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a n e -λnz , (

where z is a complex variable, and the coefficients of the series are given by a sequence (a n ) n≥1 of complex numbers. If λ n = n, n ≥ 1, then (1.1) are power series in ζ = e -z . When λ n = log n, n ≥ 1, we get the so-called classical Dirichlet series, which have many applications in analytic number theory (see, e.g., [START_REF] Apostol | Modular functions and Dirichlet Series in Number Theory[END_REF]). Classical Dirichlet series also relate to several problems in functional analysis (see, e.g., [START_REF] Hedenmalm | Dirichlet series and Functional Analysis[END_REF] and references therein). We refer the reader to the monograph [START_REF] Hardy | The General Theory of Dirichlet Series[END_REF] or [START_REF] Valiron | Théorie générale des séries de Dirichlet[END_REF] for more detailed information on Dirichlet series.

The properties of convergence of Dirichlet series depend on two specific quantities that we introduce now. Fix Λ = (λ n ) n≥1 a strictly increasing sequence of non-negative real numbers tending to ∞, and define

L = lim sup n→∞ log n λ n . (1.2) 
Now to each Dirichlet series f of type Λ given by (1.1) we may associate the following quantity

D f = lim sup n→∞ log |a n | λ n . (1.3) 
Note that the quantity D f is specific to each Dirichlet series of type Λ with coefficients (a n ) n≥1 . Nevertheless, most of the time there is no confusion and we omit the reference to the associated Dirichlet series and write generally D.

It is known that if a Dirichlet series converges at some w ∈ C, it converges for all z with (z) > (w), and more precisely, for every fixed non-negative real number M , it converges uniformly in the region { (z) ≥ (w), |z -w| ≤ M ( (z) -(w))}, see [26, page 5]. Let us denote by σ c the abscissa of convergence of a Dirichlet series, which is defined as

σ c = inf r ∈ R : ∞ n=1
a n e -λnz converges on C r , where C r := {z : (z) > r}. We also need the following extension of the definition of C r for r = ±∞. By convention C ∞ = ∅ and C -∞ = C.

The abscissa σ u of uniform convergence and σ a of absolute convergence are defined in a similar way. So a Dirichlet series converges (resp. uniformly, absolutely) in the right half-plane C σc (resp. C σu , C σa ) to a holomorphic function.

In the case L < ∞ the three abscissae are related by the Valiron formula (see, e.g., [START_REF] Yu | On the distribution of values of Dirichlet series and random Dirichlet series[END_REF])

D ≤ σ c ≤ σ u ≤ σ a ≤ D + L.
(1.4) In particular, the Dirichlet series (1.1) represents an entire function if and only if D = -∞.

Composition operators

Let X be a functional Banach space and suppose that all f ∈ X have a common domain G ⊆ C. Let ϕ be an analytic self-map on G. Then ϕ induces the composition operator C ϕ on X defined by

C ϕ (f ) = f • ϕ, ∀f ∈ X.
The first natural and non trivial question is to know if C ϕ maps X into itself, and if this is the case, what can be said about standard spectral properties of C ϕ as an operator on X. There is a rich literature on this topic when X is the Hardy space, the Bergman space or the Dirichlet space (see for instance [START_REF] Cowen | Composition operators on spaces of analytic functions[END_REF][START_REF] Shapiro | Composition operators and classical function theory[END_REF]). The situation of spaces of classical Dirichlet series received also much attention after the founding papers of Gordon-Hedenmalm [START_REF] Gordon | The composition operators on the space of Dirichlet series with square summable coefficients[END_REF] and Bayart [START_REF] Bayart | Hardy spaces of Dirichlet series and their composition operators[END_REF] (see for instance [START_REF] Bayart | Approximation numbers of composition operators on Hp spaces of Dirichlet series[END_REF][START_REF] Queffélec | Approximation numbers of composition operators on the H 2 space of Dirichlet series[END_REF][START_REF] Queffélec | Espaces de sries de Dirichlet et leurs oprateurs de composition[END_REF]). The case of general Dirichlet series is less studied. Nevertheless, when X is some weighted space of entire Dirichlet series of type Λ satisfying a certain property, properties of composition operators acting on X are quite well understood (see [START_REF] Doan | Complex symmetry of composition operators on Hilbert spaces of entire Dirichlet series[END_REF][START_REF] Hou | Some properties of composition operators on entire Dirichlet series with real frequencies[END_REF][START_REF] Hou | Hilbert spaces of entire Dirichlet series and composition operators[END_REF]). In [START_REF] Doan | Complete characterization of bounded composition operators on the general weighted Hilbert spaces of entire Dirichlet series, North-West[END_REF], using Liouville's theorem, it is proved that if C ϕ defines a bounded composition operator on a weighted Hilbert space of entire Dirichlet series, then ϕ must be an affine function.

The aim of this paper is to focus on the situation when our space of Dirichlet series is formed by functions which are holomorphic in some half-plane but not necessarily the whole plane. In this context, we could not apply Liouville's theorem. Nevertheless, we will still focus on the case when ϕ is a polynomial (and then necessarily ϕ must be affine), since, for general symbols, we could not really hope that C ϕ maps a space of Dirichlet series into itself because the restrictions on the sequence Λ generating the space will be too severe.

When ϕ(z) = az + b, we will characterize boundedness (see Section 3) and compactness (see Section 4) of C ϕ on a weighted Dirichlet space H(β, Λ) (see next section for the definition). Then we will also study the dynamics properties (cyclicity and supercyclicity) in Section 5 of C ϕ on H(β, Λ). In Section 6 we give some results about complex symmetry. In the final section we end with a note of how our results relate for weighted Hilbert spaces of entire Dirichlet series.

Weighted spaces of holomorphic Dirichlet series

Fix Λ = (λ n ) n≥1 a strictly increasing sequence of non-negative real numbers tending to ∞ and satisfying L < ∞. To perform the main object of our investigation, we need the following result from [START_REF] Hou | Hilbert spaces of entire Dirichlet series and composition operators[END_REF].

Lemma 2.1. L < ∞ if and only if ∞ n=1 e -rλn < ∞ for all r > L. Further- more, ∞ n=1 e -rλn = ∞ for any r < L.
Let β = (β n ) n≥1 be a sequence of positive real numbers. The sequence space

2 β = (a n ) n≥1 ⊂ C : ∞ n=1 |a n | 2 β 2 n < ∞ is a Hilbert space with inner product defined for a = (a n ) n≥1 , b = (b n ) n≥1 ∈ 2 β by a, b = ∞ n=1 a n b n β 2 n . (2.1)
We put

β * = lim inf n→∞ log β n λ n . (2.2) 
The following result serves as an important motivation of our investigation.

Proposition 2.2. Suppose β * = -∞. If f (z) = ∞ n=1 a n e -λnz is a Dirich- let series of type Λ whose coefficients (a n ) n≥1 ∈ 2 β , then σ a ≤ L 2 -β * . In particular, f is holomorphic in C L 2 -β * . Proof. Suppose that β * = ∞. Fix a compact subset K of C L 2 -β * . Then, there exists η > L 2 -β * such that for every z ∈ K, we have (z) ≥ η. Thus ∞ n=1 sup z∈K a n e -λnz ≤ ∞ n=1 |a n |e -λnη .
Apply the Cauchy-Schwarz inequality to get

∞ n=1 sup z∈K a n e -λnz ≤ ∞ n=1 |a n | 2 β 2 n 1/2 ∞ n=1 e -2λnη β 2 n 1/2 . Since η > L 2 -β * , we can take 0 < ε < δ := η -L 2 -β * . By definition of β * , there exists N such that for all n ≥ N , 1 β 2 n ≤ e -2λn(β * -ε 2 ) .
Applying Lemma 2.1 with r = L + δ, we obtain

n≥N 1 β 2 n e -2λnη ≤ n≥N e -2λn(β * -ε 2 ) e -2λnη ≤ n≥N e -λn(L+δ) < ∞, which proves that ∞ n=1 sup z∈K a n e -λnz < ∞.
Thus, f converges uniformly on K. Since this is valid for every compact K in C L 2 -β * , we deduce that f is analytic on C L 2 -β * . The case when β * = ∞ follows along the same lines with some tiny adjustments left to the reader. This completes the proof. Proposition 2.2 leads us to the following definition of weighted spaces of holomorphic Dirichlet series in C L 2 -β * :

H(β, Λ) = f (z) = ∞ n=1 a n e -λnz : (a n ) n≥1 ∈ 2 β .
This is a Hilbert space with inner product inherited from (2.1). More precisely, the inner product on H(β, Λ) is defined as

f, g = ∞ n=1 a n b n β 2 n , (2.3) 
for every

f (z) = ∞ n=1 a n e -λnz , g(z) = ∞ n=1
b n e -λnz ∈ H(β, Λ). Note that the inner product (2.3) is well defined because of the uniqueness property on coefficients for Dirichlet series of type Λ, namely if

∞ n=1
a n e -λnz = 0, then a n = 0 for all n ≥ 1, see [26, page 8].

Remark 2.3. The assumption β * > -∞ in Proposition 2.2 is important, otherwise C L 2 -β * = ∅.
It is also essential because we can prove that if β * = -∞ then for every z 0 ∈ C there exists a Dirichlet series of type Λ,

f (z) = ∞ n=1
a n e -λnz with (a n ) n≥1 ∈ 2 β , which does not converge at z 0 . Indeed, there exists (n p ) p≥1 ↑ ∞ large enough, such that z0) , for all p ≥ 1.

β 2 np < e -2λn p (
Take (a n ) n≥1 as follows

a n = 1 p e λn p z0 , n = n p (p = 1, 2, . . .), 0, otherwise.
Then,

∞ n=1 |a n | 2 β 2 n ≤ ∞ p=1 1 p 2 e 2λn p (z0) e -2λn p (z0) = ∞ p=1 1 p 2 < ∞.
However, at z 0 we have

∞ n=1 a n e -λnz0 = ∞ p=1 1 p e λn p z0 e -λn p z0 = ∞ p=1 1 p = ∞.
Note that for the case β * = ∞, we have entire Dirichlet series which have been studied quite well (see, e.g., [START_REF] Doan | Complete characterization of bounded composition operators on the general weighted Hilbert spaces of entire Dirichlet series, North-West[END_REF] and related references). Therefore, in the sequel we assume that the condition β * = ±∞ always holds.

In the rest of the paper, we adopt the following notation. For n ≥ 1, z ∈ C,

q n (z) = 1 β n e -λnz . (2.4) 
Proposition 2.4. The sequence (q n ) n≥1 forms an orthonormal basis of H(β, Λ).

Proof. It is immediate from (2.3).
Note that the proof of Proposition 2.2 shows that for every point w ∈ C L 2 -β * , the evaluation functional δ w is continuous on H(β, Λ). Furthermore, using Proposition 2.4, we can compute the kernel k w at point w ∈ C L 2 -β * by z+w) .

k w (z) = ∞ n=1 k w , q n q n (z) = ∞ n=1 q n (w)q n (z) = ∞ n=1 1 β 2 n e -λn(
Thus we obtain the following result.

Proposition 2.5. The spaces H(β, Λ) are all reproducing kernel Hilbert spaces with reproducing kernel

K(z, w) = k w (z) = ∞ n=1 1 β 2 n e -λn(z+w) , z, w ∈ C L 2 -β * . (2.5) 
In particular, we deduce the norm of the kernel

k w 2 = ∞ n=1 1 β 2 n e -2λn (w) , w ∈ C L 2 -β * .
(2.6)

Bounded composition operators induced by a polynomial

Since H(β, Λ) is a functional Hilbert space (in which evaluations are continuous), it follows easily from the closed graph theorem that the space

H(β, Λ) is invariant under a composition operator C ϕ , i.e. C ϕ H(β, Λ) ⊆ H(β, Λ), if and only if C ϕ is bounded on H(β, Λ).
The study of boundedness is based on the following two simple lemmas. The first lemma is similar to one that appears in [START_REF] Hou | Hilbert spaces of entire Dirichlet series and composition operators[END_REF] for the case of entire Dirichlet series. Notice that λ n -λ m ≥ 0 for all n ≥ m, so that the right-hand side of (3.1) is a Dirichlet series of type (λ n -λ m ) n≥m . We claim that the associated abscissa of uniform convergence σ u satisfies σ u = ∞.

We show that the associated L and D to the Dirichlet series above satisfy

L = L and D = D. Indeed, since lim n→∞ λ n λ n -λ m = 1, it follows that L = lim sup n→∞ log n λ n -λ m = lim sup n→∞ log n λ n • λ n λ n -λ m = L < ∞.
and similarly D = D. Since L < ∞ and D = ∞, it follows from (1.4) that σ u = ∞, so that e λmz f (z) is uniformly convergent in some half-plane. Therefore we may interchange limit and sum to obtain lim

(z)→∞ e λmz f (z) = lim (z)→∞ n≥m a n e -(λn-λm)z = n≥m lim (z)→∞
a n e -(λn-λm)z = a m .

This proves the lemma.

When we study the composition operator C ϕ on a functional Hilbert space of analytic functions on a domain Ω, the first natural condition to require is that the symbol ϕ is an analytic self-map of Ω. The second lemma characterizes the polynomials which are self-map of C θ . Proof. Let us first prove that a polynomial of degree d ≥ 2 is never a self-map of C θ . Indeed, if ϕ(z) = a d z d + . . . , with d ≥ 2 and a d = ρe it , ρ ∈ R + and t ∈ [0, 2π). Assume first that t ∈ (0, 2π) and consider z(R)

= Re i π-t d , R > 0. Since - π d < π -t d < π d ,
and 0 < π d ≤ π 2 , we get cos( π-t d ) > 0 and then the point z(R) belongs to C θ for R large enough. On the other hand, ϕ(z(R)) ∼ R→∞ a d z(R) d and

a d z(R) d = ρR d e it e π-t = -ρR d → -∞, as R → ∞. Hence, for R large enough, ϕ(z(R)) cannot belong to C θ . Now if t = 0, that is a d = ρ > 0, then choose t 0 , t 1 , α such that π 2d < t 0 < α < t 1 < min π 2 , 3π 2d 
,
and consider z(R) = Re iα . As before, when R is large enough, z(R) belongs to C θ (because cos(α) > 0), and ϕ(z(R)) ∼ R→∞ ρR d e idα . Observe now that π 2 < dα < 3π 2 , whence cos(dα) < 0, and for R large enough, ϕ(z(R)) cannot belong to C θ .

We now may suppose that ϕ(z) = az + b, with a, b ∈ C. Suppose az + b is a self-map on C θ . If a = 0, then it clear that (b) > θ, because b ∈ C θ . So we get (ii).

In case a = 0, we show that a ∈ R + . Assume to the contrary that a ∈ R + , which means that a = |a|e iθ1 , with θ 1 = 0 mod (2π). For every z = x + iy, x, y ∈ R, we have (az) = x|a| cos(θ 1 ) -y|a| sin(θ 1 ).

Case 1: If θ 1 = π mod (2π), then (az) = -x|a|, and so letting (z) = x → ∞, we get that (az + b) → -∞, which contradicts that az + b is a self-map of C θ .

Case 2: If θ 1 = π mod (2π), then sin(θ 1 ) = 0. Thus if we fix x > θ and let (z) = y → ∞ (if sin(θ 1 ) > 0) or (z) = y → -∞ (if sin(θ 1 ) < 0), we get that (az + b) → -∞, which also contradicts the assumption.

Thus we have a ∈ R + . Then for any ε > 0, a point z ∈ C θ with (z) = θ +ε satisfies (az + b) = aθ + aε + (b) > θ. This means (b) > (1 -a)θ -aε. Letting ε → 0, we obtain (i).

Conversely, if (ii) holds, i.e. a = 0 and (b) > θ, then we are obviously done. If (i) holds, i.e. a ∈ R + and (b) ≥ (1 -a)θ, then for any z ∈ C θ , we have (az

+ b) = a (z) + (b) > aθ + (b) ≥ aθ + (1 -a)θ = θ, which shows that az + b ∈ C θ . Thus az + b is a self-map of C θ .
This proves the lemma.

Necessary conditions for boundedness of C ϕ : a polynomial symbol

In this subsection, we obtain an important necessary condition which a polynomial symbol ϕ inducing a bounded composition operator C ϕ must satisfy. See [START_REF] Doan | Complete characterization of bounded composition operators on the general weighted Hilbert spaces of entire Dirichlet series, North-West[END_REF][START_REF] Hou | Hilbert spaces of entire Dirichlet series and composition operators[END_REF] for analogous results in the entire case. First, note that in the case when β * = ±∞, all f ∈ H(β, Λ) converge on the proper right half-plane C L 2 -β * and in particular, satisfy D f = ∞ (by Valiron's formulae). Hence Lemma 3.1 can be applied to elements of H(β, Λ).

Theorem 3.3. Let β * = ±∞ and ϕ be a self-map polynomial of C L 2 -β * . Suppose that the operator C ϕ is bounded on H(β, Λ). Then the following assertions hold:

(1) If λ 1 > 0, then ϕ(z) = az + b, a ≥ 1, b ∈ C. (2) If λ 1 = 0, then either ϕ(z) = b, b ∈ C (that is a = 0), or ϕ(z) = az + b, a ≥ 1, b ∈ C.
Moreover, in addition, a satisfies the condition

λ m k = aλ k , for all k ∈ N, (3.2) 
where m k is the index of the first non-zero term of C az+b (e -λ k z ) = e -λ k (az+b) in the Dirichlet series representation (1.1), and b satisfies either of the following conditions:

(b) > L 2 -β * , a = 0, (3.3) (b) ≥ (1 -a) L 2 -β * , a ≥ 1. (3.4) Proof. By Lemma 3.2, ϕ is an affine function ϕ(z) = az + b, with either a ∈ R + and (b) ≥ (1 -a) L 2 -β * , or a = 0 and (b) > L 2 -β * . -Case 1: λ 1 > 0. For each k ∈ N, note that C ϕ (e -λ k z ) = e -λ k ϕ(z) = e -aλ k z e -bλ k , (3.5) 
and since C ϕ (e -λ k z ) ∈ H(β, Λ), we can represent it as

C ϕ (e -λ k z ) = n≥m k b (k) n e -λnz ,
where, by assumption, m k is the smallest integer such that b (k)

m k = 0, and (b (k) n ) n ∈ 2
β . By Lemma (3.1), we have lim

(z)→∞ e λm k z C ϕ (e -λ k z ) = b (k) m k .
Thus, according to (3.5), we get lim

(z)→∞ e (λm k -aλ k )z = b (k) m k e bλ k = 0.
That necessarily implies λ m k -aλ k = 0, which gives (3.2). In particular, for

k = 1, we have a = λ m1 λ 1 ≥ 1, because m 1 ≥ 1.
-Case 2: λ 1 = 0. In this case, replacing k ∈ N by k ≥ 2 in the proof for Case 1 above, we still have a = λ m k λ k , for all k ≥ 2. In particular, for k = 2, we have

a = λ m2 λ 2 = 0, if m 2 = 1 (because λ 1 = 0), ≥ 1, if m 2 ≥ 2 (because λ m2 ≥ λ 2 ).
Finally, in that case, we have m 1 = 1 and thus λ m1 = 0 = aλ 1 . This completes the proof.

Remark 3.4. If a ≥ 1, it follows immediately from (3.2) that the map k -→ m k is strictly increasing.
From now on, an affine symbol ϕ stated in Theorem 3.3 is supposed to be given.

3.2.

Two trivial cases of the affine symbols (a = 0, 1) In the following, we denote by • op the operator norm. Proof. Suppose that C b is a bounded on H(β, Λ). By Theorem 3.3, λ 1 must necessarily be zero.

Conversely, suppose that λ 1 = 0. It implies that the function β 1 q 1 (z) = e -λ1z = 1 belongs to H(β, Λ). (Recall that the functions q k are given by (2.4).) Now, note that for all f ∈ H(β, Λ), we have

(C b f )(z) = f (b) = f, k b β 1 q 1 (z), Hence C b = β 1 q 1 ⊗ k b is a rank one operator.
In particular, it is bounded and

C b op = β 1 q 1 k b . But q 1 = 1, which implies that C b op = β 1 k b , as claimed. Proposition 3.6. Let β * = ±∞. Then C z+b is a bounded composition operator on H(β, Λ) if and only if (b) ≥ 0. Moreover, in that case, we have C z+b op = e -λ1 (b) .
Proof. Suppose C z+b is bounded. Then by (3.4), we get immediately that (b) ≥ 0. Conversely, suppose that (b) ≥ 0. Note that for every k ∈ N, C z+b q k = e -λ k b q k . Thus C z+b is a diagonal operator with a sequence of eigenvalues equal to (e -λ k b ) k≥1 . Using now that (b) ≥ 0, we see that this sequence is decreasing in modulus, and so it is well-known (and easy to see) that C z+b is bounded and C z+b op = e -λ1 (b) , as claimed.

3.3.

Characterization for boundedness of C az+b (a = 0, 1) Throughout this subsection, we always assume that an affine symbol ϕ(z) = az + b, with a > 1 and b ∈ C, is given.

We need some supplementary notation.

Definition 3.7. For a given sequence of real frequencies Λ = (λ n ) n≥1 , define the set

R(Λ) = {r ∈ [1, ∞) : ∀n ∈ N, ∃m = m n ≥ n, rλ n = λ m } .
If there exists a nontrivial ϕ(z) = az+b that induces a bounded composition operator C ϕ on H(β, Λ), then a belongs to R(Λ).

Remark 3.8. Notice that we always have 1 ∈ R(Λ). Furthermore, since (λ n ) n≥1 is a strictly increasing sequence, for a given r ∈ R(Λ), to each n there corresponds a unique m n ≥ n, such that rλ n = λ mn .

We put R 1 (Λ) = R(Λ) \ {1}. Depending on the given sequence (λ n ) n≥1 , it may happen that R(Λ) = {1}, i.e. R 1 (Λ) = ∅, as well as R 1 (Λ) = ∅. The following examples are taken from [START_REF] Hou | Some properties of composition operators on entire Dirichlet series with real frequencies[END_REF]. (2) Consider a geometric sequence (λ n ) with the ratio q > 1, given by λ 1 > 0 and λ n = λ 1 q n-1 , n ≥ 1. In this case any value q ( ∈ N) belongs to R(Λ). Now let a ∈ R 1 (Λ) be given. In principle, for each n ∈ N, the index m n ≥ n for which λ mn = aλ n , depends on a, i.e. m n = m (a) n (note that by Theorem 3.3, if λ 1 = 0, then m 1 = 1). To simplify the expositions, in what follows, we skip the superscript (a) whenever there is no confusion in context.

For n ∈ N and z ∈ C, we also define the quantity

r n (a, z) = r n (Λ, β, a, z) := e -λnz β mn β n .
Now we are able to state and prove the following boundedness criterion for the case a > 1. Proof. Necessity. Suppose C az+b is a bounded operator on H(β, Λ). Then conditions (1) and (2) follow from Theorem 3.

Proposition 3.11. Let β * = ±∞, a > 1 and b ∈ C. Then C az+b is a bounded composition operator on H(β, Λ) if and only if the following condi- tions are satisfied (1) a ∈ R 1 (Λ), ( 2 
) (b) ≥ (1 -a) L 2 -β * , (3 

It remains to show (3).

There is some constant M > 0 such that C az+b f ≤ M f for all f ∈ H(β, Λ). In particular, for probe functions q n (z) = 1 βn e -λnz , by (1) we have C az+b q n = βm n βn e -λnb q mn , and thus

C az+b q n = e -λn (b) • β mn β n ≤ M q n = M, for all n ∈ N,
which gives (3).

Sufficiency. Conversely, suppose all three conditions (1) -( 3) are satisfied. Note that (2) guarantees, by Lemma 3.2, that z → az + b is a self-map of C L 2 -β * . Also, [START_REF] Bayart | Hardy spaces of Dirichlet series and their composition operators[END_REF] shows that there exists M > 0 such that 0 < r n (a, (b

)) ≤ M , for all n. Let f (z) = ∞ k=1
a n e -λnz ∈ H(β, Λ). Hence, by [START_REF] Apostol | Modular functions and Dirichlet Series in Number Theory[END_REF],

C az+b f 2 = ∞ n=1 |a n e -λnb | 2 β 2 mn = ∞ n=1 |a n | 2 β 2 n r n (a, (b)) 2 ≤ M 2 ∞ n=1 |a n | 2 β 2 n = M 2 f 2 ,
which shows that C az+b is bounded on H(β, Λ). Moreover, from proofs of both necessity and sufficiency it follows that C az+b op = sup n∈N r n (a, (b)). This completes the proof.

Combining Propositions 3.5, 3.6 and 3.11, we obtain a characterization of boundedness for C az+b on H(β, Λ). (2) ϕ(z) = az + b, where

         a ∈ R(Λ), (b) ≥ (1 -a) L 2 -β * , the sequence r n (a, (b)) n≥1 is bounded.
The following are true for a composition operator C ϕ acting on the space 

H(β, Λ). (i) If λ 1 = 0, then C ϕ is
T e = inf{ T -K op : K is a compact operator on H(β, Λ)}.
Clearly, T is compact if and only if T e = 0. For a bounded composition operator C az+b , in case a = 0, by Proposition 3.5, we have the following simple result. 

C z+b e = 1 if (b) = 0 0 if (b) > 0.
In particular, C z+b is a compact operator on H(β, Λ) if and only if (b) > 0.

Proof. Proposition 3.6 shows that (b) ≥ 0. Furthermore, as already noticed, C z+b is a diagonal operator with a sequence of eigenvalues equal to (e λ k b ) k≥1 . But then it is well-known (see for instance [START_REF] Halmos | A Hilbert space problem book[END_REF]Problem 171]) that C z+b e = lim n→∞ e -λn (b) , which gives the desired conclusion. Proposition 4.2 can also be obtained from the following results for a ≥ 1. Proof. We follow the standard technique (see, e.g., [START_REF] Doan | Hilbert spaces of entire functions and composition operators[END_REF]). Note that by Theorem 3.12, the sequence r n (a, (b)) n≥1 is bounded.

• Upper bound. We use compact (finite rank) operators on H(β, Λ) defined by

K N : f (z) = ∞ n=1 a n e -λnz -→ N n=1
a n e -λnz (N ∈ N).

As the C az+b K N are also compact, we have

C az+b e ≤ inf N ≥1 C az+b -C az+b K N op .
Observe that for an arbitrary f

(z) = ∞ n=1
a n e -λnz ∈ H(β, Λ) we have

(C az+b -C az+b K N )f 2 = ∞ n=N +1 a n e -λn(az+b) 2 = ∞ n=N +1 |a n | 2 e -2λn (b) β 2 mn ≤ sup n≥N +1 e -λn (b) β mn β n 2 ∞ n=N +1 |a n | 2 β 2 n ≤ f 2 sup n≥N +1
r n (a, (b)).

Thus

C az+b e ≤ sup n≥N +1
r n (a, (b)), for every N ≥ 1.

Letting N → ∞, we get

C az+b e ≤ lim sup n→∞ r n (a, (b)).

• Lower bound. Let K be an arbitrary compact operator on H(β, Λ). Consider the sequence of probe functions (q n ) n≥1 , whose norms are all 1. Since it converges weakly to 0 (because it is an orthonormal basis), lim n→∞ Kq n = 0. Hence

C az+b -K op ≥ (C az+b -K)q n ≥ C az+b q n -Kq n (n ≥ 1),
from which it follows that Taking the infimum over all compact operators K on H(β, Λ), we obtain

C az+b -K op ≥ lim sup n→∞ ( C az+b q n -Kq n ) = lim sup n→∞ C az+b q n = lim sup
C az+b -K e ≥ lim sup n→∞ r n (a, (b)).
This completes the proof.

Schatten class

Recall that a bounded linear operator T on H(β, Λ) is called a Hilbert-Schmidt operator if it has finite Hilbert-Schmidt norm T HS , which means that for some orthonormal basis (e n ) n≥1 of H(β, Λ), we have

T HS := n∈N T e n 2 1/2 < +∞.
It is well known that T HS does not depend on the choice of the orthonormal basis and that if T is Hilbert-Schmidt, then it is compact. Furthermore, for 0 < p < ∞, the Schatten p-class consists of all bounded linear operators T on H(β, Λ) for which (T * T ) p/4 is a Hilbert-Schmidt operator (here T * is the adjoint operator of T ). The set of Schatten p-class operators forms an ideal in the algebra of all bounded linear operators on H(β, Λ). If T is diagonal with respect to an orthonormal basis (e n ) n≥1 , that is, T e n = a n e n for all n ≥ 1, then it is well known that T belongs to the Schatten p-class if and only if ∞ n=1 |a n | p < ∞. Some developments on operators in Schatten classes can be found in [START_REF] Hu | Frames and operators in Schatten classes[END_REF].

We study a Schatten class membership of C az+b . For a bounded operator C az+b on H(β, Λ), since C az+b q n = βm n βn e -λnb q mn , therefore C az+b q n = e -λn (b) • βm n βn = r n (a, (b)), and we get an immediate result about its Hilbert-Schmidt property. 

∞ n=1 r n (a, (b)) 2 < ∞.
Concerning the Schatten p-class membership, for two trivial cases a = 0 and a = 1, some results can be obtained easily. Proof. Since C b is of rank one, in particular it is of finite rank and so has finitely many non-zero singular values. Done. Also for the case a = 1, as noted in Proposition 3.6, C z+b is a diagonal operator with a sequence of eigenvalues (e -λnb ) n≥1 corresponding to eigenvectors (q n ) n≥1 , and thus we have the following result. Note that the second statement of the proposition above follows from Lemma 2.1.

To go further and get a similar result for a > 1, we need to compute the adjoint of C az+b , which can be done easily. Indeed, for any

g(z) = ∞ n=1 a n e -λnz ∈ H(β, Λ), we write (C * az+b g)(z) = ∞ n=1
d n e -λnz and have

d n β n = C * az+b g, q n = g, C az+b q n = ∞ k=1 a k e -λ k z , C az+b q n . (4.1) 
The terms e -λ k z , C az+b q n are computed in two cases:

-Case 1: a = 0. By Proposition 3.5, λ 1 = 0 and hence

e -λ k z , C b q n = e -λn b βn β 2 1 , k = 1 0, k > 1.
-Case 2: a ≥ 1. By Theorem 3.3, we have

e -λ k z , C az+b q n = e -λn b βn β 2 mn , m n = k 0, m n = k.
Substituting back these equations into (4.1) yields the following result. a n e -λnz ∈ H(β, Λ), then Proof. We appeal to Proposition 4.7 which provides an explicit formula for the adjoint. Let

(C * az+b f )(z) =            a 1 β 2 1 ∞ n=1 e -λnb β 2 n e -λnz , a = 0 ∞ n=1 a mn β 2 mn e -λnb β 2 n e -λnz , a ≥ 1. 
g k = β k q k for all k ∈ N. We have (C az+b g k )(z) = e -λ k b e -λm k z . It follows that (C * az+b C az+b g k )(z) = e -λ k b β 2 m k β 2 k e -λ k b e -λ k z = e -2λ k (b) β 2 m k β 2 k g k (z) = r k (a, (b)) 2 g k (z).
Now, recall that (g k ) k≥1 forms an orthogonal basis of H(β, Λ). It follows that the only eigenvalues are precisely those corresponding to these vectors, i.e. precisely r k (a, (b)) 2 , k ∈ N, as claimed.

As r k (a, (b)) > 0 for every k, we have the following corollary. Remark 4.12. Note also that it is possible that the membership to the p-th Schatten class of C az+b does not rely on p at all. Pick a > 1 and Λ = (a k ) k≥1 .

In this case, L = 0. Then pick β = 

Compact differences

In this section we determine when a difference of two bounded composition operators C ϕ1 -C ϕ2 is a compact operator. Recall that the set of compact operators form a vector space. Hence by Proposition 4.1 and Theorem 4.3, it suffices to consider only the case when ϕ 1 and ϕ 2 are non-constant and the associated sequences (r n ) do not have limit 0. If C az+b -C a z+b is compact, then a = a .

Proof. Consider the sequence of probe functions (q k ) k≥1 . By Proposition 2.4, q k 0. Since C az+b -C a z+b is compact, therefore (C az+b -C a z+b )q k → 0. Assume to the contrary that a = a . Now, since for each k we have m

(a) k = m (a )
k , therefore we have

(C az+b -C a z+b )q k 2 = 1 β k e -λ k b e -λ m (a) k z - 1 β k e -λ k b e -λ m (a ) k z 2 = 1 β 2 k e -2λ k (b) β 2 m (a) k + 1 β 2 k e -2λ k (b ) β 2 m (a ) k = r k (a, (b)) 2 + r k (a , (b )) 2 ,
which gives the desired contradiction. Proof. As before we define the finite-rank (and compact) partial sum operator K N (see the proof of Theorem 4.3). Then (C az+b -C az+b )K N is compact and

C az+b -C az+b e ≤ (C az+b -C az+b )(I -K N ) op ,
where I is the identity operator on H(β, Λ).

Let f (z) = ∞ n=1
a n e -λnz ∈ H(β, Λ). We then have

(C az+b -C az+b )(I -K N )(f ) 2 = ∞ n=N +1 a n e -λnb e -λm n z - ∞ n=N +1 a n e -λnb e -λm n z 2 = ∞ n=N +1 |a n | 2 e -λnb -e -λnb 2 β 2 mn ≤ sup n≥N +1 β 2 mn β 2 n e -λnb -e -λnb 2 f 2 . It therefore follows that (C az+b -C az+b )(I-K N ) ≤ sup n≥N +1 β mn β n e -λnb -e -λnb .
Taking limits as N → ∞ gives C az+b -C az+b e ≤ lim sup n→∞ β mn β n e -λnb -e -λnb .

On the other hand, consider the probe functions q k . Let K be a compact operator on H(β, Λ). As before, we have q k = 1 for all k and Kq k → 0. We have

(C az+b -C az+b ) -K ≥ lim sup k→∞ ( (C az+b -C az+b )q k -Kq k ) ≥ lim sup k→∞ (C az+b -C az+b )q k = lim sup k→∞ β m k β k e -λ k b -e -λ k b .
Taking infimum over all compact operators K gives Proof. Assume first that C ϕ1 -C ϕ2 is compact but one of the operators C ϕ1 and C ϕ2 is not compact. Since the set of compact operators is a vector space, it implies that indeed both operators C ϕ1 and C ϕ2 are not compact. Now, according to Theorem 4.3, it means that condition (i) is satisfied (with the second inequality in a instead of a). Then, we can apply Lemma 4.13 to get that a = a , i.e. ϕ 1 (z) = az + b and ϕ 2 (z) = az + b . Condition (ii) now follows immediately from Proposition 4.14.

Conversely, if both operators C ϕ1 and C ϕ2 are compact, then their difference is compact. Suppose now that ϕ 1 (z) = az + b and ϕ 2 (z) = az + b , and (i) and (ii) are satisfied. Proposition 4.14 implies that C ϕ1 -C ϕ2 e = 0, which gives that C ϕ1 -C ϕ2 is compact. This completes the proof. Proof. We see that m k = k and so β m k = β k , k ∈ N. Moreover, since (ci) = (c i) = 0, we have r n (a, (ci)) = r n (a , (c i)) = 1. Then, according to Proposition 4.2 and Theorem 4.15, we see that

C z+ci -C z+c i is compact if and only if lim k→∞ |e -λ k ci -e -λ k c i | = 0.
An easy computation shows that

|e -λ k ci -e -λ k c i | 2 = 2 -2 cos(λ k (c -c )),
which gives the result.

Corollary 4.16 is an analogue of [START_REF] Hou | Hilbert spaces of entire Dirichlet series and composition operators[END_REF]Theorem 4.12] corresponding to the case when β * = ∞.

Closed range and cyclicity

In this section, we assume that C az+b is a bounded composition operator on H(β, Λ), which means that a and b satisfy conditions of Theorem 3.12.

Closed range

We denote by R(C ϕ ) the range of C ϕ , i.e. C ϕ (H(β, Λ)). In this section we determine when R(C ϕ ) is closed. Note that when ϕ(z) = b (and λ 1 = 0), then R(C ϕ ) is a one dimensional space (generated by the constant function 1 = e -λ1z ) and so it is closed.

Proposition 5.1. Let β * = ±∞, a ≥ 1. Then, R(C az+b ) is closed if and only if inf n∈N r n (a, (b)) > 0.
Proof. First note that it follows from the open mapping theorem and uniqueness principle for analytic functions that, since ϕ is a non-constant analytic function, then C ϕ is injective. Now, suppose

B := inf n∈N r n (a, (b)) > 0. Let f (z) = ∞ n=1
a n e -λnz . Then,

C az+b f 2 f 2 = ∞ n=1 |a n | 2 β 2 mn e -2λn (b) ∞ n=1 |a n | 2 β 2 n = ∞ n=1 |a n | 2 β 2 n r n (a, (b)) 2 ∞ n=1 |a n | 2 β 2 n ≥ B 2 .
Thus C az+b is bounded from below and R(C az+b ) is hence closed.

On the other hand, suppose B := inf n∈N r n (a, (b)) = 0. Let (n k ) be a subsequence of N such that r n k (a, (b)) → 0. For each probe function q n k , we then have

C az+b q n k 2 q n k 2 = 1 β 2 n k β 2 mn k e -2λn (b) 1 = r n k (a, (b)) 2 → 0.
It follows that C az+b cannot be bounded from below, and so R(C az+b ) is not closed. This completes the proof.

Proposition 5.1 is an analogue of [START_REF] Doan | Closed range and cyclicity of composition operators on Hilbert space of entire functions[END_REF]Theorem 6].

Remark 5.2. In the non-constant case, a compact C az+b cannot have closed range, and vice-versa if C az+b has closed range, it is not compact.

Cyclicity

Let X be a Banach space and T : X → X be a bounded operator. We define the orbit of a vector x ∈ X (w.r.t. T ) as the set Orb(T, x) = {T n x : n ∈ N} .

Furthermore, we recall that T is said to be

• cyclic if there exists x ∈ X such that Span(Orb(T, x)) = X,

• supercyclic if there exists x ∈ X such that

{µy : y ∈ Orb(T, x), µ ∈ C} = X.
Note that for a given operator on an Hilbert space H, if T is supercyclic, then it is of course cyclic. We will discuss in this section the cyclicity and supercyclicity of the operators C ϕ on H(β, Λ). As we will see, C ϕ is never supercyclic but cyclicity will depend on the arithmetic properties of (λ n ) n≥1 .

It is trivial that if λ 1 = 0, then of course the operators C b and C z are not cyclic. Indeed, in both cases the orbit of f (for every f ∈ H(β, Λ)) contains only one function and so the orbit cannot generate a dense subspace.

We now split our study in two cases, depending whether a = 1 or a > 1.

-The case a = 1.

To study this case, we need the following two general results. The first one is quite classical and can be found for instance in [START_REF] Halmos | A Hilbert space problem book[END_REF]Chap. 18] for the finite dimensional case and in [24, Lemma 1] for the general case. The proof of the second one can be found in [START_REF] Hilden | Some cyclic and non-cyclic vectors of certain operators[END_REF] and uses the spectral mapping theorem.

Lemma 5.3. Let D be a diagonal operator on an Hilbert space H, given by De n = s n e n , n ≥ 1, where (e n ) n≥1 is an orthonormal basis of H. Then D is cyclic if and only if s n = s m , n = m. Lemma 5.4. Let T be a normal operator on a Hilbert space H of dimension greater than 1. Then T is not supercyclic.

Proposition 5.5. Let β * = ±∞, b = 0. Then, ( 1 
) C z+b is cyclic if and only if (λ n -λ m )b ∈ C \ 2πZ whenever n = m, and (2) 
C z+b is not supercyclic.

Proof. (1) Recall that the set of probe functions q k (z) = 1 β k e -λ k z form a basis for H(β, Λ). Note also that for all k ∈ N,

(C z+b q k )(z) = e -λ k b q k (z).
That means that C z+b is a diagonal operator with eigenvalue corresponding to e -λ k b . Thus (1) follows immediately from Lemma 5.3.

(2) Since C z+b is diagonal, it is in particular normal. So (2) follows from Lemma 5.4. This completes the proof.

-The case a > 1.

The situation in this case is more interesting and the behavior of the iterates of C az+b will depend on the following notion.

Given a ∈ R(Λ), Λ = (λ n ) n≥1 , we define an initial point with respect to a to be a term λ k such that no n < k exists such that a s λ n = λ k for some s ∈ N. This is equivalent to say that, for s ∈ N 0 ,

a s λ n = λ k =⇒ s = 0 and n = k.
Note that λ 1 is always an initial point and if λ 1 = 0, then λ 2 is an initial point. Therefore, three cases may happen:

(1) (λ n ) n≥1 has precisely one initial point with respect to a. In that case, it must be the case that λ n = λ 1 a n-1 for every n, and λ 1 = 0.

(2) (λ n ) n≥1 has one zero and one non-zero initial point. In that case, λ 1 = 0 and λ n = λ 2 a n-2 , n ≥ 2. (3) (λ n ) n≥1 has at least two non-zero initial points. Proposition 5.6. Let β * = ±∞, a > 1, and suppose (λ n ) n≥1 has precisely one initial point with respect to a. Then, C az+b is cyclic but not supercyclic.

Proof. Since (λ n ) n≥1 has precisely one initial point, it must be the case that λ n = λ 1 a n-1 for every n, and λ 1 = 0. Let f (z) = e -λ1z . By induction, we easily check that

(C k az+b f )(z) = exp(-(λ 1 + λ 2 + • • • + λ k )b)e -λ k+1 z .
In particular, Orb(C az+b , f ) contains the vectors of the basis (q k ) k≥1 of H(β, Λ). Therefore C az+b is cyclic.

To show C az+b is not supercyclic, we show that for every f ∈ H(β, Λ) we can find a g such that dist(g, {µy : y ∈ Orb(C az+b , f ), µ ∈ C}) is bounded below by some non-zero constant. There are two cases.

• Case 1: f (z) = a 1 e -λ1z for some 0 = a 1 ∈ C. In this case, consider the function g(z) = e -λ1z + e -λ2z . It is then easy to see that

µf -g 2 = |µa 1 -1| 2 β 2 1 + β 2 2 ≥ β 2 2 , µC az+b f -g 2 = β 2 1 + |µa 1 e -λ1b -1| 2 β 2 2 ≥ β 2 1 , µC k az+b f -g 2 ≥ β 2 1 + β 2 2 , ∀k ≥ 2. 
Therefore dist(g, {µy :

y ∈ Orb(C az+b , f ), µ ∈ C}) ≥ min {β 1 , β 2 }. • Case 2: f (z) = a 1 e -λ1z for any a 1 ∈ C. Write f (z) = ∞ n=1
a n e -λnz . Choose κ = 0, -a 1 and pick g(z) = κe -λ1z . Note that for all k ≥ 1 we have that the coefficient of e -λ1z in the representation of C k az+b f is 0, it follows then that for each k ≥ 1, we have µC k az+b f -g 2 ≥ |κ| 2 β 2 1 > 0. It remains to consider k = 0. Observe that g does not belong to Span(f ) which is one-dimensional, therefore dist(span(f ), g) > 0. Thus dist(g, {µy : y ∈ Orb(C ϕ , f ), µ ∈ C}) > 0. This completes the proof. Proposition 5.7. Let β * = ±∞, a > 1, and suppose (λ n ) n≥1 has at least two non-zero initial points with respect to a. Then, C az+b is not cyclic.

Proof. Let λ p , λ q denote two non-zero initial points. Suppose for the sake

of contradiction that C az+b is cyclic. Let f (z) = ∞ n=1
a n e -λnz be a cyclic vector for C az+b .

We claim that a p , a q = 0. Assume to the contrary that one of them is zero, say WLOG a p = 0. Recall that Orb(C az+b , f

) = f, C az+b f, C 2 az+b f, . . . . Note that (C k az+b f )(z) = ∞ n=1 a n exp -b 1 -a k 1 -a exp -a k λ n z .
Since λ p is a non-zero initial point, a k λ n = λ p for all k, n ≥ 1. It follows that the coefficient of λ p in any function in Orb(C az+b , f ) is always 0. Hence for any f 1 ∈ Span(Orb(C az+b , f )), one has

f 1 -q p 2 ≥ 1.
Therefore Span(Orb(C az+b , f )) cannot be dense in H(β, Λ), a contradiction, completing the proof of the claim. Hence a p , a q = 0. Since a k λ n = λ p , λ q for all k, n ≥ 1, the only function in Orb(C az+b , f ) with non-zero coefficients for e -λpz and e -λqz terms in Span(Orb(C az+b , f )) is f itself.

Consider now the function g(z) = a p e -λpz + 2a q e -λqz ∈ H(β, Λ). Let F ∈ Span(Orb(C az+b , f )) and fix a representation of F in elements of Orb(C az+b , f ). Let w the coefficient of f in this representation. Then we have

F -g 2 ≥ |w -1| 2 |a p | 2 β 2 p + |w -2| 2 |a q | 2 β 2 q . Let ξ = |a p | 2 β 2 p and η = |a q | 2 β 2 q . Write w = w + 1. Then, F -g 2 ≥ ξ|w | 2 + η|w -1| 2 ≥ ξ (w ) 2 + η( (w ) -1) 2 ≥ ξη ξ + η ,
where we used the fact that the expression ξx 2 + η(x -1) 2 has minimum ξη ξ+η as x ranges over R. It follows that Span(Orb(C az+b , f )) cannot be dense in H(β, Λ). Contradiction.

It remains to study the case when (λ n ) n≥1 has precisely one zero and one non-zero initial point with respect to a. In other words, λ 1 = 0 and λ n = λ 2 a n-2 , n ≥ 2. In that case, we will give a characterization of cyclicity in terms of (r n (a, b)) n . Let us begin with the following result which can be easily checked. Since cyclicity is invariant under unitary transformation, we will work for convenience with a transcription of our problem in the space of sequences 2 . Recall that

2 = a = (a k ) k≥0 : a 2 2 = ∞ k=0 |a k | 2 < ∞ .
Now, it is clear that our problem is a particular case of the following more general problem. Question 5.9. Let α = (α n ) be a bounded sequence of complex numbers and suppose that T : 2 → 2 is the linear map whose matrix, with respect to the canonical orthonormal basis {e 0 , e 1 , e 2 , . . . }, is given by

         1 0 0 . . . 0 0 0 . . . 0 α 1 0 . . . 0 0 α 2 . . . . . . . . . . . . . . .         
.

Is T cyclic?

Note that since (α n ) is supposed to be bounded, it is easy to see that T defines a bounded operator on 2 .

In order to answer to Question 5.9, we need the following general result on cyclicity.

Lemma 5.10. Let T : X -→ X be a bounded linear map on a Banach space X. Assume that there exists λ ∈ C such that dim ker(T * -λI)) ≥ 2.

Then T is not cyclic.

In particular, zp n (λ) x * 1 , x -p n (λ) x * 2 , x → 0, as n → ∞. But observe that

zp n (λ) x * 1 , x -p n (λ) x * 2 , x = p n (λ) x * 2 , x 2 -x * 2 , x = -p n (λ) x * 2 , x 2 
,
which implies that p n (λ) → 0, as n → ∞. That contradicts (5.1). Hence A cannot be dense, proving that indeed T is not cyclic.

We are now ready to prove the following.

Theorem 5.11. Let T be defined as in Question 5.9, and let ω j := α 1 . . . α j , j ≥ 1. Then T is cyclic if and only if

∞ j=1 1 |ω j | 2 = ∞. Proof. First assume that ∞ j=1 1 |ω j | 2 < ∞ and let us prove that T is not cyclic. Let a = (a 0 , a 1 , a 2 , . . . ) ∈ 2 . Observe that T * a = a if and only if       1 0 0 0 0 . . . 0 0 α 1 0 0 . . . 0 0 0 α 2 0 . . . . . . . . . . . . . . . . . . . . .             a 0 a 1 a 2 . . .       =       a 0 a 1 a 2 . . .      
, which is equivalent to α j a j+1 = a j , j ≥ 1. Thus a ∈ ker(T * -I) if and only if a 0 , a 1 ∈ C and a j = 1 ωj-1 a 1 , j ≥ 2. In particular, we get that dim(ker(T * -I)) = 2. Lemma 5.10 implies now that T is not cyclic. 

Conversely, assume that

           b 0 + b 1 = 0 b 0 + α 1 b 2 = 0 b 0 + α 1 α 2 b 3 = 0 . . . This is equivalent to b 0 + b 1 = 0 b 0 + ω j b j+1 = 0, j ≥ 1.
Clearly if b 0 = 0, then b j = 0 for all j, hence b = 0, which is a contradiction. 

∞ j=2 1 |ω j | 2 = ∞.
This characterization leads to a condition which is much easier to check. Before we begin the proof, we remark that the above corollary completes the characterization of cyclicity for this case. It is easy to check that for such a (λ n ), we have L = 0. Since C az+b is necessarily bounded, by Theorem 3.12 we must have

(b) ≥ (1 -a) L 2 -β * = (a -1)β * .
Proof of Corollary 5.13. A direct computation shows that

|ω j | -1 = j+1 k=2 |r k (a, b)| -1 = β 2 β j+2 exp (b) j+1 k=2 λ k = β 2 β j+2 exp λ 2 (b) a j -1 a -1 . 
(i) Assume first that (b) > (a -1)β * . Since β * = lim inf n→∞ log β n λ n is finite, there exists ε > 0 and a strictly increasing sequence of natural numbers (n p ) p such that, for all p,

log β np ≤ (b) -ε a -1 λ np .
In other words,

log β np ≤ (b) -ε a -1 a np-2 λ 2 .
Set j p = n p -2 and observe that

|ω jp | -1 ≥ β 2 exp λ 2 (b) a jp -1 a -1 -λ 2 (b) -ε a -1 a jp = β 2 exp λ 2 a jp a -1 (ε + o(1)) .
In particular, |ω jp | -1 → ∞ as p → ∞, so that (ω j ) -1 / ∈ 2 . By Corollary 5.12, we deduce that C az+b is cyclic.

(ii) First take

β n = exp λ2a n-2 a-1
and (b) = 1. We shall verify such a choice of C az+b is valid for H(β, Λ). The sequence (r n (a, (b))) is bounded, by Theorem 3.12. Indeed, for n ≥ 2,

r n (a, (b)) = e -λn (b) β n+1 β n = exp -λ 2 a n-2 + λ 2 a n-1 a -1 - λ 2 a n-2 a -1 = e 0 = 1.
Furthermore,

β * = lim inf n→∞ λ 2 a n-2 (a -1)λ 2 a n-2 = 1 a -1 ,
so that (b) = (a -1)β * = 1. By Theorem 3.12, this choice is valid. Finally,

|ω j | -1 = β 2 β j+2 exp λ 2 a j -1 a -1 = β 2 exp - λ 2 a -1 .
Hence, (|ω j | -1 ) j ∈ 2 and then C az+b is cyclic.

On the other hand, if we take

β n = n 2 exp λ2a n-2 a-1
and (b) = 1, we can verify in the same manner that r n (a, 1) → 1 as n → ∞, and have again

β * = lim inf n→∞ 2 log n + λ 2 a n-2 (a -1)λ 2 a n-2 = 1 a -1 , and 
|ω j | -1 = β 2 β j+2 exp λ 2 a j -1 a -1 = β 2 exp -λ2 a-1 (j + 2) 2 .
Thus (|ω j | -1 ) j ∈ 2 and then C az+b is not cyclic. This completes the proof.

We end this section with a result which completes Proposition 5.5 on supercyclicity. As the proof methodology is similar to arguments in Proposition 5.6, we omit the full details and provide a sketch. Proposition 5.14. Let β * = ±∞, a > 1, and suppose (λ n ) has precisely one zero and one non-zero initial point with respect to a. Then, C az+b is not supercyclic.

Proof (Outline). The idea is for every f ∈ H(β, Λ), we can find a function g and a constant B > 0 such that dist(g, {µy : y ∈ Orb(C az+b , f ), µ ∈ C}) ≥ B. The proof is split into four cases.

-Case 1: f (z) ≡ a 1 (a 1 ∈ C). The result is obvious as Orb(C az+b , f ) has only one element, so {µy : y ∈ Orb(C az+b , f ), µ ∈ C} has dimension 1.

-Case 2: f (z) = a 2 e -λ2z , a 2 = 0. Pick g(z) ≡ b > 0. Since all h ∈ Orb(C az+b , f ) have zero constant part, it can be verified that taking B = |b|β 1 works.

-Case 3: f (z) = a 1 + a 2 e -λ2z (a 1 , a 2 = 0). Pick g(z) = a 1 + (a 2 + 1)e -λ2z . Since λ 2 is a non-zero initial point, following the proof of Proposition 5.6 (Case 2) yields µC k az+b f -

g 2 ≥ |a 2 + 1| 2 β 2 2 for all k ≥ 1. Furthermore the computation for k = 0 gives µf -g 2 ≥ |µ -1| 2 |a 1 | 2 β 2 1 + |(µ -1)a 2 + 1| 2 β 2 2
, which is minimized in a similar manner as in Proposition 5.7.

-Case 4: ∃k ≥ 3 such that a k = 0. Pick κ = 0, -a 2 and g(z) = κe -λ2z . This is again similar to Proposition 5.7. We are done.

Complex symmetry

In this section we investigate the complex symmetry property of C ϕ . In this section we adopt the convention that e n (z) = β n q n (z) = e -λnz . ( 

L/2-β * → C L/2-β * be an analytic function. Define J ξ f (z) = f (ξ(z)), ∀f ∈ H(β, Λ).
If J ξ satisfies the definition of a conjugation, then it is called a composition conjugation.

We will investigate composition conjugations induced by polynomial functions ξ. Theorem 6.3. Assume that ξ is a polynomial. The following statements are equivalent.

(1) J ξ is a conjugation on H(β, Λ).

(2) ξ(z) = z + ci, c ∈ R.

Proof. (1) =⇒ (2): first let us note that since J ξ is a conjugation on H(β, Λ), then ξ induces a bounded composition operator on H(β, Λ). Indeed,

let f (z) = ∞ n=1
a n e -λnz ∈ H(β, Λ). Then the function

f (z) = ∞ n=1
a n e -λnz also belongs to H(β, Λ), and so J ξ f ∈ H(β, Λ). Note now that

J ξ f (z) = f (ξ(z)) = ∞ n=1
a n e -λnξ(z) = (C ξ f )(z). Therefore, we get C ξ f ∈ H(β, Λ) as required. In particular, according to Theorem 3.12, ξ should be of the form ξ(z) = az + b, where a = 0 and (b) > L 2 -β * or a ≥ 1 and (b) ≥ (1 -a)( L 2 -β * ). First, we will show that a = 0. Argue by absurdity and assume that a = 0. Then ξ(z) = b and (J ξ f )(z) = f (b). Apply that equation to the vector of the orthonormal basis q k (z) = 1

β k e -λ k z , which gives (J ξ q k )(z) = 1 β k e -λ k z .

Since J ξ is an isometry, we get

β 1 β k e -λ k (b) = 1, that is -(b) = log(β k ) λ k - log(β 1 ) λ k , k ≥ 2.
Taking the limit when k → ∞, we get (b) = -β * . In particular, β * = ±∞ and the condition (b) > L 2 -β * gives the contradiction. Hence a = 0.

Let us show now that a = 1 and b ∈ iR. Remind that e n (z) = e -λnz ∈ H(β, Λ). Since J ξ is conjugation on H(β, Λ), we have e n = J 2 ξ e n , which gives e -λnz =J ξ (e n )(ξ(z)))

=J ξ (e -λnξ(z) ) =e -λnξ(ξ(z)) .

By analyticity, we get that for every n ≥ 1, there exists k n ∈ Z such that -λ n ξ(ξ(z)) = -λ n z + 2iπk n .

In particular, since λ 2 > λ 1 ≥ 0, we deduce that

ξ(ξ(z)) = z - 2iπk 2 λ 2 = z + ic 1 ,
where c 1 = -2π k2 λ2 ∈ R. Recall now that ξ(z) = az + b. An easy computation shows that ξ(ξ(z)) = a 2 z + āb + b. Hence, we see that a 2 = 1, that a = 1 (because a ≥ 0) and b + b = ic 1 , that is 2 (b) = ic 1 . This implies that (b) = c 1 = 0. Finally, we get that ξ(z) = z + i (b) = z + ic, with c ∈ R.

(2) =⇒ (1): assume that ξ(z) = z + ic, c ∈ R. Since (ξ(z)) = (z), it is clear that ξ maps C L 2 -β * into itself. Then J ξ is well defined. Now, if

f (z) = ∞ n=1
a n e -λnz ∈ H(β, Λ), then

(J ξ f )(z) = ∞ n=1 a n e -λnξ(z) = ∞ n=1
a n e -icλn e -λnz .

Since a n e -icλn = |a n |, we see that J ξ f ∈ H(β, Λ). Moreover,

J ξ f 2 = ∞ n=1 β 2 n |a n | 2 = f 2 .
Hence, J ξ is an isometry from H(β, Λ) into itself. It is of course antilinear. It remains to check that J ξ is involutive. But, note that (J ξ e n )(z) = e -λnξ(z) = e -icλn e -λnz = e -icλn e n (z), and so J 2 ξ (e n ) = J ξ (e -icλn e n ) = e icλn J ξ (e n ) = e icλn e -icλn e n = e n By linearity and continuity of J 2 ξ , and density of (e n : n ≥ 1) in H(β, Λ), we get that J 2 ξ = I. This proves that J ξ is a conjugation on H(β, Λ) and completes the proof.

Complex symmetry

Having proven the form of composition conjugations J ξ on H(β, Λ), we can now consider the complex symmetry property of bounded composition operators on H(β, Λ) with respect to conjugations J ξ . Definition 6.4. Let T be a continuous linear operator mapping a Hilbert space H to itself. Given that C is a conjugation, we say that T is C-symmetric, or complex symmetric with respect to C, if

CT C = T * .
If such a C exists, we say that T is complex symmetric.

Recall that Proposition 4.7 provides explicitly the adjoint functions C * az+b . The following two results follow easily (cf. [START_REF] Doan | Complex symmetry of composition operators on Hilbert spaces of entire Dirichlet series[END_REF]). Proposition 6.5. The following are true.

(1) C * z+b = C z+b . (2) If a > 1, then ker C * az+b is non-trivial.

Proof.

(1) follows directly from Proposition 4.7 (note that since a = 1 we have m n = n). Let us now prove [START_REF] Bayart | Approximation numbers of composition operators on Hp spaces of Dirichlet series[END_REF]. If λ 1 = 0, then λ m1 = aλ 1 > λ 1 , and so m 1 > 1. It follows from (4.2) that since j → m j is strictly increasing, we have C * az+b e 1 = 0, that is e 1 ∈ ker C * az+b . If λ 1 = 0, then m 1 = 1 and arguing as before, we show that e 2 ∈ ker C * az+b . This completes the proof. As already mentioned, composition operators associated to non-constant analytic symbols are injective. Thus we immediately get the following. Corollary 6.6. Suppose β * = ±∞. Let a > 1 and suppose C az+b is a bounded composition operator on H(β, Λ). Then, no symbol ψ exists such that C * az+b = C ψ (here, ψ need not be a polynomial).

Proof. First note that since a > 1, then there cannot exists a constant symbol ψ such that C * az+b = C ψ . Then it remains to apply Proposition 6.5 (2) to get the result. Done. Proof. Remind that e n (z) = e -λnz , n ≥ 1. Since a = 1, m n = n, n ≥ 1, and so, on one hand, we have (C z+b J ξ e n )(z) = C z+b e -λnci e -λnz = e -λn(b+ci) e -λnz .

On the other hand, by (4.2), we have (J ξ C * z+b e n )(z) = J ξ e -λnb e -λnz = e -λn(b+ci) e -λnz .

Lemma 3 . 1 .

 31 Let f (z) = ∞ n=1 a n e -λnz be a Dirichlet series with L < ∞ and D = ∞. If a m is the first non-zero coefficient, then lim (z)→∞ e λmz f (z) = a m . Proof. Let f (z) = ∞ n=m a n e -λnz be a Dirichlet series where a m = 0. Then we have e λmz f (z) = n≥m a n e -(λn-λm)z . (3.1)

Lemma 3 . 2 .

 32 Let θ ∈ R and let ϕ be a polynomial. Then ϕ is a self-map of the half-plane C θ if and only if ϕ(z) = az + b and (i) either a ∈ R + and (b) ≥ (1 -a)θ (ii) or a = 0 and (b) > θ.

Proposition 3 . 5 .

 35 Let β * = ±∞ and b ∈ C L 2 -β * . Then C b is a bounded composition operator on H(β, Λ) if and only if λ 1 = 0. Moreover, in that case, we have C b op = β 1 k b .

Example 3 . 9 .

 39 Let λ n = n!. Then R(Λ) is the singleton {1}. Example 3.10. (1) For λ n = log n (the classical Dirichlet series) or λ n = n, every ∈ N belongs to R(Λ).

  ) the sequence r n (a, (b)) n≥1 is bounded. Moreover, in this case, C az+b op = sup n∈N r n (a, (b)).

Theorem 3 . 12 .

 312 Let β * = ±∞ and ϕ(z) = az + b (a, b ∈ C). Consider the following statements.

( 1 )

 1 ϕ(z) = b for some b ∈ C with (b) > L 2 -β * .

Proposition 4 . 1 .

 41 Let β * = ±∞. For any b ∈ C L 2 -β * , a composition operator C b is always compact on the space H(β, Λ). Proof. As noted in Proposition 3.5, C b has rank one and hence it is compact. Proposition 4.2. Let β * = ±∞ and let C z+b be a bounded composition operator on H(β, Λ). Then

Theorem 4 . 3 .

 43 Let β * = ±∞, a ≥ 1 and C az+b be a bounded composition operator on the space H(β, Λ). Then C az+b e = lim sup n→∞ r n (a, (b)). In particular, C az+b is compact if and only if lim n→∞ r n (a, (b)) = 0.

n→∞e

  -λn (b) β mn β n = lim sup n→∞ r n (a, (b)).

Proposition 4 . 4 .

 44 Let β * = ±∞. A bounded composition operator C az+b on H(β, Λ) is a Hilbert-Schmidt operator if and only if

Proposition 4 . 5 .

 45 Let 0 < p < ∞. A bounded composition operator C b on H(β, Λ) belongs to the Schatten p-class.

Proposition 4 . 6 .

 46 Let 0 < p < ∞ and β * = ±∞. A bounded composition operator C z+b on H(β, Λ) belongs to the Schatten p-class if and only if ∞ n=1 e -pλn (b) < ∞. In particular, C z+b belongs to the Schatten p-class if p (b) > L, and does not belong if p (b) < L, where L is defined in (1.2).

Proposition 4 . 7 .

 47 Let β * = ±∞, and let C az+b be a bounded composition operator on H(β, Λ). If f (z) = ∞ n=1

(4. 2 ) 4 . 8 .

 248 Proposition Let a ≥ 1. The eigenvalues of C * az+b C az+b are precisely r k (a, (b)) 2 , k ∈ N.

Corollary 4 . 9 .

 49 The eigenvalues of |C az+b | are precisely the values r k (a, (b)), k ∈ N.As a consequence by direct substitution, we thus have the following theorem. Theorem 4.10. Let 0 < p < ∞ and a ≥ 1. Then, C az+b is a pth Schatten class operator if and only if ∞ k=1 r k (a, (b)) p < ∞. Remark 4.11. Note that the series h p (z) = k z , is a Dirichlet series of type (pλ n ), which can be considered as a "complex version" of the series ∞ k=1 r k (a, x) p when we replace x ∈ R by z ∈ C. By [14, Chapter II, Theorem 8] the computation of σ c is σ c = lim sup n→∞ (b) is larger than this value then h p ( (b)) converges and C az+b is Schatten p-class. If (b) is smaller, then C az+b is not Schatten p-class.

C

  az+b is a well-defined bounded composition operator on H(β, Λ). The realfunction h p (x) = ∞ k=1 e pa k e -pa k x = ∞ k=1e -pa k (x-1) converges for all x > 1 and diverges everywhere else, regardless of the value of p. It follows that C az+b is a Schatten p-class operator if and only if (b) > 1.

Lemma 4 . 13 .

 413 Let β * = ±∞, a, a ≥ 1. Let C az+b and C a z+b be bounded composition operators on H(β, Λ). Assume that lim sup n→∞ r n (a, (b)) > 0 and lim sup n→∞ r n (a , (b )) > 0.

Proposition 4 . 14 .

 414 Let β * = ±∞, a ≥ 1. Suppose that C az+b and C az+b are bounded composition operators on H(β, Λ). Then C az+b -C az+b e = lim sup k→∞ β m k β k e -λ k b -e -λ k b .

CTheorem 4 . 15 .

 415 az+b -C az+b e ≥ lim sup n→∞ β mn β n e -λnb -e -λnb , as needed. This completes the proof. Let β * = ±∞, and let C ϕ1 and C ϕ2 be bounded composition operators on H(β, Λ). Then the difference C ϕ1 -C ϕ2 is compact if and only if (1) both C ϕ1 and C ϕ2 are compact or (2) a ≥ 1, ϕ 1 (z) = az + b and ϕ 2 (z) = az + b , where (i) we have lim sup n→∞ r n (a, (b)) > 0 and lim sup n→∞ r n (a, (b )) > 0, (ii) and lim k→∞ β m k β k e -λ k b -e -λ k b = 0.

Corollary 4 . 16 .

 416 Let β * = ±∞, and let C z+ci and C z+c i (c, c ∈ R) be bounded composition operators on H(β, Λ). The operator C z+ci -C z+c i is compact if and only if lim k→∞ cos(λ k (c -c )) = 1.

Proposition 5 . 8 .

 58 Let β * = ±∞, a > 1, and suppose (λ n ) has precisely one zero and one non-zero initial point with respect to a. Then the matrix M of C az+b with respect to the orthonormal basis (q k ) is

∞ j=1 1

 1 |ω j | 2 = ∞ and let us prove that f = (1, 1, 0, 0, . . . ) is cyclic for T . Argue by absurdity and assume that f is not cyclic for T . Then there exists a non zero element b = (b 0 , b 1 , b 2 , . . . ) ∈ 2 such that b ⊥ T k f , for every k ≥ 0. We get the following system

If b 0

 0 = 0, then b 1 = -b 0 and b j+1 = -1 ωj b 0 . But since by hypothesis we have ∞ j=1 1 |ω j | 2 = ∞, we deduce that b = (b j ) j≥0 does not belong to 2 , which is a contradiction. We are done. We immediately deduce from Theorem 5.11 a solution of the remaining case for cyclicity of C az+b . Corollary 5.12. Let β * = ±∞, a > 1, and suppose (λ n ) has precisely one zero and one non-zero initial point with respect to a. Let ω j = j+1 k=2 r k (a, b), j ≥ 2. Then C az+b is cyclic if and only if

Corollary 5 . 13 .

 513 Let β * = ±∞, a > 1, and suppose (λ n ) has precisely one zero and one non-zero initial point with respect to a.

( i )

 i If (b) > (a -1)β * , then C az+b is cyclic. (ii) If (b) = (a -1)β * , then both cyclic and non-cyclic behaviors can be exhibited.

Proposition 6 . 7 .

 67 Let ξ(z) = z + ci, c ∈ R. Let b ∈ C and suppose that (b) ≥ 0. Then C z+b is J ξ -symmetric.
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Proof. Let x 1 , x 2 be two independent vectors in X * (the dual space of X) such that T * (x * i ) = λx * i , i = 1, 2. Define the linear map Θ :

). Observe that Θ is onto. Indeed, assume that Im(Θ) C 2 . In particular, there is (λ, µ) ∈ C 2 \ {(0, 0)} such that (λ, µ) ⊥ Im(Θ). That means that, for every v ∈ X, we have λ x * 1 , v + µ x * 2 , v = 0. In other words, we get λx * 1 + µx * 2 = 0, but, since x * 1 and x * 2 are independent, we deduce that λ = µ = 0, which is absurd. Hence Θ is onto.

Assume now that T is cyclic and let x ∈ X be a cyclic vector for T . Consider the following subset of C 2 defined by

p is a polynomial} . Since x is a cyclic vector and Θ is onto, the set A should be dense in C 2 . Indeed, let (λ, µ) ∈ C 2 . Using that Θ is onto, we get u ∈ X such that λ = x * 1 , u and µ = x * 2 , u . Using now that x is a cyclic vector, given ε > 0, we can find a polynomial p such that p(T )x -u X ≤ ε. Hence

. These two inequalities imply that (λ, µ) is in the closure of A, and thus A is dense in C 2 . It remains to prove that this is absurd. First observe that

, and of course A cannot be dense in C 2 . Now assume that x * 1 , x = 0 and x * 2 , x = 0, and take

Since A is dense in C 2 , the point (1, z) belongs to the closure of A. In particular, there exists a sequence of polynomials (p n ) n such that p n (λ)Θ(x) → (1, z), as n → ∞. That means that

and

Thus C z+b J ξ and J ξ C * z+b coincide on an orthogonal basis, whence C z+b J ξ = J ξ C * z+b . Hence C z+b is J ξ -symmetric. This completes the proof.

The above shows that all bounded composition operators with symbol C z+b is complex symmetric. To determine the complex symmetry property of C az+b when a > 1, we recall the following result. Lemma 6.8 ( [START_REF] Garcia | Complex symmetric operators and applications[END_REF]). Let T be a complex symmetric operator. Then, dim ker T * = dim ker T . Now we may prove the following result. Proposition 6.9. Let β * = ±∞ and a > 1. Then, C az+b is not complex symmetric on H(β, Λ).

Proof. It follows immediately from Lemma 6.8 and Proposition 6.5 and the fact that C az+b is one to one.

Finally we consider the constant case. Lemma 6.10 ( [START_REF] Garcia | Some new classes of complex symmetric operators[END_REF]). Any rank one operator is complex symmetric.

We deduce immediately the following. Corollary 6.11. Let λ 1 = 0 and β * = ±∞. Then, C b is complex symmetric on H(β, Λ).

We can summarize all the previous results to obtain the following characterization of complex symmetric composition operators. Theorem 6.12. Let β * = ±∞ and C ϕ be a bounded composition operator on H(β, Λ). Then:

(1) If ϕ(z) = z + b, then C ϕ is complex symmetric. More precisely, C ϕ is J ξ -symmetric for all composition conjugations J ξ where ξ(z

On similar results when β * = ∞

In [START_REF] Doan | Complete characterization of bounded composition operators on the general weighted Hilbert spaces of entire Dirichlet series, North-West[END_REF], a characterization for boundedness of C ϕ on H(β, Λ) in the case of β * = ∞ was proven. Specifically, the authors prove the following analogue to Theorem 3.12:

Let ϕ be an entire function. The following are true.

The authors also estimate C b op and compute C z+b op . They conjectured that results on certain properties of bounded composition operators on spaces {H(E, β S )}, a proper subset of the set of spaces A := {H(β, Λ) : β * = ∞}, hold for bounded composition operators on all spaces in A.

We remark that up to minor modifications in the proof, the following results in our paper hold for all spaces in A. In the following list, the condition β * = ∞ is assumed. We will use the following observation:

• Operator norms: Propositions 3.5 and 3.11. In the latter case the operator norm simplifies via (7.1) to C z+b op = e -λ1 (b) (cf. [START_REF] Hu | Topological structure of the spaces of composition operators on Hilbert spaces of Dirichlet series[END_REF]). • Conjugations: Theorem 6.3 (cf. [START_REF] Doan | Complex symmetry of composition operators on Hilbert spaces of entire Dirichlet series[END_REF]). It is worth noting that due to Theorem 7.1, we can weaken the assumption on ξ to simply assuming ξ is entire. • Complex symmetry: Theorem 6.12, leaving out statement (2) (cf. [START_REF] Doan | Complex symmetry of composition operators on Hilbert spaces of entire Dirichlet series[END_REF]).