
HAL Id: hal-04264206
https://hal.science/hal-04264206v1

Submitted on 30 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

WEIGHTED HOLOMORPHIC DIRICHLET SERIES
AND COMPOSITION OPERATORS WITH

POLYNOMIAL SYMBOLS
Camille Mau, Emmanuel Fricain

To cite this version:
Camille Mau, Emmanuel Fricain. WEIGHTED HOLOMORPHIC DIRICHLET SERIES AND COM-
POSITION OPERATORS WITH POLYNOMIAL SYMBOLS. Mathematica Scandinavica, 2022, 128
(1), pp.109–146. �hal-04264206�

https://hal.science/hal-04264206v1
https://hal.archives-ouvertes.fr


WEIGHTED HOLOMORPHIC DIRICHLET SERIES AND
COMPOSITION OPERATORS WITH POLYNOMIAL

SYMBOLS

EMMANUEL FRICAIN1 and CAMILLE MAU2

Abstract

In this paper, we introduce a general class of weighted spaces of holomorphic Dirichlet
series (with real frequencies) analytic in some half-plane and study composition operators

on these spaces. In the particular case when the symbol inducing the composition operator

is an affine function, we give criteria for boundedness and compactness. We also study the
cyclicity property and as a byproduct give a characterization so that the direct sum of the

identity plus a weighted forward shift operator on `2 is cyclic.
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1. Introduction

1.1. Dirichlet series
Let Λ = (λn)n≥1 be a strictly increasing sequence of non-negative real num-
bers tending to ∞. A Dirichlet series of type Λ (Dirichlet series in short) is a
series of the form

∞∑
n=1

ane
−λnz , (1.1)

where z is a complex variable, and the coefficients of the series are given by a
sequence (an)n≥1 of complex numbers.

If λn = n, n ≥ 1, then (1.1) are power series in ζ = e−z. When λn = log n,
n ≥ 1, we get the so-called classical Dirichlet series, which have many applic-
ations in analytic number theory (see, e.g., [1]). Classical Dirichlet series also
relate to several problems in functional analysis (see, e.g., [15] and references
therein). We refer the reader to the monograph [14] or [26] for more detailed
information on Dirichlet series.

The properties of convergence of Dirichlet series depend on two specific
quantities that we introduce now. Fix Λ = (λn)n≥1 a strictly increasing se-
quence of non-negative real numbers tending to ∞, and define

L = lim sup
n→∞

log n

λn
. (1.2)

Now to each Dirichlet series f of type Λ given by (1.1) we may associate the
following quantity

Df = lim sup
n→∞

log |an|
λn

. (1.3)

Note that the quantity Df is specific to each Dirichlet series of type Λ with
coefficients (an)n≥1. Nevertheless, most of the time there is no confusion and
we omit the reference to the associated Dirichlet series and write generally D.



3

It is known that if a Dirichlet series converges at some w ∈ C, it converges
for all z with <(z) > <(w), and more precisely, for every fixed non-negative
real number M , it converges uniformly in the region {<(z) ≥ <(w), |z −
w| ≤ M(<(z)− <(w))}, see [26, page 5]. Let us denote by σc the abscissa of
convergence of a Dirichlet series, which is defined as

σc = inf

{
r ∈ R :

∞∑
n=1

ane
−λnz converges on Cr

}
,

where Cr := {z : <(z) > r}. We also need the following extension of the
definition of Cr for r = ±∞. By convention C∞ = ∅ and C−∞ = C.

The abscissa σu of uniform convergence and σa of absolute convergence
are defined in a similar way. So a Dirichlet series converges (resp. uniformly,
absolutely) in the right half-plane Cσc (resp. Cσu , Cσa) to a holomorphic
function.

In the case L < ∞ the three abscissae are related by the Valiron formula
(see, e.g., [28])

D ≤ σc ≤ σu ≤ σa ≤ D + L. (1.4)

In particular, the Dirichlet series (1.1) represents an entire function if and
only if D = −∞.

1.2. Composition operators
Let X be a functional Banach space and suppose that all f ∈ X have a
common domain G ⊆ C. Let ϕ be an analytic self-map on G. Then ϕ induces
the composition operator Cϕ on X defined by

Cϕ(f) = f ◦ ϕ, ∀f ∈ X.

The first natural and non trivial question is to know if Cϕ maps X into
itself, and if this is the case, what can be said about standard spectral proper-
ties of Cϕ as an operator on X. There is a rich literature on this topic when X
is the Hardy space, the Bergman space or the Dirichlet space (see for instance
[4, 25]). The situation of spaces of classical Dirichlet series received also much
attention after the founding papers of Gordon–Hedenmalm [12] and Bayart [3]
(see for instance [2, 22, 23]). The case of general Dirichlet series is less studied.
Nevertheless, when X is some weighted space of entire Dirichlet series of type
Λ satisfying a certain property, properties of composition operators acting on
X are quite well understood (see [9, 18, 19]). In [8], using Liouville’s theorem,
it is proved that if Cϕ defines a bounded composition operator on a weighted
Hilbert space of entire Dirichlet series, then ϕ must be an affine function.

The aim of this paper is to focus on the situation when our space of Dirichlet
series is formed by functions which are holomorphic in some half-plane but
not necessarily the whole plane. In this context, we could not apply Liouville’s
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theorem. Nevertheless, we will still focus on the case when ϕ is a polynomial
(and then necessarily ϕ must be affine), since, for general symbols, we could
not really hope that Cϕ maps a space of Dirichlet series into itself because
the restrictions on the sequence Λ generating the space will be too severe.

When ϕ(z) = az + b, we will characterize boundedness (see Section 3)
and compactness (see Section 4) of Cϕ on a weighted Dirichlet space H(β,Λ)
(see next section for the definition). Then we will also study the dynamics
properties (cyclicity and supercyclicity) in Section 5 of Cϕ on H(β,Λ). In
Section 6 we give some results about complex symmetry. In the final section
we end with a note of how our results relate for weighted Hilbert spaces of
entire Dirichlet series.

2. Weighted spaces of holomorphic Dirichlet series

Fix Λ = (λn)n≥1 a strictly increasing sequence of non-negative real numbers
tending to ∞ and satisfying L < ∞. To perform the main object of our
investigation, we need the following result from [19].

Lemma 2.1. L < ∞ if and only if

∞∑
n=1

e−rλn < ∞ for all r > L. Further-

more,

∞∑
n=1

e−rλn =∞ for any r < L.

Let β = (βn)n≥1 be a sequence of positive real numbers. The sequence
space

`2β =

{
(an)n≥1 ⊂ C :

∞∑
n=1

|an|2β2
n <∞

}
is a Hilbert space with inner product defined for a = (an)n≥1, b = (bn)n≥1 ∈ `2β
by

〈a, b〉 =

∞∑
n=1

anbnβ
2
n. (2.1)

We put

β∗ = lim inf
n→∞

log βn
λn

. (2.2)

The following result serves as an important motivation of our investigation.

Proposition 2.2. Suppose β∗ 6= −∞. If f(z) =

∞∑
n=1

ane
−λnz is a Dirich-

let series of type Λ whose coefficients (an)n≥1 ∈ `2β, then σa ≤ L
2 − β∗. In

particular, f is holomorphic in CL
2 −β∗

.
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Proof. Suppose that β∗ 6=∞. Fix a compact subset K of CL
2 −β∗

. Then,

there exists η > L
2 − β

∗ such that for every z ∈ K, we have <(z) ≥ η. Thus

∞∑
n=1

sup
z∈K

∣∣ane−λnz∣∣ ≤ ∞∑
n=1

|an|e−λnη.

Apply the Cauchy-Schwarz inequality to get

∞∑
n=1

sup
z∈K

∣∣ane−λnz∣∣ ≤ ( ∞∑
n=1

|an|2β2
n

)1/2( ∞∑
n=1

e−2λnη

β2
n

)1/2

.

Since η > L
2 −β∗, we can take 0 < ε < δ := η−

(
L
2 − β∗

)
. By definition of β∗,

there exists N such that for all n ≥ N ,

1

β2
n

≤ e−2λn(β∗− ε2 ).

Applying Lemma 2.1 with r = L+ δ, we obtain∑
n≥N

1

β2
n

e−2λnη ≤
∑
n≥N

e−2λn(β∗− ε2 )e−2λnη ≤
∑
n≥N

e−λn(L+δ) <∞,

which proves that
∞∑
n=1

sup
z∈K

∣∣ane−λnz∣∣ <∞.
Thus, f converges uniformly on K. Since this is valid for every compact K in
CL

2 −β∗
, we deduce that f is analytic on CL

2 −β∗
.

The case when β∗ =∞ follows along the same lines with some tiny adjust-
ments left to the reader. This completes the proof.

Proposition 2.2 leads us to the following definition of weighted spaces of
holomorphic Dirichlet series in CL

2 −β∗
:

H(β,Λ) =

{
f(z) =

∞∑
n=1

ane
−λnz : (an)n≥1 ∈ `2β

}
.

This is a Hilbert space with inner product inherited from (2.1). More precisely,
the inner product on H(β,Λ) is defined as

〈f, g〉 =

∞∑
n=1

anbnβ
2
n, (2.3)

for every f(z) =

∞∑
n=1

ane
−λnz, g(z) =

∞∑
n=1

bne
−λnz ∈ H(β,Λ). Note that the

inner product (2.3) is well defined because of the uniqueness property on
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coefficients for Dirichlet series of type Λ, namely if

∞∑
n=1

ane
−λnz = 0, then

an = 0 for all n ≥ 1, see [26, page 8].

Remark 2.3. The assumption β∗ > −∞ in Proposition 2.2 is important,
otherwise CL

2 −β∗
= ∅. It is also essential because we can prove that if β∗ =

−∞ then for every z0 ∈ C there exists a Dirichlet series of type Λ, f(z) =
∞∑
n=1

ane
−λnz with (an)n≥1 ∈ `2β , which does not converge at z0. Indeed, there

exists (np)p≥1 ↑ ∞ large enough, such that

β2
np < e−2λnp<(z0), for all p ≥ 1.

Take (an)n≥1 as follows

an =

{
1
pe
λnpz0 , n = np (p = 1, 2, . . .),

0, otherwise.

Then,

∞∑
n=1

|an|2β2
n ≤

∞∑
p=1

1

p2
e2λnp<(z0)e−2λnp<(z0) =

∞∑
p=1

1

p2
<∞.

However, at z0 we have

∞∑
n=1

ane
−λnz0 =

∞∑
p=1

1

p
eλnpz0e−λnpz0 =

∞∑
p=1

1

p
=∞.

Note that for the case β∗ = ∞, we have entire Dirichlet series which have
been studied quite well (see, e.g., [8] and related references). Therefore, in
the sequel we assume that the condition β∗ 6= ±∞ always holds.

In the rest of the paper, we adopt the following notation. For n ≥ 1, z ∈ C,

qn(z) =
1

βn
e−λnz. (2.4)

Proposition 2.4. The sequence (qn)n≥1 forms an orthonormal basis of
H(β,Λ).

Proof. It is immediate from (2.3).

Note that the proof of Proposition 2.2 shows that for every point w ∈
CL

2 −β∗
, the evaluation functional δw is continuous on H(β,Λ). Furthermore,
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using Proposition 2.4, we can compute the kernel kw at point w ∈ CL
2 −β∗

by

kw(z) =

∞∑
n=1

〈kw, qn〉qn(z) =

∞∑
n=1

qn(w)qn(z)

=

∞∑
n=1

1

β2
n

e−λn(z+w).

Thus we obtain the following result.

Proposition 2.5. The spaces H(β,Λ) are all reproducing kernel Hilbert
spaces with reproducing kernel

K(z, w) = kw(z) =

∞∑
n=1

1

β2
n

e−λn(z+w), z, w ∈ CL
2 −β∗

. (2.5)

In particular, we deduce the norm of the kernel

‖kw‖2 =

∞∑
n=1

1

β2
n

e−2λn<(w), w ∈ CL
2 −β∗

. (2.6)

3. Bounded composition operators induced by a polynomial

Since H(β,Λ) is a functional Hilbert space (in which evaluations are continu-
ous), it follows easily from the closed graph theorem that the space H(β,Λ)
is invariant under a composition operator Cϕ, i.e. Cϕ

(
H(β,Λ)

)
⊆ H(β,Λ), if

and only if Cϕ is bounded on H(β,Λ).
The study of boundedness is based on the following two simple lemmas.

The first lemma is similar to one that appears in [19] for the case of entire
Dirichlet series.

Lemma 3.1. Let f(z) =

∞∑
n=1

ane
−λnz be a Dirichlet series with L <∞ and

D 6=∞. If am is the first non-zero coefficient, then

lim
<(z)→∞

eλmzf(z) = am.

Proof. Let f(z) =

∞∑
n=m

ane
−λnz be a Dirichlet series where am 6= 0. Then

we have
eλmzf(z) =

∑
n≥m

ane
−(λn−λm)z. (3.1)

Notice that λn − λm ≥ 0 for all n ≥ m, so that the right-hand side of (3.1) is
a Dirichlet series of type (λn−λm)n≥m. We claim that the associated abscissa
of uniform convergence σ′u satisfies σ′u 6=∞.
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We show that the associated L′ and D′ to the Dirichlet series above satisfy

L′ = L and D′ = D. Indeed, since lim
n→∞

λn
λn − λm

= 1, it follows that

L′ = lim sup
n→∞

log n

λn − λm
= lim sup

n→∞

(
log n

λn
· λn
λn − λm

)
= L <∞.

and similarly D′ = D.
Since L < ∞ and D 6= ∞, it follows from (1.4) that σ′u 6= ∞, so that

eλmzf(z) is uniformly convergent in some half-plane. Therefore we may inter-
change limit and sum to obtain

lim
<(z)→∞

eλmzf(z) = lim
<(z)→∞

∑
n≥m

ane
−(λn−λm)z

=
∑
n≥m

lim
<(z)→∞

(
ane
−(λn−λm)z

)
= am.

This proves the lemma.

When we study the composition operator Cϕ on a functional Hilbert space
of analytic functions on a domain Ω, the first natural condition to require is
that the symbol ϕ is an analytic self-map of Ω. The second lemma character-
izes the polynomials which are self-map of Cθ.

Lemma 3.2. Let θ ∈ R and let ϕ be a polynomial. Then ϕ is a self-map of
the half-plane Cθ if and only if ϕ(z) = az + b and

(i) either a ∈ R+ and <(b) ≥ (1− a)θ
(ii) or a = 0 and <(b) > θ.

Proof. Let us first prove that a polynomial of degree d ≥ 2 is never a
self-map of Cθ. Indeed, if ϕ(z) = adz

d+ . . . , with d ≥ 2 and ad = ρeit, ρ ∈ R+

and t ∈ [0, 2π). Assume first that t ∈ (0, 2π) and consider z(R) = Rei
π−t
d ,

R > 0. Since

−π
d
<
π − t
d

<
π

d
,

and 0 < π
d ≤

π
2 , we get cos(π−td ) > 0 and then the point z(R) belongs to Cθ

for R large enough. On the other hand, ϕ(z(R)) ∼R→∞ adz(R)d and

adz(R)d = ρRdeiteπ−t = −ρRd → −∞, as R→∞.

Hence, for R large enough, ϕ(z(R)) cannot belong to Cθ.
Now if t = 0, that is ad = ρ > 0, then choose t0, t1, α such that

π

2d
< t0 < α < t1 < min

(
π

2
,

3π

2d

)
,
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and consider z(R) = Reiα. As before, when R is large enough, z(R) belongs
to Cθ (because cos(α) > 0), and ϕ(z(R)) ∼R→∞ ρRdeidα. Observe now that
π
2 < dα < 3π

2 , whence cos(dα) < 0, and for R large enough, ϕ(z(R)) cannot
belong to Cθ.

We now may suppose that ϕ(z) = az + b, with a, b ∈ C. Suppose az + b is
a self-map on Cθ. If a = 0, then it clear that <(b) > θ, because b ∈ Cθ. So we
get (ii).

In case a 6= 0, we show that a ∈ R+. Assume to the contrary that a 6∈ R+,
which means that a = |a|eiθ1 , with θ1 6= 0 mod (2π). For every z = x + iy,
x, y ∈ R, we have <(az) = x|a| cos(θ1)− y|a| sin(θ1).

Case 1: If θ1 = π mod (2π), then <(az) = −x|a|, and so letting <(z) =
x → ∞, we get that <(az + b) → −∞, which contradicts that az + b is a
self-map of Cθ.

Case 2: If θ1 6= π mod (2π), then sin(θ1) 6= 0. Thus if we fix x > θ and
let =(z) = y →∞ (if sin(θ1) > 0) or =(z) = y → −∞ (if sin(θ1) < 0), we get
that <(az + b)→ −∞, which also contradicts the assumption.

Thus we have a ∈ R+. Then for any ε > 0, a point z ∈ Cθ with <(z) = θ+ε
satisfies <(az + b) = aθ + aε + <(b) > θ. This means <(b) > (1 − a)θ − aε.
Letting ε→ 0, we obtain (i).

Conversely, if (ii) holds, i.e. a = 0 and <(b) > θ, then we are obviously
done. If (i) holds, i.e. a ∈ R+ and <(b) ≥ (1 − a)θ, then for any z ∈ Cθ, we
have <(az + b) = a<(z) +<(b) > aθ+<(b) ≥ aθ+ (1− a)θ = θ, which shows
that az + b ∈ Cθ. Thus az + b is a self-map of Cθ. This proves the lemma.

3.1. Necessary conditions for boundedness of Cϕ: a polynomial symbol

In this subsection, we obtain an important necessary condition which a poly-
nomial symbol ϕ inducing a bounded composition operator Cϕ must satisfy.
See [8, 19] for analogous results in the entire case. First, note that in the
case when β∗ 6= ±∞, all f ∈ H(β,Λ) converge on the proper right half-plane
CL

2 −β∗
and in particular, satisfy Df 6= ∞ (by Valiron’s formulae). Hence

Lemma 3.1 can be applied to elements of H(β,Λ).

Theorem 3.3. Let β∗ 6= ±∞ and ϕ be a self-map polynomial of CL
2 −β∗

.

Suppose that the operator Cϕ is bounded on H(β,Λ). Then the following as-
sertions hold:

(1) If λ1 > 0, then ϕ(z) = az + b, a ≥ 1, b ∈ C.
(2) If λ1 = 0, then either ϕ(z) = b, b ∈ C (that is a = 0), or ϕ(z) =

az + b, a ≥ 1, b ∈ C.

Moreover, in addition, a satisfies the condition

λmk = aλk, for all k ∈ N, (3.2)
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where mk is the index of the first non-zero term of Caz+b(e
−λkz) = e−λk(az+b)

in the Dirichlet series representation (1.1), and b satisfies either of the fol-
lowing conditions:

<(b) >
L

2
− β∗, a = 0, (3.3)

<(b) ≥ (1− a)
(L

2
− β∗

)
, a ≥ 1. (3.4)

Proof. By Lemma 3.2, ϕ is an affine function ϕ(z) = az + b, with either

a ∈ R+ and <(b) ≥ (1− a)
(
L
2 − β∗

)
, or a = 0 and <(b) > L

2 − β∗.
- Case 1: λ1 > 0. For each k ∈ N, note that

Cϕ(e−λkz) = e−λkϕ(z) = e−aλkze−bλk , (3.5)

and since Cϕ(e−λkz) ∈ H(β,Λ), we can represent it as

Cϕ(e−λkz) =
∑
n≥mk

b(k)n e−λnz,

where, by assumption, mk is the smallest integer such that b
(k)
mk 6= 0, and

(b
(k)
n )n ∈ `2β . By Lemma (3.1), we have

lim
<(z)→∞

eλmkzCϕ(e−λkz) = b(k)mk
.

Thus, according to (3.5), we get

lim
<(z)→∞

e(λmk−aλk)z = b(k)mk
ebλk 6= 0.

That necessarily implies λmk − aλk = 0, which gives (3.2). In particular, for

k = 1, we have a =
λm1

λ1
≥ 1, because m1 ≥ 1.

- Case 2: λ1 = 0. In this case, replacing k ∈ N by k ≥ 2 in the proof for

Case 1 above, we still have a =
λmk
λk

, for all k ≥ 2. In particular, for k = 2,

we have

a =
λm2

λ2
=

{
0, if m2 = 1 (because λ1 = 0),

≥ 1, if m2 ≥ 2 (because λm2
≥ λ2).

Finally, in that case, we have m1 = 1 and thus λm1
= 0 = aλ1. This completes

the proof.

Remark 3.4. If a ≥ 1, it follows immediately from (3.2) that the map
k 7−→ mk is strictly increasing.

From now on, an affine symbol ϕ stated in Theorem 3.3 is supposed to be
given.
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3.2. Two trivial cases of the affine symbols (a = 0, 1)
In the following, we denote by ‖ · ‖op the operator norm.

Proposition 3.5. Let β∗ 6= ±∞ and b ∈ CL
2 −β∗

. Then Cb is a bounded

composition operator on H(β,Λ) if and only if λ1 = 0. Moreover, in that case,
we have ‖Cb‖op = β1‖kb‖.

Proof. Suppose that Cb is a bounded on H(β,Λ). By Theorem 3.3, λ1
must necessarily be zero.

Conversely, suppose that λ1 = 0. It implies that the function β1q1(z) =
e−λ1z = 1 belongs to H(β,Λ). (Recall that the functions qk are given by
(2.4).) Now, note that for all f ∈ H(β,Λ), we have

(Cbf)(z) = f(b) = 〈f, kb〉β1q1(z),

Hence Cb = β1q1⊗ kb is a rank one operator. In particular, it is bounded and
‖Cb‖op = β1‖q1‖‖kb‖. But ‖q1‖ = 1, which implies that ‖Cb‖op = β1‖kb‖, as
claimed.

Proposition 3.6. Let β∗ 6= ±∞. Then Cz+b is a bounded composition
operator on H(β,Λ) if and only if <(b) ≥ 0. Moreover, in that case, we have
‖Cz+b‖op = e−λ1<(b).

Proof. Suppose Cz+b is bounded. Then by (3.4), we get immediately that
<(b) ≥ 0. Conversely, suppose that <(b) ≥ 0. Note that for every k ∈ N,
Cz+bqk = e−λkbqk. Thus Cz+b is a diagonal operator with a sequence of ei-
genvalues equal to (e−λkb)k≥1. Using now that <(b) ≥ 0, we see that this
sequence is decreasing in modulus, and so it is well-known (and easy to see)
that Cz+b is bounded and ‖Cz+b‖op = e−λ1<(b), as claimed.

3.3. Characterization for boundedness of Caz+b (a 6= 0, 1)
Throughout this subsection, we always assume that an affine symbol ϕ(z) =
az + b, with a > 1 and b ∈ C, is given.

We need some supplementary notation.

Definition 3.7. For a given sequence of real frequencies Λ = (λn)n≥1,
define the set

R(Λ) = {r ∈ [1,∞) : ∀n ∈ N, ∃m = mn ≥ n, rλn = λm} .

If there exists a nontrivial ϕ(z) = az+b that induces a bounded composition
operator Cϕ on H(β,Λ), then a belongs to R(Λ).

Remark 3.8. Notice that we always have 1 ∈ R(Λ). Furthermore, since
(λn)n≥1 is a strictly increasing sequence, for a given r ∈ R(Λ), to each n there
corresponds a unique mn ≥ n, such that rλn = λmn .



12 EMMANUEL FRICAIN1 and CAMILLE MAU2

We put R1(Λ) = R(Λ) \ {1}. Depending on the given sequence (λn)n≥1,
it may happen that R(Λ) = {1}, i.e. R1(Λ) = ∅, as well as R1(Λ) 6= ∅. The
following examples are taken from [18].

Example 3.9. Let λn = n!. Then R(Λ) is the singleton {1}.

Example 3.10. (1) For λn = log n (the classical Dirichlet series) or λn = n,
every ` ∈ N belongs to R(Λ).

(2) Consider a geometric sequence (λn) with the ratio q > 1, given by
λ1 > 0 and λn = λ1q

n−1, n ≥ 1. In this case any value q` (` ∈ N) belongs to
R(Λ).

Now let a ∈ R1(Λ) be given. In principle, for each n ∈ N, the index mn ≥ n
for which λmn = aλn, depends on a, i.e.mn = m

(a)
n (note that by Theorem 3.3,

if λ1 = 0, then m1 = 1). To simplify the expositions, in what follows, we skip
the superscript (a) whenever there is no confusion in context.

For n ∈ N and z ∈ C, we also define the quantity

rn(a, z) = rn(Λ, β, a, z) := e−λnz
βmn
βn

.

Now we are able to state and prove the following boundedness criterion for
the case a > 1.

Proposition 3.11. Let β∗ 6= ±∞, a > 1 and b ∈ C. Then Caz+b is a
bounded composition operator on H(β,Λ) if and only if the following condi-
tions are satisfied

(1) a ∈ R1(Λ),

(2) <(b) ≥ (1− a)
(L

2
− β∗

)
,

(3) the sequence
(
rn(a,<(b))

)
n≥1

is bounded.

Moreover, in this case,

‖Caz+b‖op = sup
n∈N

rn(a,<(b)).

Proof. Necessity. Suppose Caz+b is a bounded operator on H(β,Λ). Then
conditions (1) and (2) follow from Theorem 3.3. It remains to show (3).

There is some constant M > 0 such that ‖Caz+bf‖ ≤ M‖f‖ for all f ∈
H(β,Λ). In particular, for probe functions qn(z) = 1

βn
e−λnz, by (1) we have

Caz+bqn =
βmn
βn

e−λnbqmn , and thus

‖Caz+bqn‖ = e−λn<(b) · βmn
βn
≤M‖qn‖ = M, for all n ∈ N,

which gives (3).
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Sufficiency. Conversely, suppose all three conditions (1) – (3) are satisfied.
Note that (2) guarantees, by Lemma 3.2, that z 7→ az + b is a self-map of
CL

2 −β∗
. Also, (3) shows that there exists M > 0 such that 0 < rn(a,<(b)) ≤

M , for all n. Let f(z) =

∞∑
k=1

ane
−λnz ∈ H(β,Λ). Hence, by (1),

‖Caz+bf‖2 =

∞∑
n=1

|ane−λnb|2β2
mn =

∞∑
n=1

|an|2β2
nrn(a,<(b))2

≤ M2
∞∑
n=1

|an|2β2
n = M2‖f‖2,

which shows that Caz+b is bounded on H(β,Λ).
Moreover, from proofs of both necessity and sufficiency it follows that

‖Caz+b‖op = sup
n∈N

rn(a,<(b)). This completes the proof.

Combining Propositions 3.5, 3.6 and 3.11, we obtain a characterization of
boundedness for Caz+b on H(β,Λ).

Theorem 3.12. Let β∗ 6= ±∞ and ϕ(z) = az + b (a, b ∈ C). Consider the
following statements.

(1) ϕ(z) = b for some b ∈ C with <(b) >
L

2
− β∗.

(2) ϕ(z) = az + b, where
a ∈ R(Λ),

<(b) ≥ (1− a)
(L

2
− β∗

)
,

the sequence
(
rn(a,<(b))

)
n≥1

is bounded.

The following are true for a composition operator Cϕ acting on the space
H(β,Λ).

(i) If λ1 = 0, then Cϕ is bounded if and only if either (1) or (2) holds.
(ii) If λ1 > 0, then Cϕ is bounded if and only if (2) holds.

4. Essential norm, compactness, Schatten class and compact differ-
ences

4.1. Essential norm and compactness
Compactness of a bounded composition operator on a Hilbert space H(β,Λ)
can be investigated in different ways. The first makes use of a compactness
criterion which states that a bounded linear operator T on H(β,Λ) is compact
if and only if for any sequence (fn) from H(β,Λ) which is weakly convergent
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to 0, the sequence (Tfn) converges strongly to 0 in H(β,Λ). The other way is
via the essential norm of T defined by

‖T‖e = inf{‖T −K‖op : K is a compact operator on H(β,Λ)}.

Clearly, T is compact if and only if ‖T‖e = 0.
For a bounded composition operator Caz+b, in case a = 0, by Proposition

3.5, we have the following simple result.

Proposition 4.1. Let β∗ 6= ±∞. For any b ∈ CL
2 −β∗

, a composition

operator Cb is always compact on the space H(β,Λ).

Proof. As noted in Proposition 3.5, Cb has rank one and hence it is
compact.

Proposition 4.2. Let β∗ 6= ±∞ and let Cz+b be a bounded composition
operator on H(β,Λ). Then

‖Cz+b‖e =

{
1 if <(b) = 0

0 if <(b) > 0.

In particular, Cz+b is a compact operator on H(β,Λ) if and only if <(b) > 0.

Proof. Proposition 3.6 shows that <(b) ≥ 0. Furthermore, as already
noticed, Cz+b is a diagonal operator with a sequence of eigenvalues equal to
(eλkb)k≥1. But then it is well-known (see for instance [13, Problem 171]) that

‖Cz+b‖e = lim
n→∞

e−λn<(b), which gives the desired conclusion.

Proposition 4.2 can also be obtained from the following results for a ≥ 1.

Theorem 4.3. Let β∗ 6= ±∞, a ≥ 1 and Caz+b be a bounded composi-
tion operator on the space H(β,Λ). Then ‖Caz+b‖e = lim sup

n→∞
rn(a,<(b)). In

particular, Caz+b is compact if and only if lim
n→∞

rn(a,<(b)) = 0.

Proof. We follow the standard technique (see, e.g., [6]).

Note that by Theorem 3.12, the sequence
(
rn(a,<(b))

)
n≥1

is bounded.

• Upper bound. We use compact (finite rank) operators on H(β,Λ) defined
by

KN : f(z) =

∞∑
n=1

ane
−λnz 7−→

N∑
n=1

ane
−λnz (N ∈ N).

As the Caz+bKN are also compact, we have

‖Caz+b‖e ≤ inf
N≥1
‖Caz+b − Caz+bKN‖op.
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Observe that for an arbitrary f(z) =

∞∑
n=1

ane
−λnz ∈ H(β,Λ) we have

‖(Caz+b − Caz+bKN )f‖2 =
∥∥∥ ∞∑
n=N+1

ane
−λn(az+b)

∥∥∥2
=

∞∑
n=N+1

|an|2e−2λn<(b)β2
mn ≤ sup

n≥N+1

(
e−λn<(b)

βmn
βn

)2 ∞∑
n=N+1

|an|2β2
n

≤ ‖f‖2 sup
n≥N+1

rn(a,<(b)).

Thus

‖Caz+b‖e ≤ sup
n≥N+1

rn(a,<(b)), for every N ≥ 1.

Letting N →∞, we get

‖Caz+b‖e ≤ lim sup
n→∞

rn(a,<(b)).

• Lower bound. Let K be an arbitrary compact operator on H(β,Λ). Con-
sider the sequence of probe functions (qn)n≥1, whose norms are all 1. Since it
converges weakly to 0 (because it is an orthonormal basis), lim

n→∞
‖Kqn‖ = 0.

Hence

‖Caz+b −K‖op ≥ ‖(Caz+b −K)qn‖ ≥ ‖Caz+bqn‖ − ‖Kqn‖ (n ≥ 1),

from which it follows that

‖Caz+b −K‖op ≥ lim sup
n→∞

(‖Caz+bqn‖ − ‖Kqn‖) = lim sup
n→∞

‖Caz+bqn‖

= lim sup
n→∞

(
e−λn<(b)

βmn
βn

)
= lim sup

n→∞
rn(a,<(b)).

Taking the infimum over all compact operators K on H(β,Λ), we obtain

‖Caz+b −K‖e ≥ lim sup
n→∞

rn(a,<(b)).

This completes the proof.

4.2. Schatten class
Recall that a bounded linear operator T on H(β,Λ) is called a Hilbert–
Schmidt operator if it has finite Hilbert–Schmidt norm ‖T‖HS, which means
that for some orthonormal basis (en)n≥1 of H(β,Λ), we have

‖T‖HS :=
(∑
n∈N
‖Ten‖2

)1/2
< +∞.
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It is well known that ‖T‖HS does not depend on the choice of the orthonormal
basis and that if T is Hilbert–Schmidt, then it is compact.

Furthermore, for 0 < p < ∞, the Schatten p-class consists of all bounded
linear operators T on H(β,Λ) for which (T ∗T )p/4 is a Hilbert–Schmidt op-
erator (here T ∗ is the adjoint operator of T ). The set of Schatten p-class
operators forms an ideal in the algebra of all bounded linear operators on
H(β,Λ). If T is diagonal with respect to an orthonormal basis (en)n≥1, that
is, Ten = an en for all n ≥ 1, then it is well known that T belongs to the Schat-

ten p-class if and only if

∞∑
n=1

|an|p < ∞. Some developments on operators in

Schatten classes can be found in [21].
We study a Schatten class membership of Caz+b. For a bounded operator

Caz+b on H(β,Λ), since Caz+bqn =
βmn
βn

e−λnbqmn , therefore ‖Caz+bqn‖ =

e−λn<(b)· βmnβn = rn(a,<(b)), and we get an immediate result about its Hilbert–

Schmidt property.

Proposition 4.4. Let β∗ 6= ±∞. A bounded composition operator Caz+b
on H(β,Λ) is a Hilbert–Schmidt operator if and only if

∞∑
n=1

rn(a,<(b))2 <∞.

Concerning the Schatten p-class membership, for two trivial cases a = 0
and a = 1, some results can be obtained easily.

Proposition 4.5. Let 0 < p <∞. A bounded composition operator Cb on
H(β,Λ) belongs to the Schatten p-class.

Proof. Since Cb is of rank one, in particular it is of finite rank and so has
finitely many non-zero singular values. Done.

Also for the case a = 1, as noted in Proposition 3.6, Cz+b is a diagonal oper-
ator with a sequence of eigenvalues (e−λnb)n≥1 corresponding to eigenvectors
(qn)n≥1, and thus we have the following result.

Proposition 4.6. Let 0 < p < ∞ and β∗ 6= ±∞. A bounded composition
operator Cz+b on H(β,Λ) belongs to the Schatten p-class if and only if

∞∑
n=1

e−pλn<(b) <∞.

In particular, Cz+b belongs to the Schatten p-class if p<(b) > L, and does not
belong if p<(b) < L, where L is defined in (1.2).
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Note that the second statement of the proposition above follows from
Lemma 2.1.

To go further and get a similar result for a > 1, we need to compute the ad-

joint of Caz+b, which can be done easily. Indeed, for any g(z) =

∞∑
n=1

ane
−λnz ∈

H(β,Λ), we write (C∗az+bg)(z) =

∞∑
n=1

dne
−λnz and have

dnβn = 〈C∗az+bg, qn〉 = 〈g, Caz+bqn〉 =
〈 ∞∑
k=1

ake
−λkz, Caz+bqn

〉
. (4.1)

The terms 〈e−λkz, Caz+bqn〉 are computed in two cases:

- Case 1: a = 0. By Proposition 3.5, λ1 = 0 and hence

〈e−λkz, Cbqn〉 =

{
e−λnb

βn
β2
1 , k = 1

0, k > 1.

- Case 2: a ≥ 1. By Theorem 3.3, we have

〈e−λkz, Caz+bqn〉 =

{
e−λnb

βn
β2
mn , mn = k

0, mn 6= k.

Substituting back these equations into (4.1) yields the following result.

Proposition 4.7. Let β∗ 6= ±∞, and let Caz+b be a bounded composition

operator on H(β,Λ). If f(z) =

∞∑
n=1

ane
−λnz ∈ H(β,Λ), then

(C∗az+bf)(z) =


a1β

2
1

∞∑
n=1

e−λnb

β2
n

e−λnz, a = 0

∞∑
n=1

amn
β2
mne

−λnb

β2
n

e−λnz, a ≥ 1.

(4.2)

Proposition 4.8. Let a ≥ 1. The eigenvalues of C∗az+bCaz+b are precisely

rk(a,<(b))2, k ∈ N.

Proof. We appeal to Proposition 4.7 which provides an explicit formula
for the adjoint. Let gk = βkqk for all k ∈ N. We have (Caz+bgk)(z) =
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e−λkbe−λmkz. It follows that

(C∗az+bCaz+bgk)(z) = e−λkb
β2
mk

β2
k

e−λkbe−λkz = e−2λk<(b)
β2
mk

β2
k

gk(z)

= rk(a,<(b))2gk(z).

Now, recall that (gk)k≥1 forms an orthogonal basis of H(β,Λ). It follows
that the only eigenvalues are precisely those corresponding to these vectors,
i.e. precisely rk(a,<(b))2, k ∈ N, as claimed.

As rk(a,<(b)) > 0 for every k, we have the following corollary.

Corollary 4.9. The eigenvalues of |Caz+b| are precisely the values rk(a,<(b)),
k ∈ N.

As a consequence by direct substitution, we thus have the following the-
orem.

Theorem 4.10. Let 0 < p <∞ and a ≥ 1. Then, Caz+b is a pth Schatten
class operator if and only if

∞∑
k=1

rk(a,<(b))p <∞.

Remark 4.11. Note that the series

hp(z) =

∞∑
k=1

βpmk
βpk

e−pλkz,

is a Dirichlet series of type (pλn), which can be considered as a “complex

version” of the series

∞∑
k=1

rk(a, x)p when we replace x ∈ R by z ∈ C. By [14,

Chapter II, Theorem 8] the computation of σc is

σc = lim sup
n→∞

log

(
n∑
k=1

βpmk
βpk

)
pλn

.

Thus, if <(b) is larger than this value then hp(<(b)) converges and Caz+b is
Schatten p-class. If <(b) is smaller, then Caz+b is not Schatten p-class.

Remark 4.12. Note also that it is possible that the membership to the p-th
Schatten class of Caz+b does not rely on p at all. Pick a > 1 and Λ = (ak)k≥1.

In this case, L = 0. Then pick β =

(
k−1∏
i=1

ea
i

)
k≥1

, for which β∗ =
1

a2 − a
and

Caz+b is a well-defined bounded composition operator on H(β,Λ). The real
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function hp(x) =

∞∑
k=1

epa
k

e−pa
kx =

∞∑
k=1

e−pa
k(x−1) converges for all x > 1 and

diverges everywhere else, regardless of the value of p. It follows that Caz+b is
a Schatten p-class operator if and only if <(b) > 1.

4.3. Compact differences
In this section we determine when a difference of two bounded composition
operators Cϕ1 − Cϕ2 is a compact operator. Recall that the set of compact
operators form a vector space. Hence by Proposition 4.1 and Theorem 4.3, it
suffices to consider only the case when ϕ1 and ϕ2 are non-constant and the
associated sequences (rn) do not have limit 0.

Lemma 4.13. Let β∗ 6= ±∞, a, a′ ≥ 1. Let Caz+b and Ca′z+b′ be bounded
composition operators on H(β,Λ). Assume that

lim sup
n→∞

rn(a,<(b)) > 0 and lim sup
n→∞

rn(a′,<(b′)) > 0.

If Caz+b − Ca′z+b′ is compact, then a = a′.

Proof. Consider the sequence of probe functions (qk)k≥1. By Proposi-
tion 2.4, qk ⇀ 0. Since Caz+b − Ca′z+b′ is compact, therefore ‖(Caz+b −
Ca′z+b′)qk‖ → 0. Assume to the contrary that a 6= a′. Now, since for each

k we have m
(a)
k 6= m

(a′)
k , therefore we have

‖(Caz+b − Ca′z+b′)qk‖2 =

∥∥∥∥ 1

βk
e−λkbe

−λ
m

(a)
k

z
− 1

βk
e−λkb

′
e
−λ

m
(a′)
k

z
∥∥∥∥2

=
1

β2
k

e−2λk<(b)β2

m
(a)
k

+
1

β2
k

e−2λk<(b
′)β2

m
(a′)
k

= rk(a,<(b))2 + rk(a′,<(b′))2,

which gives the desired contradiction.

Proposition 4.14. Let β∗ 6= ±∞, a ≥ 1. Suppose that Caz+b and Caz+b′

are bounded composition operators on H(β,Λ). Then

‖Caz+b − Caz+b′‖e = lim sup
k→∞

βmk
βk

∣∣∣e−λkb − e−λkb′ ∣∣∣ .
Proof. As before we define the finite-rank (and compact) partial sum

operator KN (see the proof of Theorem 4.3). Then (Caz+b − Caz+b′)KN is
compact and

‖Caz+b − Caz+b′‖e ≤ ‖(Caz+b − Caz+b′)(I −KN )‖op,

where I is the identity operator on H(β,Λ).
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Let f(z) =

∞∑
n=1

ane
−λnz ∈ H(β,Λ). We then have

‖(Caz+b − Caz+b′)(I −KN )(f)‖2 =

∥∥∥∥∥
∞∑

n=N+1

ane
−λnbe−λmnz −

∞∑
n=N+1

ane
−λnb′e−λmnz

∥∥∥∥∥
2

=

∞∑
n=N+1

|an|2
∣∣∣e−λnb − e−λnb′ ∣∣∣2 β2

mn

≤ sup
n≥N+1

β2
mn

β2
n

∣∣∣e−λnb − e−λnb′ ∣∣∣2 ‖f‖2.
It therefore follows that ‖(Caz+b−Caz+b′)(I−KN )‖ ≤ sup

n≥N+1

βmn
βn

∣∣∣e−λnb − e−λnb′∣∣∣.
Taking limits asN →∞ gives ‖Caz+b−Caz+b′‖e ≤ lim sup

n→∞

βmn
βn

∣∣∣e−λnb − e−λnb′ ∣∣∣.
On the other hand, consider the probe functions qk. Let K be a compact

operator on H(β,Λ). As before, we have ‖qk‖ = 1 for all k and ‖Kqk‖ → 0.
We have

‖(Caz+b − Caz+b′)−K‖ ≥ lim sup
k→∞

(‖(Caz+b − Caz+b′)qk‖ − ‖Kqk‖)

≥ lim sup
k→∞

‖(Caz+b − Caz+b′)qk‖

= lim sup
k→∞

βmk
βk

∣∣∣e−λkb − e−λkb′ ∣∣∣ .
Taking infimum over all compact operators K gives

‖Caz+b − Caz+b′‖e ≥ lim sup
n→∞

βmn
βn

∣∣∣e−λnb − e−λnb′ ∣∣∣ ,
as needed. This completes the proof.

Theorem 4.15. Let β∗ 6= ±∞, and let Cϕ1
and Cϕ2

be bounded compos-
ition operators on H(β,Λ). Then the difference Cϕ1

− Cϕ2
is compact if and

only if
(1) both Cϕ1

and Cϕ2
are compact

or
(2) a ≥ 1, ϕ1(z) = az + b and ϕ2(z) = az + b′, where

(i) we have

lim sup
n→∞

rn(a,<(b)) > 0 and lim sup
n→∞

rn(a,<(b′)) > 0,

(ii) and lim
k→∞

βmk
βk

∣∣∣e−λkb − e−λkb′ ∣∣∣ = 0.
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Proof. Assume first that Cϕ1
− Cϕ2

is compact but one of the operators
Cϕ1

and Cϕ2
is not compact. Since the set of compact operators is a vector

space, it implies that indeed both operators Cϕ1 and Cϕ2 are not compact.
Now, according to Theorem 4.3, it means that condition (i) is satisfied (with
the second inequality in a′ instead of a). Then, we can apply Lemma 4.13 to
get that a = a′, i.e. ϕ1(z) = az + b and ϕ2(z) = az + b′. Condition (ii) now
follows immediately from Proposition 4.14.

Conversely, if both operators Cϕ1 and Cϕ2 are compact, then their differ-
ence is compact. Suppose now that ϕ1(z) = az+b and ϕ2(z) = az+b′, and (i)
and (ii) are satisfied. Proposition 4.14 implies that ‖Cϕ1

− Cϕ2
‖e = 0, which

gives that Cϕ1
− Cϕ2

is compact. This completes the proof.

Corollary 4.16. Let β∗ 6= ±∞, and let Cz+ci and Cz+c′i (c, c′ ∈ R) be
bounded composition operators on H(β,Λ). The operator Cz+ci − Cz+c′i is
compact if and only if lim

k→∞
cos(λk(c− c′)) = 1.

Proof. We see that mk = k and so βmk = βk, k ∈ N. Moreover, since
<(ci) = <(c′i) = 0, we have rn(a,<(ci)) = rn(a′,<(c′i)) = 1. Then, according
to Proposition 4.2 and Theorem 4.15, we see that Cz+ci − Cz+c′i is compact
if and only if

lim
k→∞

|e−λkci − e−λkc
′i| = 0.

An easy computation shows that

|e−λkci − e−λkc
′i|2 = 2− 2 cos(λk(c− c′)),

which gives the result.

Corollary 4.16 is an analogue of [19, Theorem 4.12] corresponding to the
case when β∗ =∞.

5. Closed range and cyclicity

In this section, we assume that Caz+b is a bounded composition operator on
H(β,Λ), which means that a and b satisfy conditions of Theorem 3.12.

5.1. Closed range
We denote by R(Cϕ) the range of Cϕ, i.e. Cϕ(H(β,Λ)). In this section we
determine when R(Cϕ) is closed. Note that when ϕ(z) = b (and λ1 = 0),
then R(Cϕ) is a one dimensional space (generated by the constant function
1 = e−λ1z) and so it is closed.

Proposition 5.1. Let β∗ 6= ±∞, a ≥ 1. Then, R(Caz+b) is closed if and
only if inf

n∈N
rn(a,<(b)) > 0.
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Proof. First note that it follows from the open mapping theorem and
uniqueness principle for analytic functions that, since ϕ is a non-constant
analytic function, then Cϕ is injective. Now, suppose B := inf

n∈N
rn(a,<(b)) > 0.

Let f(z) =

∞∑
n=1

ane
−λnz. Then,

‖Caz+bf‖2

‖f‖2
=

∞∑
n=1

|an|2β2
mne

−2λn<(b)

∞∑
n=1

|an|2β2
n

=

∞∑
n=1

|an|2β2
nrn(a,<(b))2

∞∑
n=1

|an|2β2
n

≥ B2.

Thus Caz+b is bounded from below and R(Caz+b) is hence closed.
On the other hand, suppose B := inf

n∈N
rn(a,<(b)) = 0. Let (nk) be a sub-

sequence of N such that rnk(a,<(b)) → 0. For each probe function qnk , we
then have

‖Caz+bqnk‖2

‖qnk‖2
=

1
β2
nk

β2
mnk

e−2λn<(b)

1
= rnk(a,<(b))2 → 0.

It follows that Caz+b cannot be bounded from below, and so R(Caz+b) is not
closed. This completes the proof.

Proposition 5.1 is an analogue of [7, Theorem 6].

Remark 5.2. In the non-constant case, a compact Caz+b cannot have
closed range, and vice-versa if Caz+b has closed range, it is not compact.

5.2. Cyclicity
Let X be a Banach space and T : X → X be a bounded operator. We define
the orbit of a vector x ∈ X (w.r.t. T ) as the set

Orb(T, x) = {Tnx : n ∈ N} .
Furthermore, we recall that T is said to be

• cyclic if there exists x ∈ X such that

Span(Orb(T, x)) = X,

• supercyclic if there exists x ∈ X such that

{µy : y ∈ Orb(T, x), µ ∈ C} = X.

Note that for a given operator on an Hilbert space H, if T is supercyclic,
then it is of course cyclic. We will discuss in this section the cyclicity and
supercyclicity of the operators Cϕ on H(β,Λ). As we will see, Cϕ is never
supercyclic but cyclicity will depend on the arithmetic properties of (λn)n≥1.
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It is trivial that if λ1 = 0, then of course the operators Cb and Cz are not
cyclic. Indeed, in both cases the orbit of f (for every f ∈ H(β,Λ)) contains
only one function and so the orbit cannot generate a dense subspace.

We now split our study in two cases, depending whether a = 1 or a > 1.
- The case a = 1.

To study this case, we need the following two general results. The first one
is quite classical and can be found for instance in [13, Chap. 18] for the finite
dimensional case and in [24, Lemma 1] for the general case. The proof of the
second one can be found in [17] and uses the spectral mapping theorem.

Lemma 5.3. Let D be a diagonal operator on an Hilbert space H, given by
Den = snen, n ≥ 1, where (en)n≥1 is an orthonormal basis of H. Then D is
cyclic if and only if sn 6= sm, n 6= m.

Lemma 5.4. Let T be a normal operator on a Hilbert space H of dimension
greater than 1. Then T is not supercyclic.

Proposition 5.5. Let β∗ 6= ±∞, b 6= 0. Then,

(1) Cz+b is cyclic if and only if (λn − λm)b ∈ C \ 2πZ whenever n 6= m,
and

(2) Cz+b is not supercyclic.

Proof. (1) Recall that the set of probe functions qk(z) =
1

βk
e−λkz form

a basis for H(β,Λ). Note also that for all k ∈ N,

(Cz+bqk)(z) = e−λkbqk(z).

That means that Cz+b is a diagonal operator with eigenvalue corresponding
to e−λkb. Thus (1) follows immediately from Lemma 5.3.

(2) Since Cz+b is diagonal, it is in particular normal. So (2) follows from
Lemma 5.4. This completes the proof.

- The case a > 1.
The situation in this case is more interesting and the behavior of the iterates

of Caz+b will depend on the following notion.
Given a ∈ R(Λ), Λ = (λn)n≥1, we define an initial point with respect to

a to be a term λk such that no n < k exists such that asλn = λk for some
s ∈ N. This is equivalent to say that, for s ∈ N0,

asλn = λk =⇒ s = 0 and n = k.

Note that λ1 is always an initial point and if λ1 = 0, then λ2 is an initial
point. Therefore, three cases may happen:

(1) (λn)n≥1 has precisely one initial point with respect to a. In that case,
it must be the case that λn = λ1a

n−1 for every n, and λ1 6= 0.
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(2) (λn)n≥1 has one zero and one non-zero initial point. In that case,
λ1 = 0 and λn = λ2a

n−2, n ≥ 2.
(3) (λn)n≥1 has at least two non-zero initial points.

Proposition 5.6. Let β∗ 6= ±∞, a > 1, and suppose (λn)n≥1 has precisely
one initial point with respect to a. Then, Caz+b is cyclic but not supercyclic.

Proof. Since (λn)n≥1 has precisely one initial point, it must be the case
that λn = λ1a

n−1 for every n, and λ1 6= 0. Let f(z) = e−λ1z. By induction,
we easily check that

(Ckaz+bf)(z) = exp(−(λ1 + λ2 + · · ·+ λk)b)e−λk+1z.

In particular, Orb(Caz+b, f) contains the vectors of the basis (qk)k≥1 ofH(β,Λ).
Therefore Caz+b is cyclic.

To show Caz+b is not supercyclic, we show that for every f ∈ H(β,Λ)
we can find a g such that dist(g, {µy : y ∈ Orb(Caz+b, f), µ ∈ C}) is bounded
below by some non-zero constant. There are two cases.

• Case 1: f(z) = a1e
−λ1z for some 0 6= a1 ∈ C. In this case, consider

the function g(z) = e−λ1z + e−λ2z. It is then easy to see that

‖µf − g‖2 = |µa1 − 1|2β2
1 + β2

2 ≥ β2
2 ,

‖µCaz+bf − g‖2 = β2
1 + |µa1e−λ1b − 1|2β2

2 ≥ β2
1 ,

‖µCkaz+bf − g‖2 ≥ β2
1 + β2

2 , ∀k ≥ 2.

Therefore dist(g, {µy : y ∈ Orb(Caz+b, f), µ ∈ C}) ≥ min {β1, β2}.
• Case 2: f(z) 6= a1e

−λ1z for any a1 ∈ C.

Write f(z) =

∞∑
n=1

ane
−λnz. Choose κ 6= 0,−a1 and pick g(z) =

κe−λ1z. Note that for all k ≥ 1 we have that the coefficient of e−λ1z

in the representation of Ckaz+bf is 0, it follows then that for each k ≥ 1,

we have ‖µCkaz+bf − g‖2 ≥ |κ|2β2
1 > 0.

It remains to consider k = 0. Observe that g does not belong
to Span(f) which is one-dimensional, therefore dist(span(f), g) > 0.
Thus dist(g, {µy : y ∈ Orb(Cϕ, f), µ ∈ C}) > 0.

This completes the proof.

Proposition 5.7. Let β∗ 6= ±∞, a > 1, and suppose (λn)n≥1 has at least
two non-zero initial points with respect to a. Then, Caz+b is not cyclic.

Proof. Let λp, λq denote two non-zero initial points. Suppose for the sake

of contradiction that Caz+b is cyclic. Let f(z) =

∞∑
n=1

ane
−λnz be a cyclic vector

for Caz+b.
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We claim that ap, aq 6= 0. Assume to the contrary that one of them is zero,
say WLOG ap = 0. Recall that Orb(Caz+b, f) =

{
f, Caz+bf, C

2
az+bf, . . .

}
.

Note that

(Ckaz+bf)(z) =

∞∑
n=1

an exp

(
−b1− ak

1− a

)
exp

(
−akλnz

)
.

Since λp is a non-zero initial point, akλn 6= λp for all k, n ≥ 1. It follows that
the coefficient of λp in any function in Orb(Caz+b, f) is always 0. Hence for
any f1 ∈ Span(Orb(Caz+b, f)), one has

‖f1 − qp‖2 ≥ 1.

Therefore Span(Orb(Caz+b, f)) cannot be dense in H(β,Λ), a contradiction,
completing the proof of the claim.

Hence ap, aq 6= 0. Since akλn 6= λp, λq for all k, n ≥ 1, the only func-
tion in Orb(Caz+b, f) with non-zero coefficients for e−λpz and e−λqz terms in
Span(Orb(Caz+b, f)) is f itself.

Consider now the function g(z) = ape
−λpz + 2aqe

−λqz ∈ H(β,Λ). Let F ∈
Span(Orb(Caz+b, f)) and fix a representation of F in elements of Orb(Caz+b, f).
Let w the coefficient of f in this representation. Then we have

‖F − g‖2 ≥ |w − 1|2|ap|2β2
p + |w − 2|2|aq|2β2

q .

Let ξ = |ap|2β2
p and η = |aq|2β2

q . Write w = w′ + 1. Then,

‖F − g‖2 ≥ ξ|w′|2 + η|w′ − 1|2

≥ ξ<(w′)2 + η(<(w′)− 1)2 ≥ ξη

ξ + η
,

where we used the fact that the expression ξx2 + η(x− 1)2 has minimum ξη
ξ+η

as x ranges over R. It follows that Span(Orb(Caz+b, f)) cannot be dense in
H(β,Λ). Contradiction.

It remains to study the case when (λn)n≥1 has precisely one zero and
one non-zero initial point with respect to a. In other words, λ1 = 0 and
λn = λ2a

n−2, n ≥ 2. In that case, we will give a characterization of cyclicity
in terms of (rn(a, b))n. Let us begin with the following result which can be
easily checked.

Proposition 5.8. Let β∗ 6= ±∞, a > 1, and suppose (λn) has precisely
one zero and one non-zero initial point with respect to a. Then the matrix M
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of Caz+b with respect to the orthonormal basis (qk) is

M =



1 0 0 . . .

0 0 0 . . .

0 r2(a, b) 0 . . .

0 0 r3(a, b) . . .
...

...
...

. . .


.

Since cyclicity is invariant under unitary transformation, we will work for
convenience with a transcription of our problem in the space of sequences `2.
Recall that

`2 =

{
a = (ak)k≥0 : ‖a‖22 =

∞∑
k=0

|ak|2 <∞

}
.

Now, it is clear that our problem is a particular case of the following more
general problem.

Question 5.9. Let α = (αn) be a bounded sequence of complex numbers
and suppose that T : `2 → `2 is the linear map whose matrix, with respect to
the canonical orthonormal basis {e0, e1, e2, . . . }, is given by

1 0 0 . . .

0 0 0 . . .

0 α1 0 . . .

0 0 α2 . . .
...

...
...

. . .


.

Is T cyclic?

Note that since (αn) is supposed to be bounded, it is easy to see that T
defines a bounded operator on `2.

In order to answer to Question 5.9, we need the following general result on
cyclicity.

Lemma 5.10. Let T : X −→ X be a bounded linear map on a Banach space
X. Assume that there exists λ ∈ C such that

dim ker(T ∗ − λI)) ≥ 2.

Then T is not cyclic.
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Proof. Let x1, x2 be two independent vectors in X∗ (the dual space of
X) such that T ∗(x∗i ) = λx∗i , i = 1, 2. Define the linear map

Θ : X −→ C2

v 7−→ (〈x∗1, v〉, 〈x∗2, v〉).

Observe that Θ is onto. Indeed, assume that Im(Θ) ( C2. In particular, there
is (λ, µ) ∈ C2 \ {(0, 0)} such that (λ, µ) ⊥ Im(Θ). That means that, for every
v ∈ X, we have λ〈x∗1, v〉+µ〈x∗2, v〉 = 0. In other words, we get λx∗1 +µx∗2 = 0,
but, since x∗1 and x∗2 are independent, we deduce that λ = µ = 0, which is
absurd. Hence Θ is onto.

Assume now that T is cyclic and let x ∈ X be a cyclic vector for T . Consider
the following subset of C2 defined by

A = {(〈x∗1, p(T )x〉, 〈x∗2, p(T )x〉) : p is a polynomial} .
Since x is a cyclic vector and Θ is onto, the set A should be dense in C2. Indeed,
let (λ, µ) ∈ C2. Using that Θ is onto, we get u ∈ X such that λ = 〈x∗1, u〉 and
µ = 〈x∗2, u〉. Using now that x is a cyclic vector, given ε > 0, we can find a
polynomial p such that ‖p(T )x− u‖X ≤ ε. Hence

|〈x∗1, p(T )x〉 − λ| = |〈x∗1, p(T )x− u〉| ≤ ‖x∗1‖ε
and similarly

|〈x∗2, p(T )x〉 − µ| = |〈x∗2, p(T )x− u〉| ≤ ‖x∗2‖ε.
These two inequalities imply that (λ, µ) is in the closure of A, and thus A is
dense in C2. It remains to prove that this is absurd. First observe that

A = {(〈p(T ∗)x∗1, x〉, 〈p(T ∗)x∗2, x〉) : p is a polynomial}
= {p(λ)(〈x∗1, x〉, 〈x∗2, x〉) : p is a polynomial}
= {p(λ)Θ(x) : p is a polynomial} .

If 〈x∗1, x〉 = 0 or 〈x∗2, x〉 = 0, then either A ⊂ {0} × C or A ⊂ C× {0}, and of
course A cannot be dense in C2. Now assume that 〈x∗1, x〉 6= 0 and 〈x∗2, x〉 6= 0,
and take

z =
〈x∗2, x〉
2〈x∗1, x〉

.

Since A is dense in C2, the point (1, z) belongs to the closure of A. In particu-
lar, there exists a sequence of polynomials (pn)n such that pn(λ)Θ(x)→ (1, z),
as n→∞. That means that

pn(λ)〈x∗1, x〉 → 1, as n→∞, (5.1)

and

pn(λ)〈x∗2, x〉 → z, as n→∞. (5.2)
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In particular, zpn(λ)〈x∗1, x〉 − pn(λ)〈x∗2, x〉 → 0, as n→∞. But observe that

zpn(λ)〈x∗1, x〉 − pn(λ)〈x∗2, x〉 = pn(λ)

(
〈x∗2, x〉

2
− 〈x∗2, x〉

)
= −pn(λ)

〈x∗2, x〉
2

,

which implies that pn(λ) → 0, as n → ∞. That contradicts (5.1). Hence A
cannot be dense, proving that indeed T is not cyclic.

We are now ready to prove the following.

Theorem 5.11. Let T be defined as in Question 5.9, and let ωj := α1 . . . αj,
j ≥ 1. Then T is cyclic if and only if

∞∑
j=1

1

|ωj |2
=∞.

Proof. First assume that

∞∑
j=1

1

|ωj |2
< ∞ and let us prove that T is not

cyclic. Let a = (a0, a1, a2, . . . ) ∈ `2. Observe that T ∗a = a if and only if
1 0 0 0 0 . . .

0 0 α1 0 0 . . .

0 0 0 α2 0 . . .
...

...
...

...
...

. . .



a0

a1

a2
...

 =


a0

a1

a2
...

 ,

which is equivalent to
αjaj+1 = aj , j ≥ 1.

Thus a ∈ ker(T ∗ − I) if and only if a0, a1 ∈ C and aj = 1
ωj−1

a1, j ≥ 2. In

particular, we get that dim(ker(T ∗ − I)) = 2. Lemma 5.10 implies now that
T is not cyclic.

Conversely, assume that

∞∑
j=1

1

|ωj |2
=∞ and let us prove that f = (1, 1, 0, 0, . . . )

is cyclic for T . Argue by absurdity and assume that f is not cyclic for T . Then
there exists a non zero element b = (b0, b1, b2, . . . ) ∈ `2 such that b ⊥ T kf , for
every k ≥ 0. We get the following system

b0 + b1 = 0

b0 + α1b2 = 0

b0 + α1α2b3 = 0

...
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This is equivalent to {
b0 + b1 = 0

b0 + ωjbj+1 = 0, j ≥ 1.

Clearly if b0 = 0, then bj = 0 for all j, hence b = 0, which is a contradiction.
If b0 6= 0, then b1 = −b0 and bj+1 = − 1

ωj
b0. But since by hypothesis we have

∞∑
j=1

1

|ωj |2
= ∞, we deduce that b = (bj)j≥0 does not belong to `2, which is a

contradiction. We are done.

We immediately deduce from Theorem 5.11 a solution of the remaining
case for cyclicity of Caz+b.

Corollary 5.12. Let β∗ 6= ±∞, a > 1, and suppose (λn) has precisely

one zero and one non-zero initial point with respect to a. Let ωj =

j+1∏
k=2

rk(a, b),

j ≥ 2. Then Caz+b is cyclic if and only if

∞∑
j=2

1

|ωj |2
=∞.

This characterization leads to a condition which is much easier to check.

Corollary 5.13. Let β∗ 6= ±∞, a > 1, and suppose (λn) has precisely
one zero and one non-zero initial point with respect to a.

(i) If <(b) > (a− 1)β∗, then Caz+b is cyclic.
(ii) If <(b) = (a− 1)β∗, then both cyclic and non-cyclic behaviors can be

exhibited.

Before we begin the proof, we remark that the above corollary completes
the characterization of cyclicity for this case. It is easy to check that for such
a (λn), we have L = 0. Since Caz+b is necessarily bounded, by Theorem 3.12
we must have <(b) ≥ (1− a)

(
L
2 − β∗

)
= (a− 1)β∗.

Proof of Corollary 5.13. A direct computation shows that

|ωj |−1 =

j+1∏
k=2

|rk(a, b)|−1 =
β2
βj+2

exp

(
<(b)

j+1∑
k=2

λk

)

=
β2
βj+2

exp

(
λ2<(b)

aj − 1

a− 1

)
.
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(i) Assume first that <(b) > (a−1)β∗. Since β∗ = lim inf
n→∞

log βn
λn

is finite, there

exists ε > 0 and a strictly increasing sequence of natural numbers (np)p such
that, for all p,

log βnp ≤
<(b)− ε
a− 1

λnp .

In other words,

log βnp ≤
<(b)− ε
a− 1

anp−2λ2.

Set jp = np − 2 and observe that

|ωjp |−1 ≥ β2 exp

(
λ2<(b)

ajp − 1

a− 1
− λ2

<(b)− ε
a− 1

ajp
)

= β2 exp

(
λ2

ajp

a− 1
(ε+ o(1))

)
.

In particular, |ωjp |−1 →∞ as p→∞, so that (ωj)
−1 /∈ `2. By Corollary 5.12,

we deduce that Caz+b is cyclic.

(ii) First take βn = exp
(
λ2a

n−2

a−1

)
and <(b) = 1. We shall verify such a

choice of Caz+b is valid for H(β,Λ). The sequence (rn(a,<(b))) is bounded,
by Theorem 3.12. Indeed, for n ≥ 2,

rn(a,<(b)) = e−λn<(b)
βn+1

βn
= exp

(
−λ2an−2 +

λ2a
n−1

a− 1
− λ2a

n−2

a− 1

)
= e0 = 1.

Furthermore,

β∗ = lim inf
n→∞

λ2a
n−2

(a− 1)λ2an−2
=

1

a− 1
,

so that <(b) = (a− 1)β∗ = 1. By Theorem 3.12, this choice is valid. Finally,

|ωj |−1 =
β2
βj+2

exp

(
λ2
aj − 1

a− 1

)
= β2 exp

(
− λ2
a− 1

)
.

Hence, (|ωj |−1)j 6∈ `2 and then Caz+b is cyclic.

On the other hand, if we take βn = n2 exp
(
λ2a

n−2

a−1

)
and <(b) = 1, we can

verify in the same manner that rn(a, 1)→ 1 as n→∞, and have again

β∗ = lim inf
n→∞

2 log n+ λ2a
n−2

(a− 1)λ2an−2
=

1

a− 1
,

and

|ωj |−1 =
β2
βj+2

exp

(
λ2
aj − 1

a− 1

)
=
β2 exp

(
− λ2

a−1

)
(j + 2)2

.

Thus (|ωj |−1)j ∈ `2 and then Caz+b is not cyclic. This completes the proof.
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We end this section with a result which completes Proposition 5.5 on super-
cyclicity. As the proof methodology is similar to arguments in Proposition 5.6,
we omit the full details and provide a sketch.

Proposition 5.14. Let β∗ = ±∞, a > 1, and suppose (λn) has precisely
one zero and one non-zero initial point with respect to a. Then, Caz+b is not
supercyclic.

Proof (Outline). The idea is for every f ∈ H(β,Λ), we can find a func-
tion g and a constantB > 0 such that dist(g, {µy : y ∈ Orb(Caz+b, f), µ ∈ C}) ≥
B. The proof is split into four cases.

- Case 1: f(z) ≡ a1 (a1 ∈ C). The result is obvious as Orb(Caz+b, f) has
only one element, so {µy : y ∈ Orb(Caz+b, f), µ ∈ C} has dimension 1.

- Case 2: f(z) = a2e
−λ2z, a2 6= 0. Pick g(z) ≡ b > 0. Since all h ∈

Orb(Caz+b, f) have zero constant part, it can be verified that taking B = |b|β1
works.

- Case 3: f(z) = a1 +a2e
−λ2z (a1, a2 6= 0). Pick g(z) = a1 +(a2 +1)e−λ2z.

Since λ2 is a non-zero initial point, following the proof of Proposition 5.6
(Case 2) yields ‖µCkaz+bf − g‖2 ≥ |a2 + 1|2β2

2 for all k ≥ 1. Furthermore the
computation for k = 0 gives

‖µf − g‖2 ≥ |µ− 1|2|a1|2β2
1 + |(µ− 1)a2 + 1|2β2

2 ,

which is minimized in a similar manner as in Proposition 5.7.
- Case 4: ∃k ≥ 3 such that ak 6= 0. Pick κ 6= 0,−a2 and g(z) = κe−λ2z.

This is again similar to Proposition 5.7. We are done.

6. Complex symmetry

In this section we investigate the complex symmetry property of Cϕ. In this
section we adopt the convention that

en(z) = βnqn(z) = e−λnz. (6.1)

6.1. Composition conjugations
Definition 6.1. Let H be a C-Hilbert space. A map C : H → H satisfying

the conditions of

(1) isometry: ‖Cx‖ = ‖x‖,∀x ∈ H,
(2) involutivity: CC = I, the identity map, and
(3) anti-linearity: C(λx+ µy) = λCx+ µCy,∀x, y ∈ H,∀λ, µ ∈ C,

is called a conjugation on H.

Definition 6.2. Let ξ : CL/2−β∗ → CL/2−β∗ be an analytic function.
Define

Jξf(z) = f(ξ(z)), ∀f ∈ H(β,Λ).
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If Jξ satisfies the definition of a conjugation, then it is called a composition
conjugation.

We will investigate composition conjugations induced by polynomial func-
tions ξ.

Theorem 6.3. Assume that ξ is a polynomial. The following statements
are equivalent.

(1) Jξ is a conjugation on H(β,Λ).
(2) ξ(z) = z + ci, c ∈ R.

Proof. (1) =⇒ (2): first let us note that since Jξ is a conjugation on
H(β,Λ), then ξ induces a bounded composition operator on H(β,Λ). Indeed,

let f(z) =

∞∑
n=1

ane
−λnz ∈ H(β,Λ). Then the function

f̃(z) =

∞∑
n=1

ane
−λnz

also belongs to H(β,Λ), and so Jξ f̃ ∈ H(β,Λ). Note now that

Jξ f̃(z) = f̃(ξ(z)) =

∞∑
n=1

ane
−λnξ(z) = (Cξf)(z).

Therefore, we get Cξf ∈ H(β,Λ) as required. In particular, according to
Theorem 3.12, ξ should be of the form ξ(z) = az + b, where a = 0 and
<(b) > L

2 − β∗ or a ≥ 1 and <(b) ≥ (1− a)(L2 − β∗).
First, we will show that a 6= 0. Argue by absurdity and assume that a = 0.

Then ξ(z) = b and (Jξf)(z) = f(b). Apply that equation to the vector of the
orthonormal basis qk(z) = 1

βk
e−λkz, which gives

(Jξqk)(z) =
1

βk
e−λkz.

Since Jξ is an isometry, we get

β1
βk
e−λk<(b) = 1,

that is

−<(b) =
log(βk)

λk
− log(β1)

λk
, k ≥ 2.

Taking the limit when k → ∞, we get <(b) = −β∗. In particular, β∗ 6= ±∞
and the condition <(b) > L

2 − β∗ gives the contradiction. Hence a 6= 0.
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Let us show now that a = 1 and b ∈ iR. Remind that en(z) = e−λnz ∈
H(β,Λ). Since Jξ is conjugation on H(β,Λ), we have en = J2

ξ en, which gives

e−λnz =Jξ(en)(ξ(z)))

=Jξ(e
−λnξ(z))

=e−λnξ(ξ(z)).

By analyticity, we get that for every n ≥ 1, there exists kn ∈ Z such that

−λnξ(ξ(z)) = −λnz + 2iπkn.

In particular, since λ2 > λ1 ≥ 0, we deduce that

ξ(ξ(z)) = z − 2iπk2
λ2

= z + ic1,

where c1 = −2π k2λ2
∈ R. Recall now that ξ(z) = az + b. An easy computation

shows that ξ(ξ(z)) = a2z + āb + b̄. Hence, we see that a2 = 1, that a = 1
(because a ≥ 0) and b + b̄ = ic1, that is 2<(b) = ic1. This implies that
<(b) = c1 = 0. Finally, we get that ξ(z) = z + i=(b) = z + ic, with c ∈ R.

(2) =⇒ (1): assume that ξ(z) = z + ic, c ∈ R. Since <(ξ(z)) = <(z),
it is clear that ξ maps CL

2 −β∗
into itself. Then Jξ is well defined. Now, if

f(z) =

∞∑
n=1

ane
−λnz ∈ H(β,Λ), then

(Jξf)(z) =

∞∑
n=1

ane
−λnξ(z) =

∞∑
n=1

ane
−icλne−λnz.

Since
∣∣ane−icλn ∣∣ = |an|, we see that Jξf ∈ H(β,Λ). Moreover,

‖Jξf‖2 =

∞∑
n=1

β2
n|an|2 = ‖f‖2.

Hence, Jξ is an isometry from H(β,Λ) into itself. It is of course antilinear. It
remains to check that Jξ is involutive. But, note that

(Jξen)(z) = e−λnξ(z) = e−icλne−λnz = e−icλnen(z),

and so

J2
ξ (en) = Jξ(e

−icλnen) = eicλnJξ(en) = eicλne−icλnen = en

By linearity and continuity of J2
ξ , and density of

∨
(en : n ≥ 1) in H(β,Λ),

we get that J2
ξ = I. This proves that Jξ is a conjugation on H(β,Λ) and

completes the proof.
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6.2. Complex symmetry
Having proven the form of composition conjugations Jξ on H(β,Λ), we can
now consider the complex symmetry property of bounded composition oper-
ators on H(β,Λ) with respect to conjugations Jξ.

Definition 6.4. Let T be a continuous linear operator mapping a Hilbert
space H to itself. Given that C is a conjugation, we say that T is C-symmetric,
or complex symmetric with respect to C, if

CTC = T ∗.

If such a C exists, we say that T is complex symmetric.

Recall that Proposition 4.7 provides explicitly the adjoint functions C∗az+b.
The following two results follow easily (cf. [9]).

Proposition 6.5. The following are true.

(1) C∗z+b = Cz+b.
(2) If a > 1, then kerC∗az+b is non-trivial.

Proof. (1) follows directly from Proposition 4.7 (note that since a = 1
we have mn = n). Let us now prove (2). If λ1 6= 0, then λm1 = aλ1 > λ1, and
so m1 > 1. It follows from (4.2) that since j 7→ mj is strictly increasing, we
have C∗az+be1 = 0, that is e1 ∈ kerC∗az+b. If λ1 = 0, then m1 = 1 and arguing
as before, we show that e2 ∈ kerC∗az+b. This completes the proof.

As already mentioned, composition operators associated to non-constant
analytic symbols are injective. Thus we immediately get the following.

Corollary 6.6. Suppose β∗ 6= ±∞. Let a > 1 and suppose Caz+b is a
bounded composition operator on H(β,Λ). Then, no symbol ψ exists such that
C∗az+b = Cψ (here, ψ need not be a polynomial).

Proof. First note that since a > 1, then there cannot exists a constant
symbol ψ such that C∗az+b = Cψ. Then it remains to apply Proposition 6.5
(2) to get the result. Done.

Proposition 6.7. Let ξ(z) = z + ci, c ∈ R. Let b ∈ C and suppose that
<(b) ≥ 0. Then Cz+b is Jξ-symmetric.

Proof. Remind that en(z) = e−λnz, n ≥ 1. Since a = 1, mn = n, n ≥ 1,
and so, on one hand, we have

(Cz+bJξen)(z) = Cz+b
(
e−λncie−λnz

)
= e−λn(b+ci)e−λnz.

On the other hand, by (4.2), we have

(JξC
∗
z+ben)(z) = Jξ

(
e−λnbe−λnz

)
= e−λn(b+ci)e−λnz.
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Thus Cz+bJξ and JξC
∗
z+b coincide on an orthogonal basis, whence Cz+bJξ =

JξC
∗
z+b. Hence Cz+b is Jξ-symmetric. This completes the proof.

The above shows that all bounded composition operators with symbol Cz+b
is complex symmetric. To determine the complex symmetry property of Caz+b
when a > 1, we recall the following result.

Lemma 6.8 ([10]). Let T be a complex symmetric operator. Then, dim kerT ∗ =
dim kerT .

Now we may prove the following result.

Proposition 6.9. Let β∗ 6= ±∞ and a > 1. Then, Caz+b is not complex
symmetric on H(β,Λ).

Proof. It follows immediately from Lemma 6.8 and Proposition 6.5 and
the fact that Caz+b is one to one.

Finally we consider the constant case.

Lemma 6.10 ([11]). Any rank one operator is complex symmetric.

We deduce immediately the following.

Corollary 6.11. Let λ1 = 0 and β∗ 6= ±∞. Then, Cb is complex sym-
metric on H(β,Λ).

We can summarize all the previous results to obtain the following charac-
terization of complex symmetric composition operators.

Theorem 6.12. Let β∗ 6= ±∞ and Cϕ be a bounded composition operator
on H(β,Λ). Then:

(1) If ϕ(z) = z + b, then Cϕ is complex symmetric. More precisely, Cϕ
is Jξ-symmetric for all composition conjugations Jξ where ξ(z) = z+
ci, c ∈ R.

(2) If ϕ(z) = az + b where a ∈ R1(λn), then Cϕ is never complex sym-
metric.

(3) If λ1 = 0, then Cb is complex symmetric.

7. On similar results when β∗ =∞

In [8], a characterization for boundedness of Cϕ on H(β,Λ) in the case of
β∗ =∞ was proven. Specifically, the authors prove the following analogue to
Theorem 3.12:

Theorem 7.1 ([8]). Let β∗ =∞. Let ϕ be an entire function. The following
are true.
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(1) If λ1 > 0, then Cϕ is a bounded composition operator on H(β,Λ) if
and only if ϕ(z) = z + b, <(b) ≥ 0.

(2) If λ1 = 0, then Cϕ is a bounded composition operator on H(β,Λ) if
and only if ϕ(z) = z + b, <(b) ≥ 0, or if ϕ is constant.

The authors also estimate ‖Cb‖op and compute ‖Cz+b‖op. They conjectured
that results on certain properties of bounded composition operators on spaces
{H(E, βS)}, a proper subset of the set of spaces A := {H(β,Λ) : β∗ = ∞},
hold for bounded composition operators on all spaces in A.

We remark that up to minor modifications in the proof, the following results
in our paper hold for all spaces in A. In the following list, the condition
β∗ =∞ is assumed. We will use the following observation:

rn(1,<(b)) = e−λn<(b). (7.1)

• Operator norms: Propositions 3.5 and 3.11. In the latter case the op-

erator norm simplifies via (7.1) to ‖Cz+b‖op = e−λ1<(b) (cf. [20]).
• Essential norms and compactness: Proposition 4.1 and Theorem 4.3

(cf. [19, 20]).
• Schatten class and adjoint: Propositions 4.6 (cf. [27]) and 4.7.
• Compact differences: Theorem 4.15 and Corollary 4.16. In the former,

condition (2)(i) simplifies to <(b) = <(b′) = 0 (c.f. [19]).
• Closed range: Section 5.1 preamble (on Cb) and Proposition 5.1. The

latter simplifies via (7.1) to the statement that R(Cz+b) is closed if
and only if <(b) = 0.
• Cyclicity: Section 5.2 preamble (on Cb) and Proposition 5.5.
• Conjugations: Theorem 6.3 (cf. [9]). It is worth noting that due to

Theorem 7.1, we can weaken the assumption on ξ to simply assuming
ξ is entire.
• Complex symmetry: Theorem 6.12, leaving out statement (2) (cf. [9]).
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