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 for the special case of cardinality one. We also show that the nth modified polynomial can be interpreted as the orthogonal projection onto the subspace of polynomials of degree n under a suitable norm on D µ .

Introduction

Let D be the open unit disk in the complex plane, and let T denote its boundary. The family of all analytic functions on D is denoted by Hol(D). For f ∈ Hol(D) and µ a positive and finite Borel measure on T, the quantity

(1.1) D µ (f ) = 1 π D |f (z)| 2 P µ(z) dA(z),
where dA(z) = dx dy is the planar Lebesgue measure, and P µ is the Poisson integral of µ given by

P µ(z) = T 1 -|z| 2 |z -ζ| 2 dµ(ζ), z ∈ D,
is called the harmonically weighted Dirichlet integral of f . The harmonically weighted Dirichlet space D(µ) consists of all functions f ∈ Hol(D)

with D µ (f ) < ∞ [START_REF] El-Fallah | A primer on the Dirichlet space[END_REF]. In the special case where µ = δ ζ , the Dirac measure at point ζ ∈ T, we write D ζ for D(δ ζ ). From various different view points, these spaces have been studied in the past two decades.

In particular, characterizing their multipliers [START_REF] Mashreghi | Hadamard multipliers on weighted Dirichlet spaces[END_REF][START_REF] Richter | Multipliers and invariant subspaces in the Dirichlet space[END_REF], formulating the invariant subspaces [START_REF] El-Fallah | Invariant subspaces of the Dirichlet space[END_REF][START_REF] Guillot | Fine boundary behavior and invariant subspaces of harmonically weighted Dirichlet spaces[END_REF][START_REF] Richter | Regularity for generators of invariant subspaces of the Dirichlet shift[END_REF][START_REF] Richter | A formula for the local Dirichlet integral[END_REF], their generalization with superharmonic weights [START_REF] Aleman | Hilbert spaces of analytic functions between the Hardy and the Dirichlet space[END_REF][START_REF] Bao | On Dirichlet spaces with a class of superharmonic weights[END_REF], polynomial approximation and connections to de Branges-Rovnyak spaces [START_REF] Chevrot | De Branges-Rovnyak spaces and Dirichlet spaces[END_REF][START_REF] Costara | Which de Branges-Rovnyak spaces are Dirichlet spaces (and vice versa)?[END_REF][START_REF] Sarason | Local Dirichlet spaces as de Branges-Rovnyak spaces[END_REF], cyclicity and explicit formulation of cyclic elements [START_REF] Abakumov | Cyclicity in the harmonic Dirichlet space[END_REF][START_REF] Brown | Cyclic vectors in the Dirichlet space[END_REF][START_REF] Eva | Cyclic vectors and invariant subspaces for Bergman and Dirichlet shifts[END_REF][START_REF] Knese | Cyclic polynomials in anisotropic Dirichlet spaces[END_REF][START_REF] Sola | A note on Dirichlet-type spaces and cyclic vectors in the unit ball of C 2[END_REF], and geometric interpretation of Carleson measures [START_REF] Chartrand | Multipliers and Carleson measures for D(µ). Integral Equations Operator Theory[END_REF][START_REF] Chacón | Carleson measures on Dirichlet-type spaces[END_REF][START_REF] Chacón | Carleson measures and reproducing kernel thesis in Dirichlet-type spaces[END_REF] are just the tip of iceberg for this active domain of research.

Let f ∈ Hol(D), f (z) = ∞ n=0 a k z k ,
and consider its sequence of Taylor polynomials P n f defined as

P n f (z) = n k=0 a k z k , n ≥ 0.
It is an elementary fact that P n f -f 2 2 → 0, as n → ∞, for all f ∈ H 2 . However, it is known that this property is no longer true in D(µ) spaces. See [START_REF] Mashreghi | Polynomial approximation in weighted Dirichlet spaces[END_REF] or [10, page 117]. Despite this shortcoming, we know that if one just properly modifies the last term of P n f , then we can approximate f ∈ D ζ by the new modified Taylor polynomials.

Theorem 1.1. [17, Corollary 2] Let f ∈ D ζ , say f (z) = ∞ k=0 a k z k . Then the series ∞ k=0 a k ζ k converges and, setting f n (z) = n-1 k=0 a k z k + ∞ k=n a k ζ k-n z n , we have f -f n D ζ → 0, n → ∞.
The main goal of this note is to generalize this result to D(µ) spaces, where µ is a finite sum of Dirac measures. As a general rule, the number of coefficients in the Taylor polynomial expansion that has to be modified is precisely equal to the cardinality of the support of measure. This fact, with further precision, is studied in Theorems 3.1 and 3.2.

The norm on D

µ A function f ∈ Hol(D) belongs to D ζ if and only if (2.1) f (z) = a + (z -ζ)g(z),
where g ∈ H 2 and a ∈ C. If so, a is the nontangential limit of f at ζ and

D ζ (f ) = g 2 2 .
Defining the difference quotient operator

Q ζ : D ζ → H 2 by (Q ζ f )(z) = f (z) -f (ζ) z -ζ , z ∈ D,
we can equip the space D ζ with the norm (2.2)

f 2 D ζ = f 2 2 + D ζ (f ) = f 2 2 + Q ζ f 2 2 . Let ζ 1 , . . . , ζ s be s distinct points on T. Let c j > 0 and consider the discrete measure µ = c 1 δ ζ 1 + • • • + c s δ ζs .
As a straightforward generalization of (2.1), each f ∈ D(µ) has the unique representation

(2.3) f (z) = a 0 + a 1 z + • • • + a s-1 z s-1 + (z -ζ 1 )(z -ζ 2 ) • • • (z -ζ s )g(z),
where g ∈ H 2 . It is easy to see that

g := Q ζ 1 Q ζ 2 • • • Q ζs f, (f ∈ D µ ).
In the light of (2.2), we define

(2.4) f 2 D(µ) = f 2 2 + s k=1 c k Q ζ k f 2 2 .
In the literature, some other norms on D µ are also considered. E.g., we may replace the last sum by

Q ζ 1 Q ζ 2 • • • Q ζs f 2 2
. However, all these norms are equivalent and does not affect our final results on convergence of polynomials.

Statement of main results

Let f (z) = ∞ k=0 a k z k and let Γ = {ζ j : 1 ≤ j ≤ s} be a subset of distinct points in T. Then, for each n ≥ s, we modify the last s coefficients of Taylor polynomial P Γ n f , say

P Γ n f (z) := n-s k=0 a k z k + b Γ n-s+1 z n-s+1 + • • • + b Γ n z n ,
and determine b Γ j s such that P Γ n f satisfies s equations

P Γ n f (ζ j ) = f (ζ j ), 1 ≤ j ≤ s.
However, in such a general setting, the new coefficients also depend on n and a more appropriate notation is

P Γ n f (z) := n-s k=0 a k z k + b Γ n,n-s+1 z n-s+1 + • • • + b Γ n,n z n .
However, in a harmonically weighted Dirichlet space, which is created by a finite singular measure supported at ζ j s, a very interesting and unique phenomenon happens. The coefficients b Γ j s are independent of the first index.

Theorem 3.1. Let Γ = {ζ 1 , . . . , ζ s } be a finite set of distinct points in T, let µ = c 1 δ ζ 1 + • • • + c s δ ζs , where c j > 0, 1 ≤ j ≤ s, and let f ∈ D(µ), say f (z) = ∞ k=0 a k z k . Then the following hold. (i) For every 1 ≤ j ≤ s, the series ∞ k=0 a k ζ k j converges and f (ζ j ) = ∞ k=0 a k ζ k j .
(ii) There exist unique coefficients b Γ n-s+1 , . . . , b Γ n such that the modified Taylor polynomials

P Γ n f (z) := n-s k=0 a k z k + b Γ n-s+1 z n-s+1 + • • • + b Γ n z n , n ≥ s, satisfy (3.1) P Γ n f (ζ j ) = f (ζ j ), 1 ≤ j ≤ s, n ≥ s.
Theorem 3.1 paves the road to obtain the following polynomial approximation result. It simply says that it is enough to modify the last s coefficients of Taylor polynomials in order to transform it to a convergent sequence.

Theorem 3.2. Let Γ = {ζ 1 , . . . , ζ s } be a finite set of distinct points in T, let µ = c 1 δ ζ 1 + • • • + c s δ ζs , where c j > 0, 1 ≤ j ≤ s, and let f ∈ D(µ). Then P Γ n f -f D(µ) → 0, n → ∞.
Whenever Γ is a singleton, even though the result is known and proved directly in [17, Corollary 2], we give a new and more transparent interpretation of this phenomenon. More precisely, we introduce a new norm on D ζ (but equivalent to the norm given by (2.4)) and a set of orthonormal polynomials (p n ) for this norm, for which P Γ n f is precisely the orthogonal projection of f onto P n , the subspace of polynomials of degree at most n, with respect to the orthonormal basis (p n ). We denote the orthogonal projection of f onto P n by P n f . 

f 2 D(ζ) = |f (ζ)| 2 + Q ζ f 2 2 . Define p 0 (z) = 1 and p n (z) = z n -ζz n-1 , n ≥ 1.
Then the family (p n ) n≥0 is an orthonormal basis for D ζ , and for each

f (z) = ∞ j=0 f (j)z j ∈ D ζ ,
we have

P Γ n f (z) = P n f (z) = n-1 j=0 f (j)z j + ∞ k=n f (k)ζ k-n z n and P n f → f in D ζ -norm. Moreover, dist D ζ (f, P n ) =    ∞ j=n+1 ∞ k=j f (k)ζ k-j 2    1/2 .
Theorem 3.3 reveals a uniqueness property of the orthogonal projections P n . 

f (j) = ĝ(j), 0 ≤ j ≤ n -1,
and

∞ k=n f (k)ζ k-n = ∞ k=n ĝ(k)ζ k-n .
As a special case, in D 1 , we see that 

P n z n = P n z n+1 = P n z n+2 = • • • = z n , n ≥ 0.
f (ζ j ) = lim r→1 -f (rζ j ) = ∞ k=0 a k ζ k j .
In other words, the radial limit of f at the boundary point ζ j exists and is equal to the corresponding Taylor series at that point.

(ii): According to (4.1), the conditions (3.1) are equivalent to

b Γ n-s+1 + b Γ n-s+1 ζ j + • • • + b Γ n ζ s-1 j = ∞ k=n-s+1 a k ζ k-(n-s+1) j , 1 ≤ j ≤ s.
More explicitly, these equations can be written in the matrix form AB = Z, where A is the Vandermonde matrix

A =     1 ζ 1 . . . ζ s-1 1 1 ζ 2 . . . ζ s-1 2 . . . . . . . . . . . . 1 ζ s . . . ζ s-1 s     , and 
B =     b Γ n-s+1 b Γ n-s+2 . . . b Γ n     , and Z =      ∞ k=n-s+1 a k ζ k-(n-s+1) 1 ∞ k=n-s+1 a k ζ k-(n-s+1) 2 . . . ∞ k=n-s+1 a k ζ k-(n-s+1) s     
Note that the components in vectors Z are well defined. The determinant of the Vandermonde matrix is det(A) = 1≤i<j≤s (ζ j -ζ i ) = 0 and thus A is invertible. That proves the unicity of the coefficients b Γ n-s+1 , . . . , b Γ n . Proof. (of Theorem 3.2) We argue by induction on the number of points in Γ. Let us first assume that s = 1 and Γ = Γ 1 = {ζ 1 }. Then, observe that

P Γ 1 n f (z) = n-1 k=0 a k z k + b Γ 1 n z n , where b Γ 1 n is such that P Γ 1 n f (ζ 1 ) = f (ζ 1 ). More explicitly, we easily see that b Γ 1 n = ∞ k=n a k ζ k-n 1
, and thus P Γ 1 n f is equal to the polynomial f n appearing in Theorem 1.1. The same result also ensures that

P Γ 1 n f -f D(δ ζ 1 ) → 0, n → ∞.
Assume now that the result is valid for s -1 distinct points in T and let Γ = {ζ 1 , . . . , ζ s } be a set of s distinct points in T. We consider the following two sets of s -1 distinct points in T

Γ 1 = {ζ 1 , ζ 3 , . . . , ζ s } and Γ 2 = {ζ 2 , ζ 3 , . . . , ζ s },
and let P Γ 1 n-1 f and P Γ 2 n-1 f be the corresponding modified Taylor polynomials. By the induction hypothesis, the n-1-(s-1)+1 = n-s+1 first coefficients of both polynomials coincide with the Taylor coefficients of f and, furthermore, (4.2)

P Γ 1 n-1 f (ζ j ) = f (ζ j ), j ∈ {1, 3, 4, . . . , n}, and 
(4.3) P Γ 2 n-1 f (ζ j ) = f (ζ j ), j ∈ {2, 3, 4, . . . , n}.
The induction hypothesis also says that (4.4)

P Γ 1 n-1 f -f D(µ 1 ) → 0 and P Γ 2 n-1 f -f D(µ 2 ) → 0, where µ 1 = c 1 δ ζ 1 + c 3 δ ζ 3 + • • • + c s δ ζs , and 
µ 2 = c 2 δ ζ 1 + c 3 δ ζ 3 + • • • + c s δ ζs . Let a = (ζ 2 -ζ 1 ) -1 and b = (ζ 1 -ζ 2 ) -1 , so that (4.5) a(z -ζ 1 ) + b(z -ζ 2 ) = 1, z ∈ C.
Now define the polynomial h n , of degree at most n, by

h n (z) = a(z -ζ 1 )P Γ 2 n-1 f (z) + b(z -ζ 2 )P Γ 1 n-1 f (z).
Let us first observe that h n = P Γ n f . Indeed, using (4.5), it is clear that the first n -s + 1 coefficients of h n coincide with the first n -s + 1 Taylor coefficients of f . Moreover, using (4.2) and (4.3), we have

h n (ζ 1 ) = b(ζ 1 -ζ 2 )P Γ 1 n-1 f (ζ 1 ) = b(ζ 1 -ζ 2 )f (ζ 1 ) = f (ζ 1 ), h n (ζ 2 ) = a(ζ 2 -ζ 1 )P Γ 2 n-1 f (ζ 2 ) = a(ζ 2 -ζ 1 )f (ζ 2 ) = f (ζ 2 )
, and, for every 3 ≤ j ≤ s, we have

h n (ζ j ) =a(ζ j -ζ 1 )P Γ 2 n-1 f (ζ j ) + b(ζ j -ζ 2 )P Γ 1 n-1 f (ζ j ) =(a(ζ j -ζ 1 ) + b(ζ j -ζ 2 ))f (ζ j ) = f (ζ j ).
Therefore by unicity of polynomials P Γ n f (Theorem 3.1), we deduce that h n = P Γ n f . It remains to verify that P Γ n f -f D(µ) → 0. According to (2.4) and (4.4), we know that (4.6)

P Γ 1 n-1 f -f 2 → 0 and P Γ 2 n-1 f -f 2 → 0, and for every 1 ≤ k ≤ s, k = 2, (4.7) Q ζ k (P Γ 1 n-1 f -f ) 2 → 0, and for every 2 ≤ k ≤ s, (4.8) Q ζ k (P Γ 2 n-1 f -f ) 2 → 0.
Using (4.5), we write

P Γ n f -f = a(z -ζ 1 )(P Γ 2 n-1 f -f ) + b(z -ζ 2 )(P Γ 1 n-1 f -f ).
On one hand, this implies that

P Γ n f -f 2 ≤ 2|a| P Γ 2 n-1 f -f 2 + 2|b| P Γ 1 n-1 f -f 2 ,
and it follows from (4.6) that (4.9)

P Γ n f -f 2 → 0.
On the other hand, observe that for 3 ≤ k ≤ s, we have

Q ζ k (P Γ n f -f ) = a(z -ζ 1 )Q ζ k (P Γ 2 n-1 f -f ) + b(z -ζ 2 )Q ζ k (P Γ 2 n-1 f -f ), and thus Q ζ k (P Γ n f -f ) 2 ≤ 2|a| Q ζ k (P Γ 2 n-1 f -f ) 2 + 2|b| Q ζ k (P Γ 1 n-1 f -f ) 2 .
It then follows from (4.7) and (4.8) that for every 3 ≤ k ≤ s, we have

Q ζ k (P Γ n f -f ) 2 → 0. It remains to check that this property is also valid for k ∈ {1, 2}. Since (P Γ n f -f )(ζ 1 ) = 0, we see that Q ζ 1 (P Γ n f -f )(z) = a(z -ζ 1 )(P Γ 2 n-1 f (z) -f (z)) + b(z -ζ 2 )(P Γ 1 n-1 f (z) -f (z)) z -ζ 1 =a(P Γ 2 n-1 f (z) -f (z)) + b(z -ζ 2 )Q ζ 1 (P Γ 1 n-1 f -f )(z). Then Q ζ 1 (P Γ n f -f ) ≤ |a| P Γ 2 n-1 f -f 2 + 2|b| Q ζ 1 (P Γ 1 n-1 f -f 2 ,
and we deduce from (4.6) and (4.7) that 

Q ζ 1 (P Γ n f -f ) → 0. For k = 2,
p m (ζ) p n (ζ) = 0, m = n. Moreover, Q ζ p 0 = 0 and Q ζ p n (z) = z n-1 , n ≥ 1.
Thus, we also have

Q ζ p m , Q ζ p n H 2 = 0, m = n.
Therefore, (p n ) n≥0 is an orthogonal family. In fact, the above observations, modified for the case m = n, show that its elements are normalized too. Thus, (p n ) n≥0 is an orthonormal family. To prove that this family is complete, we can use the result of Richter on density of polynomials, but we prefer giving a direct argument. So, let f ∈ D ζ such that f ⊥ p n , n ≥ 0. Then, we have

0 = f, p 0 D ζ = f (ζ)p 0 (ζ) + Q ζ f, Q ζ p 0 H 2 = f (ζ),
and, for every n ≥ 1,

0 = f, p n D ζ = f (ζ)p n (ζ) + Q ζ f, Q ζ p n H 2 = Q ζ f, z n-1 H 2 = Q ζ f (n -1).
In particular, we get that

Q ζ f = 0 and f (ζ) = 0, which proves that f = f (ζ)+(z-ζ)Q ζ f = 0.
Therefore, the family (p n ) n≥0 is orthonormal and complete, and thus actually an orthonormal basis of D ζ .

There is a g ∈ H 2 such that f (z) = a + (z -ζ)g(z). The decomposition of f with respect to the orthonormal basis (p j ) j≥0 is

f = f (ζ)p 0 + ∞ j=1 g(j -1)p j ,
where the convergence holds in D ζ -norm. Furthermore, the identity

f (z) = a + (z -ζ)g(z) implies that (4.10) ĝ(j) = ∞ k=j+1 f (k)ζ k-j-1 , j ≥ 0, and 
a = f (ζ) = ∞ k=0 f (k)ζ k .
See [10, P. 114]. Hence, the orthonormal decomposition of f with respect to the orthonormal basis

(p n ) n≥0 is (4.11) f = ∞ j=0 ∞ k=j f (k)ζ k-j p j .
Note that the scalar series f (k)ζ k is convergent, while the other series converges in D ζ -norm. The orthogonal decomposition also shows that the orthogonal projection of f ∈ D 1 onto P n is given by (4.12)

P n f = n j=0 ∞ k=j f (k)ζ k-j p j .
Therefore, by orthonormality of p n ,

dist D ζ (f, P n ) = f -P n f = ∞ j=n+1 ∞ k=j f (k)ζ k-j p j =    ∞ j=n+1 ∞ k=j f (k)ζ k-j 2    1/2 .
Since (p n ) n≥0 is an orthonormal basis for D ζ , we trivially deduce that

P n f → f in D ζ -norm.
Due to the special and simple form of p j , we can provide a simpler formulae for P n f . As a matter fact, we have

P n f = n j=0 ∞ k=j f (k)ζ k-j p j = ∞ k=0 f (k)ζ k p 0 + n j=1 ∞ k=j f (k)ζ k-j p j = ∞ k=0 f (k)ζ k + n j=1 ∞ k=j f (k)ζ k-j (z j -ζz j-1 ) = n-1 j=0 f (j)z j + ∞ k=n f (k)ζ k-n z n .
Finally, since by (4.12), P n f (ζ) = f (ζ), the uniqueness part of Theorem 3.1 ensures that P Γ n = P n f .

Concluding remarks

(i) In Theorem 3.2, the polynomial P Γ n f was recognized as the orthogonal projection of f onto P n under a suitable norm on D ζ . It is possible to provide a similar interpretation in the general setting for the polynomials given in Theorem 3.1. However, the calculations are drastically more complicated. (ii) In [START_REF] Mashreghi | Hadamard multipliers on weighted Dirichlet spaces[END_REF], the authors showed that Cesàro means (of order one) of Taylor polynomials is a convergent polynomial scheme in all superharmonically weighted Dirichlet spaces. In [START_REF] Mashreghi | Cesàro summability of Taylor series in weighted Dirichlet spaces[END_REF], this result was strengthened by showing that Cesàro means of order α > 1/2 are in fact a good remedy and, moreover, the frontier 1/2 is optimal. Is it possible to define an appropriate inner product on D µ such that the corresponding orthogonal projection onto P n gives the
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 4 Proofs Proof. (of Theorem 3.1) (i): Since f ∈ D(µ), it is clear that f ∈ D ζ j for each 1 ≤ j ≤ s. Hence, by Theorem 1.1, we see that the series ∞ k=0 a k ζ k j converges. Therefore, by Abel's Theorem, (4.1)

  the proof is the same. Finally we get P Γ n f -f D(µ) → 0. By induction, this concludes the proof of the theorem. Proof. (of Theorem 3.3) Since p 0 (ζ) = 1 and p n (ζ) = 0, n ≥ 1, we have
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