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Abstract

Backward and forward interpolations on a Fourier grid are computationally expensive operations for radio interferometric imaging
algorithms. By merging these operations, we propose the Grid to Grid (G2G) method which aims to reduce the computational cost
and memory footprint. We have also shown that the oversampling factor used for the convolution function in the G2G method
strongly impacted the accuracy and computational speed. Acceleration on graphics processing units (GPU), well suited for this em-
barrassingly parallel algorithm, has been studied mainly for backward operation. Thus, we propose a GPU and CPU implementation
of the G2G method on Nvidia A100 and Intel Ice Lake processors. Experiments have shown a GPU performance improvement
with a Fourier-point throughput better than up to 37% regarding standard gridder and degridder.
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1. Introduction

In recent years, large projects involving astronomers, com-
puter scientists, and engineers have developed new generations

of radio telescopes to improve antenna sensitivity, resolution,
and data quality. These improvements have led to a significant
increase in data generation, involving a higher volume of data
to process. Because the volume of data is directly related to the
number of antennas, telescopes with many antennas will have
more data to process.

Imaging is a critical phase of the data processing pipelines.
It consists of adding the data generated by the telescope, called
visibilities, on a Fourier-transformed grid to create an image
of the sky. This step, called gridding, and its adjoint, the de-
gridding, are critical steps in the imaging phase because they
are computationally very expensive. Existing methods for sky
reconstruction have all the common points of being iterative
and require to grid and degrid the visibilities at each itera-
tion. Even if algorithms like Cotton-Schwab CLEAN (Schwab,
1984) limit the number of these operations, the computational
cost remains extremely high.

These gridding and degridding operators are good candi-
dates to be parallelized on many-core accelerators like the GPU.
Therefore, a lot of work has been done, mainly on the grid-
ding operator, to decrease the main memory bandwidth and not
rely on memory caches. Several works, such as (Merry, 2016),
(Romein, 2012a), and (Muscat, 2014), used the advantage of
the proximity of the coordinates between two data samples on
the grid to reduce the memory accesses. However, most of the
existing methods only focus on the gridding step.

This paper presents a method to reduce the algorithmic com-
plexity of gridding and degridding operators by merging them
to reduce the amount of data used. This method, based on FHD
(Sullivan and al., 2012), also has the advantage of reducing the
global memory footprint of these operations. Finally, this pa-
per presents a GPU implementation of this new operator, taking
into account the extension of this work with the w-correction,
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as well as the addition of a degridding operator implementation.
This paper is structured as follows. Section 2 presents the ba-

sics of imaging in radio astronomy. Section 3 explains in a the-
oretical way the Grid to Grid (G2G) method. Section 4 is ded-
icated to the parallelization of the method on GPU, compared
to the state-of-the-art on the same subject. Section 5 shows the
performances of this method on GPU. Finally, we conclude this
work by discussing future works.

2. Radio Interferometric Imaging

2.1. Forward problem and synthesis imaging

A radio interferometer array is a network of antennas that
generates measures of the radio emission of the observed sky
x. Each antenna’s pair is defined with a baseline b = (u, v,w)
where u, v, and w are the coordinates in unit of wavelength λ.
The measurement of one antenna pair of baseline b, or so-called
visibility, is defined as

v(u, v,w) =
∫∫

x(l ,m,n)
n

e−2iπ(ul+vm+w(n−1)) dl dm (1)

where x is the sky brightness distribution using a coordinate
system (l , m, and n =

√
1 − l2 −m2) that indicates an angular

position.
As the earth’s rotation causes the baseline to change over

time, the position of generated visibilities in the UVW space
also changes during the time. Thus, the total number of visibil-
ities generated during an observation is

M =
Nbl × Nch × Npol × T

∆t
. (2)

where Nbl is the number of baselines, Nch the number of fre-
quencies, Npol the number of polarization, T the duration of
the observation, and ∆t the integration time for a sample. As
current radio telescopes, such as SKA, have many antennas
(197 for SKA-mid) and have to produce large images up to
30.000× 30.000 pixels, the radio interferometric imaging prob-
lem is considered a large-scale problem.

If the array of antennas is coplanar (all visibilities fall on an
arbitraly plane in the uvw space) and the FOV is small (n ≈ 1),
each visibility v(u, v) is the 2D spatial Fourier transform of the
sky distribution at frequency (u, v). This result is known as
the van Cittert-Zernike theorem (Thompson et al., 2001), and
Eq. (1) becomes

v(u, v) =
∫∫

x(l ,m)e−2iπ(ul+vm) dl dm. (3)

Since the array cannot cover the full (u, v) plane, radio inter-
ferometric imaging aims to recover the sky from incomplete
visibility measurements, leading to an ill-posed linear inverse
problem.

Imaging synthesis computes the so-called dirty image, which
is the inverse Fourier Transform of the measured visibilities
such as

y(l,m) =
M∑

i=1

vie2iπ(uil+vim). (4)

The most straightforward approach to do it, using a Direct
Fourier Transform (DFT), is computationally too expensive.
The computational cost of the DFT for M visibilities in Np×Np

pixels image is
CDFT = O(N2

p M) (5)

On the other hand, the FFT needs the visibilities to be uniformly
sampled, which is not. The most common solution is to inter-
polate visibilities with non-uniform uv-coverage into a uniform
one. This procedure is called gridding. Its computational cost
for coplanar arrays and the FFT is

Cgrid = O(N2
plog2Np +C2

suppM) (6)

where C2
supp is the size of the convolution function in 2D.

After discretization, the dirty image can be represented by
Np × Np = P pixels grid as y ∈ RP, and the visibility measure-
ment as a vector v ∈ CM . Relation between y and v is described
by

y = F†S†v (7)

where F† ∈ CP×P is the inverse Fourier transform matrix, S† ∈
CP×M maps M visibilities to P Fourier coefficients and is the
gridding operator. The discrete forward problem is the adjoint
of eq. 7 such as

v = SFx + n (8)

where F ∈ CP×P is the Fourier transform, S ∈ CM×P is the de-
gridding operator, adjoint of S†, and n ∈ CM is an i.i.d. Gaus-
sian noise.

2.2. Gridding operator
To use the FFT algorithm, the gridding (and similarly the

degridding) operator aims to interpolate data with non-uniform
coordinates on a uniform grid. This kind of problem is common
in different fields of study. This method is, for example, known
as the Non-Uniform Fast Fourier Transform (NUFFT) in the
medical domain, such as MRI (Fessler and Sutton, 2003),(Bar-
nett et al., 2019),(Zhili Yang and Jacob, 2009).

In such interpolation, the true position bi = (ui , vi ) of the
visibilities are approximated to the nearest neighbor on an over-
sampled grid of resolution (∆u,∆v). If K is the oversampling
factor, the FFT steps of the grid g are (K∆u,K∆v). The approx-
imated position of bi becomes

b̃i = (pi∆u, qi∆v). (9)

In that case, using the gridding operator S† to compute the co-
ordinate bk = (pkK∆u, qkK∆v) of the grid g is equivalent to

g(bk) =
M∑

i=1

C†
(
bk − b̃i

)
vi

=

M∑
i=1

C†
(
pkK∆u − pi∆u, qlK∆v − qi∆v

)
vi

(10)
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where C† is a discrete precomputed 2D kernel of size Csupp ×

Csupp in FFT step which contains K2×Csupp×Csupp values. The
choice and the size of this interpolator to avoid aliasing effects
and maximize accuracy is a well-known subject in the literature,
see for instance (Fessler, 2007),(Beatty et al., 2005),(Thévenaz
et al., 2000). In our case, we used the Kaiser-Bessel function
with a support Csupp = 7.

2.3. Sky estimation
The sky x reconstruction for incomplete data v is an ill-posed

inverse problem. Therefore, interferometric imaging is usually
defined as

x̂ = arg min
x

1
2
∥v − SFx∥2 + R(x) (11)

where ∥v − SFx∥2 is the data fidelity term and R a regu-
larizer (Giovannelli and Coulais, 2005; Thiébaut and Young,
2017; Bester et al., 2021). Algorithms used to solve this opti-
mization problem require computing many gradients of the cri-
terion during their iterative processes. The computing cost of a
gradient of the data fidelity term

∇J(x)S T D = F†S†(v − SFx) (12)

can be very high since it requires the computation of the grid-
ding and degridding. The gradient computation ∇J(x)S T D cor-
responds to the residual image computation δy of the historical
Cotton-Schwab CLEAN algorithm (Schwab, 1984). We pro-
posed in this paper a new formulation to reduce the computing
cost of the gradient evaluation without additional approxima-
tion. The gradient computation corresponds to the so-called
”major loop”. The deconvolution, called ”minor loop,” used in
the overall reconstruction methods like (Schwab, 1984) Cotton-
Schwab CLEAN is not studied here.

3. Grid to Grid interpolation

In this section, we propose a decomposition of the gridding
and degridding operators in order to facilitate their fusion into
the Grid to Grid operator. We also present a generalization and
the particularities of the G2G method.

3.1. Gridding and degridding decomposition
A way to implement the gridding operator S† is to decom-

pose it into three sub-operators : accumulation, convolution,
and subsampling.

1. Accumulation A†.
Let’s define g′ a vectorized oversampled 2D grid of size
KNp×KNp = K2P with thin pixel resolution (∆u,∆v). The
oversampled pixel value associated with the coordinate bk

on the thin grid is

g′(bk) =


∑

i vi if b̃i = bk,

0 otherwise.

Thus, g′ is a grid of accumulated visibilities that are ap-
proximated at the same position on the thin grid. We there-
fore define an accumulation operator A† ∈ {0, 1}K2P×M

such as g′ = A†v. A† is a sparse operator with one ′1′

per column, ′0′ otherwise.
2. Convolution C†.

Considering a 2D grid g̃ of size KNp ×KNp with thin step
resolution (∆u,∆v) (same size as g′). This step is a two-
dimensional discrete convolution between the thin grid g′
and the convolution function C†, such as the value associ-
ated to the coordinate bk is

g̃(bk) =
∑

i

∑
j

C†
(
(pk − pi)∆u, (qk − q j)∆v

)
g′(bi j).

Thus, we define the discrete convolution operator C† ∈
CK2P×K2P such as g̃ = C†g′.

3. Sub-sampling O†.
The FFT grid is coarser by a factor K regarding the over-
sampled grid. We define the subsampling operator O† ∈
{0, 1}P×K2P that reduces a grid of size K2P into a grid of
size P. Thus, the FFT grid g is g = O† g̃. The subsam-
pling operator has one ′1′ per line, ′0′ otherwise.

Combining these three sub-operators, we can define the FFT
grid as g = O†C†A†v. Thus, the gridding operator can be writ-
ten as

S† = O†C†A†. (13)

This decomposition of gridding into sub-operators is illustrated
in Fig. 1. In practice, these operators are not instantiated as a
matrix but are implicit, being applied by dedicated code.

The degridding operator S is the adjoint of the gridding S†.
Thus, from Eq. (13), we can define the degridding decomposi-
tion as

S = ACO, (14)

where O ∈ {0, 1}K2P×P is an oversampling operator filling the
oversampled grid with zeros, C ∈ CK2P×K2P is a 2D discrete
convolution where the convolution function C is the flipped
conjugate of C†, and A ∈ {0, 1}M×K2P is a sampling mapping op-
erator that builds M visibilities at their approximate coordinates
from K2P coefficients. If ĝ is the Fourier grid to be degridded,
the visibility vector v is v = ACOĝ. This decomposition is
illustrated in Fig. 2.

Figure 1: Gridding decomposition. First, accumulation of visibilities on a 2D
thin grid of size KN × KM, then a 2D discrete convolution with a kernel C†,
and finally, a K subsampling.
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Figure 2: Degridding decomposition. First, oversampling of a map g with a
factor K, then a 2D discrete convolution with a kernel C, and finally, a mapping
operator A maps the Fourier coefficients to M visiblities.

3.2. Gradient computation with G2G
The standard method to compute the gradient operator de-

scribed by Eq. (12) can be developed such as it becomes

∇J(x) = F†S†v − F†S†SFx

= y − F†S†SFx.
(15)

The Fast Holographic Deconvolution (FHD) (Sullivan and al.,
2012) algorithm used this decomposition. We can note that
FS†v is the dirty image y, which is computed only once. In
this method, they build the holographic map H ∈ CP×P such
as H = S†S. This method has the advantage of being fast be-
cause a simple matrix product is needed to compute the gradi-
ent. However, the computation time and the memory footprint
required to compute H are prohibitive.

In our case, we use the same development of Eq. 15, as well
as the gridding and degridding decomposition. Thus, the suc-
cession of degridding and gridding operators can be rewritten
as

S†S = O†C†A†ACO. (16)

from this equation, we built A∗ = A†A, and A∗ ∈ NK2P×K2P a
diagonal matrix, such as a = diag(A∗) is a vector of size K2P.
The value of each element ai of a corresponds to the number of
visibilities whose positions have been approximated on the cor-
responding oversampled pixel. Therefore, it is sufficient to do
a term-wise product between g̃ and a instead of going through
the visibility vector v. This method, illustrated by Fig. 3, will
be referred as the Grid to Grid method (G2G), and the gradient
computation becomes

∇J(x)G2G = y − F†G2G(Fx), (17)

where G2G(•) = O†C†A∗CO• .
In a typical continuum imaging application, the STD method

uses a different number of subbands for gridding and degrid-
ding. Typically, gridding requires fewer subbands than degrid-
ding. However, with the G2G method, the number of subbands
must be identical and set as the greater of the two.

3.3. G2G compression ratio
We define M′ as the number of non-zero elements in a. With

M the number of raw data, practical cases show that M > M′

or M ≫ M′ depending on the oversampling factor K. Con-
sequently, the G2G method avoids processing the vector of M

raw visibilities but instead processes a smaller vector of size
M′. Moreover, unlike FHD (Sullivan and al., 2012) who builds
and stores S†S ∈ CP×P as a matrix, we only need to build and
store the sparse vector a. Thus, from Eq. (10) and Eq. (16) the
output grid g at coordinates bk = (uk, vk) becomes

g(bk) =
M′∑

i′=1

C†
(
bk − bi′

)
ai′
∑
i, j

C
(
bi′ − bi j

)̂
g(bi j). (18)

For the same oversampling factor, the gradient computed by the
G2G method Eq. (15) and the STD method Eq. (12) is the same.
Furthermore, the computing cost of the gradient using the G2G
method is given by

CG2G = O(2M′C2
supp + M′ + 2P log P + P) (19)

while the computing cost of the standard approach is

CS T D = O(2MC2
supp + 2P log P + M). (20)

Hence, for the same K, the presented method is more efficient
without additional errors when

M′ <
2MC2

supp + M − P

2C2
supp + 1

(21)

With a data set for a standard sky observation (8h), empirical
measurements show that MC2

supp >> P − M. Thus, Eq. 21 can
be simplified such that

M′ ≲ M. (22)

In cases where MC2
supp >> P − M is false, we can no longer

simplify, and Eq. 21 must be respected to ensure a decrease in
the computational cost.

We define as the compression ratio, the ration between M′

and the raw number of visibilities M, such as

cα =
M′

M
× 100. (23)

Figure 3: Degridding and gridding decomposition using the G2G method. An
element-wise multiplication is done between the diagonal of the operator A∗
and the oversampled grid.
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Note that the compression provided by the G2G method can
be seen as a generalization of the compression provided by the
Baseline Dependent Averaging method (Wijnholds et al., 2018;
Atemkeng et al., 2016). The BDA method averages visibili-
ties over time as a function of baseline, whereas G2G averages
visibilities over their position in the Fourier plane. Moreover,
BDA’s compression leads to an approximation that can be cho-
sen for higher or weaker compression. With G2G, the compres-
sion comes directly from the model.

3.4. Extension for w-term

Taking into account the effects related to the non-coplanarity
of the antenna array (visiblities fall on different planes in the
uvw space), the visibility equation from Eq. 1 is

v(u, v,w) =
∫∫

x(l ,m,n)
n

e−2iπ(ul+vm)G(l,m,w) dl dm (24)

with
G(l,m,w) = e−2iπ

(
w(
√

1−l2−m2−1)
)
. (25)

(Cornwell et al., 2008) has shown that a reprojection is al-
lowed to and from any position in the (u, v,w) space to and from
w = 0 plane by convolution using a known kernel. This tech-
nique, called w-projection, uses the convolution theorem from
the Eq. 24 such as

v(u, v,w) = v(u, v,w = 0) ∗ G̃(u, v,w), (26)

where G̃(u, v,w) is the Fourier transform of G(l,m,w). This
convolution can be done during the gridding, which makes the
convolution function more complex. In order to avoid comput-
ing the convolution function on the fly for each w value, the
closest w-layer is chosen. A vast number of convolution func-
tions are precomputed and stored. Moreover, the support size
of the kernel depends on the image size and the w value (Tasse
et al., 2013). Thus, the computational cost of the convolution
increases regarding this particular correction.

The G2G interpolation method has no significant changes by
including the w correction. Indeed, using the decomposition
used in Fig. 3, only the discrete convolution operators C† and C
change depending on the convolution function, which is related
to w. As illustrated in Fig. 4, a matrix A∗ must be computed for
each layer W, such that A∗wi

matches all w values approximated
at wi.

As shown in Fig. 5, the values of w vary smoothly over time.
The construction of the sparse diagonals of A∗wi

is, therefore,
not a problem.

3.5. Compression approximation

The plots of the variation of baseline length in the (u, v,w)
space are curves. The projections of these curves in the (u, v)
space become arcs. The u, v, and w coordinates are given from
the cartesian coordinates system (X,Y,Z), a terrestrial reference
frame that never change from a local observer on earth, of the
baselines as

Figure 4: Extension of the grid to grid method including the w correction.

Figure 5: Variation of the w coordinate value in the uv coverage. Different
shades of grey are used for a different set of w values. w varies slowly in time
during the observation. A simulation of a VLA-D 8 hours observation pointed
at RA=19 : 25 : 59, Dec= 21.06.26.
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uvw
 = 1
λ

 sin H0 cos H0 0
− sin δ0 cos H0 sin δ0 sin H0 cos δ0
cos δ0 cos H0 − cos δ0 sin H0 sin δ0


XYZ
 (27)

where (H0, δ0) are the coordinates of the observation’s phase
center on the celestial sphere. It has been shown by (Thomp-
son et al., 2001) that the track formed in time by the baseline
projected in the (u, v) space is an ellipse. Thus, by transforming
Eq. 27 and removing the time aspect, we obtain the following
ellipse equation

u2 +

v − Z
λ

cos δ0
sin δ0

2 = [X
λ

]2
+

[Y
λ

]2
. (28)

The portion of the ellipse traced during the observation depends
on the azimuth, the elevation and the latitude of the baseline,
the declination of the source, and the hour angle covered dur-
ing the observation. Fig. 6 shows the superposition of the uv
track and the ellipse built with the same parameters. We can

Samples

Figure 6: uv-coverage for a single baseline and the corresponding ellipse (dash-
line).

estimate the ellipse’s perimeter formed from Eq 28 by taking

the semimajor axis a =
√

X2

λ
+ Y2

λ
and the semiminor axis

b = sin(δ0)
√

X2

λ
+ Y2

λ
. The different formulas of Ramanujan

(Villarino, 2005) allow us to approximate the ellipse’s perime-
ter P with very low errors depending on a and b. We can, there-
fore, estimate the theoretical compression factor ĉα as a func-
tion of the ellipse’s perimeter for an observation time P∆H and
the resolution ∆u that depends on the oversampling factor.

In the case of a single baseline i at a specific frequency, the
idea is to divide the number of intervals in the portion of the el-
lipse’s perimeter P∆H,i

∆u
by Nri, the number of visibility acquired

during the observation period for this specific baseline. As the
number of intervals might be higher than the number of sam-
ples, meaning no compression, the compression number is lim-
ited by 1. Thus, the compression estimation is

ĉα,i = min
( ( P∆H,i

∆u

)
Nri
, 1
)
× 100. (29)

To estimate the compression for all baselines, take the average
of all ĉα,i such as

ĉα = mean(̂cα,i). (30)

4. GPU Implementation

In this section, we will introduce in more detail the state
of the art of different GPU implementations of gridding algo-
rithms. We will then see the specificity of the implementation
of the G2G method on GPU.

4.1. Related work

Generic image-processing convolution on GPU has been
studied intensively for years and is even studied in many tu-
torials to learn programming (Cheng et al., 2014). However,
in radio astronomy imaging, the gridding and degridding are
rather a sampled convolution than an image convolution. As a
result, memory access patterns are less predictable, and thus,
creating an image is much more computationally expensive.

GPU gridding implementations started with the democrati-
zation of the GPU for scientific computing around the 2010s.
(Edgar et al., 2010) have developed a GPU gridder, focused
on NVidia platforms with CUDA language, for the Murchison
Widefield Array (MWA) telescope. They recognized that ac-
cumulating visibilities convoluted on the grid was not thread
safe. Moreover, adding the visibilities directly on the grid sig-
nificantly increases the device-memory access cost. Their im-
plementation linked a CUDA thread for each output grid point
(a pixel). Then, each thread searches for all the visibilities
which one has an impact on the corresponding grid point by
checking them one by one. However, this approach was inef-
ficient, and only 60 visibilities out of 130,000 were concerned.
To overcome this problem, they sorted the visibilities accord-
ing to the (u, v) coordinates and grouped them into bins so the
threads could search for the right visibilities more efficiently.

(Van Amesfoort et al., 2009) focused on maximizing the
bandwidth device memory obtained. Therefore, in their imple-
mentation, each thread block writes to a private grid stored on
the device memory to avoid atomic writes. However, this tech-
nique is limited by the size of the grids that can be used and the
GPU memory.

(Romein, 2012b) is considered as the reference for recent
GPU implementations and introduced a more efficient work dis-
tribution strategy for gridding. This strategy was made to mini-
mize device memory access. The grid is divided into subgrids,
where the size of each subgrid is the size of the convolution
function. For each CUDA block, the number of threads cre-
ated is equal to the number of grid points in the subgrid. Each
thread is focused on a large number of grid points in the grid but
only one in the subgrid. Because visibilities coordinates move
slowly in time for the same baseline, looping over visibilities
in the CUDA kernel also makes the convolution function move
slowly. Each thread accumulates the results of the convolved
visibility on registers until the grid point is no longer in the
subgrid. When the grid point is out of the subgrid, the register
is added to the device memory using an atomic add operation.
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Thus, this strategy minimizes writing in the device memory by
using local registers.

The main improvement of (Merry, 2016) is the introduction
of thread coarsening for large convolution functions. Thread
coarsening is similar to loop unrolling but applied to parallel
work items instead of sequential ones. In its implementation,
each thread handles several adjacent grid points within a sub-
grid. Thanks to thread coarsening, memory accesses within a
thread improved because the data for each grid point is close
to each other in the device memory. However, this method
requires significantly increasing the number of registers per
thread.

Finally, the IDG also made a GPU implementation (Veenboer
et al., 2017). This is one of the few works proposing implemen-
tations for gridder and degridder. However, the IDG algorithm
is fundamentally different from the classical gridder. The prin-
ciple is to do many NUFFT on small grids with very little data
each time (van der Tol et al., 2018). In this case, we are not
doing a sample convolution on the image but rather a succes-
sion of sine, cosine, and shift. This method, therefore, allows
DDEs (primary beams, ionospheric screens, etc.) to be cor-
rected transparently and without additional computational cost.

4.2. Grid to Grid sequential details
First, we present a sequential implementation of G2G that

serves as the basis for the CPU code. Alg. 1 is the sequential
pseudo-code for working with data and grids for one polariza-
tion. The diagonal diag(A∗) is stored in an array nhit which
contains the value of each non-zero element ai with its corre-
sponding coordinates on the diagonal. The getNhit function
get the information of the A∗ operator through the nhit array
regarding the for loop iteration.

The algorithm processes sequentially, in the order of storage,
the M′ non-zero elements diag(A∗). The distance between two
consecutive samples for the same baseline is very small during
an observation. Therefore, the distance between diag(A∗) ele-
ments is also very small, which allows a low spatiality between
two iterations.

4.3. Grid to Grid GPU implementation details
we present the work distribution strategy, which implements

the G2G method with a grid in the Fourier plane as input and
a new grid in the Fourier plane as output. Our STD and G2G
GPU implementation are based on Romein’s previous imple-
mentation (Romein, 2012a) to reduce device-memory access.
Additionally, we implement a reduction method to decrease the
synchronizations between threads by optimizing the SIMD syn-
chronous instruction within a warp. The G2G method inputs
a Fourier grid and outputs another Fourier grid. On the other
hand, gridding takes a visibility vector as input and outputs a
Fourier grid. The degridding takes a Fourier grid as input and
produce visibilities.

The strategy is as follows. We decompose the input and out-
put grids into subgrids, where each subgrid has the size of the
convolution function. In the example of Fig. 7, the grids are
of size 12 × 12, and the convolution function is 4 × 4. In real-
ity, both are much larger. We create a number of threads equal

Algorithm 1: G2G - sequential pseudo code.
Data: (...,K, Igrid, Ogrid, nhit)

for i in 1:M’ do
u, v, w, ai, ch = getNhit(i, nhit) ;
ci = (0,0);
for utap ← [−hal f size] to [+hal f size] do

for vtap ← [−hal f size] to [+hal f size] do
convU, convV = getConv(utap, vtap, K);
wc = convFctConj[w][convU][convV] ;
ci += Igrid[u + utap][v + vtap][ch] × wc;

end
end
ci = ci × ai;
for utap ← [−hal f size] to [+hal f size] do

for vtap ← [−hal f size] to [+hal f size] do
convU, convV = getConv(utap, vtap, K);
w = convFct[w][convU][convV] ;
Ogrid[u + utap][v + vtap][ch] += ci × w;

end
end

end

to the number of grid points covering the size of the convolu-
tion function, 16 threads in this case (the case of larger kernels
will be discussed later). Each thread manages the grid points
assigned to it. In our case, a thread manages the ⋆ points and
another the • points, which are equivalent grid points on the in-
put grid and the output grid, as illustrated by Fig. 7. As seen
in Sec. 4.2, the coordinates of two consecutive ai elements of
the nhit array are close to each other. Therefore, the convolu-
tion function moves slowly as well, and the grid points of the
input grid can be stored in registers. In the same way, the out-
put grid points are first accumulated in registers before being
updated in global memory once the thread has to deal with an-
other grid point. With a convolution function of size n × n, this
method allows reading and writing with atomicAdd instruction
only 2 × n grid points simultaneously. Indeed, in the case of a
diagonal move with visibilities close to each other, at most one
row and one column will come out of the new grid points, so
there would be 2 × n reading and 2 × n writing.

In order to accumulate the value of the compressed visibil-
ity on registers, it is necessary to reduce the portion of visi-
bility calculated by each thread. However, the reduction has
a low parallelization potential and can become a bottleneck in
our algorithm. To minimize the time spent on this reduction,
we need a number of threads equal to a power of 2. CUDA
has designed several types of methods to optimize the reduc-
tion operator (Harris et al., 2007). We have chosen a strategy
to optimize this reduction to minimize the mandatory synchro-
nization steps.

The hardware limits the number of threads per block and is
often 1024 threads. The W-projection algorithm requires con-
volution functions of size C2

supp > 1024. In this case, like
(Merry, 2016), each thread handles several grid points adja-
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Figure 7: Mapping of work item matching the input and output grids. Each
CUDA thread manages the same grid point in the convolution kernel area for
the input and output grid. For example, one CUDA thread is in charge of all the
grid points tagged by •, and another CUDA thread by x.

cent within a subgrid. Moreover, the memory accesses are done
in loop unrolling to benefit from better memory access for the
adjacent grid points. However, the increase in the number of
registers prevents us from doing full thread coarsening.

We used a separable approximation of the convolution func-
tion. Moreover, like Merry and Romein, we assumed that the
convolution function was polarization-independent. The results
can, therefore, not be directly applied to the A-projection algo-
rithm. A tunable factor is the number of data of diag A used
per thread block. Arbitrarily, we have used 1024 elements per
block. As Merry pointed out, higher numbers make more use
of spatial coherence between adjacent elements but reduce par-
allelism.

A pseudo-code of the G2G GPU implementation is repre-
sented by Alg. 2. This simplified code shows the case with a
single polarization. The pseudo-kernel loops the 1024 diag(A∗)
elements, such that Nhit is an array that contains the coordinates
and the non-zero values of the diagonal elements.

It is important to note that the STD gridder, STD degridder,
and G2G implementations all have the same level of kernel op-
timization. Thus, comparing the performance of these imple-
mentations in the result part can be done without bias.

5. Results

This section aims to show the performance of the G2G al-
gorithm implemented on GPU and CPU. We will study the ac-
curacy and the memory footprint related to the oversampling
factor. Then, we will see the performances of the implemen-
tation on CPU and GPU before comparing it to other state-of-

Algorithm 2: Kernel G2G - pseudo code.
Data: (..., Igrid, Ogrid, nhit)
ini = (0,0) ;
addi = (0,0);
ci = (0,0);

for i in n do
ut, vt, w, ai, ch = getNhit(i, nhit) ;
gridU, gridV = getGrid(ut, vt);
convU, convV = getConv(ut, vt);
if gridU! = prev gridU or prev gridV! = gridV

then
atomicAdd(Ogrid[prev gridU][prev gridV],

addi);
ini = Igrid[gridU][gridv] ;

end
w = convFct[w][th convU][th convV];
wc = convFctConj[w][th convU][th convV];
cxx = reduce(ini×wc);
addi = ci × w × ai ;

end
atomicAdd(Ogrid[prev gridU][prev gridV], addi);

the-art algorithms. Finally, we will study the roofline model
of our implementation in order to show the different possible
improvements.

5.1. Experiment setup

For the GPU part, the experiments have been done on a
BullSequana XH2000 with an NVIDIA A100-SXM GPU using
CUDA. The number of CUDA threads per block used depends
on the size of the convolution kernel. Each thread block handles
1024 visibilities, so the total number of blocks is the number of
visibilities, 4 000 000, divided by the number of visibilities per
block 1024 (as the result is not an integer, the last block deals
with less than 1024 visibiltites). For the CPU part, the exper-
iments have been done on BullSequana XH2000 system based
on Intel(R) Xeon(R) Platinum 8358 32 cores dual socket. Thus,
the code was parallelized on 64 cores.

We will not study the pre-processing necessary for construct-
ing diag(A∗), as it can be done while building the dirty im-
age. Nevertheless, we found that pre-processing performance
to make the diag(A∗) matrix is highly dependent on ordering
the data by baseline, as in any other gridder implementation.

The data set used a simulation of a 8h observation with the
VLA-D with a 1s integration time for 64 frequency channels.
The observation has 4 000 000 quad-polarized raw visibilities
per frequency channel. The size of the grid used is 1280×1280
pixels following the CASA tutorial1. The G2G method is ad-
vantageous for compact configurations like VLA-D or Nenu-
FAR. It would be less beneficial for instruments like VLBI.

1https://casaguides.nrao.edu/index.php?title=VLA CASA Imaging-
CASA6.2.0
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5.2. Oversampling factor K accuracy

The performance of the G2G method is directly related to the
oversampling factor K used for the resolution of the oversam-
pled grid, the uv coverage, and the convolution function. For
the same oversampling factor, the gradient computed with the
STD method is the same as one with the G2G method, such that

∇JG2G(xK= j) = ∇JS T D(xK= j). (31)

Thus, the computational cost is reduced without depreciating
the quality of the computed gradient.

First, we looked at the accuracy related to the oversampling
factor. The oversampling factor K = 64 is the default over-
sampling factor used in the WSClean imager (Offringa and al.,
2014). We will therefore take the gradient from Eq. 15 com-
puted for this K as a reference. Fig. 8 and 9 show the maximum
error

MaxAE(K) = max(
∣∣∣∇JG2G(xK=64) − ∇JG2G(xK= j)|) (32)

and the mean absolute error between gradients

MAE(K) =
1
P

P∑
i=0

|∇JG2G(xi,K=64) − ∇JG2G(xi,K= j)|. (33)

There is a direct impact between the reconstruction quality of
the gradient and the oversampling factor. The smaller K is, the
stronger the approximation to the true coordinates of the visi-
bilities will be. But we know that a significant approximation
tends to decorrelate the data and introduce artifacts in the im-
age (Thompson et al., 2001). It is a known and already observed
result (Offringa et al., 2019). Moreover, the error is also depen-
dent on the chosen convolution function.

The problem of accuracy for recent radiotelescopes such as
LOFAR or MeerKAT, and soon SKA, is general for both the
G2G and STD methods. Indeed, these two methods achieve
identical accuracy for the same oversampling factor as they use
the same convolution function for the interpolation. New grid-
ding techniques have recently been developed to increase ac-
curacy with a very low oversampling factor (Ye et al., 2022;
Barnett et al., 2019).

5 15 35 63
K

10−6

10−5

10−4

MeanAE

Figure 8: Mean absolute error of the gradient computation regarding the over-
sampling factor K.

5 15 35 63
K

10−5

10−4

10−3 MaxAE

Figure 9: Maximum absolute error of the gradient computation regarding the
oversampling factor K.

5.3. Memory footprint
We compare the memory footprint between the G2G method

Eq. 17 and the STD method Eq. 12. In the case of STD, the
memory footprint is mainly composed of visibilities for all po-
larity at all frequencies and their respective uvw coordinates.
The memory footprint is estimated by

MemSTD = (Nr.Nch.Npol + 3.Nr).Nbytes, (34)

with Nbytes the number of bytes used for the precision of the data
(single or double float), Nr the number of visibilities for a single
frequency channel and a single polarization, Nch the number of
frequency channels, and Npol the number of polarizations. The
memory footprint of the G2G method is mainly occupied by
the dirty image as well as the compressed diag(A∗) calculated
in part 3.2. This compressed array has five columns: three for
the approximate uvw coordinates, one for the slice number, and
one for the value of the corresponding element. Therefore, the
memory footprint is estimated by

MemG2G = (NS lices.Nx.Ny.Npol.Nbytes) + (5.ncoo.Nint32) (35)

with ncoo is the length of the compressed diag(A∗) matrix,
NS lices is the number of slices in the hypercube, Nbytes is the
number of bytes for the floating numbers, and Nint32 is the num-
ber of bytes for an int32. The experimental results are presented
in table 1 for several oversampling factors.

K 8 16 24 32 40 64.

STD single 3.8 3.8 3.8 3.8 3.8 3.8
double 7.7 7.7 7.7 7.7 7.7 7.7

G2G single 1.7 1.85 1.99 2.13 2.27 2.66
64 slices double 3.27 3.42 3.56 3.70 3.83 4.22

G2G single 0.17 0.32 0.46 0.60 0.73 1.12
1 slice double 0.19 0.34 0.48 0.62 0.76 1.15

Table 1: Memory footprint needed to compute the gradient in GB.

The memory footprint remains constant regardless of K for
the STD method. For the G2G method, the memory footprint
varies with K. The smaller the K, the smaller the memory foot-
print because cα will be smaller. Furthermore, we compare two
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cases. The first is with a dirty image with as many slices as fre-
quency channels. For each K, the memory footprint is smaller
than the STD method. The main weight comes from the dirty
image. In the case of the dirty image with one slice for all fre-
quencies, the memory footprint decreases drastically. For each
K, the main weight of the memory footprint is α. With K = 8,
the memory footprint used with this method represents 4.4% of
the memory footprint used with the STD method.

The memory footprint results follow the same logic as the
compression ratio results in Tab. 2. The lower the sampling
factor, the higher the compression. For K = 64, the required
data volume is 27.8% of the initial data set. For K = 8, cα
is only 3.4%. The difference between cα and ĉα is very small,
so the theoretical compression gives reliable information of the
gain more quickly.

K 8 16 24 32 40 64.

ĉα 3.9% 7.7% 11.4% 15.1% 18.6% 28.8%
cα 3.4% 6.9% 10.4% 13.9% 17.3% 27.8%

Table 2: Theoretical ĉα and experimental cα compression ratio.

The G2G method obtains compression gain under M′ < M.
In practice, this is the case for most radio telescopes. The more
compact the array, like VLA or NenuFar, the greater the com-
pression gain. For less compact arrays, such as LOFAR or
SKA, a compression gain is still expected, but less by an order
of magnitude. On the other hand, the memory cost for non-
compact networks working on large images can be dominated
by saving the dirty image on several frequency bands. As a
result, despite lossless data compression and reduced computa-
tional cost, the memory cost with some networks can be very
high.

5.4. GPU performances

We will use three metrics to measure the CPU and GPU im-
plementation performance. The first metric is the execution
time in seconds. The second metric, define as giga Grid Point
per Second (GPS), is the number of pixels updated or read per
second during the execution of the kernel such that

GPS G2G(K) =
#FourierPointG2G.C2

supp

tG2G(K)
. × 10−9, (36)

with tG2G(K) is the GPU execution time for the G2G kernel
regarding K, and #FourierPointG2G = M′.Npol is the number
of Fourier-point to be gridded and degridded. The last met-
ric define as the compressed Million Fourier-point Throughput
(MFT) is the number of data processed in the G2G kernel, such
as

MFTG2G(K) =
#FourierPointG2G

tG2G(K)
× 10−6. (37)

Fig. 10 and Fig. 11 show the execution time of the G2G
method for several convolution function sizes as a function of

the oversampling factor for the CPU and the GPU implementa-
tions. In both cases, we can see the influence of the oversam-
pling factor in the execution time because the number of ele-
ments to be processed depends on K. Moreover, the increase in
execution time as a function of the convolution function is glob-
ally well proportional to its size. The exception is the case with
Csupp = 64 in GPU, where each thread takes care of several pix-
els and tends to accelerate the CUDA kernel. We can notice an
order of magnitude difference in favor of the GPU implementa-
tion compared to the 64-core parallelized CPU implementation.
This result confirms the interest in GPU implementation, even
when we can use high-performance CPUs with many cores.
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Figure 10: CPU - G2G computation time regarding the oversampling factor K.
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Figure 11: GPU kernel - G2G computation time regarding the oversampling
factor K.

Fig. 12 shows the evolution of GPS as a function of K for
several convolution function sizes. For each Csupp, the overall
trend is an increase in performance as the oversampling factor
is higher. However, the evolution remains choppy, and some
K performs better than others. Surprisingly, this is not with K
being a power of 2. The performances are separated into two
blocks. The first one is with Csupp = 16 and Csupp = 32, whose
performances are slightly lower than the others. The second
with Csupp = 8 and Csupp = 64, whose last one confirms the
good performances on execution time.

Fig. 13 illustrates the data throughput of the G2G method as
a function of K for several convolution functions. As expected,
the larger the convolution function, the lower the data through-
put. Indeed, more CUDA threads are allocated to process a

10



Figure 12: GPU kernel - GPS G2G regarding the oversampling factor K.

sample. As a result, the number of blocks executed in parallel
is lower, thus reducing the throughput. On the other hand, the
throughput remains relatively stable as a function of K.

M
FT
G
2G

Figure 13: GPU kernel - MFTG2G Fourier-point throughput of G2G method
regarding the oversampling factor K.

5.5. Comparison with STD
We also compare the GPU state-of-the-art gridder and de-

gridder implementations following the Romein implementation
with the G2G method. In this comparison, the STD method is
built from the GPU implementations of these gridder and de-
gridder. Moreover, we will only take into account the CUDA
kernel times without taking into account the memory transfer
times. We take this assumption for the case where the kernel
times would cover the memory transfer costs. The metrics used
to compare the performance of the G2G method with the STD
method are the same as the previous one. The GPS is calculated
as

GPS S T D =
#FourierPointS T D.C2

supp

tgrid + tdegrid
× 10−9, (38)

with #FourierPointS T D = Nr.Nch.Npol is the number of visibili-
ties to be gridded and degridded. The Fourier-point throughput
is calculated as

MFTS T D =
#FourierPointS T D

tgrid + tdegrid
× 10−6. (39)

For the G2G and STD methods, we take an oversampling factor
K = 8 for the convolution functions.

Fig. 14 compared the performances of the two methods. For
Csupp = 64, the STD method is slightly superior by 2%. For all
other cases, the G2G method is better. For the case of Csupp = 8,
the MFT is 38% better for the G2G method than for the STD
method, and goes down to 14% better for Csupp = 32. It should
be noted that these experiments greatly benefit the STD method
since the raw visibilities used are taking great advantage of the
GPU implementation to reduce the memory bandwidth. Finally,

Figure 14: GPU kernel - GPS comparison between G2G and STD methods for
K = 8.

we compare the Fourier-point throughput processed per second
for the different methods. The results are presented in Fig. 15.
The performances for STD and G2G follow the previous result,
and G2G has better performances for small convolution func-
tions.

M
FT

Figure 15: GPU kernel - Fourier-point throughput comparison between G2G,
STD.

5.6. Roofline model

The roofline model (Williams et al., 2009) is a tool to vi-
sualize the possible limitations of an algorithm with respect to
the maximum theoretical performance of the target architecture.
The model is characterized by the device’s peak performance in
FLOPs and by the attainable memory bandwidth. This model
aims to indicate the possible bottleneck of the specific algo-
rithm. The roofline model for the GPU implementation of the
G2G, the gridding and degridding algorithms are represented
by Fig. 16 and describes the achievable performances in FLOPS
compared to the Arithmetic Intensity (AI) such as
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AI =
#OP

#memory access
(40)

G2G

gridding

degridding

STD

Figure 16: Roofline model.

The three points are in the compute-bound area without be-
ing limited by the theoretical power of the GPU. The grid-
ding reaches 22% of the theoretical performance, the degrid-
ding 11%, the STD 14%, and G2G between with 17%. The
STD point was built from the gridding and degridding points.
G2G improves the arithmetic intensity compared to STD. The
result also shows a large margin of performance improvement
before reaching the theoretical peak since the bandwidth does
not limit the methods. In order to improve the performance,
it is necessary either to increase the number of operations per-
formed in the kernel time or to decrease the kernel time without
changing the number of operations. The memory access time
to access the convolution function coefficients and the lack of
parallelism of the reduction operation are known to be bottle-
necks. We can therefore expect much better results by improv-
ing these two points. One possible improvement is integrating
the full Merry’s implementation, Merry (2016), with coarsen-
ing threads.

6. Conclusion

We presented the Grid to Grid method used in radio interfero-
metric imaging that can be seen as a generalization of the BDA.
The gridding and degridding operators have a high computa-
tional cost. The G2G method shows the computational cost re-
duction by merging these two operators in a theoretical and ex-
perimental way. The main cost reduction factor is the oversam-
pling factor used for the convolution function and the fineness
of the approximation of true uv coordinates of the visibilities.
This method makes no degradation of the reconstruction qual-
ity compared to classical gridding and degridding algorithms
for the same oversampling factor K. Moreover, it can be used
in addition to other averaging methods.

We have shown the impact of the oversampling factor on the
precision and the error generated by it. We have also shown
its impact on the memory footprint and execution time. Conse-
quently, a compromise to be made on the oversampling factor to

balance the computation acceleration while limiting the error.
The G2G method showed a compression gain for all types of
radio telescopes, especially if the array was compact. For non-
compact arrays, we still expect a compression gain and a lower
computational cost but potentially a higher memory cost due to
dirty image storage. GPU implementation of the G2G meth-
ods is well suited by increasing the performance with a factor
10 regarding the CPU implementation. Finally, we showed that
the GPU implementation of G2G was more efficient than the
GPU implementation of a gridding/degridding w-projection al-
gorithm with the same optimization level. The Fourier-point
throughput is up to a 37% increase. On the other hand, the lim-
itations come from the absence of direction-dependent effects
processing as with A-projection. This algorithm requires much
more memory access to load the convolution functions, which
are time, frequency, baseline dependent, and not separable.

In future work, we plan to improve the CUDA kernel at sev-
eral levels. The first is using texture to store convolution func-
tions to improve accuracy. The second is to fully implement-
ing Merry’s GPU optimization is also a promising direction.
In addition, we plan to implement the w-stacking method (Of-
fringa and al., 2014), which allows using a low oversampling
factor and thus works on larger images. Moreover, a higher
level improvement is the possibility of using a hybrid version
of w-projection and w-stacking. Finally, port the CUDA code
to HIP, (Kondratyuk et al., 2021), in order to use the code on
Nvidia or AMD platforms in a transparent way.
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