (1.1). However, one of the most important features of these spaces is the following characterization [START_REF] Richter | A formula for the local Dirichlet integral[END_REF]: a function f ∈ Hol(D) belongs to D ζ if and only if

(3.1) f (z) = a + (z -ζ)g(z),
where g ∈ H 2 and a ∈ C. Moreover, we have

(3.2) D ζ (f ) = g 2 H 2 .
See also [10, page 111]. We usually equip D ζ with the norm Using that |g(rζ 

(3.3) f 2 D ζ := f 2 H 2 + D ζ (f ). Note that D ζ (f ) is a semi-norm
)| = o((1 -r 2 ) -1/2 ), the relation (3.1) immediately implies (3.4) f (ζ) := lim r→1 -f (rζ) = a. Moreover if f (z) = ∞ k=0 f (k)z k is in D ζ ,
a = f (ζ) = ∞ k=0 f (k)ζ k .
As a matter of fact, f approaches the boundary value f (ζ) in an oricyclic region from within D and tangent to T at the point ζ. This observation enables us to define the difference quotient operator

Q ζ : D ζ → H 2 , (Q ζ f )(z) := f (z) -f (ζ) z -ζ , z ∈ D.
By (3.1) and (3.2) we see that

Q ζ f 2 H 2 = D ζ (f )
, and a further look at

(3.3) shows Q ζ f 2 H 2 ≤ f 2 D ζ .
Therefore, we can rewrite the definition of norm as

(3.5) f 2 D ζ = f 2 H 2 + Q ζ f 2 H 2 , which, using polarization identity, turns into (3.6) f 1 , f 2 D ζ = f 1 , f 2 H 2 + Q ζ f 1 , Q ζ f 2 H 2 .
Let us compute the function

Q ζ f explicitly. If we write f (z) = ∞ k=0 f (k)z k and (Q ζ f )(z) = ∞ k=0 b k z k , with (b k ) k ∈ 2
, and equate coefficients of z k in the relation

f (z) = a + (z -ζ)(Q ζ f )(z), then we obtain f (0) = a -ζb 0 f (k) = b k-1 -ζb k , (k ≥ 1). Now, note that for N ≥ n ≥ 1, N k=n f (k)ζ k-n = N k=n ζ k-n b k-1 -ζ k-n+1 b k =ζ 1-n N k=n b k-1 ζ k-1 -b k ζ k =b n-1 -b N ζ N +1-n . Since (b n ) n is square summable, then b N → 0, as N → ∞. Hence, b n-1 = ∞ k=n f (k)ζ k-n .
Therefore,

(3.7) (Q ζ f )(z) = ∞ n=0 ∞ k=n+1 f (k)ζ k-n-1 z n .
Let µ be a positive and finite Borel measure on T, and extend it to the open unit disc via the Poisson integral formula

P µ(z) = T 1 -|z| 2 |z -ζ| 2 dµ(ζ), z ∈ D.
Note that P µ is a positive harmonic function on D. Moreover, by Herglotz theorem [START_REF] Mashreghi | Representation theorems in Hardy spaces[END_REF], every positive harmonic function on D has such a representation. Then the harmonically weighted Dirichlet integral is defined by (1.2).

An orthonormal basis of polynomials in D ζ

A separable Hilbert space has a countable basis of orthonormal elements. Since polynomials are dense in D ζ , from the theoretical point of view, the Gram-Schmidt orthogonalization process can be applied to the sequence (z n ) n≥0 to create an orthogonal basis for D ζ . In this section we provide an explicit formula for these polynomials. To simplify the presentation, we do the calculation for D 1 . However, either by modifying the proof below or by applying the rotation z -→ ζz, one can easily obtain the corresponding family for

D ζ . Theorem 4.1. Let p 0 (z) = 1, p 1 (z) = z and p n (z) = 1 + (z -1)(a 0 + a 1 z + • • • + a n-1 z n-1 ), n ≥ 2,
where

(4.2) a n = 1 √ 5 1 + √ 5 2 2n+1 - 1 √ 5 1 - √ 5 2 2n+1 , n ≥ 0.
Then a n , n ≥ 0, are (unique) positive integers such that

a 0 = 1, a 1 = 2, (4.3) a n = 3a n-1 -a n-2 , n ≥ 2,
and that (p n ) n≥0 forms an orthogonal basis for D 1 .

Proof. Assume that a 0 = 1 and the other coefficients are not known at the beginning. To achieve the orthogonality, we show by induction that they are uniquely determined. By direct verification, p 0 and p 1 are orthogonal. For a fixed n ≥ 2, assume that the unique positive integers a 0 , . . . , a n-1 exist such that the polynomials p 0 , . . . , p n are pairwise orthogonal, i.e.,

p k , p j D 1 = 0, 0 ≤ k < j ≤ n.
We proceed to establish the existence of a positive integer a n such that

p n+1 (z) := 1 + (z -1)(a 0 + a 1 z + • • • + a n z n )
is orthogonal to all the previous polynomials p 0 , . . . , p n-1 , i.e.,

p k , p n+1 D 1 = 0, 0 ≤ k ≤ n.
According to (3.6) and that

Q 1 p 0 = 0, p 0 , f D 1 = p 0 , f H 2 = f (0), f ∈ D 1 .
Since for any choice of the coefficients a k , k ≥ 1, we have p m (0) = 0, m ≥ 1, we also automatically have

p 0 , p m D 1 = 0, m ≥ 1.
In fact, this happens due to fixing a 0 = 1 at the very beginning.

For any choice of a n , the polynomial p n+1 can be written as

p n+1 (z) = 1 + (z -1)(a 0 + a 1 z + • • • + a n-1 z n-1 + a n z n ) = p n (z) + a n (z -1)z n .
Hence, by (3.6), for 1 ≤ k ≤ n -1 and for any a n ,

p k , p n+1 D 1 = p k , p n + a n (z -1)z n D 1 = p k , p n D 1 + a n p k , (z -1)z n D 1 = 0 + a n p k , (z -1)z n H 2 + a n a 0 + • • • + a k-1 z k-1 , z n H 2 = 0. Note that Q 1 p k = a 0 + • • • + a k-1 z k-1 and Q 1 (z -1)z n = z n .
Again, up to this point, a n plays no role! It remains to treat the case k = n. Thus, once more by (3.6),

p n , p n+1 D 1 = p n , p n + a n (z -1)z n D 1 = p n , p n D 1 + a n p n , (z -1)z n D 1 = p n , p n D 1 + a n p n , (z -1)z n H 2 + a n a 0 + • • • + a n-1 z n-1 , z n H 2 = p n , p n D 1 -a n p n , z n H 2 .
From here we see that in order to obtain p n , p n+1 D 1 = 0, the only possibility is to choose

(4.4) a n = p n , p n D 1 z n , p n H 2 , n ≥ 1.
Therefore, a n is uniquely determined. Note that z n , p n H 2 = a n-1 = 0. Moreover, since deg(p n ) = n, n ≥ 0, and the polynomials are dense in D 1 , the system {p n : n ≥ 0} is complete. The identity (4.4), while establishes the uniqueness of a n , does not show that they are positive integers. We need to explore a bit more and derive a recursive formula for a n to achieve this goal. According to (3.6), we have

(4.5) p n , p n D 1 = n-2 k=0 a 2 k + (a k -a k+1 ) 2 + 2a 2 n-1 .
Therefore, by (4.4), the coefficients are inductively given by (4.6)

a n = n-2 k=0 (a 2 k + (a k -a k+1 ) 2 ) + 2a 2 n-1 a n-1 , n ≥ 1.
Since a 0 = 1, plugging n = 1 in the above formula gives a 1 = 2. In the formula (4.6), replace n by n -1 to get

(4.7) n-3 k=0 a 2 k + (a k -a k+1 ) 2 = a n-1 a n-2 -2a 2 n-2 , n ≥ 2.
Plugging this identity back to the formula (4.6) gives us the remarkably simpler identity (4.3). This relation shows that all coefficients are positive integers. If we put a n = r n in (4.3), we see that the characteristic equation of the difference equation is r 2 -3r + 1 = 0, whose roots are (3 ± √ 5)/2. Therefore, the explicit solution of the difference equation (4.3), with initial conditions a 0 = 1 and a 1 = 2, is

(4.8) a n = √ 5 + 1 2 √ 5 3 + √ 5 2 n + √ 5 -1 2 √ 5 3 - √ 5 2 n , n ≥ 0.
This representation shows that the all coefficients are strictly positive too. Finally, after some easy calculation, this identity can be rewritten as (4.2).

The first few polynomials which form an orthogonal basis for D 1 are

p 0 (z) = 1, p 1 (z) = 1 + (z -1), p 2 (z) = 1 + (z -1)(1 + 2z), p 3 (z) = 1 + (z -1)(1 + 2z + 5z 2 ), p 4 (z) = 1 + (z -1)(1 + 2z + 5z 2 + 13z 3 ).
Using the rotation z -→ ζz, which is a unitary operator from D 1 onto D ζ , we see that the family p n ( ζz) n≥0 is an orthogonal (or correspondingly, orthonormal if we normalize them) basis for D ζ .

Corollary 4.9. The norm of p n is

p n D 1 = √ a n a n-1 , (n ≥ 1).
In particular,

p n D 1 ∼ 1 √ 5 3 + √ 5 2 n , n → ∞.
Proof. By (4.4)

p n 2 D 1 = p n , p n D 1 = a n a n-1 .
The asymptotic value is a direct consequence of (4.8).

The above formula for the norm of p n can be used to normalize the polynomials and create an orthonormal basis for D 1 .

According to Theorem 4.1, the polynomials p n satisfy the relation

(4.10) p n (z) = a n-1 z n-1 (z -1) + p n-1 (z), n ≥ 1.
By the Shohat-Favard theorem [START_REF] Favard | Sur les polynômes de tchebicheff[END_REF][START_REF] Shohat | Sur les polynômes orthogonaux généralisés[END_REF], a sequence of polynomials satisfying a recurrence relation with 3 terms is a sequence of orthogonal polynomials. A similar result had also been used by Stieltjes in the theory of continued fractions earlier than Favard and Shohat works [START_REF] Rahman | Analytic theory of polynomials[END_REF]. Due to the special inner product which is used in local Dirichlet spaces, we show that the sequence (p n ) n≥0 satisfies a recurrence relation with four terms.

Corollary 4.11. The sequence of orthogonal polynomials (p n ) n≥0 satisfies the recurrence relation

p n = (1 + 3x)p n-1 -(x 2 + 3x)p n-2 + x 2 p n-3 , n ≥ 3.
Proof. By (4.10), applied three times,

p n (z) -p n-1 (z) = a n-1 z n-1 (z -1), z p n-1 (z) -p n-2 (z) = a n-2 z n-1 (z -1), z 2 p n-2 (z) -p n-3 (z) = a n-3 z n-1 (z -1).
Hence, by (4.3) (replace n by n -1), we see

p n (z) -p n-1 (z) -3z p n-1 (z) -p n-2 (z) + z 2 p n-2 (z) -p n-3 (z) = 0.

Now, simplify.

A generating function g(z, t) is such that, at least, the formal development

g(z, t) = ∞ n=0 p n (z)t n
is valid. The explicit formula for a n enables us to find the generating function for these polynomials.

Corollary 4.12. The generating function of (p n ) n≥0 is

g(z, t) = 1 -(1 + 2z)t + zt 2 (1 -t)(1 -3zt + z 2 t 2 )
.

Proof. The main definition says

g(z, t) = ∞ n=0 p n (z)t n = ∞ n=0 1 + (z -1) n-1 k=0 a k z k t n .
By (4.8),

a n = √ 5 + 1 2 √ 5 w n + √ 5 -1 2 √ 5 w -n , n ≥ 0,
where w = (3 + √ 5)/2. Therefore,

g(z, t) = ∞ n=0 1 + (z -1) n-1 k=0 √ 5 + 1 2 √ 5 w k + √ 5 -1 2 √ 5 w -k z k t n = ∞ n=0 1 + (z -1) √ 5 + 1 2 √ 5 1 -w n z n 1 -wz + √ 5 -1 2 √ 5 1 -w -n z n 1 -w -1 z t n = 1 1 -t + (z -1) √ 5 + 1 2 √ 5 1 1-t -1 1-twz 1 -wz + 5 -1 2 √ 5 1 1-t - 1 1-tw -1 z 1 -w -1 z = 1 1 -t + t(z -1) 1 -t √ 5 + 1 2 √ 5 1 1 -twz + √ 5 -1 2 √ 5 1 1 -tw -1 z = 1 1 -t + t(z -1)(1 -tz) (1 -t)(1 -3tz + t 2 z 2 ) = 1 -(1 + 2z)t + zt 2 (1 -t)(1 -3zt + z 2 t 2 )
.

Note that how the normalizations p n (1) = 1 for all n ≥ 1, and p 0 = 1 while p n (0) = 0 for all n ≥ 1, are reflected in the explicit formula for g(z, t). Due to these facts, on one hand,

g(1, t) = ∞ n=0 p n (1)t n = ∞ n=0 t n = 1 1 -t = 1 -(1 + 2z)t + zt 2 (1 -t)(1 -3zt + z 2 t 2 ) z=1 ,
and, on the other hand,

g(0, t) = ∞ n=0 p n (0)t n = p 0 (0) = 1 = 1 -(1 + 2z)t + zt 2 (1 -t)(1 -3zt + z 2 t 2 ) z=0
.

The projection onto P n

We write

f (z) = ∞ n=0 f (n)z n
for the Taylor expansion of a function f ∈ Hol(D). Apart from indicating the nth Taylor coefficient of f , the notation f (n) has no other specific meaning here. However, in the Hardy space H 2 , it can also be interpreted as the nth Fourier coefficient of the boundary function which lives on T. We avoid using a n for the coefficients of f , since they are already exploited in the definition of polynomials p n .

Let P n denote the family of all polynomials of degree at most n. Given f ∈ D 1 , what is the best polynomial approximation in P n to f , and at the same token what is the distance between f and P n . To answer these questions, we start with the following result. Recall that for f ∈ D 1 , the series ∞ k=0 f (k) is convergent and is equal to f (1). Lemma 5.1. Let f ∈ D 1 . Then the decomposition of f with respect to the orthogonal basis

(p n ) n≥0 is f = f (0)p 0 + ∞ n=1 a n f (n) + ∞ k=n+1 (a k -a k-1 ) f (k) p n a n a n-1 , Proof. Recall that p n (z) = 1 + (z -1) n-1 k=0 a k z k = n-1 k=1 (a k-1 -a k )z k + a n-1 z n .
Given

f (z) = ∞ n=0 f (n)z n ∈ D 1 , let us write f = ∞ n=0 α n p n .
Then, by (3.6),

α 0 = f, p 0 D 1 / p 0 2 D 1 = f, p 0 H 2 + Q 1 f, Q 1 p 0 H 2 = f, 1 H 2 = f (0).
Moreover, for n ≥ 1, using (3.6) and (3.7), we have

α n p n 2 D 1 = f, p n D 1 = f, p n H 2 + Q 1 f, Q 1 p n H 2 = n-1 k=1 (a k-1 -a k ) f (k) + a n-1 f (n) + n-1 k=0 a k ∞ j=k+1 f (j) = a n f (n) + ∞ k=n+1 (a k -a k-1 ) f (k).
In the above simplification, we used the relation

a 0 + a 1 + • • • + a k = -2a k+1 + a k+2 , k ≥ 0,
which can be easily proved by induction and (4.3). Therefore, with Corollary 4.9, we conclude that for each f ∈ D 1 , we have the orthonormal decomposition

f = f (0)p 0 + ∞ n=1 a n f (n) + ∞ k=n+1 (a k -a k-1 ) f (k) p n a n a n-1 ,
where the above series converges in the norm (3.3).

The representation formula in Lemma 5.1 is the key ingredient to find the orthogonal projection onto P n , as well as a formula for dist(f, P n ).

Theorem 5.2. Let f ∈ D 1 . Then the orthogonal projection of f onto P n is

P n f = f (0)p 0 + n j=1 a j f (j) + ∞ k=j+1 (a k -a k-1 ) f (k) p j a j a j-1 . Moreover, dist D 1 (f, P n ) =      ∞ j=n+1 a j f (j) + ∞ k=j+1 (a k -a k-1 ) f (k) 2 a j a j-1      1/2 .
Proof. The formula for P n f is an easy consequence of Lemma 5.1. Moreover, by orthogonality and Corollary 4.9,

dist D 1 (f, P n ) = f -P n f D 1 = ∞ j=n+1 a j f (j) + ∞ k=j+1 (a k -a k-1 ) f (k) p j a j a j-1 D 1 =      ∞ j=n+1 a j f (j) + ∞ k=j+1 (a k -a k-1 ) f (k) 2 a j a j-1      1/2 .
Theorem 5.2 reveals a surprising uniqueness property of the orthogonal projections P n . It says that the orthogonal projection onto P n f is completely determined by the first n + 1 Taylor coefficients, as well as an average of the remaining coefficients.

Corollary 5.3. Let f, g ∈ D 1 . Suppose that f (j) = ĝ(j), 0 ≤ j ≤ n,
and that

∞ k=n+1 (a k -a k-1 ) f (k) = ∞ k=n+1 (a k -a k-1 )ĝ(k).
Then P n f = P n g.

As a special case, we see that for any m > n,

P n z m = (a m -a m-1 ) n j=1
p j a j a j-1 .

Theorem 5.2 also provides a sequence of polynomials (P n f ) n≥0 which converges to f in D 1 . In [START_REF] Mashreghi | Polynomial approximation in weighted Dirichlet spaces[END_REF], it was shown that Taylor polynomials of f might fail to converge. However, Fejér averages of Taylor polynomials converge to f . More sophisticated summability methods are discussed in [START_REF] Mashreghi | Cesàro summability of Taylor series in weighted Dirichlet spaces[END_REF][START_REF] Mashreghi | Hadamard multipliers on weighted Dirichlet spaces[END_REF].

Measures with finite support

Let ζ 1 , . . . , ζ s be s distinct points on T. Let c j > 0 and consider the discrete measure

dµ = c 1 dδ ζ 1 + • • • + c s dδ ζs .
Our goal is to explore the orthogonal basis of polynomials in the harmonically weighted Dirichlet space D µ . As a straightforward generalization of (3.1), each f ∈ D µ has the unique representation (6.1) 

f (z) = a 0 + a 1 z + • • • + a s-1 z s-1 + (z -ζ 1 )(z -ζ 2 ) • • • (z -ζ s )g(z),
where g ∈ H 2 . It is easy to see that

g := Q ζ 1 Q ζ 2 • • • Q ζs f, f ∈ D µ .
Note that the operators Q ζ j do not commute. However, and surprisingly enough, the action of

Q ζ 1 Q ζ 2 • • • Q ζs on D µ does not depend on the ordering of Q ζ j .
Therefore, we may define the operator

Q := Q ζ 1 Q ζ 2 • • • Q ζs
for which the ordering of Q ζ j is irrelevant for our purpose. For simplicity of notations, put

q(z) := (z -ζ 1 )(z -ζ 2 ) • • • (z -ζ s ),
Therefore, we can rewrite (6.1) as (6.2)

f (z) = a 0 + a 1 z + • • • + a s-1 z s-1 + q(z)(Qf )(z).
As a generalization of (3.5), let (6.3)

f 2 Dµ := f 2 H 2 + Qf 2 H 2 . The inner product is (6.4) f, g Dµ := f, g H 2 + Qf, Qg H 2 .
In the first place, since

Qz j = 0, 0 ≤ j ≤ s -1,
and 1, z, z 2 , . . . , z s-1 are orthonormal in H 2 , our first s orthonormal polynomials are already given by

p j (z) := z j , 0 ≤ j ≤ s -1.
We apply the Gram-Schmidt process and find the remaining terms of the sequence. But, for the new terms we encounter an interesting phenomenon. In the most general setting, since p m is a monic polynomial of order m, there are unique coefficients a

(m) k such that p m = z m + a (m) 1 p m-1 + +a (m) 2 p m-2 + • • • + a (m) m p 0 .
In an arbitrary orthogonalization process, all the m coefficients a (m) j are present. However, in this case, we show that just s coefficients, a fixed number, are needed. The rest are zero! The following result is a generalization of (4.10). Theorem 6.5. Let c j > 0 and consider the discrete measure

dµ = c 1 dδ ζ 1 + • • • + c s dδ ζs .
Let (p m ) m≥0 be the unique sequence of monic orthogonal polynomials in D µ . Then, for each m ≥ s, there are constants a

(m) 1 , . . . , a (m) s such that p m = z m-s q + a (m) 1 p m-1 + • • • + a (m)
s p m-s . Proof. In this proof, for the simplicity of notations, we write a j for a (m) j . The proof is by induction. Assume that p j , for n ≤ j ≤ m -1, satisfy the above mentioned functional equation. We define p m by the required formula, where the coefficients a k are unknown. We show that the coefficients can be found such that p m is orthogonal to p j , 0 ≤ j ≤ m -1.

First, for 0 ≤ j ≤ m -s -1, we have

p m , z j µ = z m-s q, z j µ + s k=1 a k p m-k , z j µ .
The monomials z j , 0 ≤ j ≤ m -s -1, are in the linear combination of p 0 , . . . , p m-s-1 . Hence, by the induction hypothesis,

p m-k , z j µ = 0, 1 ≤ k ≤ s.
Moreover, by (6.4), z m-s q, z j µ = z m-s q, z j 2 + Q(z m-s q), Q(z j ) 2 . Since 0 ≤ j ≤ m -s -1, we certainly have z m-s q, z j 2 = 0. Also, since q(ζ k ) = 0, we have Q(z m-s q) = z m-s , and Q(z j ) ∈ P m-2s-1 . Thus, Q(z m-s q), Q(z j ) 2 = 0 (this latter relation holds even for j ≤ m -1). Therefore, for any choice of the coefficients a k , we automatically have

p m , z j µ = 0, (0 ≤ j ≤ m -s -1).
The remaining requirement consists of the s equations p m , z j µ = 0, (m -s ≤ j ≤ m -1).

More explicitly, these equations form the system Ax = b, where A is the lower triangular matrix

A =     p m-s , z m-s µ 0 • • • 0 p m-s , z m-s+1 µ p m-s+1 , z m-s+1 µ • • • 0 . . . . . . . . . . . . p m-s , z m-1 µ p m-s+1 , z m-1 µ • • • p m-1 , z m-1 µ     , and 
x =     a s a s-1 . . . a 1     , and b =     z m-s q, z m-s µ z m-s q, z m-s+1 µ . . . z m-s q, z m-1 µ     .
By induction, the elements on the diagonal of A are non-zero. Hence, a k are uniquely determind.

As another possibility, we may modify (6.3) and define the new norm (6.6)

f 2 Dµ := f 2 H 2 + s k=1 c k Q ζ k f 2 H 2 .
The calculations with respect to this norm are more delicate. Using the polarization identity, the inner product becomes

(6.7) f, g Dµ := f, g H 2 + s k=1 c k Q ζ k f, Q ζ k g H 2 .
All these norms on D µ are equivalent. However, under certain specific cases, they might even coincide. One such case, which will be needed in Section 7, is presented below.

Let the points ζ k be uniformly distributed on T, e.g., (6.8)

ζ k = e i2kπ/s , 1 ≤ k ≤ s,
and assume that the masses at each point are also equal and normalized so that

c 1 = c 2 = • • • = c s = 1/s 2 .
The important effect of weight 1/s 2 is seen below in (6.10). Then

q(z) = (z -ζ 1 )(z -ζ 2 ) • • • (z -ζ s ) = z s -1
and (6.2) becomes (6.9)

f (z) = a 0 + a 1 z + • • • + a s-1 z s-1 + (z s -1)Qf (z). Let D µ (0) = {f ∈ D µ : f (ζ 1 ) = f (ζ 2 ) = • • • = f (ζ s ) = 0} = {f ∈ D µ : a 0 = a 1 = • • • = a s-1 = 0}.
Hence, for each f ∈ D µ (0), the norm (6.6) becomes

f 2 Dµ = f 2 H 2 + 1 s 2 s k=1 Q ζ k (f ) 2 2 = f 2 H 2 + 1 s 2 s k=1 T z s -1 z -ζ k 2 |Qf (z)| 2 dm(z) = f 2 H 2 + T 1 s 2 s k=1 z s -1 z -ζ k 2 |Qf (z)| 2 dm(z) = f 2 H 2 + T |Qf (z)| 2 dm(z) = f 2 H 2 + Qf 2 H 2 . (6.10)
This is precisely the norm (6.3).

The uniform distribution

Let the points ζ k be uniformly distributed on T as in (6.8), and equip D µ with the norm (6.3). Note that under this norm the precise value of c j are not important. The only restriction is c j > 0. Due to its simplified form and resemblance to (3.5), we can now produce an orthogonal basis for D µ .

Let f (z) = a + (z -1)g(z) ∈ D 1 . Then z r f (z s ) = az r + (z s -1)z r g(z s ) ∈ D µ , (r = 0, 1, . . . , s -1).

Moreover, for any two functions of this type, z r f 1 (z s ), z ρ f 2 (z s ) Dµ = az r + (z s -1)z r g(z s ), bz ρ + (z s -1)z ρ h(z s ) Dµ = az r + (z s -1)z r g(z s ), bz ρ + (z s -1)z ρ h(z s ) H 2 + z r g(z s ), z ρ h(z s ) H 2 .

It is trivial that the last two inner products are zero if r = ρ, and if r = ρ, we have z r f 1 (z s ), z r f 2 (z s ) Dµ = a + (z s -1)g(z s ), b + (z s -1)h(z s ) H 2 + g(z s ), h(z s ) H 2 = a + (z -1)g(z), b + (z -1)h(z) H 2 + g(z), h(z)

H 2 = f 1 , f 2 H 2 + g, h H 2 = f 1 , f 2 H 2 + Q 1 f 1 , Q 1 f 2 H 2 = f 1 , f 2 D 1 .
In short, we may write

z r f 1 (z s ), z ρ f 2 (z s ) Dµ = δ rρ f 1 , f 2 D 1 .
We are now ready to present the orthogonal family of polynomials. is an orthogonal basis for D µ (0). In this case, the orthogonality holds even under the inner product (6.7).

Concluding remarks

We end this note with some remarks and questions which are not fully understood yet.

(i) The classical orthogonal polynomials satisfy a differential equation, which usually stems from physical applications. Is there a differential equation for the orthogonal polynomials p n obtained in Theorem 4.1? (ii) We saw that

f N = f (0)p 0 + N n=1 a n f (n) + ∞ k=n+1 (a k -a k-1 ) f (k)
p n a n a n-1 converges to f in D 1 -norm. Is it possible simplify the expression of f N and write it more directly in terms of Taylor polynomials of f ? (iii) The properties of orthogonal polynomials given in Theorem 6. [START_REF] Chacón | Carleson measures and reproducing kernel thesis in Dirichlet-type spaces[END_REF] are not fully explored yet. It remains to find the recursive equation, differential equation (if any), the generating function, projection onto P n , etc.
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Theorem 7 . 1 .

 71 Let c k > 0, ζ k = e i2kπ/s , 1 ≤ k ≤ s, and consider the discrete measure dµ = c 1 dδ ζ 1 + • • • + c s dδ ζs . Let f m (z) := p m (z s ), (m ≥ 0), where p m are the polynomials obtained in Theorem 4.1. Then the family {f m , zf m , . . . , z s-1 f m : m ≥ 0} is an orthogonal basis for D µ .Since for each k,f m (ζ k ) = p m (ζ s k ) = p m (1) = 1, (m ≥ 0),the above calculations also show that the family {f m -f 0 , z(f m -f 0 ), . . . , z s-1 (f m -f 0 ) : m ≥ 1}

  and that is why the term f 2

	H 2
	is added in (3.3) to create a genuine norm. This characterization has
	numerous essential applications and, in particular, enables us to present
	an orthonormal basis for D ζ .
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