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ABBREVIATIONS 49 
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TGFβ Transforming growth factor beta 
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TTFLs Transcriptional-translational feedback loops  
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ABSTRACT 59 

 60 

Background and aims: Liver homeostasis is ensured in part by time-of-day-dependent 61 

processes, many of them being paced by the molecular circadian clock. Liver functions are 62 

compromised in metabolic dysfunction-associated steatotic liver (MASL) and metabolic 63 

dysfunction-associated steatohepatitis (MASH), and clock disruption increases susceptibility 64 

to metabolic dysfunction-associated steatotic liver disease (MASLD) progression in rodent 65 

models. We therefore investigated whether time-of-day-dependent transcriptome and 66 

metabolome are significantly altered in human steatotic and MASH livers. 67 

Methods: Liver biopsies, collected within an 8 hour-window from a carefully phenotyped 68 

cohort of 290 patients and histologically diagnosed to be either normal, steatotic or MASH 69 

hepatic tissues, were analyzed by RNA sequencing and unbiased metabolomic approaches. 70 

Time-of-day-dependent gene expression patterns and metabolomes were identified and 71 

compared between histologically normal, steatotic and MASH livers.  72 

Results: We provide here a first-of-its-kind report of a daytime-resolved human liver 73 

transcriptome-metabolome and associated alterations in MASLD. Transcriptomic analysis 74 

showed a robustness of core molecular clock components in steatotic and MASH livers. It also 75 

revealed stage-specific, time-of-day-dependent alterations of hundreds of transcripts 76 

involved in cell-to-cell communication, intra-cellular signaling and metabolism. Similarly, 77 

rhythmic amino acid and lipid metabolomes were affected in pathological livers.  Both TNF 78 

and PPARγ signaling were predicted as important contributors to altered rhythmicity. 79 

Conclusion: MASLD progression to MASH perturbs time-of-day-dependent processes in 80 

human livers, while the differential expression of core molecular clock components is 81 

maintained. 82 

 83 

  84 
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Impact and implications: This work characterizes the rhythmic patterns of the transcriptome 85 

and metabolome in human liver. Using a cohort of in-depth phenotyped patients (n=290) with 86 

known biopsy collection time-of-day, we show that time-of-day variations observed in 87 

histologically normal livers are gradually perturbed in liver steatosis and metabolically-88 

associated steatohepatitis. Importantly, these observations, albeit obtained on a restricted 89 

time window, bring further support to preclinical studies evidencing alterations of rhythmic 90 

patterns in diseased livers. On a practical side, this study calls for considering time-of-the-day 91 

as a critical biological variable which may significantly affect data interpretation in animal and 92 

human studies of liver diseases. 93 

 94 

 95 
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Graphical abstract:  98 

 99 

 100 

 101 

 102 

 103 

 104 

 105 

 106 

  107 



6 
 

INTRODUCTION 108 

Normal tissue homeostasis requires a precisely timed expression of genes and proteins 109 

around the clock and its alignment with cycles of light/dark exposure, feeding periods and 110 

physical activity. The central clock, located in the suprachiasmatic nucleus, is light-entrained 111 

and connects with peripheral tissues to synchronize clock oscillators in these tissues. However, 112 

peripheral tissue clocks can operate autonomously, i.e. independently of the central 113 

hypothalamic clock. For example, the major Zeitgeber (“time giver”) setting the liver clock is 114 

food intake/nutrient availability rather than daylight [1, 2].  Studies in nocturnal rodents of 115 

molecular mechanisms controlling these circadian regulations generated a global picture 116 

defining an universal molecular clock machinery [3].  This cell-autonomous circadian core clock 117 

is made of 2 autoregulatory loops comprising 14 transcription factors, encoded by so-called 118 

core clock genes (CCGs). Heterodimeric BMAL1 (ARNTL) and CLOCK (or NPAS2) transcriptional 119 

activators and PER and CRY transcriptional repressors, along with the nuclear receptors RORs, 120 

REV-ERBα and β constitute interlocked transcriptional-translational feedback loops (TTFLs).  121 

These TTFLs define a cell-autonomous clock machinery which controls clock output genes [4], 122 

in turn regulating multiple cellular functions [3]. 123 

Because most of primates (including humans) are diurnal, there are likely important 124 

differences from rodents in circadian regulation that have yet to be explored. A limited 125 

number of human time-of-day-resolved transcriptomes is available, especially for internal 126 

organs. Transcriptomes from whole blood [5, 6], peripheral blood mononuclear cells [7], skin 127 

[8], subcutaneous white adipose tissue [9, 10], heart montaigne [11]or skeletal muscle [12-128 

14]were analyzed for a relatively low number of subjects (n<30).  A gene expression study in 129 

subcutaneous white adipose tissue and skin from 625 healthy volunteers allowed the 130 

identification of time-of-day-regulated genes strongly enriched in CCGs [15]. 131 

Circadian rhythm dyssynchrony is observed in, and likely causative of, various diseases 132 

such as obesity and its complications like metabolic dysfunction-associated steatotic liver 133 

disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD). MASLD is a 134 

spectrum of liver conditions characterized by hepatic steatosis which combines, upon time, 135 

with varying degrees of necroinflammation and excluding excessive alcohol consumption [16].  136 

Its more severe, yet generally asymptomatic form, called metabolic dysfunction-associated 137 

steatohepatitis (MASH; formerly known as NASH, non-alcoholic steatohepatitis), may evolve 138 
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towards liver fibrosis, cirrhosis and hepatocellular carcinoma Large-scale MASLD patient 139 

cohort studies reported differences in gene expression between disease stages without time-140 

of-day information [17-20].  While hepatic metabolomes and transcriptomes are deregulated 141 

in rodent models of MASH and fibrosis [21, 22], whether this occurs similarly in human MASLD 142 

remains unknown.  A 24 hour-circadian transcriptome atlas of 64 tissues from healthy 143 

baboons identified only a small set of robustly cycling genes in liver, surprisingly not including 144 

CCGs [23].  Rhythmic gene expression patterns were inferred from the analysis of tissues 145 

collected post mortem from 600 human donors.  Relatively few genes (n=648), including only 146 

a few CCGs, exhibited predicted time-of-day-dependent expression [24]. Thus, both ethical 147 

and technical hurdles hinder the thorough investigation of time-of-day-dependent processes 148 

in healthy human liver and the deregulation thereof in MASLD.  Importantly, this conclusion 149 

extends to the hepatic metabolome, which is clock-controlled and disturbed in various liver 150 

dysfunction models [22, 25-28]. Disturbances in the hepatic chronometabolome observed in 151 

rodent MASLD models have not been reported for humans so far [29].  152 

Considering these knowledge gaps, we asked whether the hepatic time-of-day-153 

dependent transcriptome and metabolome are affected during MASLD progression. We 154 

leveraged a large cohort of morbidly obese patients undergoing bariatric surgery from whom 155 

liver biopsies were taken peri-operatively (HUL cohort, [18]).  Hepatic transcriptomes and 156 

metabolomes were obtained from a sub-cohort of 290 patients whose biopsies were 157 

histologically identified as either normal, steatotic, or MASH livers and for which the exact 158 

biopsy time-of-day was known (Figure 1A). In an original approach integrating multiple 159 

statistical tests, we provide the first-ever robust analysis of time-of-day-dependent gene 160 

expression and tissue metabolite abundance in human liver, as well as changes associated 161 

with the different stages of MASLD. 162 

  163 
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MATERIALS and METHODS 164 

 165 

Liver biopsies from the HUL cohort 166 

The Hôpital Universitaire de Lille (HUL) cohort, also known as the Biological Atlas of Severe 167 

Obesity (ABOS) cohort was established as from 2006 by the University Hospital of Lille, France 168 

(ClinicialTrials.gov: NCT01129297) from severely and morbidly obese patients visiting the Obesity 169 

Surgery Department. The study protocol conforms to the ethical guidelines of the 1975 Declaration of 170 

Helsinki.  All patients of the cohort fulfilled criteria for, and were willing to undergo, bariatric weight‐171 

loss surgery (for details, see [18]). Written informed consent was obtained from each patient included 172 

in the study.  The protocol required that patients were fasting from midnight to surgery time. During 173 

the surgical procedure, wedge biopsies were taken from the liver to be immediately snap-frozen and 174 

the exact time of the biopsy was noted. A total of > 1,500 patients are currently included in the HUL 175 

cohort, amongst whom 319 were selected to build a sub-cohort with complete clinical, biometric 176 

parameters and a robust histological MASLD classification of quality-controlled biopsies eliminating all 177 

intermediary MASLD stages (see [18] and Figure 1B for more details). Both transcriptomes and 178 

metabolomes were obtained for these 319 patients with biopsy mass >100mg. Out of these, 290 had 179 

known biopsy time-of-day, ranging from 8am to 4pm, and were included in this study. Main clinical 180 

and histological characteristics are indicated in Table 1. Patient clinical data shown in Table 1 were 181 

analyzed using the package “gtsummary” (v1.5.0). 182 

 183 

Total RNA sequencing and data processing 184 

A detailed procedure can be found in the Supplemental Information file. 185 

 186 

Liver metabolomics by LC-MS 187 

All tissue samples were flash frozen and maintained at –80°C until processing. Sample preparation was 188 

carried out as described previously [30] at Metabolon, Inc. (Morrisville, NC, USA). A detailed procedure 189 

can be found in the Supplemental Information file. 190 

 191 

Bioinformatic analysis 192 
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Bulk RNAseq: All analyses were carried out using RStudio (v1.4.1106) with R (v4.1.0). Data processing 193 

for differential expression as a function of time-of-day can be found in the Supplemental Information 194 

file. 195 

 196 

Single cell RNAseq: All analysis has been made under R (v 4.2.0). A detailed procedure for data 197 

extraction and processing can be found in the Supplemental Information file. 198 

 199 

Enrichment analysis 200 

Time-dependent gene lists were analyzed for enrichment of Kyoto Encyclopedia of Genes and 201 

Genomes (KEGG) pathways and gene ontology (GO) biological process terms using Metascape 3.5 [31] 202 

with default settings (https://metascape.org/). A detailed procedure for data processing can be found 203 

in the Supplemental Information file. 204 

 205 

Data visualization and illustrations 206 

Graphs were generated as *.svg files using R packages mentioned above. Data were imported in 207 

CorelDraw2020 to assemble figures. Drawings in Figure 1A are from Renée Gordon, Victovoi, and 208 

Mikael Häggström, M.D. and were made available to the public domain via Wikimedia Commons with 209 

no restriction of use. Bubbleplots were generated in R studio using the ggplot2, plotly, reshape2, rcpp, 210 

and tidyverse packages as described in [32].  211 

  212 

https://metascape.org/
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RESULTS 213 

 214 

Time-of-day is a major factor affecting gene expression in human liver 215 

Human liver biopsies were collected from patients with obesity and undergoing 216 

bariatric surgery, for which the exact daytime of the liver biopsy was recorded (Figure 1A). Key 217 

clinical parameters of the 290 patients are summarized in Table 1. Based on histological 218 

features of liver biopsies (steatosis, hepatocyte ballooning, lobular inflammation), patients 219 

were grouped according to MASLD stages and labelled as histologically normal (HN), steatotic 220 

or MASH liver following the decision tree shown in Figure 1B. The proportion of men in this 221 

cohort increased with MASLD severity, rising from 16% (HN) to 38% (MASH) with an average 222 

Clinical Research Network (CRN) NAS score rising from 0 to 5, respectively. Since sex is an 223 

important biological variable in this context [18], this was considered during further analysis 224 

(see below). Patients in the steatosis and MASH groups were slightly older than those in the 225 

HN group, and expectedly had also higher insulin resistance on average.  226 

The source of variation in gene expression levels was estimated by a multivariate 227 

analysis of variance (ANOVA) (Figure 1C).  The F-ratio (ratio of the between-group variance to 228 

the within- group- variance) not only confirmed sex and group (i.e. MASLD stage) as the main 229 

sources of variation as previously reported [18], but very interestingly identified biopsy time 230 

(AM vs. PM) as the third most significant source of variation (Figure 1C).  Age had only a minor 231 

contribution to signal variation. The distribution of biopsy times (Figure 1D) revealed a 232 

daytime window of about 8 hours. Biopsies were predominantly (>60%) taken in the morning 233 

with a first peak around 9:30 AM and a second, lower peak around 2:30 PM, due to the 234 

logistical schedule of surgical interventions. There was, however, no significant difference in 235 

biopsy time distribution between histological groups (Table 1). Since exclusion of biopsies 236 

collected between 11am and 1pm did not modify the outcomes of preliminary statistical 237 

analysis, the “AM“ subgroup was defined as biopsies taken before noon (12:00), the “PM” 238 

subgroup as biopsies taken after noon.  239 

Gene expression profiles were thus compared between morning (AM) vs. afternoon 240 

(PM) samples. Differentially expressed genes were identified using DEseq2 independent of the 241 

MASLD status but correcting for sex. Transcript counts for 1,660 genes were significantly 242 
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different (Benjamini-Hochberg adjusted p-value <0.05) between AM or PM biopsies (Figure 243 

1E). Among the 100 top hits were most of the CCGs (PER3, ARNTL/BMAL1, NPAS2, NR1D1, 244 

NR1D2, PER2, CRY1, PER1), clock-related genes (CIART, DBP, NFIL3) (Figure 1E) as well as 245 

circadian-regulated genes involved in lipid metabolism (PPARD, LIPG, LPIN2…). Because 246 

patients were fasting from midnight irrespective of surgery time, genes implicated in hepatic 247 

gluconeogenesis (G6PC, PCK1, SGK2…) were, as expected, higher expressed in PM samples 248 

(Figure 1E and Supp. Table 1). Opposite to nocturnal rodents, genes from the negative limb of 249 

the clock displayed lower expression in the afternoon (PER3, NR1D1, NR1D2, CIART…), 250 

whereas genes from the positive clock limb were higher expressed in the afternoon 251 

(ARNTL/BMAL1, NPAS2…)(Figure 1E). Globally, genes displaying AM vs. PM differential 252 

expression were significantly enriched for the KEGG pathways “circadian rhythm”, “PPAR 253 

signaling pathway”, carbohydrate and lipid metabolic pathways, as well as cellular 254 

architecture and communication, among others (Figure 1F). 255 

Thus an 8-hour time frame allowed the detection of significant changes in time-of-day-256 

dependent liver gene expression, with a large proportion of transcripts functionally related to 257 

circadian rhythmicity.  258 

 259 

Time-dependent genes vary between MASLD stages 260 

We next examined whether time-of-day-dependent distributions of gene expression 261 

would differ between the histological states “HN”, “steatosis” and “MASH”. In order to 262 

achieve statistical power and obtain robust and exhaustive lists of time-dependent gene 263 

expression over the available daytime window, we used 3 complementary statistical methods 264 

analyzing different aspects of gene expression distribution (differential expression, partial 265 

Spearman correlation, Kolmogorov-Smirnov test), the results of which were agglomerated by 266 

a Fisher test to yield a combined p-value for each gene (Figure 2A-C and Supp. Figures 1 and 267 

2). The 3 types of analyses are graphically exemplified for the core clock gene ARNTL/BMAL1 268 

(Figure 2A-C) which served as positive control to validate our approach, as it is among the 269 

most highly time-dependent genes regardless of the histological group. First DEseq2, which 270 

relies on a negative binomial distribution of gene expression, was used to identify differential 271 

gene expression between 2 conditions (AM vs. PM as in Figure 1) (Figure 2A). Second, partial 272 
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Spearman correlation was computed between ARNTL gene expression and daytime (Figure 273 

2B). Both approaches integrated sex as a confounding factor.  Third, the Kolmogorov-Smirnov 274 

test was employed to determine whether AM and PM ARNTL expression distribution followed 275 

a similar law and thus were similar in shape (Figure 2C). Finally, the Fisher combined 276 

probability test or “Fisher’s method” was used as a meta-analysis method for p-value 277 

combination: individual raw p-values resulting from each statistical test were agglomerated 278 

into a single p-value per group (Figure 2D). The detected expression profile of ARNTL, of other 279 

CCGs (Supp. Figure 1) and of all other transcripts (Supp. Figure 2), clearly confirmed that the 280 

available time window was sufficient for robust time-of-day analysis of gene expression.  A 281 

total of 1,427 genes with an absolute fold change greater than 1.2 (AM vs. PM) (FDR <0.01) 282 

was identified (Figure 2E). The vast majority of these time-dependent genes (TDGs) were 283 

strikingly distinct when comparing the 3 patient groups.  Less than 10% (132 genes) were 284 

indeed common to all 3 groups (“common TDGs”) (Figure 2E) and notably included most CCGs 285 

(ARNTL, NR1D1/2, NPAS2, CRY1, PER1/2/3, DBP, CIART)(Supp. Table 1).  TDG repartition 286 

outside of this core set was strongly unequal between groups, with ≈50% (558) of non-shared 287 

TDGs found in HN, ≈35% (392) in steatotic and less than 15% (177) in MASH livers.  Along the 288 

same line, we found that AM to PM fold changes of common TDGs were, on average, 289 

decreased in steatotic and even more in MASH livers when compared to HN livers (Figure 2F). 290 

These differences are illustrated for a selection of TDGs with AM-PM differences either 291 

decreasing (PCAT18, ARMC4, SIK1B) or increasing in MASH (CYP4Z1, RHOBTB1, 292 

PPIAP71)(Figure 3A,B).  293 

Common TDGs were collectively enriched for KEGG terms like “circadian rhythms” as 294 

expected from the content in transcripts coding for CCGs, and for metabolic regulatory 295 

pathways like the PPAR and FoxO pathways (Figure 4, Supp. Figure 3), illustrated by genes 296 

such as S1PR1, G6PC1, PCK1, SGK2, FASN, AQP7 and PPARD.  TDGs unique to the HN group 297 

were also enriched, albeit to a lesser extent, for pathways linked to circadian rhythm (notably 298 

including CLOCK) as well as to fatty acid and amino acids metabolism.  The most highly 299 

represented pathway was “gap junctions” (Figure 4A, Supp. Figure 3), characterized by genes 300 

such as PDGFB, MAP2K1 and transcripts encoding for tubulins TUBA1C/8, TUBB, TUBB1/2B 301 

(Supp. Table 1), suggesting that epithelial barrier integrity/permeability homeostasis, which is 302 

known to be disturbed in MASLD [33], requires an oscillating expression of these genes in 303 
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healthy conditions. Genes unique to the steatosis group (Supp. Table 1) were mostly linked to 304 

metabolism of lipids and fatty acids (DGKG, PLA2G4B/5, LPIN2/3, ETNK2, ETNPPL, PLPP4, 305 

FADS1/2, CYP2C8, GDPD1, SCD) and also to metabolism of peptides and amino acids 306 

(DNMT3B, GCLM, SDS, PSAT1, GNMT, ALDOC, GPT2, CSAD, UPB1)(Figure 4A, Supp. Figure 3).  307 

Lastly, TDGs specific to the MASH group (Supp. Table 1) were highly enriched for signaling by 308 

calcium, cAMP or neurotransmitters (ADRB2, DRD1, GRM1, NTRK1, NTSR1, P2RX7, RYR2, 309 

CACNA1H, SSTR5, TBXA2R, FFAR2, SUCNR1) as well as for lipolysis (ADRB2, IRS1, 310 

PNPLA2)(Figure 4, Supp. Figure 3). The temporal pattern of gene expression in homeostatic 311 

conditions is thus strongly affected by the disease state and indicative of compromised cellular 312 

communication and metabolic pathways. 313 

Inferring upstream regulatory cues or altered biological processes may be achieved by 314 

comparing differentially expressed gene lists to consensus gene expression patterns induced 315 

by a given perturbagen (Figure 4B-D).  Speed2 (Signaling Pathway Enrichment using 316 

Experimental Datasets [34]) analysis allows probing gene lists against ranked gene signatures 317 

for 16 signaling pathways, with the aim of identifying upstream signaling mediators.  Ranked 318 

signatures suggested that cues in homeostatic (HN) conditions could be TGFβ, TNFα, oxidative 319 

stress, TLR and estrogen (Figure 4B). In steatosis and MASH conditions, this pattern shifted 320 

towards a more limited signaling pathway panel with similar statistical significance, which 321 

included either TLR and VEGF (steatosis) or TNFα and TLR (MASH)(Figure 4C and 4D 322 

respectively).  Although causative links cannot be proven, this data could reflect a loss of 323 

physiological rhythmic function(s) in steatotic and MASH livers, which in turn gain rhythmic 324 

functions associated to pathogenic immune and proliferative stimuli and responses.  325 

 326 

MASLD stages correlates with time-of-day changes in liver metabolites 327 

Our results suggested that metabolic pathways are altered in a time-of-day-dependent 328 

manner as MASLD progresses, with an enrichment in amino acid- and lipid metabolism-329 

regulating genes (Supp. Figure 3). Therefore, an unbiased tissue metabolomic study by LC-MS 330 

was performed on the same 290 liver samples.  Similar to the gene expression analysis, a 331 

global approach was initially employed to evaluate overall time-of-day dependence of tissue 332 

metabolite levels regardless of the MASLD status.  This global analysis identified ≈220 333 

metabolites whose amounts were significantly different in AM and PM biopsies (DEseq2 334 
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corrected for sex, FDR<0.1) (Figure 5A, Supp. Table 2).  Visual inspection of the volcano plot 335 

highlighted intermediates of lipid β-oxidation (carnitine derivatives), amino acids (kynurenate, 336 

oxo-arginine…) as differentially detected in AM vs. PM livers (Figure 5A). It also confirmed the 337 

more marked fasting status of “PM” patients exhibiting an increased hepatic content in 3-338 

hydroxybutyrate (BHBA). A biological term enrichment analysis confirmed that the majority of 339 

the identified metabolites belonged to amino acid, lipid and fatty acid metabolic pathways 340 

(Figure 5B).  341 

To highlight a possible time-of-day differential representation of metabolites between 342 

MASLD groups, we again combined the 3 statistical approaches as described for gene 343 

expression analysis (DEseq2, Spearman correlation, Kolmogorov-Smirnov test) followed by 344 

Fisher’s agglomeration for a robust identification of time-dependent metabolites (TDMs) 345 

(Figure 5C). A total of 251 TDMs were identified using this method (combined FDR<0.1), out 346 

of which only 14 (6%) were common to all 3 MASLD groups (Figure 6A, 6B). These common 347 

TDMs included amino acids such as proline and threonine, several fatty acids and the ketone 348 

body component β-hydroxybutyrate (Figure 6B and Supp. Figure 4A-F).  KEGG metabolic 349 

pathway enrichment analysis revealed that these common TDMs were most significantly 350 

associated to metabolism of amino acids (arginine, proline, threonine)(Figure 6B and Supp. 351 

Figure 4A-C). In agreement with the identification of the PPAR pathway based on gene 352 

expression patterns (Figure 4) and the detection of 3-hydroxybutyrate (Supp. Figure 4D), 353 

synthesis of ketone bodies was also identified as a relevant term (Figure 6B), 354 

Among the 197 stage-specific TDMs, 31% were specific to HN, 47% to steatosis and 355 

20% to MASH (Figure 6A and Supp. Table 2). TDMs specific to HN livers, and thus lost at the 356 

steatosis and MASH stages, were mainly associated to metabolism of sphingolipids (Figure 6C 357 

and Supp. Table 2) such as CDP-choline and sphinganine (Supp. Figure 4G, H). 358 

Glycerophosphoethanolamines, glycerophosphocholines as well as derivatives of cholesterol, 359 

amino acids and pyrimidine were also identified as time-dependent in normal livers (Supp. 360 

Table 2 and Supp. Figure 4I-L). 361 

A similar enrichment analysis identified amino acid metabolic pathways (branched-362 

chain, sulfur-containing, arginine, taurine) (Figure 6D, Supp. Figure 5A, B and Supp. Table 2) as 363 

time-dependent in steatotic livers.  Visual inspection of steatosis TDMs also identified a 364 

carnitine precursor (N6,N6,N6 trimethyl-lysine, Supp Figure 5C) and derivatives (Supp. Table 365 
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2 and Supp. Figure 5D, E) which could reflect an altered fatty acid oxidation activity.  Finally, 366 

MASH-specific TDMs were enriched mainly for vitamin, glycan and 367 

glycosylphosphatidylinositol (GPI) metabolic intermediates (Figure 6E, Supp. Figure 5 and 368 

Supp. Table 2).   369 

Taken together, these analyses highlight the disruption during MASLD progression of 370 

time-of-day-dependent bioactive phospholipid metabolism and of amino acid 371 

biotransformation pathways. Intriguingly, PPARγ ligands of the linoleic acid class (9,10 372 

DiHOME [35] and 9- and 13-HODE [36]) displayed a differential abundance in AM vs. PM 373 

steatotic and MASH livers, with estimated concentrations in the 10-100µM range which are 374 

sufficient to activate PPARγ (Supp. Figure 5F, J). 375 

 376 

Integrative analysis of time-dependent genes and metabolites.  377 

We next performed an integrative analysis of the transcriptomic and metabolomic data 378 

at the pathway level using the KEGG database. This analysis combined TDGs and TDMs specific 379 

to either HN or MASH stages and common TDGs and TDMs, irrespective of their relative time-380 

of-day direction of change, to identify associated transcriptomic and metabolomic conditions 381 

operating in normal and MASH livers (Figure 7A).  TDGs and TDMs characterizing the HN stage 382 

were enriched for metabolic pathways related to lipid and amino acid metabolism, while most 383 

of them were not detected at the MASH stage, or with a decreased significance [arginine (Arg) 384 

and proline (Pro) metabolism, glycerophospholipid metabolism]. Linoleic metabolism was 385 

associated to the MASH stage (Figure 7B, C). HN-or MASH-enriched pathways 386 

(glycerophospholipid and linoleic pathways, respectively) were further detailed for daytime 387 

variation of associated TDGs and TDMs. The glycerophospholipid pathway was characterized 388 

by an increased abundance in AM livers of 3 out of 4 detected diacylglycerol (DAG) species 389 

specifically at the HN stage. Glycerophosphocholine (GPC) intermediates (CDP-choline, GPC) 390 

displayed stage-specific time-of-day variations that were not correlated to the occurrence of 391 

glycerophospholipid species (X-GPC) (Figure 7D). Higher abundance of DAG species in the 392 

morning did not correlate with HN TDG expression changes in transcripts encoding enzymes 393 

involved in this metabolic pathway, with the exception of the patatin-like phospholipase 394 

domain–containing protein 3-encoding gene (PNPLA3). PNPLA3/adiponutrin has 395 
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acyltransferase activity, increasing the formation of phosphatidic acid (PA) from 396 

lysophosphatidic acid (LPA), which may lead to more DAG synthesis.  It might also reflect 397 

PNPLA3 hydrolytic activity on triacylglycerol molecules, favoring DAG accumulation. Along the 398 

same line, we compiled TDG and TDM data related to linoleic acid metabolism (Figure 7E). The 399 

increased abundance of the PPARγ ligands 9- and 13-HODE in the afternoon at the MASH stage 400 

was mirrored by the gene expression of ALOX15, a dioxygenase catalyzing the synthesis of 401 

these 2 hydroxyoctadecadienoic acids which was higher in the morning. A similar lack of 402 

correlation was observed between 9,10-DiHOME hepatic content and the expression of the 403 

linoleic acid-converting CYP2C8 at the steatosis stage. These results suggest that time-404 

dependent metabolite variation in these pathways is delayed with respect to gene regulation, 405 

and/or controlled by post-transcriptional processes.  406 

Of note, mapping of human transcript expression to liver cell types using a reference 407 

single cell RNAseq dataset [37] suggested that the identified enzymatic pathways may follow 408 

a cell-specific expression pattern.  They appear as mainly restricted, but not limited to, 409 

hepatocytes. As an example, ALOX15 is detected in dendritic cells, whereas ALOX5 is also 410 

detected in monocytes, neutrophils and basophils (Supp. Figure 6).  Therefore time-411 

dependent metabolite variation may occur in either identical or distinct cell types, reflecting 412 

a functional compartmentalization. Yet these observations confirmed the presence of time-of 413 

day variation in hepatic gene expression and metabolome, and identified several new 414 

oscillating metabolites at the MASH stage (Figure 7 and Supp. Table 2).   415 

  416 
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DISCUSSION 417 

Chronobiological studies require multiple replicates at 2h-intervals over a total period 418 

of 24 or even 48 hours, within a controlled environment including timed exposure to light and 419 

food. These conditions are not achievable in human studies, precluding the analysis of cyclic 420 

processes and particularly in internal organs [38]. While human circadian rhythms are 421 

appreciated by genome-wide association study studies and the phenotypic manifestation of 422 

disturbed cyclic processes such as sleep, light exposure and eating patterns [39], their study 423 

in healthy or pathological conditions is indeed hindered by ethical and technical constraints. 424 

Despite controlled experimental setup with regard to sleep behavior and food intake in 425 

previous studies [5-14], a limited number of samples of mostly healthy individuals were 426 

collected, thereby limiting data interpretation due to high inter-sample variability. 427 

Here we reveal the first ever time-of-day-resolved human liver transcriptome with 428 

associated liver tissue metabolites using a 290-patient cohort. Although the available time 429 

window of liver biopsies was only about 8 hours, this temporal window was sufficient to 430 

robustly identify TDGs and TDMs. Time-dependency of genes and metabolites was distinct 431 

between histologically-defined MASLD groups.  However, a small proportion of genes was 432 

identified as time-dependent in all three patient groups and included CCGs, indicating that the 433 

molecular lock is rather robust in pathological conditions. In contrast, the alignment of 434 

rhythmic biological processes such as intercellular communication (gap junctions) and 435 

metabolic regulations is disrupted upon MASLD progression. Interestingly, none of the 436 

detected TDGs in MASH patients belonged to the human and mouse core set of 437 

MASH/fibrosis-associated genes [20], underlining the need for considering time as an 438 

important biological variable.  Interestingly, the number of stage-specific TDGs (Figure 2E) 439 

decreases from the HN to the MASH stage, and concomitantly enriched pathways lessen 440 

(Supp. Figure 3), hinting at a loss of functional adaptability/(metabolic) flexibility. In high fat 441 

diet (HFD)-fed mice, transcripts gaining rhythmicity when compared to chow diet-fed mice are 442 

strongly enriched for glycerophospholid metabolism [22], similarly to steatotic patients (Supp. 443 

Figure 3), indicating convergent mechanisms for liver adaptation to dietary imbalance as often 444 

occurring in MASLD.  At the cellular level, Ca2+ fluxes are submitted to ultradian variations and 445 

coupled to metabolic regulations [40], and mishandled intracellular Ca2+ stores in MASH can 446 

significantly impact parenchymal and non-parenchymal liver cellular functions [41]. A number 447 
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of genes encoding for Ca2+ channel components or involved in intracellular Ca2+ signaling 448 

(PKD1L1, TRPC1 P2RX7, FFAR2, ADRB2, CACNA1H, GRM1, NTRK1) exhibited differential AM vs. 449 

PM expression specifically in MASH livers.  Thus, in addition to the lipid-induced dysfunctional 450 

ER Ca2+ transport [42], de novo oscillation of the calcium handling process accompanies 451 

progression to MASH.  CLOCK gene deletion affected metabolite oscillations in mouse liver 452 

[25] and we detected a time-of-day differential expression of CLOCK exclusively in HN livers, 453 

which display a more diverse metabolic activity than MASH livers (Figure 7B).  While hinting 454 

at a possible role of (the loss of) CLOCK, the examination of individual metabolites 455 

nevertheless showed little overlap between mouse CLOCK-dependent metabolites and HN-456 

specific metabolites.  This lack of clear concordance can be explained by species-specific 457 

mechanisms, distinct effects of gene deletion vs. loss of time-dependent expression and/or 458 

technical bias.  459 

While examining the coherence between MASLD state-specific liver transcriptomes 460 

and metabolomes, we observed little correlation between enzyme-encoding genes and 461 

metabolite abundance. This disconnection is not unprecedented and was also observed in a 462 

highly standardized mouse study which minimizes the variability typically observed in human 463 

samples [22]. The narrow time window of our study may explain in part this lack of correlation 464 

as transcripts are likely to precede metabolite production, hence affecting our statistical 465 

approach for the PM sub-cohort. It may also indicate significant time-of-day-dependent 466 

translational control [43] as well as post-translational modifications regulating enzyme activity  467 

which are not captured by our analysis.  468 

Finally, another point of convergence between our and mouse studies is the 469 

differential abundance of linoleic acid derivatives and PPARγ ligands 9,10 -DiHOME, 9-HODE 470 

and 13-HODE in steatotic and MASH livers, respectively.  The PPARγ-encoding gene 471 

NR1C3/PPARG itself did not display significant oscillatory expression in human liver, 472 

contrasting with HFD mouse livers [22].  Whether estimated released concentrations of these 473 

compounds are indeed sufficient to differentially activate human liver PPARγ, which is mostly 474 

expressed in endothelial cells, hepatocytes and macrophages (Supp. Figure 6) and have a 475 

causative role in hepatic transcriptional reprograming requires further in-depth investigation.   476 

On the one hand, it is remarkable that many of the biological processes and pathways 477 

shown to be affected by MASLD in other studies, identified on the basis of changes in gene 478 
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expression or metabolite abundance levels regardless of time, also display altered time-479 

dependent expression profiles in our study. On the other hand, we identified many novel 480 

potential links between genes with deregulated timed expression and MASLD pathogenesis, 481 

which were not previously considered by standard analyses. It is probably the combination of 482 

both types of deregulations that underlies the deeply disturbed liver functions once MASH is 483 

declared. Conversely, some of the changes detected when time-of-day information is absent 484 

or ignored may turn out to be artefacts, as time-of-day as a biological variable might not be 485 

equilibrated between groups. 486 

Considering that the time-of-day dependence of transcript/protein/metabolite 487 

measurements was previously neglected or ignored in nearly all human MASLD studies, our 488 

findings here reveal a significant impact of time-of-day on many relevant pathogenic 489 

processes.  As such, differences found between sample groups in cohort studies might reflect 490 

a previously under-appreciated bias in sampling time between groups.  Further investigation 491 

is needed in this regard, particularly when studying human material. In any case, a new 492 

generality should be that sampling daytimes (or Zeitgeber times) must be carefully recorded 493 

and included in post-hoc analyses whenever possible. 494 

 495 

Strengths and limitations of the study. 496 

This study has both strengths and limitations. This first-of-its-kind study revealed time-497 

of-day transcriptomic and metabolomic alterations in human livers as a function of the 498 

histologically-proven MASLD stage. It used a large cohort allowing both the selection of 499 

biopsies to adequately encompass healthy control, steatosis and MASH cases and robust 500 

statistical analysis. There is however a number of limitations, inherent to the observational 501 

nature of the study. The narrow time window for biopsies collection (8 hours) precludes the 502 

assessment of a 24h diurnal rhythmicity, hence of the integrity of the molecular clock. The 503 

unavoidable difference in fasting duration could also be a confounding factor.  504 

Our bulk RNA sequencing approach allowed a full coverage of the transcriptome, but 505 

precluded the identification of liver cell types expressing TDGs. We thus calculated a cell 506 

specificity index of TDGs in human resident parenchymal (PC, hepatocytes) and non-507 

parenchymal (NPC) CD45- cells.  The tau () index, calculated by a robust and simple method 508 
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to assess cell-type specificity, was used as a metrics [44]. Using a reference single cell-RNA 509 

sequencing dataset for human livers collected at unknown times [37], could be 510 

calculatedfor 584 transcripts out of the 1,481 identified TDGs (Supp. Table 1).  Using this 511 

metric, only 51 genes displayed a cell type-restricted expression pattern in CD45- cells 512 

(>0.85), which was not limited to hepatocytes (Supp. Figure 7).  The remaining 533 transcripts 513 

including CCGs could be mapped to 2 or more cell types.  Of note, 15 out of the 51 cell-514 

restricted transcripts were mostly expressed in dendritic or Kupffer cells (Supp. Figure 6).   515 

Taken together, our bulk RNAseq approach detected a high number of TDGs than 516 

previous efforts, including many pathways never previously reported as being time-517 

dependent. This resource will serve as an important basis for further investigations 518 

considering also the cell-type specificity in time-of-day gene expression variation in human 519 

MASLD.  520 

  521 
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Figure legends 648 

 649 

Figure 1: Timed liver biopsies from a large cohort of humans with obesity.  (A) Overall 650 

experimental strategy.  (B) Decision tree to stratify the HUL sub-cohort. “HN” (histologically 651 

normal), “steatosis” (benign steatosis only) or “MASH” (steatosis+inflammation). (C) Inter-652 

sample variation in gene expression. ANOVA was used to reveal the main sources of overall 653 

inter-sample variation. (D) Biopsy daytime distribution. (E)  Gene expression analysis. A 654 

volcano plot was generated by comparing gene expression using DEseq2 from samples 655 

collected in the morning (AM) or in the afternoon (PM) regardless of the pathological state.  X 656 

axis: log2 (fold change), Y axis: -log10(p-values).  (F) KEGG pathway enrichment analysis. 657 

Biological term enrichment was carried out using the 1,660 genes whose expression was 658 

significantly different as determined in (E) (FC>1.2, FDR <0.05). (E, F): font size was adjusted 659 

for clarity purpose.  660 

 661 

Figure 2: A multi-test method identifies time-of-day-dependent genes.  BMAL1/ARNTL 662 

expression as a function of time and of the liver histological grade (A-C).  (A) A violin plot is 663 

shown to illustrate DEseq2 results to compare AM vs. PM expression and correcting for sex as 664 

confounding factor. (B) A dot plot with linear tendency lines is shown to illustrate partial 665 

Spearman correlation analysis between gene expression and biopsy daytime. (C) A density 666 

plot is shown to illustrate the output of the Kolmogorov-Smirnov test for comparison of AM 667 

or PM gene expression distributions. (D) Fisher’s agglomeration method. Frequency 668 

histograms of uncorrected Fisher p-values are shown for each group and the first (colored) 669 

bar of each group histogram indicates genes with p<0.05. (E) TDG distribution within 670 

histological groups. A Venn diagram shows the unequal distribution of 1,427 TDGs (FC>1.2, 671 

FDR<0.01) amongst groups. Numbers indicate the numbers of identified transcripts. (F) Gene 672 

expression variation of 132 “common TDGs”. CCGs and other transcripts are indicated. * 673 

indicates p<0.05 using ANOVA and Fisher’s LSD post-hoc test.  674 

 675 
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Figure 3: Example distributions of time-dependent genes (TDGs) altered in MASH. (A) Violin 676 

plots showing AM vs PM gene expression variations for representative TDGs losing their time-677 

dependency in MASH. (B) Violin plots showing AM vs PM gene expression variations for 678 

representative TDGs gaining time-dependency in MASH.  Statistical tests were Kruskal-Wallis 679 

tests followed by unpaired Wilcoxon post-hoc test for AM-PM comparisons in each group 680 

(*p<0.05, **p<0.01, ***p<0.005, ****, p<0.001). VST: variance-stabilizing transformation. 681 

 682 

Figure 4: Term enrichment analysis of time-dependent genes (TDGs) and upstream 683 

regulatory pathway prediction. (A) Biological term enrichment analysis. TDGs identified in 684 

Figure 2 were enriched for gene ontology (GO) terms related to biological processes (BP) using 685 

Metascape. Significantly enriched GO-BP clusters were manually collapsed for visualization 686 

purpose and top hits are indicated. (B-D): Pathway activity ranking. Speed2 TDGs enrichment 687 

for pathway signature genes. Each pathway is represented as a bar showing the mean rank of 688 

the query list. The “bar code” plot shows the distribution of genes from the query list in the 689 

ranked reference signatures.  690 

 691 

Figure 5: Identification of time-dependent liver metabolites measured by LC-MS. (A) Volcano 692 

plot of metabolite time-of-day-dependent differential abundance in liver.  Fold-changes 693 

values and corresponding p-values obtained using DEseq2 considering sex as confounding 694 

factor.  (B) Enrichment of KEGG metabolic pathways. A biological term enrichment against the 695 

KEGG database was run using the differentially detected metabolites (TDM) identified in (A) 696 

(DEseq2 adjusted p-value <0.1).  (C) P-value agglomeration by Fisher’s method. Similar as gene 697 

expression analysis (see Figure 2), p-value agglomeration from three separate statistical tests 698 

(DEseq2, partial Spearman correlation, Kolmogorov-Smirnov) was carried out using Fisher’s 699 

method and identified TDMs within each group.  The resulting uncorrected Fisher p-values are 700 

shown as frequency histograms and the first (colored) bar of each group histogram indicates 701 

metabolites with p<0.1. 702 

 703 

Figure 6: Distribution and characterization of time-dependent liver metabolites (TDMs). 704 

After correction for multiple testing, 238 metabolites with a Fisher FDR<0.1 were considered 705 
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as robustly time-dependent. (A) Distribution of TDMs among liver histological groups. (B-E) 706 

KEGG metabolic pathway enrichment of common (central intersection) or group-specific 707 

TDMs using the online metabolomics analysis platform MetaboAnalyst. 708 

 709 

Figure 7: Integrative analysis of time-dependent genes (TDGs) and metabolites (TDMs).  (A) 710 

Analysis strategy outline. Common and HN- or MASH-specific TDGs and TDMs were analyzed 711 

associatively for enrichment of KEGG metabolic pathways using the online metabolomics 712 

analysis platform MetaboAnalyst, revealing potential links between metabolic pathways as 713 

defined by time-dependent gene expression patterns and metabolomic profiling (B, C).  714 

Reconstitution (partial) of metabolic pathways displaying time of the day-dependency in the 715 

HN (D) or MASH (E) group. LPA: lysophosphatidic acid, PA: phosphatidic acid, DAG: 716 

diacylglycerol, CDP-choline: cytidine-diphosphate-choline, PC: phosphatidylcholine, GPC 717 

glycerophosphatidylcholine, X-GPC: acyl-conjugated GPC, 9-HpODE: 9-hydroperoxy 718 

octadecadienoic acid, 13-HpODE: 9-hydroperoxy octadecadienoic acid, 9-HODE: 9-719 

Hydroxyoctadecadienoic acid, 13-HODE: 13-Hydroxyoctadecadienoic acid, 12(13)-EpOME: 720 

12(13)-epoxy-9Z-octadecenoic acid, 9,10-EpOME: 9(10)-epoxy-12Z-octadecenoic acid, 12,13-721 

DiHOME: 12,13-dihydroxy-9-octadecenoic acid, 9,10-DiHOME: 9,10-dihydroxy-9-722 

octadecenoic acid. 723 

 724 

Table 1: Biometric and biochemical parameters of the HUL sub cohort. The main biometric, 725 

biochemical and liver histological features of selected patients are indicated. F: women, M: 726 

men; BMI: body mass index; NAS: NAFLD/MASLD Activity Score; HOMA-IR: Homeostatic 727 

Model Assessment for Insulin Resistance; AM: ante meridiem, PM: post meridiem. Continuous 728 

values are expressed as mean ± SD. Inter-group comparisons were performed using the 729 

unpaired Wilcoxon test for continuous variables (age, BMI, HOMA-IR) and Fisher’s exact test 730 

for the remaining categorical variables. 731 
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TABLE 1_R2 - JOHANNS et al.

Variable

MASLD Group p-values

N HN, n = 89    St. , n = 122 MASH , n = 79 HO vs. St. HO vs. MASH St. vs. MASH

F 75/89 (84%) 80/122 (66%) 49/79 (62%)

M 14/89 (16%) 42/122 (34%) 30/79 (38%)

0 89/89 (100%) 0/122 (0%) 0/79 (0%)

1 0/89 (0%) 0/122 (0%) 18/79 (23%)

2 0/89 (0%) 71/122 (58%) 29/79 (37%)

3 0/89 (0%) 51/122 (42%) 32/79 (41%)

0 89/89 (100%) 70/122 (57%) 0/79 (0%)

1 0/89 (0%) 44/122 (36%) 55/79 (70%)

2 0/89 (0%) 8/122 (6.6%) 23/79 (29%)

3 0/89 (0%) 0/122 (0%) 1/79 (1.3%)

0 89/89 (100%) 115/122 (94%) 0/79 (0%)

1 0/89 (0%) 7/122 (5.7%) 57/79 (72%)

2 0/89 (0%) 0/122 (0%) 22/79 (28%)

0 79/89 (89%) 78/118 (66%) 12/75 (16%)

1 9/89 (10%) 28/118 (24%) 22/75 (29%)

2 0/89 (0%) 7/118 (5.9%) 13/75 (17%)

3 1/89 (1.1%) 5/118 (4.2%) 25/75 (33%)

4 0/89 (0%) 0/118 (0%) 3/75 (4.0%)

0 89/89 (100%) 0/122 (0%) 0/79 (0%)

2 0/89 (0%) 40/122 (33%) 0/79 (0%)

3 0/89 (0%) 51/122 (42%) 11/79 (14%)

4 0/89 (0%) 26/122 (21%) 19/79 (24%)

5 0/89 (0%) 5/122 (4.1%) 29/79 (37%)

6 0/89 (0%) 0/122 (0%) 17/79 (22%)

7 0/89 (0%) 0/122 (0%) 2/79 (2.5%)

8 0/89 (0%) 0/122 (0%) 1/79 (1.3%)

AM 62/89 (70%) 70/122 (57%) 46/79 (58%)

PM 27/89 (30%) 52/122 (43%) 33/79 (42%)

Sex 290 0.003 0.008 0.7

Age 290 34.6 ± 11.4 41.8 ± 10.9 46.4 ± 10.4 <0.001 <0.001 0.050

BMI 290 45.4 ± 6.8 47.3 ± 7.9 46.2 ± 7.9 ns ns ns

Steatosis score 290 <0.001 <0.001 <0.001

Inflammation score 290 <0.001 <0.001 <0.001

Ballooning score 290 <0.001 <0.001

Fibrosis score (Kleiner) 282 0.009 <0.001 <0.001

NAS score 290 <0.001 <0.001 <0.001

1 1 1
HOMA-IR 279 3.8 ± 4.8 13.5 ± 58.8 24.2 ± 55.2 <0.001 <0.001 <0.001

Biopsy time 290 ns ns ns

ns




