
HAL Id: hal-04264033
https://hal.science/hal-04264033

Submitted on 30 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Protecting ownership rights of ML models using
watermarking in the light of adversarial attacks

Katarzyna Kapusta, Lucas Mattioli, Boussad Addad, Mohammed Lansari

To cite this version:
Katarzyna Kapusta, Lucas Mattioli, Boussad Addad, Mohammed Lansari. Protecting ownership
rights of ML models using watermarking in the light of adversarial attacks. Workshop AITA AI
Trustworthiness Assessment - AAAI Spring Symposium, Mar 2023, Palo Alto (Californie), United
States. �hal-04264033�

https://hal.science/hal-04264033
https://hal.archives-ouvertes.fr

Protecting ownership rights of ML models using watermarking
in the light of adversarial attacks

Katarzyna KAPUSTA1,2, Lucas MATTIOLI2, Boussad ADDAD1,2, Mohammed LANSARI1

1 Thales SIX GTS France, 2 IRT SystemX France

Abstract
In this paper, we present and analyze two novel - and seem-
ingly distant - research trends in Machine Learning: ML wa-
termarking and adversarial patches. First, we show how ML
watermarking uses specially crafted inputs to provide a proof
of model ownership. Second, we demonstrate how an attacker
can craft adversarial samples in order to trigger an abnormal
behavior in a model and thus perform an ambiguity attack
on ML watermarking. Finally, we describe three countermea-
sures that could be applied in order to prevent ambiguity at-
tacks. We illustrate our works using the example of a binary
classification model for welding inspection.

Introduction
The value of a Machine Learning model will first and fore-
most depend on the quality of its training dataset. Expert
knowledge of the data scientists involved in its creation
plays then a second but also important role. Last but not least
factor are the computational resources required to run the
training, which for some particular use cases may be stag-
gering (training GPT-3 would cost over $4.6M using a Tesla
V100 cloud instance1).

Attackers unable to gather data or perform the costly
training, may be tempted to steal an existing model. They
may then use it in secret for their own purposes or mone-
tize it by making it available as a service. In the latter case,
the legitimate owner will discover the theft and will claim
the ownership of the model. However, providing a proof of
its ownership may be quite tricky as model architectures or
parameters may be changed by the attacker (while its per-
formance will not be significantly impacted). Moreover, the
attacker will most probably not be willing to reveal them if
not forced by law.

ML models watermarking is a rapidly developing re-
search field, which main goal is to help identify the own-
ership of a model. Inspired by the watermarking in the mul-
timedia domain, it consists in inserting a secret change into
a model during its training that once revealed by the model
owner will allow the model identification. This secret change
is the ML model watermark and can have the form of a mod-
ification of the model look (typically models parameters)

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://lambdalabs.com/blog/demystifying-gpt-3

or model behaviour. Verification of model ownership relies
then on a demonstration of the knowledge of this secret and
abnormal change by the model creator, ex. using a secret key
to extract the watermark embedded into model parameters or
querying the model with specially prepared inputs that will
trigger the abnormal behaviour.

Independently, adversarial attacks became one of the main
cybersecurity threats to the trustworthy AI. It was demon-
strated that even a slight - but specially crafted - perturbation
to the model inputs can result in an erroneous prediction.
Thus, an attacker may force the model misbehaviour with-
out even touching neither the training data nor its internals.
While the main danger of adversarial attacks is their ability
to compromise the trust in a model (Akhtar and Mian 2018),
they can also be leveraged to produce counterfeit ML wa-
termarks. To our knowledge, this application of adversarial
attacks remains little studied.

Our first objective is to analyze ML watermarking in
terms of its impact on the model performance and robust-
ness against removal erasure attack. We focus on the behav-
ioral ML watermarking as it allows the identification of a
model in a MLaaS (ML as a Service) setting and therefore
seems to be the most practical of watermarking techniques.
Our second goal is to demonstrate how adversarial attacks
can be leveraged to create counterfeit watermarks. Finally,
we propose solutions to the identified problem.

Outline We start with introducing relevant work from the
domain of ML watermarking and adversarial attacks. Then,
we present our preliminary results on watermarking using
public datasets. We analyze ML watermarking applied on
an industrial use case. Finally, we show how to perform
an ambiguity attack on ML watermarking using adversar-
ial patches and describe possible solutions to that problem.
We conclude with insights into future work.

Relevant work
ML watermarking
ML watermarking, first introduced in (Uchida et al. 2017),
aims at providing intellectual property protection of a ven-
dor by embedding a proof of ownership into the model. This
proof should remain secret to anyone but the model owner
and revealed only during verification of a suspicious model.
It also has to be robust to potential model modifications,

such as fine-tuning or pruning. In recent years, the develop-
ment of Ml watermarking was fueled by the appearance of
extraction attacks, capable of copying models deployed as a
MLaaS. The big majority of ML watermarking techniques
focuses on the image classification task.

ML watermarking techniques can be roughly divided into
two main categories - white-box and black-box. In white-
box watermarking techniques the proof of ownership re-
lies on secret change embedded into the model parameters
(Uchida et al. 2017) or the model architecture (Fan, Ng, and
Chan 2019). Thus, they will allow verification of the model
only if the verification authority (the legitimate owner of the
model or a trusted third-party) has access to the whole con-
cerned model.

In black-box watermarking, the proof of ownership is
based on a secret change embedded into the model behav-
ior (Adi et al. 2018; Zhang et al. 2018). The method can
be compared to legitimate model backdooring. In backdoor-
ing, an attacker poisons the training data in order to create a
hidden modification to the model behaviour: when triggered
with the poisonous data, the model will deviate from its nor-
mal behavior. In the case of watermarking, its the model
owner who in purpose introduces the modification to his own
model. Compared to white-box watermarking, the technique
is more practical as it requires only access to the model’s
API and not its whole internals.

In more detail, black-box watermarking uses the over-
parametrization of neural networks. It modifies their behav-
ior by poisoning the dataset with a set of data samples de-
noted as key inputs that are regrouped into a trigger set.
There are three main approaches to the generation of the
key inputs and their associated labels (illustrated in Figure
1). They were all conceived to be used for image classifica-
tion models. In the first strategy, the model creator chooses
a number of samples from the dataset as the trigger set and
embeds onto these samples a meaningful content, such as
text or logo. Then, they change the labels of the modified
samples. The second strategy consists in constructing the
trigger set from unrelated data labeled as a selected class
(or multiple random classes). The last strategy is a variation
on the content method, where noise is embedded within the
key inputs.

An efficient black-box watermarking should meet several
requirements, such as being resistant to model transforma-
tions that could lead to watermarks erasure or being clearly
tied to owner’s identity in order to avoid confusion (Kapusta,
Thouvenot, and Bettan 2020). Moreover, their impact on the
network performance should be ideally negligible. During
the verification process, the key inputs will be necessarily re-
vealed and thus watermarks are hardly reusable. Therefore,
it is important to embed a sufficient amount of watermarks
into the model in order to allow multiple verification checks
(usually a trigger set with dozens of key inputs is used).

Attacks on watermarking
We identify three main categories of attacks against water-
marking (Kapusta, Thouvenot, and Bettan 2020; Wang and
Kerschbaum 2019):

Figure 1: Illustration of the three main black-box water-
marking techniques present in the literature. From left to
right: clean sample from the dataset (correctly labeled im-
age), content watermark, noise watermark, and unrelated
watermark.

Watermark removal : an attacker removes completely
the watermark from the model or weakens its strength. More
precisely, they use techniques such as fine-tuning, compres-
sion or fine-pruning, which can weaken the strength of the
marks. In case of black-box watermarking, techniques used
for backdoor detection and removal can also serve to erase
watermarks. Moreover, any transformation (intentional or
not) of the network may potentially have an impact on the
watermarks.

Ambuiguity attack : an attacker casts doubt on the legit-
imate ownership by providing counterfeit watermarks. The
easiest way to create confusion is to insert a different set of
watermarks into an already watermarked model.

Evasion attack : an attacker tries to escape watermarks
verification in the context of black-box techniques. The eva-
sion can be achieved using a query detector inspecting if a
query is a possible verification attempt (in this case, a ran-
dom prediction will be output).

Adversarial attacks

Machine learning models, including neural networks, have
been shown to exhibit non robust behavior. They are vul-
nerable to evasion attacks aka adversarial examples (Good-
fellow et al. 2020): they misclassify specially crafted in-
puts that are very similar to correctly classified ones. In-
deed, images that differ only in a few pixels may be clas-
sified differently. Although invisible adversarial examples
(very slightly modified images, achieved by adding specially
crafted noise to a clean sample) have received strong atten-
tion from the computer vision community (Szegedy et al.
2013; Biggio et al. 2013; Kurakin, Goodfellow, and Ben-
gio 2017; Madry et al. 2018; Cohen, Rosenfeld, and Kolter
2019), Nguyen, Yosinski, and Clune (2015) and Brown et al.
(2017) have managed to introduce a new threat. Named
adversarial patches, it consists in modification of a single,
small region of the input image, able to strongly perturb the
behavior of a deep network (Figure 2) (Brown et al. 2017).

Figure 2: Figure from (Brown et al. 2017): a toaster patch
is added to a banana image leading the targeted network to
predict toaster instead of banana.

An important feature of adversarial patches is that they
can be created in the physical world. Contrary to invisible
adversarial examples, which rely on exact modification at
the pixel level, patch attacks rely on a very salient modi-
fication which can be more easily constrained to be physi-
cally possible. For instance, attackers may craft an adversar-
ial patch in form of a sticker that, once put on an physical
object, will mislead cameras with embedded AI for images
recognition.

Motivations
ML watermarking is a rapidly developing research trend.
Our first objective was to test and evaluate the most rele-
vant watermarking techniques on a real-world use case. We
have chose black-box watermarking aka watermarking from
backdooring for our tests, as it seems to work in the most re-
alistic scenario, where the access to the suspected model is
limited to its inputs/outputs. We wanted to answer the three
following questions: Are the watermarks well detectable?
What is the impact of watermarking on the model’s accu-
racy? Is it possible to remove the watermarking using fine-
tuning?

The second goal was to explore the similarities between
watermarking and adversarial patches. We have observed
that, although the mechanisms behind the two techniques are
quite different, they give similar results: a specially crafted
input triggers abnormal behavior of the model. Therefore,
the following questions arises: Does an attacker can lever-
age adversarial attacks to attack watermarking? Is it easy to
craft a counterfeit watermark that is in reality an adversarial
patch?

Preliminary results on public datasets
The three black-box watermarking techniques mentioned in
the state-of-the-art section were implemented and tested.
Preliminary tests were realized on the CIFAR-10 dataset 2.
As watermarking content and noise are similar (watermark-
ing noise can be seen as a variant of the content technique),
the focus was put on the comparison between the baseline

2https://www.cs.toronto.edu/kriz/cifar.html

model and models watermarked with content or unrelated
techniques.

Results presented in the Table 1 show that the watermarks
are clearly detectable after being embedded during training.
The accuracy on the trigger sets for both content and un-
related techniques reaches 100%. When testing the trigger
sets on a non-marked model or on a model marked with a
different watermarking technique, the accuracy drops sig-
nificantly.

The impact of watermarking on the model accuracy is
shown in Figure 3. Although at the beginning of the train-
ing there are some differences between the baseline and
the three marked models, the final accuracy does not sig-
nificantly differ. The slightly better accuracy of the model
marked with the content technique can be at first surpris-
ing, but it comes from the fact that initial watermarks where
included in the test dataset: the model learns easily to recog-
nize them without mistake (it has 100% accuracy on these
images) and therefore it increases the overall accuracy.

Figure 3: Comparison of the three main watermarking ap-
proaches during training.

A different test aimed at investigating the noise water-
marking technique. In more detail, the amount of the gen-
erated noise used to mark the key inputs of the watermarks
was varied and the accuracy of the watermark detection was
measured (see illustration in Figure 4 and comparison in Ta-
ble 2). It shows that clearly detectable watermarking can be
achieved with 17% (170 pixels) of noise perturbation intro-
duced in the key inputs.

Results on the Welding Inspection use case
We implemented and tested the three same black-box wa-
termarking techniques on a binary classification dataset
for welding inspection of automobile parts (Braunschweig,
Gelin, and Terrier 2022) (containing two classes: ”Normal”
and ”Retouch”). This dataset was provided by the French au-
tomobile industrial Renault within the Confiance.ai program
(Confiance.ai et al. 2022). For each of them, we compared
the performances of the corresponding watermarked model
with a baseline model of the same architecture: a Resnet
model composed of 4 hidden layers that we will refer to as

Table 1: Watermarking accuracy for the content and unrelated watermarking approaches (100 key inputs in the trigger dataset).

Model Dataset Trigger set: content Trigger set: unrelated
model baseline 91.21% 4% 8%
model content 100 91.57% 100% 12%
model unrelated 100 89.2% 11% 93%

Table 2: Watermarking accuracy for the noise watermarking technique in function of the noise strength (measured as the number
of pixels changed in a 32x32 image).

Number of pixels changed 100px 170px 256px 500px 1000px
Accuracy 44% 96% 100% 100% 100%

Figure 4: Varying the amount of noise in the watermarking
noise approach by changing pixels to random values. From
left to right: 100 pixels changed, 170 pixels changed, 1000
pixels changed .

”baseline model” in this document. We use the same train-
ing procedure for each watermarking technique, as for the
baseline model. It consist of 50 epochs with a SGD opti-
mizer (Stochastic Gradient Descent with momentum) with a
starting learning rate of 0.001. The only difference between
the marked and the baseline model will be in the presence of
various trigger sets during training.

Unrelated watermarking consists in injecting unrelated
data to the original dataset during training. For a classifica-
tion problem, the idea is to create a trigger set that contains a
small collection of pairs of (key input, label) unrelated to the
training dataset and to train the model with both the training
set and the trigger set. The unrelated key inputs can be all
labelled as one class or have randomly associated labels.

Then, during test time, each key input of the trigger set
will be evaluated. In the perfect case, the model should be
able to correctly identify each key input of the trigger set
correctly (i.e. to its corresponding class).

The strength of the proof of ownership depends on the
statistical probability that a random model (i.e. not specifi-
cally trained on the trigger set) would correctly classify each
key input of the trigger set correctly. For a classification
problem with M different classes and for a trigger set of N
elements: the probability of a random model to correctly
identify all N data points is 1

NM . Thus the strength of the
ownership proof depends both on the number of classes of
the dataset and the size of the trigger set. Here we tested
these watermarking techniques on a binary classification
problem thus containing the smallest possible number of

classes for a classification problem.

We tested various sizes of the trigger set to evaluate the
unrelated watermarking technique’s strength and proof
capacity for our model, and to compare the nominal
performances of our watermarked model to the baseline
model. The proof capacity corresponds to the number of
simultaneous watermarks added to a single model. As each
watermark can only be used once because using it as a
proof of ownership requires to expose it thus trivializing it’s
removal.

We hypothesized that the nominal performance should
slightly decrease as we increase the size of the trigger set.
For our evaluation, we used pictures from an open-source
dataset: the Stanford-AI Cars dataset (Krause et al. 2013).
It is composed of 16 000 labeled cars images. We created
two different trigger sets, one with only 10 car images and
one with 100 images to evaluate the impact of the size of the
trigger set during the watermarking of the model.

In our first exploration tests, we were able to retrieve the
watermark completely for the trigger set of size 10, with-
out impacting the model’s performances. However, for the
trigger set of size 100, we were never able to completely re-
cover the watermark (the best model had a 76% accuracy for
the watermark recognition). This approach should be inves-
tigated further as it isn’t clear whether it is a hard limitation.

Content watermarking consist in adding a semantic in-
formation into a sample of the original dataset, and to train
the model into recognizing the semantic information and to
classify it in a predefined class. In our work we choose the
logo depicted in Figure 5 as our semantic information. Other
studies have also used text written directly on the images.
We choose to always add it on the top left corner in order to
be consistent with its placement, to help the network recog-
nize the watermark. Again, we tested two sizes for the trig-
ger set: one with 10 images and another with 100 images.
For this watermarking method, we were able to incorporate
the watermark without impacting the model’s performances
— compared to the “baseline model”, see Table 4. Further
work could focus on adding multiple content watermarks to
a single model in order to evaluate the proof capacity of such

Table 3: Nominal result of un-watermarked model (baseline)

Network Metrics
Accuracy Precision Recall F1 score

model baseline 88.08 86.82 99.12 92.56

Figure 5: Logo used for content watermark.

approach in the context of an industrial use case.

Noise watermarking is similar to the content method.
It consists in adding a specific perturbation to the key
inputs that are samples taken from the dataset, to make the
model learn the association between this perturbation and a
predefined class. Opposite to the content method, the added
information does not contain any meaningful semantic
information, but uses a random or key-generated noise.
More precisely, for a data recognition problem, a fixed set
of pixels will be changed to correspond to a specific random
pattern. For each image of the trigger set the same noise is
applied.

For the noise watermarking method, we tested various
amount of noise to embed into the key inputs of the trigger
set. We expected that, the more noise was added, the more
identifiable the watermark would become (as it was the
case for the preliminary results on the public dataset). On
the other hand, adding too much noise could potentially
decrease the performances of the model. Moreover, if the
noise becomes too important and covers the majority of
each picture of the trigger set, then, each key input of the
trigger set will become approximately the same for the
model. It would greatly reduce the strength of the ownership
proof. In order to avoid that phenomenon: the images
used for the trigger set should still contain some semantic
information from the original images.

We chose the amount of noise according to previous stud-
ies summarized in Table 2 and decided to evaluate the water-
mark recognition accuracy for the same absolute total infor-
mation of noise and the same relative information of noise.
As the previous study was done on 32×32 images and we
are evaluating it on 224×224 images we evaluated the wa-
termark for the following number of modified pixels: {100,
170, 256, 500, 1 000, 4 900, 8 330, 12 540, 24 500, 49 000}.

We were able to reproduce the previous results obtained
on the public dataset of 32×32 images for the same relative
amount of modified data used for the noise watermark. Thus
confirming that a minimal quantity of noise is necessary to
be able to recognize the watermark. We also evaluated the

Figure 6: Varying noise in the noise watermarking tech-
nique.

Figure 7: Comparison of noise watermark recognition accu-
racy based on the number of modified pixels for two differ-
ent sizes of the dataset.

influence of the size of the trigger set over the watermark
recognition as we hypothesized that the size of the trigger
set could have an influence over the recognition of the wa-
termark. Figure 7 shows that a larger trigger set can result in
a greater recognition of the watermark for some amount of
noise included (here: 4 900 and 8 330 pixels changed).

On the other hand, we also analyzed whether the addition
of the noise watermark was any detrimental to the model’s
nominal performances. We observed that for a small noise
the training performances of the model were completely
reduced. For each watermark added with less than 4 900
pixels modified, the networks were not able to satisfyingly
classify the welding pictures (see Figure 8).

We interpret this result as the fact that the watermark
creates a competition for the classification of originally
correct weld pictures (classified as “OK”). Thus, when
we only add a small noise, it is more difficult for the
model to differentiate between noisy and non-noisy images
(watermarked and un-watermarked images). On the other
hand, when the noise is more important, the model can
more easily learn the noise pattern rather than the semantic
information presented in the weld pictures used for the
trigger set.

Table 4: Comparison of nominal performances for content watermark.

Network Metrics
Accuracy Precision Recall F1 score

model baseline 88.08 86.82 99.12 92.56
model content 10 88.74 86.92 100 93.00
model content 100 89.40 88.80 98.23 93.28

Figure 8: Comparison of nominal performance for noise wa-
termark based on the number of modified pixels for different
sizes of the trigger set.

Attacking watermarking
In the section, we attack watermarking. First, we try a re-
moval attack based on fine-tuning. Second, we show an am-
biguity attack that can lead to confusion during watermarks
verification (see Section on the attacks on watermarking for
both attacks explanation).

Fine-tuning attack
We evaluated the impact of various number of fine-tuning
epochs over a watermarked model. As with gentle fine-
tuning we could not achieve the removal, we chose a more
aggressive strategy. We chose a learning rate of 10-5 for 10,
15 and 20 epochs. With this procedure we again where not
able to remove the watermark as all the test data used for
watermark recognition were still correctly classified by the
model, even though we were reducing the model nominal
performances significantly (see Table 5).

Accuracy F1
Score

WM recog-
nition

Before fine-tuning 93.23% 85.02% 100.00%
After 10 epochs 92.57% 82.82% 100.00%
After 15 epochs 91.05% 78.53% 100.00%
After 20 epochs 89.96% 74.99% 100.00%

Table 5: Evolution of model’s performances during the fine-
tuning attack.

Ambiguity attack using adversarial patches
An adversarial attack using the patch method can be very
similar to the content watermarking technique (illustration

Figure 9: Ambiguity attack illustration: an attacker con-
structs an adversarial sample (with red rectangle used as an
adversarial patch) that imitates the content watermark.

in Figure 9). As a result, the legitimate owner may try to
claim its property by revealing the abnormal behavior of
its model and may end up being confronted with the at-
tacker who will demonstrate another abnormal behavior of
the same model.

We tested different types of perturbations that could be
used as an adversarial patch and thus as a counterfeit water-
mark. We analyzed then their impact on model performance.
A successful adversarial patch will make the model misclas-
sify the input with embedded perturbation. In order to assess
the effect of the patch size on the attacks success rate against
the models, three patch sizes were considered: 8×8, 16×16,
and 32×32 pixels. Also, in order to check if the degraded
performance of the model is not merely caused by the pres-
ence of a perturbation, whatever is its type, we considered
non optimized patches, simple stickers, generated randomly
or simply one-color black or grey squares (illustrated in Fig-
ure 10). The results are given in Table 6.

As presented in Table 6, even with a simple non optimized
patch, the model performance drops with 60% or even 72%
when using a 32×32 patch on data from class ”Retouch”.
The grey and black patches are not that successful on data
from class ”Normal” but the random patches reach 35%
misclassification on these data. The optimized patch does,
with no surprise, much better than that (62% success rate)
with 32x32 size but astonishingly less good results with the
smaller patches 16x16 or 8x8. It is an interesting results that
must be investigated more thoroughly in the future.

In order to get an idea about the different patches place-
ment on the images and their effect on the classification,
some samples are given in Figure 10 while both classes,
”Normal” and ”Retouch”, are considered in evaluation.

ML Patch Patch size
32x32

Patch size
16x16

Patch size
8x8

Normal 62.90% 15.58% 7.34%
Retouch 92.89% 27.23% 8.02%
Black patch Patch size

32x32
Patch size
16x16

Patch size
8x8

Normal 6.45% 9.62% 4.96%
Retouch 72.79% 31.83% 8.55%
Grey patch Patch size

32x32
Patch size
16x16

Patch size
8x8

Normal 8.23% 10.62% 4.66%
Retouch 67.13% 22.49% 5.56%
Rdm patch Patch size

32x32
Patch size
16x16

Patch size
8x8

Normal 34.62% 12.10% 8.04%
Retouch 59.85% 64.14% 49.70%
Rdm patch Patch size

32x32
Patch size
16x16

Patch size
8x8

Normal 33.63% 12.70% 6.75%
Retouch 60.58% 65.10% 50.38%

Table 6: Patch attacks (first row) and simple perturbations
(following four rows) effect on welding UC ML model per-
formance.

Figure 10: Samples of attacks results using different types
of patches.

How to prevent ambiguity attacks?
In its basic version, ML watermarking enables ML own-
ers to verify if their models were stolen. However, if used
naively, it may not provide a sufficient proof of ownership
of a model in a situation where the model was indeed stolen,
as an attacker may retrain the model in order to embed its
own watermarks. Even worse, as presented in the previous
section, adversarial attacks can be used by attackers to claim
the ownership of models that were not even stolen. There-
fore, in order to be integrated within real-world use cases,
watermarking should be reinforced with the right defense
mechanisms against false ownership claims.

Combining black-box with white-box
In (Fan, Ng, and Chan 2019), a countermeasure against
ambiguity attacks was proposed that combines the black-
box approach with an additional white-box model marking.
Model performance strongly depends on specially crafted
model layers, knowledge of which provides the final proof
of model ownership. More generally, using white-box tech-
nique as a next step after black-box verification reinforces
the ownership proof. However, as it implicates the model
revealing to a sort of verification authority, its use may be
costly and therefore should be limited.

Reinforcing the link between the watermark and
the model owner
A naive black-box watermarking technique does not estab-
lish any link between the owner and watermarks. More so-
phisticated techniques embed owner’s logos into the key in-
puts or use unique encoders to generate the watermarks (Li
et al. 2019). Such watermarks should be harder - but not
impossible - to imitate by an attacker. They can be coupled
with explainability methods that allow to better understand
the effect of watermarking on the marked models and, in
consequence, to design more explicit watermarks (Lansari,
Kapusta, and Thouvenot 2022).

The right verification protocol
In (Adi et al. 2018), authors proposed to register the water-
marks in a secure cryptographic vault and reveal them only
at time of the verification. This prevents ambiguity attacks,
where an attacker manages to find abnormal behavior in the
concerned model. It does not however eliminate totally the
risk of sophisticated attacks, where an attacker will use the
transferability properties of adversarial attacks to create its
counterfeit watermarks in advance. A secure protocol for
verification of ML watermarks was proposed in (Kapusta
et al. 2021). Its first step consists of verification if the claimer
of a model has the ability of proving that they possesses
both a non-marked model and a watermarked one. If imple-
mented wisely, this procedure will significantly reduce the
success rate of ambiguity attacks.

Conclusion
In this paper we presented three black-box watermarking
techniques from the literature. We evaluated them on an in-
dustrial dataset for a binary classification problem. We tested

their impact on the model performance, as well as their ro-
bustness to the fine-tuning removal attack. We also demon-
strated how adversarial patches could be used to create am-
biguity attacks for ML watermarking. Finally, we gave rec-
ommendations on how to avoid naive ambiguity attacks.
These methods and tools are planed to be integrated in the
trustworthy-AI engineering workbench provided by Confi-
ance.ai. In the same program, future works are expected to
extend the proposed approach from image classification to
image detection.

Acknowledgments
This work has been supported by the French government
under the ”France 2030” program, as part of the SystemX
Technological Research Institute within the Confiance.ai
Program (www.confiance.ai).

References
Adi, Y.; Baum, C.; Cisse, M.; Pinkas, B.; and Keshet, J.
2018. Turning your weakness into a strength: Watermark-
ing deep neural networks by backdooring. In 27th USENIX
Security Symposium (USENIX Security 18).
Akhtar, N.; and Mian, A. 2018. Threat of adversarial attacks
on deep learning in computer vision: A survey. Ieee Access,
6: 14410–14430.
Biggio, B.; Corona, I.; Maiorca, D.; Nelson, B.; Šrndić, N.;
Laskov, P.; Giacinto, G.; and Roli, F. 2013. Evasion attacks
against machine learning at test time. In Joint European
conference on machine learning and knowledge discovery
in databases, 387–402. Springer.
Braunschweig, B.; Gelin, R.; and Terrier, F. 2022. The wall
of safety for AI: approaches in the confiance. ai program. In
Workshop on Artificial Intelligence Safety (SAFEAI).
Brown, T. B.; Mané, D.; Roy, A.; Abadi, M.; and Gilmer, J.
2017. Adversarial patch. arXiv preprint arXiv:1712.09665.
Cohen, J.; Rosenfeld, E.; and Kolter, Z. 2019. Certified
adversarial robustness via randomized smoothing. In In-
ternational Conference on Machine Learning, 1310–1320.
PMLR.
Confiance.ai; et al. 2022. Towards the engineering of trust-
worthy AI applications for critical systems - The Confi-
ance.ai program.
Fan, L.; Ng, K. W.; and Chan, C. S. 2019. Rethinking deep
neural network ownership verification: Embedding pass-
ports to defeat ambiguity attacks. Advances in neural in-
formation processing systems, 32.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2020. Generative adversarial networks. Communications of
the ACM, 63(11): 139–144.
Kapusta, K.; Thouvenot, V.; and Bettan, O. 2020. Water-
marking at the service of intellectualproperty rights of ML
models. Conference on Artificial Intelligence for Defense
(CAID).
Kapusta, K.; Thouvenot, V.; Bettan, O.; Beguinet, H.; and
Senet, H. 2021. A Protocol for Secure Verification of Wa-
termarks Embedded into Machine Learning Models. In

Proceedings of the 2021 ACM Workshop on Information
Hiding and Multimedia Security, IHMMSec ’21, 171–176.
New York, NY, USA: Association for Computing Machin-
ery. ISBN 9781450382953.
Krause, J.; Stark, M.; Deng, J.; and Fei-Fei, L. 2013. 3D
Object Representations for Fine-Grained Categorization. In
Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV) Workshops.
Kurakin, A.; Goodfellow, I. J.; and Bengio, S. 2017. Adver-
sarial Machine Learning at Scale.
Lansari, M.; Kapusta, K.; and Thouvenot, V. 2022. How
to efficiently and explicitly watermark your Convolutional
Neural Network. In Conference on Artificial Intelligence
for Defense, Actes de la 4ème Conference on Artificial In-
telligence for Defense (CAID 2022). Rennes, France: DGA
Maı̂trise de l’Information.
Li, Z.; Hu, C.; Zhang, Y.; and Guo, S. 2019. How to
Prove Your Model Belongs to You: A Blind-Watermark
Based Framework to Protect Intellectual Property of DNN.
In Proceedings of the 35th Annual Computer Security Ap-
plications Conference, ACSAC ’19, 126–137. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450376280.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2018. Towards Deep Learning Models Resis-
tant to Adversarial Attacks. In 6th International Confer-
ence on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Pro-
ceedings.
Nguyen, A.; Yosinski, J.; and Clune, J. 2015. Deep neural
networks are easily fooled: High confidence predictions for
unrecognizable images. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 427–436.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2013. Intriguing proper-
ties of neural networks. arXiv preprint arXiv:1312.6199.
Uchida, Y.; Nagai, Y.; Sakazawa, S.; and Satoh, S. 2017.
Embedding watermarks into deep neural networks. In Pro-
ceedings of the 2017 ACM on International Conference on
Multimedia Retrieval.
Wang, T.; and Kerschbaum, F. 2019. Attacks on digital
watermarks for deep neural networks. IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP).
Zhang, J.; Gu, Z.; Jang, J.; Wu, H.; Stoecklin, M. P.; Huang,
H.; and Molloy, I. 2018. Protecting intellectual property of
deep neural networks with watermarking. In Proceedings of
the 2018 on Asia Conference on Computer and Communi-
cations Security.

